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Abstract

The quasilinearization method (QLM) of solving nonlinear differential equations is applied to the quantum mechanics by
casting the Schrddinger equation in the nonlinear Riccati form. The method, whose mathematical basis in physics was discussed
recently by one of the present authors (VBM), approaches the solution of a nonlinear differential equation by approximating
the nonlinear terms by a sequence of the linear ones, and is not based on the existence of some kind of a small parameter. It is
shown that the quasilinearization method gives excellent results when applied to computation of ground and excited bound state
energies and wave functions for a variety of the potentials in quantum mechanics most of which are not treatable with the help
of the perturbation theory or the/ ¥ expansion scheme. The convergence of the QLM expansion of both energies and wave
functions for all states is very fast and already the first few iterations yield extremely precise results. The precision of the wave
function is typically only one digit inferior to that of the energy. In addition it is verified that the QLM approximations, unlike
the asymptotic series in the perturbation theory and i dxpansions are not divergent at higher orders.

0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction papers [1-3]. Itis called the quasilinearization method
(QLM) and its iterations are constructed to yield rapid
Realistic physical calculations usually are impossi- quadratic convergence and often monotonicity. The
ble without different approximation techniques. Cor- quasilinearization method was developed many years
respondingly expansions in small parameters, statisti- ago in theory of linear programming by Bellman
cal, variational and the majority of numerical methods and Kalaba [4,5] as a generalization of the Newton—
belong to the arsenal of the modern physics. Raphson method [6,7] to solve the systems of nonlin-
Since many equations of physics are either nonlin- ear ordinary and partial differential equations. Its mod-
ear or could be cast in the nonlinear form, the pos- ern developments and examples of applications to dif-
sibility of adding to this arsenal an additional very ferent fields of science and engineering are given in a
powerful approximation technique applicable to non- ecent monograph [8].
linear problems was pointed out in a series of recent | the original works of Bellman and Kalaba [4,5],
however, the convergence of the method has been
~* Corresponding author. proven only under rather restrictive conditions of small
E-mail address: rajmund.krivec@ijs.si (R. Krivec). intervals and bounded, nonsingular forces [1] which
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generally are not fulfilled in physical applications. a small number of the QLM iterations yield fast con-

This could explain an extremely sparse use of the tech- vergent and uniformly excellent and stable numerical
nigue in physics, where only a few examples of the results.

references to it could be found [9-13]. Recently, how- The goal of the present work is to apply the

ever, it was shown [1] by one of the present authors quasilinearization method to quantum mechanics by
(VBM) that a different proof of the convergence can casting the Schrddinger equation in the nonlinear
be provided which allows to extend the applicability Riccati form and calculating the QLM approximations

of the method to realistic forces defined on infinite to bound state energies and wave functions for a
intervals with possible singularities at certain points. variety of potentials, most of which are not treatable

This proof was generalized and elaborated in the sub-

sequent works [2,3].
In the first paper of the series [1], the analytic re-

with the help of the perturbation theory or th¢ \L
expansion scheme. We show that the convergence
of the QLM expansion for both energies and wave

sults of the quasilinearization approach were applied functions is very fast and that already the first few

to the nonlinear Calogero equation [9] for the scat-

tering length in the variable phase approach to quan-

iterations yield extremely precise results. In addition it
is verified that the higher QLM approximations, unlike

tum mechanics, and the results were compared with those in YN expansion method, are not divergent at

those of the perturbation theory and with the exact so-

lutions. It was shown that theth QLM approxima-
tion sums exactly 2— 1 terms of the perturbation
theory while a similar number of terms are summed
approximately. The number of the exactly reproduced

any order.

The paper is arranged as follows: in the second sec-
tion we present the main features of the quasilineariza-
tion approach to the solution of the Schrédinger equa-
tion, while in the third section we consider the applica-

perturbation terms thus doubles with each subsequenttion of the method to computations for the Coulomb,

QLM approximation, which, of course, is a direct con-
sequence of a quadratic convergence.

