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Abstract

Solutions obtained by the quasilinearization method (QLM) are compared with the WKB solutions. While the WKB method generates an exps
sion in powers ofi, the quasilinearization method (QLM) approaches the solution of the nonlinear equation obtained by casting the Schréding
equation into the Riccati form by approximating nonlinear terms by a sequence of linear ones. It does not rely on the existence of any kind
smallness parameter. It also, unlike the WKB, displays no unphysical turning point singularities. It is shown that both energies and wave functic
obtained in the first QLM iteration are accurate to a few parts of the percent. Since the first QLM iterate is represented by the closed expres:
it allows to estimate analytically and precisely the role of different parameters, and influence of their variation on the properties of the quantt
systems. The next iterates display very fast quadratic convergence so that accuracy of energies and wave functions obtained after a few itere
is extremely high, reaching 20 significant figures for the energy of the sixth iterate. It is therefore demonstrated that the QLM method could
preferable over the usual WKB method.
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1. Introduction vided which allows to extend the applicability of the method
to realistic forces defined on infinite intervals with possible
The quasilinearization method (QLM) was constructed as aingularities at certain points. This proof was generalized and
generalization of the Newton—Raphson metha®] for the  elaborated in the subsequent wofk&—14}
nonlinear differential equations to yield rapid quadratic and In the first paper of the serig40], the analytic results of
often monotonic convergence to the exact solution. It was dethe quasilinearization approach were applied to the nonlinear
veloped originally in theory of linear programming by Bellman Calogero equatiofb] in the variable phase approach to quan-
and Kalabd3,4] to solve nonlinear ordinary and partial differ- tum mechanics, and the results were compared with those of the
ential equations and their systems. In the original works of Bellperturbation theory and with the exact solutions. It was shown
man and Kalab¢B,4], however, the convergence of the methodthat the number of the exactly reproduced perturbation terms
has been proven only under rather restrictive conditions of smalloubles with each subsequent QLM iteration, which, of course,
intervals and bounded, nonsingular for¢e8] which generally s a direct consequence of a quadratic convergence.
are not fulfilled in physical applications. This could explain an  The numerical calculation of higher QLM approximations to
extremely sparse use of the technique in physics, where only gsjutions of the Calogero equation with different singular and
few examples of the references to it could be folfieB]. Re-  nonsingular, attractive and repulsive potentials performed in the
cently, however, it was showi0] by one of the present authors \york [12] has shown that already the first few iterations provide
(V.B.M.) that a different proof of the convergence can be pro-accurate and numerically stable answers for any values of the
coupling constant and that the number of iterations necessary to
" Corresponding author. reach a given precision increases only slowly with the coupling
E-mail address: rajmund.krivec@ijs.s{R. Krivec). strength. It was verified that the method provides accurate and

0010-4655/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.12.017


http://www.elsevier.com/locate/cpc
mailto:rajmund.krivec@ijs.si
http://dx.doi.org/10.1016/j.cpc.2004.12.017

