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Abstract

The general properties of the quasilinearization method (QLM), particularly its fast convergence, monotonicity and numerical
stability are analyzed and verified on the example of scattering length calculations in the variable phase approach to quantum
mechanics. The method, whose mathematical basis in physics was discussed recently by one of the present authors (VBM),
approximates the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the linear
ones, and is not based, unlike perturbation theories, on the existence of some kind of a small parameter. Each approximation of
the method sums many orders of the perturbation theory.

It is shown that already the first few iterations provide very accurate and numerically stable answers for small and intermediate
values of the coupling constant. The number of iterations necessary to reach a given precision only moderately increases for
its larger values. The method provides accurate and stable answers for any coupling strengths, including for super singular
potentials for which each term of the perturbation theory diverges and the perturbation expansion does not exist even for a very
small coupling. 2001 Elsevier Science B.V. All rights reserved.

PACS:02.30.Mv; 04.25.Nx; 11.15.Tk

1. Introduction

The purpose of this paper is to verify the possi-
bility of the application of a very powerful approxi-
mation technique called the quasilinearization method
(QLM) in quantum physics. The method, whose iter-
ations are constructed to yield rapid convergence and
often monotonicity, was introduced years ago by Bell-
man and Kalaba [1,2] to solve nonlinear ordinary and
partial differential equations or systems of these. It is
a generalization of the Newton–Raphson method of
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finding roots of the scalar equationf (x) = 0 to nonlin-
ear differential equations. The modern developments
and applications of the method to different fields are
given in a monograph [3]. QLM, however, was never
systematically studied or extensively applied in quan-
tum physics, although references to it could be found
in well-known monographs [4,6] dealing with the vari-
able phase approach to potential scattering, as well as
in a few scattered research papers [7–10]. The reason
is that the convergence of the method has been proven
only under rather restrictive conditions [1,2], which
generally are not fulfilled in physical applications. Re-
cently, though, it was shown [11] by one of the present
authors (VBM) that a different proof of the conver-
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gence could be provided so that the applicability of
the method is extended to incorporate realistic physi-
cal conditions of forces defined on infinite intervals or
singular at certain points there, etc.

The quasilinearization approach is applicable to
a general nonlinear ordinary or partialnth order
differential equation inN -dimensional space, and to
complicated nonlinear two-point boundary conditions
[1,2]. To reach convergence, the simple guess of the
zeroth iteration being equal to zero or to one of the
boundary conditions, is usually enough [12]. In order
to make this initial presentation as simple and short
as possible, however, we limit ourselves to the case of
the first order nonlinear ordinary differential equation
in one variable. Physically this covers the quantum
mechanics of one particle in a central field since
in this case the Schrödinger equation for the wave
function could be rewritten as the Riccati equation for
its logarithmic derivative.

In the paper [11] the quasilinearization approach
was compared with the results of the perturbation the-
ory. It was found theoretically and on examples that
the nth approximation of QLM sums exactly 2n − 1
terms of the perturbation theory. In addition, a simi-
lar number of terms is reproduced approximately. The
number of the exactly reproduced perturbation terms
thus doubles with each subsequent QLM approxima-
tion, and reaches, for example, 127 terms in the 6th
QLM approximation, 8191 terms in the 12th QLM ap-
proximation, and so on.

The computational approach in the work [11] was,
however, mostly analytical, and therefore one was
able to compute only two to three QLM iterations,
mainly for power potentials. Only in the case of
the 1/r2 potential, the calculation of QLM iterations
could be done analytically for anyn. The goal of the
present work is, by dropping the restriction of ana-
lytical computation, to calculate higher iterations as
well as to extend the analysis to non-power poten-
tials, in order to make better assessment of the ap-
plicability of the method and of the numerical sta-
bility and the convergence pattern of the QLM itera-
tions.

