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Abstra
t

This paper 
on
entrates on two topi
s. First it presents 
ases whi
h show that

even in atomi
 physi
s, 
ontrary to expe
tations, variational methods have problems

on the 4-5th digits in expe
tation values whi
h depend on the values of 	 at the


usps, as opposed to the energy. Se
ond, we 
ompare the results of the dire
t

method, CFHHM (Correlation fun
tion hyperspheri
al harmoni
 method), in atomi


ionization 
al
ulations of the single and double ionization of the Helium atom and

the Helium isoele
troni
 sequen
e for Z up to 10 and ex
ited states up to n = 5.

We 
al
ulate more n, Z dependen
ies than before; make predi
tions on 
orre
tions

due to quasi-free me
hanism using a new formula (several new light sour
es are

be
oming available).

Sophisti
ated variational methods nowadays try to over
ome the fa
t that mathemat-

i
ally there is no reason to assume that a variational method would give a

ura
y for the

expe
tation values 
omparable to that of the energy E. The motivations in this se
tion

is to show several examples where su
h variational 
al
ulation indeed break down.

CFHHM [1℄ is a dire
t solution of the S
hr�odinger equation by the separation of 	

into the singular part (
aused by the Coulomb intera
tion; this is spe
i�
 to the atomi


physi
s) and the smooth part, 	 = e

f

�. The S
hr�odinger equation is 
onverted into the

equation for � = �

2

� expanded into the hyperspheri
al harmoni
 basis (index �; � is


onne
ted with the global angular momentum):
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where � is the hyperradius (a permutation-invariant measure of system size, given by

a weighted sum of squares of the Ja
obi 
oordinates), and W is the velo
ity-dependent

potential, W = V � (rf;r) �
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. The essential physi
al input to

CFHHM is the 
orrelation fun
tion whi
h in general is nonlinear
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where fi; j; kg are a permutation of f1; 2; 3g, and Z

i

and m

i

are 
harges and masses of the

parti
les. f but 
an be used in its linear form (b

k

= a

k

) for Helium and its isoele
troni


sequen
e ex
ept H

�

. Mathemati
ally this fun
tion is an a

elerator of the 
onvergen
e
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but it also lowers the minimum � where 
onvergen
e starts; it redu
es the number of HH

required for a given pre
ision by orders of magnitude; in addition, it 
an at the same

time in
orporate some asymptoti
 (
lustering) properties. For example, the nonlinear


orrelation fun
tion for the positronium negative ion (Ps-) redu
es the error of observables

by two orders of magnitude while making the 
al
ulation even less time 
onsuming.

The sti
king probabilities (Table 1) in the muon-
atalyzed fusion pro
ess are an ex-

ample of CFHHM giving mu
h smaller error margins than even the dis
repan
ies between

di�erent variational 
al
ulations.

Table 1: Sti
king probabilities !

nl

(Q = 5:844).

Method K

m

1s 2s 4s 2p

CFHHM 0.6819(1) 0.0978 0.0126 0.0238

HCM (Abramov) 15 0.829 (?)

21 0.906 (?)

21 0.7001 0.1004 0.0130 0.0245

1)

Var. (Hu) 0.6932 0.0992 0.0128 0.0241

Var. (Haywood) 0.6846

Var. (Hu) 0.6817

Kamimura 0.6842

Var. (Hu) 0.6802 0.0975 0.0126 0.0237

Var. (re
ent) 0.6802-

0.8422

1)

Q = 5:846.

In e�

4

He we have a 
ase where CFHHM has resolved high pre
ision dis
repan
ies.