The numerical calculation of higher QLM approx-
imations to solutions of the Calogero equation with
different singular and nonsingular, attractive and re-
pulsive potentials performed in the next work [2] has
shown that already the first few iterations provide ac-

curate and numerically stable answers for any values

of the coupling constant and that the number of iter-

Hulthen, P&schl-Teller, logarithmic, double-well, an-
harmonic oscillator, linear and different power poten-
tials such ag-*2 andr°. The results and their com-
parison with other calculations, convergence patterns,
numerical stability, advantages of the method and its
possible future applications are discussed in the final,
fourth section.

ations necessary to reach a given precision increase<2. Quasilinearization approach to the solution of

only slowly with the coupling strength. It was verified

the Schrédinger equation

that the method provides accurate and stable answers

even for super singular potentials for which each term

The quasilinearization method (QLM) solves a

of the perturbation theory diverges and the perturba- nonlinear nth order ordinary or partial differential

tion expansion consequently does not exist.
In the third paper of the series [3] the quasilin-

equation inN dimensions as a limit of a sequence of
linear differential equations. The idea and advantage

earization method was applied to other well known of the method is based on the fact that linear equations
typical nonlinear ordinary differential equations in can often be solved analytically or numerically using
physics, such as the Blasius, Duffing, Lane—Emden superposition principle while there are no useful tech-
and Thomas—Fermi equations which have been andniques for obtaining the general solution of a nonlinear
still are extensively studied in the literature. These equation in terms of a finite set of particular solutions.
equations, unlike the nonlinear Calogero equation for ~ The main features and equations of the method,
the scattering length [9] considered in Refs. [1,2], con- appropriate for physics applications, are summed in
tain not only quadratic nonlinear terms but various Refs. [1-3]. In this paper we will follow these refer-
other forms of nonlinearity and not only the first, but ences since the derivation there is not based, unlike the
also higher derivatives. It was shown that again just derivation in Refs. [4,5], on the smallness of the inter-
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val and on the boundedness of the nonlinear term andsatisfies the nonlinear Riccati equations

its functional derivatives, the conditions which usually
are not fulfilled in physics.

We would like to use the method in quantum
mechanical calculations with the central potential
V(r). In order to do this we have to rewrite the
corresponding radial Schrédinger equation

2 I(I 4 1)n?

he
o X (V)+[V(V)+ o2 } (r)=Ex(r)

1)

in nonlinear form. Herey(r) = rR(r) and R is the
radial part of the wave function. Settirig= 1, 2 =

2m|E|, andU (r) = 2mV (r) + I(l + 1)/r2, we obtain
the bound state and scattering Schrédinger equations
d®x(r)
7 (K2+U(}’))X(}’)=0, E <O 2)
and
d?x(r)
(@ -Um)xr) =0 E>0 3)
with the boundary conditions at the origin
x(r) ~ r't 4)
and at the infinity for the potentials falling off at large
x(r) ~ e, E<O, (5)
r—o00
. ml
x(r) ~ Sln(/cr - —+ 81), E > 0. (6)
r—00 2

For potentials behaving at largeas A2Inr/R or
A2rP with positiveR, p andx the boundary conditions
at infinity should be changed respectively to

x(r) ~ g+ /" v/Inr/Rdr 7)
r—0o0
or
7&,.)/2 1
xr) ~ e (8)
r—00

The boundary condition (8) withr changed to
|r| holds at both boundaries = +oc0 in the one-
dimensional problem for the double-well potential
(r? — 16)2/128 considered among others in Ref. [14]
where we look for both ground (symmetric) and first
excited (antisymmetric) solutions.

It is easy to check that the inverse dimensionless
logarithmic derivativey of the wave function,

x(r)
x'(r)’

¢(x) =« C)
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d‘flix) 1— (14 Ww)g2x), E<O (10)
and
% =1+ (1- Wx))p?(x), E >0, (11)

wherex = kr andW (x) = U (x /k) /«? are the dimen-
sionless variable and potential, respectively.

To avoid poles ofp(x) at the bound state energies
it is convenient to define (see [1,2] and the references
therein) a new functioni(x) with the help of the
equation

¢(x) = —tanu(x). (12)
The corresponding equations fotx) have the forms
dz;ix) =—1+4 2+ W@)sifu(x), E<O0 (13)
and

dz;ix) =—1+W()sifu(x), E>0. (14)

Similar types of equations were derived earlier by
Drukarev [15], Bergmann [16], Olsson [17], Kynch
[18], Franchetti [19], Spruch [20], Dashen [21], Calo-
gero [9] and Babikov [22].