The paper is arranged as follows: in Section 2 we
present the main features of the quasilinearization
approach. In Section 3 we use the method to obtain
accurate solutions of the nonlinear first order ordinary
differential equation

da(r)

dr
= −V (r)

(
r + a(r)

)2
, a(0)= 0, (1.1)

for the S-wave scattering length1 a0 = a(∞) in
the variable phase approach [4–6] and compare the
results of subsequent iterations with exact solutions
for different singular and nonsingular, attractive and
repulsive potentialsV (r). The results, convergence
patterns, numerical stability, advantages of the method
and its possible future applications are discussed in
Section 4.

2. The quasilinearization method (QLM)

The aim of the QLM [1–3,11] is to obtain the
solution of a nonlinearnth order ordinary or partial
differential equation inN dimensions as a limit of a
sequence of linear differential equations. This goal is
easily understandable in view of the fact that there is
no useful technique of presenting the general solution
of such an equation in terms of a finite set of particular
solutions as in linear case where, as a result of the
superposition property, the equation could be solved
analytically or numerically in a convenient fashion.
In addition, the sequence should be constructed in
such a way as to obtain quadratic convergence and,
if possible, monotonicity.

As we discussed in the introduction, we limit
ourselves here to the case of the first order nonlinear
ordinary differential equation in one variable on the
interval[0, b] which could be, of course, infinite:

du(x)

dx
= f

(
u(x), x

)
, (2.1)

with the boundary conditionu(0)= 0.
The QLM prescription [1,2,11] determines the

(n+ 1)th iterative approximationun+1(x) to the solu-
tion of Eq. (2.1) as a solution of the linear differential
equation

1 We use here the Calogero definitions [4] of the scattering length
a0 and of the potentialV (r),

a0 = lim
k→0

tanδ(k)

k
, (1.2)

V (r) = 2mU(r), (1.3)

wherem is the reduced mass andδ(k) is the scattering phase. These
definitions are different in sign and in dimension, respectively, from
the definitions of the scattering length and of the potentialU(r) used
in most publications.
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u′
n+1(x) = f (un, x)+ (

un+1(x)− un(x)
)
fu(un, x),

un+1(0) = 0, (2.2)

where the functionfu(u, x) = ∂f (u, x)/∂u is a func-
tional derivative of the functionalf (u(x), x). This
equation could be explicitly integrated and written as
the iteration sequence

un+1(x) =
x∫

0

ds
(
f (un(s), s) − fu(un(s), s)un(s)

)

× exp

x∫
s

dt fu
(
un(t), t

)
. (2.3)

The zeroth approximationu0(x) is chosen from math-
ematical or physical considerations and satisfies the
boundary conditionu0(0) = 0.

Let us assume the boundedness of the first two func-
tional derivatives off (u(x), x), that is, the existence
of bounding functionsF(x) andG(x) which for any
u andx satisfy

fu
(
u(x), x

)
� F(x),∣∣fuu(u(x), x)∣∣ � G(x).

(2.4)

In this case one can prove [11] that the equation for the
error estimate could be written in the form

‖�un+1‖ � k · ‖�un‖2,

‖δun+1‖ � k · ‖δun‖2.
(2.5)

Herek is given by

k = 1

2

b∫

0

ds G(s)exp

b∫
s

dt F (t). (2.6)

The notation‖g‖, introduced here and used through-
out the paper, refers to a metric of some functiong(x)

which is defined as the maximum of a functiong(x)
on the interval[0, b]
‖g‖ = max

0�x�b

∣∣g(x)∣∣, (2.7)

while �un+1(x) and δun+1(x) are the difference
between the exact solution and thenth iteration and
between two subsequent iterations, respectively:

�un+1(x) = u(x)− un(x),

δun+1(x) = un+1(x)− un(x).
(2.8)

Eq. (2.5) thus shows that the maxima of the absolute
value of the difference of the(n + 1)th and thenth
iterations or of the exact solution and thenth iteration
are less than a numberk multiplied by the square of
the maximum of the absolute value of the difference
of thenth and the(n − 1)th iterations or of the exact
solution and the(n− 1)th iteration, respectively.