Even E 
onverged faster than in a variational method (SVM), but the \lo
al" expe
tation

values de�nitely are better than the di�eren
es between two high-pre
ision 
al
ulations

by the same author:

10

8

hÆ(r

�He

)i 0.207 001 354 2(6) CFHHM

0.207 001 373 610 Smith-Frolov 1995

0.207 001 373 43 Frolov 2000

hÆ(r

e�

)i 0.313 762 07(7)

0.313 763 0

0.313 760 812

hÆ(r

eHe

)i 0.320 633 27(6)

0.320 626 88

0.320 631 162

Bartlett (in 1935) suggested 
omparing the lo
al energy, D = H	=E	 � 1. Fig. 1

shows the 
omparison of SVM (Varga, Kukulin) and CFHHM for Ps- from Ref. [2℄. While

CFHHM is 
learly better espe
ially around the repulsive 
usp whi
h SVM avoids be
ause

it 
ontributes little to E, CFHHM turns out to be \mu
h worse" than SVM for almost

all expe
tation values. However the Æ operators are mu
h better:

hHi 0.262 005 069 5 CFHHM

0.262 005 070 226 SVM

0.262 005 070 232 965 EVE
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hr

ee

i 8.548 5(2)

8.548 580 655 061

8.548 580 655 12

hÆ(r

ep

)i 0.020 733 14(6)

�

0.020 731 048 976

0.020 733 198 0

hÆ(r

ee

)i 0.170 997(2)[-3℄

0.171 112 600 741[-3℄

0.170 996 99[-3℄
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Figure 1: D = H	=E	� 1 for Ps-.

The motivations of ionization 
al
ulations is to test CFHHM against systemati
 vari-

ational 
al
ulations by Forrey [3℄.

Experimentally it turns out that one ele
tron takes away almost all energy (shake-o�

me
hanism). Very soon (Byron et al.) it was also realized that in the early 
al
ulations

the shake-o� me
hanism underestimates �

++

(!) by a fa
tor of 2, whi
h indi
ates the

importan
e of 
orrelations in this three-body system; indeed, Helium is very strongly


orrelated. We shall 
al
ulate ratios of 
ross se
tions be
ause they are independent of the

photon energy at high (but nonrelativisti
) photon energies (this just gets rid of the !

�7=2

fa
tor). For pre
ise 
al
ulations the dipole approximation (golden rule) is good but good

initial three-body wave fun
tion is needed. This leads to the expressions for the double
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ionization 
ross se
tion,
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where  

�lm

(s) des
ribes the unperturbed se
ond ele
tron in the �eld of the nu
leus. (The


ross se
tion �

+

(!) 
ontains only the lowest integral, and �

+�

(!) 
ontains only the ex
i-

tation integrals.) We start out with 	 
orresponding to reasonable E whi
h need not be

very pre
ise (in CFHHM), but also should not be too impre
ise (Table 2). Nevertheless,

we end up with di�eren
es at 3

rd

{ 4

th

digit (Table 3).

Table 2: Helium binding energy and R values: various methods.

Work Basis E R

Present/ 121 2.9037243643 .01644

CFHHM 441 2.9037243765 .01644

[3℄ 2.903724377034 .01644

Kheifets 7/MCHF 2.90181 .0167

Dalgarno 20 2.9037179 .0168

Table 3: R = �

++

(!)=(�

+

(!) + �

+�

(!))j

!!1

values for the n

1

S states in the Helium

isoele
troni
 sequen
e (in per
ent), and the di�eren
es with Ref. [3℄.

n 1 2 3 4 5

Z

1 1.602

2 1.644 0.903 0.369 0.169 0.088

3 0.855 1.204 0.830 0.546 0.360

4 0.508 0.994 0.849 0.677 0.530

5 0.334 0.768 0.728 0.643 0.553

6 0.235 0.595 0.599 0.561 0.512

7 0.175 0.469 0.491 0.479 0.453

8 0.135 0.377 0.406 0.406 0.395

9 0.107 0.309 0.339 0.346 0.344

10 0.087 0.258 0.287 0.297 0.299

We anti
ipate several works with relevant data for experiments. For example, we

obtain a 35 % quasi-free 
orre
tion at 100 keV [4℄. Rather small 
omputational demands

have been pla
ed on CFHHM, but state-of-the-art results were improved. This 
al
ulation

for the �rst time separates the three-body input from approximations like the dipole

approximation. Higher ex
ited states and QF 
orre
tions were 
al
ulated for the �rst

time. We plan to extend this work to triplet states and Compton s
attering.
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