The boundary conditions for the functiasix), in
view of Eqs. (4)—(6), respectively, reduce to

X

~ —— 1
M(X)x—>0 l+1, (5)
u(x) ~ ——nm, E<O (16)

x—o0 4
and

[
ux)+x ~ n——(Sl, E>0. an
X—>00

The boundary conditions (7) and (8) which for the
inverse logarithmic derivative (x) have the forms
K

dx) ~ — -0, (18)
X—>00 Ini
KR
and
x—P/2
dx) ~ — -0, (19)
xX—00 A
respectively, for the function(x) therefore read
u(x) ~ —nm. (20)
X—> 00
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Here and in Eq. (16} obviously denotes the number
of the excited state witlhh = 1 corresponding to the
ground statep = 2 to the first excited state, etc. The
minus sign in front ofz follows from the fact that in
the regions of whereV (r) < E in view of Egs. (13)
and (14) the derivativelu /dx is negative and:(x)

is decreasing. Since its value at the origin is zero
u(x) stays negative which determines the sign in front
of n.

Returning to the variable and defining a new
function a(r) which has the dimension of length
with the help of the relatiop (x) = « (r + a(r)) and
substituting it into Eqgs. (10) and (11) we obtain the
equations

da(r) _

S =P U@)(r+am)’ E<0 (21)
and
dz(r’) =(2-UM)(r+am)®, E>0  (22)
which are very similar to the Calogero equation
dz(rr) = —2mV(r)(r +a(r), (23)

wherea(r) has the meaning of the variablewave
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The sequencey(x), k =0,1,2,... of QLM itera-
tions satisfying Eqgs. (25) and (26), converges-
formly and quadratically to the solutionu(x) of
Eq. (24) if the initial guess for the zeroth itera-
tion is sufficiently good. In addition, for strictly con-
vex (concave) functionald (u(x), x) the difference
ur+1(x) — ug(x) is strictly positive (negative) which
establishes thenonotonicity of the convergence from
below (above), respectively. The exact conditions of
the convergence and the monotonicity for the realis-
tic physical conditions of forces defined on infinite
intervals with possible singularities at certain points
are formulated in Ref. [1]. One can also prove [9]
that in the quasilinear approximation the energy in the
Schrédinger equation satisfies the Rayleigh—Ritz vari-
ational principle which ensures the quadratic conver-
gence in the QLM energy computations.

We will limit ourselves here to the bound state
calculations with Egs. (13) for the negative energy
bound states and (14) for positive energy bound states
which are somewhat more complicated than scattering
calculations since in the former case the boundary
condition at infinity determines a discrete spectrum.

For the negative energies, Eg. (13), the functionals

scattering length [9]. These equations are obviously F), x), F(x), x) = fu(u(x), x) andGu(x), x)

a generalization of the Calogero equation (23) for
arbitrary values of and«x and reduce to it whehand
k are equal to zero.

The QLM prescription [1-5] determines the
(k + Dth iterative approximatiom;1(x) to the so-
lution of the first order nonlinear equation in one vari-
able
du(x)

dx - (u('x)v -x)v
as a solution of the linear equation

u(©0) =0 (24)

U1 () = fup, x) + (urgp2(x) — up(x)) fu (ug, x),
ur+1(0) =0, (25)

where the functionalf, (u,x) = 9 f(u,x)/ou is a
functional derivative of the functionaf (u(x), x).
The analytical solution of this equation is

uk1(x) = /ds (f (ur (), 8) = fulur(s), s)u(s))
0

X exp/ dr fi (ur(0), 7). (26)

= f(u(x), x) —u(x) f,(u(x), x) are given by

flu),x) =1+ (24 W) sirfu(x), (27)
F(u(x),x) = (2+ W(x))sin 2u(x), (28)
and
G(u(x),x) = =1+ (2+ W(x)) sinu(x)

X [Sinu(x) — 2u(x) COSu(x)], (29)

so that Eqgs. (25) and (26) respectively have the forms
Uy 1(X) — uk41(X) F (ug (x), x) = G (ur(x), x), (30)

and

uk+1(x):/ds G(uk(s),s) exp[ th(uk(t),t).
0 ' (31)

For the positive energies the same Eqs. (27)-(29)
hold with (24 W (x)) replaced everywhere by (x).
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3. QLM bound state calculationsand their
comparison with the 1/N expansion method and
exact solutions
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scribed. On the last QLM iteratiork & k,,) the ab-
solute difference between the left-hand side (LHS)
and right-hand side (RHS) solutionBp, (ko; x;) =

|uk7)°"‘HS(xm, ko) — u,fn‘”RHS(xm, ko)|, was calculated.