If F(x) is a sign-definite function andG(x) can be
chosen as the absolute value ofF(x), G(x) = |F(x)|,
the integral in Eq. (2.6) can be taken explicitly and
produces a simple expression fork

k = 1

2

∣∣∣∣exp

b∫

0

dt F (t) − 1

∣∣∣∣. (2.9)

A simple induction of Eq. (2.5) shows [2] thatδun+1(x)

for an arbitraryl < n satisfies the inequality

‖δun+1‖ �
(
k‖δul+1‖

)2n−l

/k, (2.10)

or, for l = 0,

‖δun+1‖ �
(
k‖δu1‖

)2n
/k. (2.11)

The convergence depends therefore on the quantity
q1 = k‖u1 − u0‖, where the zeroth iterationu0(x) sat-
isfies the conditionu0(0) = 0 and is chosen from phys-
ical and mathematical considerations. However, from
Eq. (2.10) it follows that for the convergence it is suffi-
cient that just one of the quantitiesqm = k‖δum+1‖ is
small enough. Consequently, one can always hope [2]
that even if the first convergent coefficientq1 is large,
a well chosen initial approximationu0 results in the
smallness of at least one of the convergence coeffi-
cientsqm, m > 1, which enables a rapid convergence
of the iteration series forn >m.

It is important to stress that in view of the quadratic
convergenceof the QLM method displayed in Eq. (2.5)
the difference‖�un+1‖ between the exact solution
and the QLM iteration always converges to zero if the
differenceδun+1 between two subsequent QLM itera-
tions becomes infinitesimally small. Indeed, the first
impression is that ifδun+1 is very close to zero, it
could mean, sinceδun+1 = �un−�un+1, that�un =
�un+1 or

Qn = Qn+1, (2.12)

where Qn = k‖�un‖, when either of them is not
small, that is that the iteration process “stagnates”.
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In view of the second of Eqs. (2.5) which could be
written asQn+1 � Q2

n, Eq. (2.12) cannot be satisfied,
however, unless bothQn+1 and Qn are equal to
zero, which proves that stagnation of the iteration
process is impossible and convergence of‖δun+1‖ to
zero automatically leads to convergence of the QLM
iteration sequence to the exact solution.

One can show that for strictly convex (concave)
functionalsf (u(x), x), where the second functional
derivative fuu(u, x) of f (u(x), x) is strictly posi-
tive (negative), the difference�un+1 (δun+1) is also
strictly positive (negative), ensuring in this case the
monotonic convergence to the exact solutionu from
below (above), respectively.

In the case that the solutionu(x) and respectively
its iterationsun(x) are going to infinity at some points
on the interval[0, b], Eq. (2.3) could become mean-
ingless. To deal with it it is necessary to regularize
Eq. (2.1), that is, reformulate it in terms of a new func-
tion v(x) which is finite. In this work we would use
the prescriptionu(x)= tanv(x) as it was suggested in
Refs. [5,11]. The corresponding nonlinear equation for
v(x) has the form

dv(x)

dx
= (

cosv(x)
)2
f

(
tanv(x), x

)
, v(0) = 0.

(2.13)

Based on this summary one can deduce the fol-
lowing important features of the quasilinearization
method:
(i) The method approximates the solution of nonlin-

ear differential equations by treating the nonlin-
ear terms as a perturbation about the linear ones,
and is not based, unlike perturbation theories, on
the existence of some kind of small parameter.

(ii) The iterations converge uniformly and quadrati-
cally to the exact solution. In the case when the
second functional derivative off (u(x), x) has
a definite sign, the convergence in addition is
monotonic.

(iii) For the rapid convergence it is actually enough
that an initial guess for the zeroth iteration is
sufficiently good to ensure the smallness of just
one of the quantitiesqm = k‖um+1 − um‖. The
convergence is extremely fast: if, for example,q1
is of the order of13, only 4 iterations are necessary
to reach the accuracy of 8 digits, since(1

3)
2n is of

the order of( 1
10)

2n−1
.