120 R. Krivec, V.B. Mandelzweig / Computer Physics Communications 174 (2006) 119-126

stable answers even for super singular potentials for which eadh all QLM iterations, unlike the WKB wave function, is free of
term of the perturbation theory diverges and the perturbatiomnphysical turning point singularities. Since the first QLM iter-
expansion consequently does not exist. ation is given by an analytic expressiffn8,10-13] it allows
In the third paper of the serig43] the quasilinearization one to analytically estimate the role of different parameters and
method was applied to other well-known typical nonlinear ordi-the influence of their variation on different characteristics of a
nary differential equations in physics, such as the Blasius, Duffqguantum system. The next iterates display very fast quadratic
ing, Lane—Emden and Thomas—Fermi equations which haveonvergence so that accuracy of energies obtained after a few
been and still are extensively studied in the literature. Thes#erations is extremely high, reaching up to 20 significant fig-
equations, unlike the nonlinear Calogero equafijnconsid-  ures for a sixth iterate as we show on the example of different
ered in Refs[10,12] contain not only quadratic nonlinear terms widely used physical potentials.
but various other forms of nonlinearity and not only the first, The paper is arranged as follows: in Sectiome present the
but also higher derivatives. It was shown that again just a smathain features of the quasilinearization approach to the solution
number of the QLM iterations yield fast convergent and uni-of the Schrédinger equation, while in Sect®we consider the
formly excellent and stable numerical results. application of the method to computations with the anharmonic
In the work[14] the quasilinearization method was applied oscillator, logarithmic, two-power (double-well), and Wood-
to quantum mechanics by casting the Schrédinger equation iBaxon potentials and to the two-body Dirac equation with static
the nonlinear Riccati form and calculating the QLM approxima-Coulomb potential. The final, Sectighis devoted to the dis-
tions to bound state energies and wave functions for a varietgussion of the results, convergence patterns, numerical stability,
of potentials, most of which are not treatable with the help ofadvantages of the method and its possible future applications.
the perturbation theory or the/ ¥ expansion scheme. It was
shown that the convergence of the QLM expansion for both en2. Quasilinearization method
ergies and wave functions is very fast and that already the first
few iterations yield extremely precise results. In addition itwas The usual WKB substitution
verified that the higher QLM approximations, unlike those in

1/N expansion method, are not divergent at any order. _ N
The present work is devoted to comparison of QLM andX(r) =Cexp\ A [ y(r)dr 1

WKB' Indeed, Fhe denyagon of the WKB SOIUUO.n Start§ by converts the Schrédinger equation to nonlinear Riccati form
casting the radial Schrodinger equation into nonlinear Riccati
form and solving that equation by expansion in powers.df dy(z)
is interesting instead to solve this nonlinear equation with the ¢z

help of the quasilinearization technique and compare with th?—|erek2(z) —E—V —1(+1)/2 32 = 2m/h? andz = ir.

WKB Its. h formed in wd . .
results. Such a procedure was performed dks The proper bound state boundary condition for potentials

8], where it was shown that the first QLM iteration reproduces NG off at z ~ 70 ~ s ) — const atz > This
the structure of the WKB series generating an infinite series oﬁ r? that ,Z N ioo_ o0 tlh f(é _2 t gy~ 5 ? fj?jces to
the WKB terms, but with different coefficients. Besides being eans thaty'(zo) = 0, so that Eq(2) at z = zo re

2, 20\ o ]
a better approximation, the first QLM iteration is also express—k(ZO) +y7(z0) =0 0r y(20) = ik(z0). We choose here to de

ible in a closed integral form. Similar conclusions are reacheéIne the boundary condition with the plus sign, so thedo) =

: " : k(z0).

for higher QLM approximations and it can be shoj@5] that ! . o . . .

the pth QLM iteration yields the correct structure of the infi- ¢ The quaS|I|r(;(_affaer:(z;'E{|_(;F7e,10;_30]:; this equation gives a set
nite WKB series and reproduce$ ferms of the expansion of ofrecurrence di lal equat

the solution in powers of exactly, as well as a similar number dy,(z) 2 2

of terms approximately. G = Y1)~ 2p@yp-1(0) —KR) (3)

e approXImaton t the éxact solution than the uscal wics i/ the boundary condiion (zo) = k(o).

ObVi(fLIJDS not only from comparison of terms of the QLM and T_he analytic _solutior{?] of thesg equ.ations expresses the
WKB series[7,8,15] but also from the fact that the quantiza- pthiteratey, (z) in terms of the previous iterate:
tion condition in the first QLM iteration leads to exact energies z d ) z

for many potential$15,17]such as for the Coulomb, harmonic y ,(z) = f,_1(z) _/dsfl’;sls eXIO|:—2/yp—1(t)dt},

+ (k2(2) + ¥?(2)) = 0. )

oscillator, Pdschl-Teller, Hulthen, Hylleraas, Morse, Eckart and A d S

some other well-known physical potentials, which have a sim- (4)
ple analytic structure. By comparison, the WKB approximation yz_l(z) —k2(z)

reproduces exact energies only in the case of the first two pof,-1(z) = e

tentials. 2yp-1(2)