In the previous section we have cast the SchrodingerThe whole process was then performed with a new

equation in the nonlinear Riccati form and wrote the

linear equations and the boundary conditions appro-

priate for the bound state calculations with the quasi-
linearization method.

In this section we consider examples of different
singular and nonsingular attractive interactions which,
in view of their large coupling constants, are not
treatable with the help of the perturbation theory
and for most of which the /IN expansion series

set of parameter®;, wherek,,, xy, etc. were in-
creased. This was repeated until some nunigeof
steps, wherDp,, (ko; x,,) Was stabilized to a required
accuracy.

In the second step, the parameter &} thus
optimized was used to find the zeroBp,, («; x,,) =
0 as a function ofc: the QLM iteration was first
performed for twox values lying on opposite sides
of the expected eigenvalue, and the QLM iteration

are asymptotically divergent as has been shown in (x = 1,2 3,...) was then repeated for each naw

Ref. [14].

Namely, we apply the quasilinearization method
to computations with the Coulomb, Hulthen, Pdschl—
Teller, logarithmic, anharmonic oscillator, linear and
different other power potentials such e¥? and r°
as well to the one-dimensional double-well potential
(r® — 16)?/128, and we compare the wave functions

value untilDp,, (x; x,,) = 0.

In this process the value of,, was kept con-
stant, which had the consequence that the RHS inter-
val (x,,, xu) was increasing. Both solutions tend to be-
come unstable near= x,, on their respective sides, if
the respective interval is too large. It turned out how-
ever that it was possible to leawg, unchanged, ex-

and the bound state energies obtained by the quasilin-cept thatx,, typically had to increase with the num-

earization method (QLM) with their exact values and
with results obtained in the/IV expansion theory. To
show that the method works equally well also for ex-

ber of the excited state. On the other hand, as is ev-
ident from the figures, the starting values of parame-
ters (Pp), in particulark,,, had to be large enough to

cited states we calculate in the Coulomb, linear and overcome the divergent behavior of the solutions near

double well potentials the first few excited states as
well.

The calculations were done using the differential
formulation, Eq. (25), of the QLM iteration, for the

x = x,, already for the QLM iteration usingy. It also
turned out that the RHS solution quickly assumes the
correct value, thus allowing reasonably small and
actually making the process rather independent of the

simple reason that the adaptive numerical integration exact value used for the boundary condition at infinity.

[23] together with interpolation proved faster than the
integral formulation (26), mainly due to the proces-
sor time taken by the evaluation of the exponen-
tial in Eqg. (26). For each QLM iteration numbeér
k=0,1,23,...,ky, numerical integration was per-
formed fromx = 0 to the matching point = x,, and
from the upper bound = xy to x = xy,.

Let us denote the set of iteration-integration para-
meters byP = {k,,, xu, N;, ...}, wherek,, is the max-
imum QLM iteration index,xy is the upper bound
of the interval, andn; is the number of interpola-
tion points in each of the two subintervdl x,,) and
(Xm, xu).

The computation was done in two steps. In the first
step,x,,, the starting values of parametef, and a
« value, ko, near the expected eigenvalue were pre-

The precision was controlled in the following way.
The differential equation solver [23] was required to
returnu (x) with the precision of the order of T@opE,

The required precision dbdp during the optimization
of P was 10 PP, Popg was taken to be larger thatp
by 1 to 3 to test stability.

The results of the calculations are summarized in
Table 1 and in Figs. 1-15. The calculations are done
for the s-states since the calculations fpr d states,
etc. have the same degree of difficulty and could be
performed in a similar fashion. In the caption of the
table V(r) is the potential anck denotes the num-
ber of the excited staten is the mass of the parti-
cle and is given different values for different poten-
tials in order to enable comparison of the QLM bound
state energies with those obtained by thgvilex-
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Table 1

QLM and exact binding energigs for different potentialsE are taken from citations in Ref. [14].