(iv) The computation of each iteration involves the
estimate of the same double integral given by
Eq. (2.3). In the case of numerical integration us-
ing the trapezoidal rule, the values ofum(x) on
the same set of integration points are utilized in
each iteration, making the calculation of subse-
quent iterations time efficient, and, as we shall
see in the next section, numerically stable.

3. QLM solution of variable phase equations and
comparison with exact results

In order to investigate the applicability of the
quasilinearization method in quantum mechanics, its
convergence and numerical stability, we compare in
this chapter the QLM iterations of Eq. (1.1) for
potentials of different forms and strengths with the
corresponding exact solutions. In the case of attractive
potentials the scattering length has poles at the zero
energy bound states. In this case we will use a different
nonlinear differential equation,

dδ(r)

dr
= −V (r)

(
r cosδ(r)+ sinδ(r)

)2
, δ(0)= 0,

(3.1)

obtained from Eq. (1.1) using the prescriptiona(r) =
tanδ(r) (see Eq. (2.13) whose solution has no singu-
larity).

3.1. Yukawa potential

Let us start from the Yukawa potential

V (r) = −g
e−r/R

r/R
. (3.2)

Here and further in this paperg denotes the dimen-
sionless coupling constant andR defines the radius of
the force. Normally we will setR = 1, thus measuring
distances in units ofR. Since this potential is attrac-
tive for positiveg and the scattering length therefore
could have poles corresponding to zero energy bound
states, we will here instead of the scattering lengtha0
calculate the phaseδ0 = arctana0 using Eq. (3.1).

The simple QLM program, based on Eqs. (2.3)
and (3.1), was created and was instructed to stop
the iteration process when the maximum difference
‖δun+1‖ between two subsequent iterations was less
than a given error which in our case was chosen to be
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Table 1
Comparison of QLM and exact phasesδ0 (defined asδ0 = arctana0, wherea0 is the scattering length) for the Yukawa potentialV (r) =
−ge−r /r . The distance is measured in units ofR, that is,R is set to unity. The exact results were obtained by integrating the Schrödinger
equation at the energyE = 0. mu is the minimum QLM iteration number required in order that the absolute value of difference between
successive iterations be less than 10−5. The resulting absolute value of the difference� =�umu+1 between the final QLM approximation and
the exact solution is displayed in the last column where square brackets denote the powers of 10

g mu QLM Exact |�|
−5.0 9 −1.0304583 −1.03045838 8[−8]

−4.0 8 −0.98595953 −0.9859595 3[−8]

−3.0 8 −0.92085518 −0.92085518 0

−2.0 7 −0.81370645 −0.813696 1[−5]

−1.0 5 −0.59790986 −0.5979102 3[−7]

1.0 4 1.1453493 1.145350 7[−7]

2.0 5 1.6965263 1.6965297 3[−6]

3.0 6 2.0100191 2.0100207 2[−6]

4.0 8 2.5357573 2.53576 3[−6]

5.0 12 3.9818256 3.981825 6[−7]

6.0 12 4.6016314 4.601635 4[−6]

7.0 16 4.8071005 4.8071024 2[−6]

Fig. 1. Convergence of QLM iterations for the phaseδ0 of the Yukawa potential (Table 1) and comparison with the exact results.

10−5. The starting, zeroth iteration was chosen to be
identically equal tor. The integration was performed
using the trapezoidal integration rule in order that the
integration result on the left-hand side of Eq. (2.3)
could be substituted at the same points in the integrand
on the right-hand side of this equation for the next
iteration. The results of the QLM computations are

compared with exact results (found by extracting the
scattering length from an accurate numerical solution
of the Schrödinger equation at zero energy) in Table 1.
The corresponding graphs for the first few iterations
and for the last iteration as well as the exact solution
are displayed in Fig. 1, while Fig. 2 shows the
dependence of the number of iterations necessary to
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Fig. 2. Minimum QLM iteration number required in order that the absolute value of the difference between successive iterations be less than
10−5 for the potential of Fig. 1.