The goal of this work is to point out that also for other Indeed, differentiation of both parts of E@l) leads immedi-
potentials with more complicated analytical structure QLM it- ately to Eq.(3) which proves thaty,(z) is a solution of this
erates provide much better approximation than the usual WKBequation. The boundary condition is obviously satisfied auto-
If the initial QLM guess is properly chosen the wave function matically.
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To utilize the recurrence relatiqd) for wave function com- 2 o ' o dm, ——
putation one has to pick up a proper initial guess. For the zeroth /| ) . ?(o T
iterateyop(z) it seems natural to choose the zero WKB approx- / A exact
imation that is to setg(z) = ik(z), which in addition automat- 08 L
ically satisfies the boundary condition. However, one has to be &
aware that this choice has unphysical turning point singulari- ! 06 L
ties. According to the existence theorem for linear differential =
equationg18], if y,_1(z) in Eq.(3)is a discontinuous function = oa L
of z in a certain interval, them, (z) or its derivatives may also
be discontinuous functions in this interval, so consequently the 02 L
turning point singularities ofo(z) may propagate to the next
iterates. To avoid this we choo§k6] the Langer WKB wave 0
function[19] as the zero iteration. This function near the turn- 0 1 2 3 4 5 6
ing pointsa andb is given by the simple analytic expresston x

1/3 Fig. 1. Comparison of the Langer WKB solutigfy (dashed curve), the exact
i () = ci Si (r)Ai [dS.l/s(r)] solution xexact (dotted curve) and the first QLM iterajg,, (solid curve) for
k()| L ’ the ground state of the anharmonic oscillatogr) = %r5. The last two are
(5)  indistinguishable on the plot. Hese=«r, k2 =2mE/h2.
P
Si(r)= gk /|k(s)|ds . similar picture exists for the second excited state where the
f exact energy is 12.767 866 541 180535 228 88. The WKB and

first-iteration QLM energies are 12.72396 and 12.76796 and are
different from the exact energy by 0.34 and 0.0007%, respec-
tively. Again, for both first and second excited states the QLM

r2b andcq =1, ¢, = (1", wheren =0,1,2,... is the o0 giag differ from the exact energies only in the twentieth
number of the bound state, (r) and x,(r) are continuous digit after the sixth iteration

across the turning points and coincide with the usual WKB so- The graphs corresponding to the Langer WKB solution, the

lution far from them. It is easy to check thak(r) andxs(r) o 40t solution and the first QLM iterate for the ground state are
coincide at some point in the interv@l, b) between the turning di N . .
. ; L splayed inFig. 1L One can see that while the Langer solution
points, and that their values, but not derivatives, can be matched . . .
at that point iS notlceaply d|ffer9nF frgm the.exact solution, the curve of the
' first QLM iteration is indistinguishable from the exact curve.
This could be followed more precisely by lookingFRy. 2
where the logarithm of the difference between the exact and

To show that the first QLM iteration gives very accurate re.WKB .solutllons and between the exact solution gnd the first
sults for wave functions and energies, as well as demonstrafé-M iteration are shown. One can see that the difference be-

very fast convergence of the next iterates let us consider fiyBV€€n the exact solution and the first QLM iteration is two
typical examples of potentials of rather different form used in°rders of magnitude smaller than the difference between the
atomic, nuclear and quark physics. exact and the WKB solutions, that is one QLM iteration in-

Let us start from the anharmonic oscillator) = %rs_ This  Creases the accuracy of the result by two orders of magnitude.