E, and N, are the energies by the ¥ perturbation method of Ref. [14] and the corresponding
ranges of orders of the perturbation where thi&/ Jlexpansion converges; a finite range means
that the expansion diverges for larg€r stable digits are given only. is the principal quantum
number of the state. The uncertainty in last digit is in brackets where necessary for presentation.
m denotes the (reduced) mass of the particle

\%4 m n QLM E Ep Np
21/2; 1 1 9352429642 ®B5243 9352 10-20
2 1635179778 16518 16352 10-15
3 2208223931 208224 221) 10-28
r3/2 1/2 1 2708092416 270809 271 14-15
Inr 1/2 1 1044332 10443 104 113-14
-1 1 1 0499999999 3 1+10°10 29-c0
0.125000001 a25 Q254108  29-00
o 1/2 1 4089159315 08916 4 6-7
P2+ 12 1 4648812183 54881 46(2) 10-11
2 2
G 1—2186) 1 1 04830541244 @83053433 (18302 12-13
0.483053390

1 2 04831482068

__3 1 1 049999999998 [
costtr
- 10 1 1 449999999991 5
costtr
—e> 1 1 120050000001 1P05
1-e /5
-5 1 1 0125000000009 025
IOglOlllk(r)'”“exact(r)I " V= 27/2r
logyglug(r)-uy_1 (1)l e v=2"2 . ;
5
0 -10
-5 -15
-10
-15

10
2 0 3514 12
6 4

8
35 12 12 10 Fig. 2. As in Fig. 1, but the convergence with respect to the exact
solution obtained by solving the differential equationdoiEq. (11).

Fig. 1. Convergence of the logarithm of the absolute value of

the difference of two successive QLM iteratiomg (r) for all . .
r with the iteration indexk for the ground state of the linear pansion method in Ref. [14] where takes on val-

potential V = 27/2r, m = 1. Hereu(r) = arctan(—« x (r)/x'(r)) uesm = 1 or 1/2 depending on the interaction. In
andx = v/2mE. The matching point is at=4. the graphs of the convergence of(x) with itera-
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! r<d4:uy(r) : P <6 ug(r)
_o2 Up(r) e 0 . () |
0 v=2"r us(r) — - i Uy(r) e
uy(r) b : uy(r) —— |
>4 ug(r) e 71 r>6:uy(r) -
P ug(r) V=2"r wyg(r)
-1 P Ugo(r) e 2 5
= - | uy(r) - = 3 :
= upy(r) —— F 70 ; (1) il
2+ 1 4 F q
5k ]
3k
6 i
4 . . . . . . 7 ‘ ‘ i . ‘ ‘ ‘ . ‘
0 2 4 6 8 10 12 14 0 2 4 6 § 10 12 14 16 18 20 22
r r
Fig. 3. Convergence of the QLM iterations with the iteration index Fig. 6. As in Fig. 3, but for the state of Fig. 4.

k for the solution of Fig. 1. Only a subset of iterations is presented
such that the highest ones are not distinguishable from the exact logolity(r)-tty (7))

72,
solution.

V=2

0
-5
log glu(r)-uy_1(7)] e y=2"2, -10
-15
0
-5
-10
-15 0
35 25
0 Fig. 7. As in Fig. 1, but for the second excited state, and the matching
point being atr = 12.
30 20
IOgIO[uk(r ) 'uexact(r )l SR V= 27/2}”
Fig. 4. As in Fig. 1, but for the first excited state, and the matching o

point being at = 6. 0

loggliy(r)-tteyaei(r)! T V= 272,

-5
-10
-15

Fig. 8. As in Fig. 2, but for the state of Fig. 7.

tion indexk we present for clarity only those itera-
20 20 tions which are distinguishable from the final solution
(k = k) on the graphs; the actual number of iterations
Fig. 5. As in Fig. 2, but for the state of Fig. 4. is higher in order to achieve greater wave function pre-
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2 r <12t ug(r) -
Up(F)
0 u_g\l'y/\
e
— ug(r,
2+ V=2 r>12: uy(r) -- -
upy(r) -
E 4+ ”16(") o
F ugg(r) e
(")
6 | i
-8 r \
T ——

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

r

Fig. 9. As in Fig. 3, but for the state of Fig. 7.

logolug(r)-uy_1 (1)l

V=(716)7128
\
5

-10
-15

Fig. 10. As in Fig. 1, but for the ground (symmetric) state in the

double-well potentiaV = (r2 — R2)2/(8R?), R = 4 andm = 1/2.

logy gl (r)-texaey(T) W V= (r2—16)2/128

\
-5

-10
-15

Fig. 11. Asin Fig. 2, but the potential and state of Fig. 10.