obtain five digit accuracy as a function of the coupling
strength. One can see that if‖δun+1‖ is within the
requested 10−5 accuracy the difference between the
last iteration and the exact solution is also within
the expected error. From Fig. 1 it follows that the
largest deviations from the exact results for the first
few QLM approximations occur at large absolute
values of the coupling constant. Fig. 2 confirms this
conclusion showing that the number of iterations
necessary for the requested five digit accuracy is rather
small for small and intermediate values of the coupling
constant but increases for larger potential strengths.
This is, of course, natural to expect since larger
couplings, being coefficients before nonlinear terms,
mean larger nonlinearity and require more quasilinear
iterations to obtain the proper accuracy. Since the
second functional derivative of the right-hand side of
Eq. (3.1),

−V (r)
(
(1− r2)sin2δ(r)+ 2 cos2δ(r)

)
, (3.3)

having no definite sign, is neither convex nor con-
cave, the corresponding QLM iterations display no
monotonicity. This could be seen from Fig. 1 where
the curves corresponding to the fourth and fifth iter-
ations oscillate around the exact solution and around
each other so that the difference of these curves has no
definite sign.

The kth zero energy bound state occurs whenδ0
equals(2k + 1)π/2. In the intervalg given in Table 1,

two such states in the QLM approximation appear
at values ofg equal to 1.679808 and 6.44727, to
be compared with the exact values of 1.679808 and
6.447261. These values were calculated as the zeros of
the expression arctana0 − (2k + 1)π/2 wherea0 was
considered a function of the coupling constantg. We
see that the error of QLM in the calculation of the zero
energy bound states is very small: less than 1× 10−6,
and 1× 10−5, respectively.

3.2. Modified Pöschl–Teller potential

V (r) = − g(g − 1)

R2 cosh2 r/R
. (3.4)

This potential is repulsive for 0< g < 1 and attractive
for g > 1. The zero energy bound states occur [13]
for g equal to an even integer. The results of ex-
act and QLM computations performed as in the pre-
vious section are displayed in Table 2 and Figs. 3
and 4 and lead to exactly the same conclusions as in
the case of the Yukawa potential. In the interval of
g given in Table 2, two zero energy bound states in
the QLM approximation appear at values ofg equal to
1.9999991 and 4.0000028, to be compared with the
exact values 2.0 and 4.0, an error of 9× 10−7 and
2.8× 10−6, respectively. As in the case of the Yukawa
potential we see that the bound states are reproduced
extremely well in QLM computations. Since calcu-
lations, as in the previous section, were performed
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Table 2
As in Table 1, but for the Pöschl–Teller potentialV (r)= −g(g − 1)(coshr)−2 (R = 1)

g mu QLM Exact |�|
0.5 4 −0.18245004 −0.18244984 2[−7]

1.0 4 0.0 0.0 0

1.5 5 0.76347680 0.763476 7[−7]

2.0 4 1.5707972 1.570796 1[−6]

2.5 5 1.9081209 1.90812432 3[−6]

3.0 9 2.1587985 2.158799 2[−7]

3.5 16 3.0324501 3.0324505 4[−7]

4.0 16 4.7123861 4.712389 3[−6]

4.5 17 4.9879295 4.98793181 2[−6]

5.0 24 5.1599088 5.159909 2[−7]

Fig. 3. As in Fig. 1, but for the Pöschl–Teller potential of Table 2.