potential is typically used in different nuclear, quark and quanNote thz_;lt the dips on_the graphs are artifacts of the Iogarithmic
tum field theory models. The exact energy of the ground stat&cale, since the logarithm of the absolute value of the difference
of this oscillator is 2.044 579 657 447 355 635 36 in atomic unit<2f two solutions goes to minus infinity at points where the dif-
with mass set to unityp = 1. This result is obtained by us by a ference changes sign. The overall accuracy of the solution can
calculation using the Runge—Kutta method in quadruple precibe inferred only at values not too close to the dips.
sion. The WKB energy is different by 4.5% and equals 1.95159 The accuracy of the WKB approximation increases for
in the same units, while the first-iteration QLM energy equa|shigher excitations. Therefore in the case of the excited state
2.04528 and differs from the exact energy only by 0.034%. Théoth the Langer WKB and QLM curves are indistinguishable
QLM energy coincides with the exact energy in all twenty dig-from the exact onerig. 3shows, however, that also in this case
its after the sixth iteration. the difference between the exact solution and the first QLM iter-
For the first excited state the exact energy isation is by two orders of magnitude smaller than the difference
6.713546 501 445 25311053, while the WKB and first-itera-between the exact and the WKB solutions.
tion QLM energies are 6.656623 and 6.713952 and are different Another interesting example is the modified Coulomb poten-
from the exact energy by 0.84 and 0.006%, respectively. Théal

Here Ai denotes the Airy function,= a, b, k%(r) = 2m(E —
V() — (1 +1/2)2/r% dis—1fora <r <b, and 1 forr <a,

3. Examples

T . - . . 1 10+1) — a2 302
This form is based on a linear potential interpolation near turning pointsV (r) = — — 5 + 3 55
from which the Airy function arises. 2p Y pe(p +a)

p=aEr
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Fig. 2. Logarithm of the difference between the exagtactand WKB solutions ~ Fig. 4. As in Fig. 1, but for the ground state with quantum num-
xo (dashed curve) and between the exact solution and the first QLM itgrgte  bers (N,L,S,J) = (0,0,0,0) in the modified Coulomb potential
(solid curve) for the ground state of the anharmonic oscillator. The dips on thé/ () = ,% +UU+D) — 302/ + 362/0%(p + a®)?, p = aEr.

graphs are artifacts of the logarithmic scale, since the logarithm of the absolute

value of the difference of two solutions goes to minus infinity at points where 0 . . .
the difference changes sign. The overall accuracy of the solution can be inferred l(igIOI)Icmu(“\:)_Xexact(’\:): —_—
only atx values not too close to the dips. 08 101X o(*)Kexact(¥)
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-10 ‘ ‘ j : ' Fig. 5. As inFig. 2 but for the ground state in the modified Coulomb potential.
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WKB solutions. Thus also in this case just one QLM iteration
Fig. 3. As inFig. 2 but for the excited state of the oscillator potential. increases the accuracy of the wave function by a remarkable
two orders of magnitude.
which is obtained when the equal masses two-body Dirac The results for the ground and excited states with differ-
equation with the static Coulomb interaction is reduced tcent quantum numbergVv, L, S, J) for the modified Coulomb
the Schrédinger equatiof20,21] The exact energy of the potential are summed up ifable 1and also inFigs. 6, 7, 8
ground state with quantum numberg, L, S, J) = (1,0,0,0)  where the differences between the exact wave function and the
i$0.999 993 340148 538 880 1 in atomic units with double mas§Hrst QLM iteration and between the exact and the WKB so-
set to unity, 2/ = 1. This result was obtained in the wotkl]  |utions are displayed. We see, that though the accuracy of the
by an elaborate computation using the finite element methogyk B approximation increases for excited states and states with
and confirmed by ourselves using the Runge—Kutta method igjgher orbital momenta, also in these cases one QLM iteration

quadruple precision. The WKB energy equals 0.999 986 68 reases the accuracy of the wave function by at least two or-
and differs from the exact one by@x 10-%. The first-iteration

QLM energy equals 0.999 993335 and differs from the exac%ler_S of magnltude..lfrabl(el)l EWKB an.dEQLM are givento a
one only by 5x 10-7. The QLM energy coincides with the ex- limited number of d|g|tsEQLM being slightly dependent on the

act one in all given digits after the sixth iteration. discontinuity in the derivative of the Langer WKB solution at
The graph inFig. 4 of the exact, WKB and QLM ground its joining point between the turning points. The high-precision
state wave functions is similar fig. 2 results have at least 18 correct digigsyvalues tend to be more

The graph irFig. 5for their differences for this case is sim- precise by 1 or 2 digits, therefore we list them to 20 or 21 digits.
ilar to Fig. 2 and shows that the difference between the exacfince the computer arithmetic was quadruple precision (128-
wave function and the first QLM iteration is by two orders of bit, about 30 decimal places), the differences in the last digits
magnitude smaller than the difference between the exact and tloé Eq| v and Eexactreflect the different methods used.