r<3: do(r) B
uy(r) -

uy(r)

V= (-16)2/128

Fig. 12. As in Fig. 3, but the potential and state of Fig. 10.

og glig(r)-tt1 () T, V= (-16)7128

~

5
-10
-15

Fig. 13. As in Fig. 1, but for the first excited (antisymmetric) state

in the double-well potentiaV = (r2 — R2)2/(8R2), R =4 and
m=1/2.

logyglitg(r)-tteae ()l Y, V= (r2—16)2/128

-5
-10
-15

Fig. 14. As in Fig. 2, but the potential and state of Fig. 13.

cision. Figures which display the absolute differences

between successive iterations, (r) — ug—1(x)|, or for the respective optimized parameters sdg,,,
the differences between the successive iterations andand for the lastc value, i.e. at theE of the eigen-
the exact solutionu (r) — uexac(x)|, Show the results  value.
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N —
uy(r)

ug(7)
r>4:uy(r)
Un(r) =
Uny(r) -
Urg(T)
ung()

uk(r)

V=02-16)4128

4
,

Fig. 15. As in Fig. 3, but the potential and state of Fig. 13.

The required precision af(x), or the wave func-
tion, wasPopge = 9 in all cases except in the logarith-
mic potential case wher@opg = 6. The number of
digits in the values of in Table 1 is the number of
stable digits wherPp was increased up t8opg + 3,
except in the cases of Coulomb, Pdschl-Teller and
Hulthen potentials, where we display an additional
(the first incorrect) digit.

From Table 1 and Figs. 1-15 one can conclude
that QLM is extremely precise. Energies and the wave
function for both ground end excited states typically
converge to the order of 10 significant digits after
aboutk,, = 10-20 iterations though the precisioniof
is about one digit more than the precision of the wave
function. We used the numbers of QLM iteratidps
such that the precision of the iteration itself, shown
by the figures displaying (r) — ux—1(x)|, was up to
10715,

For most potentials treated, to get the energy
to about 9 significant digits, it was necessary to
run about 30 QLM iterations for each value of the
energy, and this was repeated about 7 times during
the zero search process which yielded the final energy.
The computational time for about 30 7 = 210
QLM iterations in total varied between 200 and
2000 seconds on a 75 MHz, four-way floating point
processor, or half that on a 400 MHz, two-way
processor. It is not feasible to compare these times
to other calculations, first and foremost because we
calculate to a much larger precision, and the time
decreases extremely fast with smaller accuracy. For
example, for the potentiall = %(r2 + r%) the time
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is about 50 sec for 6-digit precision and 1500 sec for
9-digit precision, on the 75 MHz processor. The only
recent Ref. [14] uses a symbolic evaluation program,
while other references are too old for comparison.
The matching point,, is usually about 2—3 for the
ground state and increases slightly with the excitation.
It should be closer to the origin than to the upper point
of the intervalxy. In this way we minimize the region
in the (x, k) space where irregularities tend to happen,
before final fast convergence is achieved, as shown in
the figures.

4, Conclusion

Our calculations confirm numerically the conclu-
sion following from the proof in Ref. [3] that once
the quasilinear iteration sequence starts to converge, it
will continue to do so, unlike the perturbation expan-
sions in powers of the coupling constant or in powers
of 1/N, which are often given by the asymptotic se-
ries and therefore converge only up to a certain order
and diverge thereafter. In particular, thgM expan-
sions of the binding energy of different ground and ex-
cited states given in Table 1, are strongly divergent for
logarithmic, double-well, anharmonic oscillator, lin-
ear,r¥2 and r® potentials at orders of about 20 or
higher or even before this as it was shown recently by
Bjerrum-Bohr [14].

Based on our results of the QLM computations of
the wave functions and bound state energies for many
different potentials, one can deduce the following
important features of the quasilinearization method in
the quantum mechanics:

(i) The quasilinearization method solves the Schro-
dinger equation by rewriting it in the nonlinear
Riccati form and by approximating the nonlinear
terms by a sequence of the linear ones. It is
not based, unlike perturbation of ¥ expansion
theories, on the existence of some kind of small
parameter.

(ii) The quasilinearization method works equally well
for both ground and excited states. Itis extremely
precise: binding energies and the wave functions
converge to the order of 10 significant digits af-
ter about 10-20 iterations. Typically, the numer-
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