Fig. 4. Minimum QLM iteration number required in order that the absolute value of the difference between successive iterations be less than
10−5 for the potential of Fig. 3.
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Table 3
As in Table 1, but for the scattering lengtha0 for the Newton potentialV (r) = g(1+ pe1/r )/r4 (R = 1). The choicep = 0 here reducesV (r)

to the special case 1/r4

g mu QLM Exact |�|
1.0 5 −0.99999987 −1.00000000 1[−7]

2.0 6 −1.41421510 −1.41421356 2[−6]

3.0 6 −1.73205380 −1.73205081 3[−6]

4.0 6 −2.00000120 −2.00000000 1[−6]

5.0 6 −2.23606960 −2.23606798 2[−6]

6.0 6 −2.44949190 −2.44948974 2[−6]

7.0 6 −2.64575400 −2.64575131 3[−6]

8.0 6 −2.82843040 −2.82842712 3[−6]

9.0 6 −3.00000100 −3.00000000 1[−6]

10.0 6 −3.16227880 −3.16227766 1[−6]

using Eq. (3.1), where the second functional deriva-
tive (3.3) of the right hand side has no definite sign,
the QLM iterations converge nonmonotonically. This
can be seen from Fig. 3 where the curves display-
ing the fifth and sixth QLM iterations are oscillat-
ing around the exact solution and around each other,
so that the difference of these curves has no definite
sign.

3.3. Newton supersingular potential

Our next and last example is the highly singular
Newton potential [14]

V (r) = a2

(r/R)4

(
b2 + c2eR/r

)
, (3.5)

which in the canonical form, setting(ab)2 = g, (c/b)2

= p, R = 1 could be written as

V (r) = g

r4

(
1+pe1/r). (3.6)

This potential contains a fourth order pole at the
origin and for the nonzerop in addition an essential
singularity there;g andp are inherently positive since
the attractiveness of such a potential near the origin
leads to the fall to the center [14,15].

The scattering length is given by the analytical
expression

a0 = − z

2

H
(1)′
ν (z)

H
(1)
ν (z)

, (3.7)

whereν = 2
√
g and z = 2i

√
gp. In the limit of the

inverse quartic potential, whenp = 0, this equation,
using the property of the Hankel function at zero ar-

gument,H(1)′
ν (z)/H

(1)
ν (z) = −2ν/z, reduces toa0 =

−√
g, a well known result [4,5,13]. Since for the re-

pulsive potential no bound states are possible and the
scattering length has no poles we now use Eqs. (1.1)
and (2.3) to obtain the scattering length in the QLM
approximation. Tables 3–5 contain our results for po-
tential strengthsg between 1 and 10 and for different
values ofp: p = 0 corresponds to pure inverse quartic
potential, whilep = 1 andp = 10 correspond to equal
admixtures of the 1/r4 term and the term containing
the essential singularity at the origin, and to the domi-
nant contribution of the latter term, respectively. Since
the patterns of convergence for differentp are rather
similar, we present the graphs only for one value ofp.
Namely, forp = 1 the first few iterations and the last
iteration as well as the exact solution are displayed in
Fig. 5, while Fig. 6 shows the dependence on the cou-
pling strength of the number of iterations necessary
to obtain five digit accuracy of the scattering length.
We see that in this case this number always equals



R. Krivec, V.B. Mandelzweig / Computer Physics Communications 138 (2001) 69–79 77

Table 4
As in Table 3, but forp = 1

g mu QLM Exact |�|
1.0 6 −1.55117510 −1.55117440 7[−7]

2.0 6 −2.13431750 −2.13431460 3[−6]

3.0 6 −2.58243320 −2.58243170 2[−6]

4.0 6 −2.96048760 −2.96048510 2[−6]

5.0 6 −3.29370350 −3.29370260 9[−7]

6.0 6 −3.59504450 −3.59504330 1[−6]

7.0 6 −3.87221530 −3.87221380 2[−6]

8.0 6 −4.13024160 −4.13023970 2[−6]

9.0 6 −4.37261600 −4.37261370 2[−6]

10.0 6 −4.60188310 −4.60188040 3[−6]

Table 5
As in Table 3, but forp = 10

g mu QLM Exact |�|
1.0 6 −3.53935640 −3.53935320 3[−6]

2.0 6 −4.91444300 −4.91444030 3[−6]