Table 1

WKB, first iteration QLM, full QLM and exact binding energiek. is the number of QLM iterationsy is the (reduced) mass of the particle. The state label {8V, L, S, J for Breit—-Coulomb).D1 = 10%(1—

1

EwkB/Eexact, Do = 10%(1 — E(QLM/Eexact)- x[y] denotest x 10”. “+” marks the ground (symmetric) state of one-dimensional double-well potentidlmarks regular states of two-power potential or the

antisymmetric state of one-dimensional double-well potential

Potential m State Ewks ES‘EM EqLm K Eexact D1 Dy
Breit— 1 1000 0999986679987 999993335480 09999334014853888012 6 .99999334014853888016 [#4) 5[—7]
Coulomb 2000 0999996670008 099998335239 09999833502466540218 7 .99999833502466540223 [-24] —2[-8]
1101 0999996670037 0999998335831 09999833501727839123 44 .99999833501727839122 [-24] —8[-8]
2101 0999998520016 099999260060 09999926000774772931 47 .99999926000774772931 [#5] —-1[-8]
logr % 1s 1.05346726985 044738 104433226746060809298 5 .08433226746060809380 —0.88 —0.039
2s 1.850802588 B475 184744258030447816386 5 .88744258030447816385 -0.18 —0.003
3s 2.299218712 289659 228961571419653762102 5 .28961571419653762102 -0.42 —0.002
%rs 1 1s 1.9515942 2045279 204457965744735563534 6 .02457965744735563536 A% -0.03
2s 6.656623 6713952 671354650144525311020 6 .76.354650144525311053 .85 —0.006
3s 12.72396 1276796 127678665411805352297 6 TB78665411805352289 1 —0.001
_725;_1 1 1s —17.61192 —17.5432 —17.5597967410317970585 5 —17.5597967410317970589 -0.30 0095
1+expsy 2s —7.190505 —7.37920 —7.37854164337449079226 5 —7.37854164337449079262 2 —0.009
3s —0.029269 —0.105156 —0.10819568493119384889 6 —0.10819568493119384933 » 2.8
20,2 2\2
w 1 Is+ 0.484067F 0.483017 0.48295865991331554844 6 .48295865991331554820 —0.98 —0.009
1s— 0.49734197 184218 048314820684089227025 6 .48314820684089227025 -2.9 -0.22
25— 1.39372888 1373747 137363583606219407956 6 .37363583606219407958 -15 —0.008
35— 217217337 2178319 217745782251542955262 6 .17745782251542955243 e ! —0.040

1 Includes the tunneling correction 1.

2 |nitial WKB approximation includes tunneling correction o
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Fig. 6. As in Fig. 2 but for the excited state with quantum
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in Fig. 1, but for the ground state of the logarithmic potential

(N,L,S,J)=(2,0,0,0) in the modified Coulomb potential. V =log(r).
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Fig. 7. As in Fig. 2, but for the excited state with quantum numbers
(N,L,S,J)=(1,1,0,1) in the modified Coulomb potential.

Fig.

10. As inFig. 2, but for the ground state of the logarithmic potential.
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Fig. 8. As in Fig. 2 but for the excited state with quantum

(N,L,S,J)=(2,1,0,1) in the modified Coulomb potential.

