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Abstrat

This paper onentrates on two topis. First it presents ases whih show that

even in atomi physis, ontrary to expetations, variational methods have problems

on the 4-5th digits in expetation values whih depend on the values of 	 at the

usps, as opposed to the energy. Seond, we ompare the results of the diret

method, CFHHM (Correlation funtion hyperspherial harmoni method), in atomi

ionization alulations of the single and double ionization of the Helium atom and

the Helium isoeletroni sequene for Z up to 10 and exited states up to n = 5.

We alulate more n, Z dependenies than before; make preditions on orretions

due to quasi-free mehanism using a new formula (several new light soures are

beoming available).

Sophistiated variational methods nowadays try to overome the fat that mathemat-

ially there is no reason to assume that a variational method would give auray for the

expetation values omparable to that of the energy E. The motivations in this setion

is to show several examples where suh variational alulation indeed break down.

CFHHM [1℄ is a diret solution of the Shr�odinger equation by the separation of 	

into the singular part (aused by the Coulomb interation; this is spei� to the atomi

physis) and the smooth part, 	 = e

f

�. The Shr�odinger equation is onverted into the

equation for � = �

2

� expanded into the hyperspherial harmoni basis (index �; � is

onneted with the global angular momentum):
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where � is the hyperradius (a permutation-invariant measure of system size, given by

a weighted sum of squares of the Jaobi oordinates), and W is the veloity-dependent

potential, W = V � (rf;r) �
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. The essential physial input to

CFHHM is the orrelation funtion whih in general is nonlinear
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where fi; j; kg are a permutation of f1; 2; 3g, and Z

i

and m

i

are harges and masses of the

partiles. f but an be used in its linear form (b

k

= a

k

) for Helium and its isoeletroni

sequene exept H

�

. Mathematially this funtion is an aelerator of the onvergene
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but it also lowers the minimum � where onvergene starts; it redues the number of HH

required for a given preision by orders of magnitude; in addition, it an at the same

time inorporate some asymptoti (lustering) properties. For example, the nonlinear

orrelation funtion for the positronium negative ion (Ps-) redues the error of observables

by two orders of magnitude while making the alulation even less time onsuming.

The stiking probabilities (Table 1) in the muon-atalyzed fusion proess are an ex-

ample of CFHHM giving muh smaller error margins than even the disrepanies between

di�erent variational alulations.

Table 1: Stiking probabilities !

nl

(Q = 5:844).

Method K

m

1s 2s 4s 2p

CFHHM 0.6819(1) 0.0978 0.0126 0.0238

HCM (Abramov) 15 0.829 (?)

21 0.906 (?)

21 0.7001 0.1004 0.0130 0.0245

1)

Var. (Hu) 0.6932 0.0992 0.0128 0.0241

Var. (Haywood) 0.6846

Var. (Hu) 0.6817

Kamimura 0.6842

Var. (Hu) 0.6802 0.0975 0.0126 0.0237

Var. (reent) 0.6802-

0.8422

1)

Q = 5:846.

In e�

4

He we have a ase where CFHHM has resolved high preision disrepanies.

Even E onverged faster than in a variational method (SVM), but the \loal" expetation

values de�nitely are better than the di�erenes between two high-preision alulations

by the same author:

10

8

hÆ(r

�He

)i 0.207 001 354 2(6) CFHHM

0.207 001 373 610 Smith-Frolov 1995

0.207 001 373 43 Frolov 2000

hÆ(r

e�

)i 0.313 762 07(7)

0.313 763 0

0.313 760 812

hÆ(r

eHe

)i 0.320 633 27(6)

0.320 626 88

0.320 631 162

Bartlett (in 1935) suggested omparing the loal energy, D = H	=E	 � 1. Fig. 1

shows the omparison of SVM (Varga, Kukulin) and CFHHM for Ps- from Ref. [2℄. While

CFHHM is learly better espeially around the repulsive usp whih SVM avoids beause

it ontributes little to E, CFHHM turns out to be \muh worse" than SVM for almost

all expetation values. However the Æ operators are muh better:

hHi 0.262 005 069 5 CFHHM

0.262 005 070 226 SVM

0.262 005 070 232 965 EVE
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hr

ee

i 8.548 5(2)

8.548 580 655 061

8.548 580 655 12

hÆ(r

ep

)i 0.020 733 14(6)

�

0.020 731 048 976

0.020 733 198 0

hÆ(r

ee

)i 0.170 997(2)[-3℄

0.171 112 600 741[-3℄

0.170 996 99[-3℄
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Figure 1: D = H	=E	� 1 for Ps-.

The motivations of ionization alulations is to test CFHHM against systemati vari-

ational alulations by Forrey [3℄.

Experimentally it turns out that one eletron takes away almost all energy (shake-o�

mehanism). Very soon (Byron et al.) it was also realized that in the early alulations

the shake-o� mehanism underestimates �

++

(!) by a fator of 2, whih indiates the

importane of orrelations in this three-body system; indeed, Helium is very strongly

orrelated. We shall alulate ratios of ross setions beause they are independent of the

photon energy at high (but nonrelativisti) photon energies (this just gets rid of the !

�7=2

fator). For preise alulations the dipole approximation (golden rule) is good but good

initial three-body wave funtion is needed. This leads to the expressions for the double
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ionization ross setion,
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where  

�lm

(s) desribes the unperturbed seond eletron in the �eld of the nuleus. (The

ross setion �

+

(!) ontains only the lowest integral, and �

+�

(!) ontains only the exi-

tation integrals.) We start out with 	 orresponding to reasonable E whih need not be

very preise (in CFHHM), but also should not be too impreise (Table 2). Nevertheless,

we end up with di�erenes at 3

rd

{ 4

th

digit (Table 3).

Table 2: Helium binding energy and R values: various methods.

Work Basis E R

Present/ 121 2.9037243643 .01644

CFHHM 441 2.9037243765 .01644

[3℄ 2.903724377034 .01644

Kheifets 7/MCHF 2.90181 .0167

Dalgarno 20 2.9037179 .0168

Table 3: R = �

++

(!)=(�

+

(!) + �

+�

(!))j

!!1

values for the n

1

S states in the Helium

isoeletroni sequene (in perent), and the di�erenes with Ref. [3℄.

n 1 2 3 4 5

Z

1 1.602

2 1.644 0.903 0.369 0.169 0.088

3 0.855 1.204 0.830 0.546 0.360

4 0.508 0.994 0.849 0.677 0.530

5 0.334 0.768 0.728 0.643 0.553

6 0.235 0.595 0.599 0.561 0.512

7 0.175 0.469 0.491 0.479 0.453

8 0.135 0.377 0.406 0.406 0.395

9 0.107 0.309 0.339 0.346 0.344

10 0.087 0.258 0.287 0.297 0.299

We antiipate several works with relevant data for experiments. For example, we

obtain a 35 % quasi-free orretion at 100 keV [4℄. Rather small omputational demands

have been plaed on CFHHM, but state-of-the-art results were improved. This alulation

for the �rst time separates the three-body input from approximations like the dipole

approximation. Higher exited states and QF orretions were alulated for the �rst

time. We plan to extend this work to triplet states and Compton sattering.
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