3.0 6 −5.96917320 −5.96917180 1[−6]

4.0 6 −6.85821230 −6.85821020 2[−6]

5.0 6 −7.64140310 −7.64140000 3[−6]

6.0 6 −8.34941940 −8.34941840 1[−6]

7.0 6 −9.00048470 −9.00048340 1[−6]

8.0 6 −9.60646440 −9.60646280 2[−6]

9.0 6 −10.17560100 −10.17559900 2[−6]

10.0 6 −10.71389400 −10.71389200 2[−6]

6 and, due to the extreme singularity of the Newton
potential, does not depend on the strength of the po-
tential. One should stress, that unlike the QLM ap-
proach, which works perfectly well giving the accu-
racy of five significant figures with just six iterations
even for large values of coupling constants, the pertur-
bation treatment in this case is not possible at all even
for a very small coupling. Indeed, in view of the strong
singularity of the potential at the origin all the terms of
the Born series for the scattering amplitude are diver-
gent and the perturbation expansion does not exists for
any coupling values [11], which is, of course, a direct

consequence of the branch point singularity of the ex-
act scattering length (3.7) atg = 0. Since we now use
Eq. (1.1) where the second functional derivative on the
right hand side,

−2V (r), (3.8)

for the repulsive Newton potential is concave, the
difference of subsequent QLM iterations should be
strictly negative, ensuring the monotonic convergence
to the exact solution from above. This, indeed, is what
follows from Fig. 5, where the curve corresponding to
the first iteration is lying above the curve correspond-
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Fig. 5. As in Fig. 1, but for the scattering lengtha0 for the Newton potential of Table 4 (p = 1).

Fig. 6. Minimum QLM iteration number required in order that the absolute value of the difference between successive iterations be less than
10−5 for the potential of Fig. 5.

ing to the second iteration and both are lying above the
exact solution as it should be.

4. Conclusion

Summing up, in order to analyze and highlight the
power and features of the quasilinearization method
(QLM), in this work we have made numerical compu-
tations on the nonlinear ordinary first order differen-
tial equations (1.1) and (3.1) for theS-wave scattering
length a0 = a(∞) and phase shiftsδ0, respectively,
obtained in the variable phase approach [4–6]. We

have considered different singular and nonsingular,
attractive and repulsive potentials, namely Yukawa,
Pöschl–Teller and Newton potentials, and have com-
pared the results obtained by the quasilinearization
method with the exact solutions.

Our conclusions can be formulated as follows:
(i) The QLM treats the nonlinear terms as a pertur-

bation about the linear ones [1,2,11] and is not
based, unlike perturbation theories, on the exis-
tence of some kind of small parameter. As a re-
sult, as we see on our examples, it is able to han-
dle, unlike the perturbation theory, large values of
the coupling constant.
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(ii) Namely, we show that the method provides very
accurate and numerically stable and fast conver-
gent answers for any values of the coupling con-
stant giving the accuracy of at least five signif-
icant figures required in this work. Already the
first few iterations provide precise answers for
small and intermediate values of the coupling
constant. The number of iterations necessary to
reach a given precision only moderately increases
for larger values of the coupling constants.

(iii) In the case when the second functional derivative
fuu(u(x), x) on the right-hand side of Eq. (2.1)
has a definite sign, the convergence of the QLM
sequence to the exact solution is monotonic from
below or above depending onfuu(u(x), x) being
convex or concave.

(iv) The method provides very accurate and nu-
merically stable answers also for any potential
strength in the case of super singular potentials
for which each term of the perturbation theory is
infinite and the perturbation treatment is not pos-
sible even for a very small coupling.

In view of all this, since most equations of physics,
from classical mechanics to quantum field theory,
are either not linear or could be transformed to a
nonlinear form, the quasilinearization method may
turn out to be extremely useful and in many cases
more advantageous than the perturbation theory or
its different modifications, like expansion in inverse
powers of the coupling constant, the 1/N expansion,
etc.
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