Fig. 11. As inFig. 1, but for the ground state of the Wood-Saxon potential
numbers V = —Vy/(1+exp((r — R)/a)), with Vg =24,R=1,a=0.2.

are shown inFigs. 9—17 The first two potentials are used re-
The other examples considered in this paper are the logapectively for computations in quark and nuclear physics. The
rithmic V (r) = logr, Wood—SaxonV = —Vp/(1+ exp((r —  double-well potential, that is the quartic potential in one dimen-
R)/a)) and the two-power (double-wellj(r) = 3g?(r2—a??  sjon with degenerate minima, is typically studied in quantum
potentials, the results for which are summarizedrable 1  field theory and in the framework of the tunneling problem in
The graphs corresponding to different states of these potentiatgiantum mechanics. Its perturbation series does not converge
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Fig. 12. As inFig. 2 but for the ground state of the Wood—-Saxon potential.
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Fig. 13. As inFig. 2, but for the first excited state of the Wood—Saxon potential. Fig. 16. As inFig. 1, but for the ground state of the two-power potential
V = 3422 — a®)?, ¢ = 1/4a?, a = 4, or for the first (antisymmetric) ex-
0.8 cited state of the corresponding double-well potential in one dimension.
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Fig. 14. As inFig. 1, but for the ground (symmetric) state of the double-well X

potentialV = 3 ¢2(r? — a?)?, g? = 1/4a, a = 4 in one dimension.

Fig. 17. As inFig. 2, but for the state oFig. 16

and different alternative nonperturbative approaches are thereetric (ground) state of the double-well potential in one di-
fore explored since the description of tunneling between twanension, giving the AN energy of 048305 compared to the
minima should be necessarily nonperturbative (see, for exanmexact energy, @48295.. In addition, in our calculation it is
ple, Ref.[22] and the references therein). easy to specify the boundary conditiorrat O in this particu-

In particular, in the papef23] using the YN expansion lar case (where (0) £ 0), so we can calculate on the interval
method, the tunneling terms were not included for the sym# > 0 only: because we do the QLM iteration on the function
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u(kr) = arctari—« x (r)/x'(r)), we have simplyu(0) = —7%. Acknowledgements

This can easily be seen by taking into account that) has

an even-power Taylor expansionrat 0. We use the tunneling The research was supported by the Bilateral Cooperation
term just to correct the energy of the initial WKB approxima- Program at the Ministry of education, science and sport of

tion, changing the usual WKB quantization condition to Slovenia (R.K.) and by grant No. 2004106 from the United
States—Israel Binational Science Foundation (BSF), Jerusalem,
b Israel (VBM)
1 17 ked '
/k(r) dr = (n + E)n - Ee S KOy
p References
where the second term on the RHS is the tunneling {exi [1] S.D. Conte, C. de Boor, Elementary Numerical Analysis, McGraw-Hill
k(r)y=iK(r) andn =0,1,2,... is the number of the bound International Editions, 1981.

state. The tunneling correction affects the 1st QLM iteration [2] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis,
but of course not the full QLM calculation, where the boundary __ McGraw-Hill international Editions, 1988.

. . . [3] R. Kalaba, J. Math. Mech. 8 (1959) 519.
conditions completely specify the converged solution. [4] R.E. Bellman, R.E. Kalaba, Quasilinearization and Nonlinear Boundary-

Value Problems, Elsevier Publishing Company, New York, 1975.
4. Conclusion [5] F. Calogero, Variable Phase Approach to Potential Scattering, Academic
Press, New York, 1975.
. . . [6] A.A. Adrianov, M.I. loffe, F. Cannata, Modern Phys. Lett. 11 (1987) 1417.
On? can _ShOV\[15,17] that the approxm_atlon by the first [7] k. Raghunathan, R. Vasudevan, J. Phys. A: Math. Gen. 20 (1987) 839.
QLM iterate in Eq.(4) leads to exact energies for many well- [8] M. Jameel, J. Phys. A: Math. Gen. 21 (1988) 1719.
known physical potentials such as the Coulomb, harmonic 0s{9] M.A. Hooshyar, M. Razavy, Nuovo Cimento B 75 (1983) 65.
cillator, Péschi-Teller, Hulthen, Hylleraas, Morse, Eckart, etc [0 V-B.- Mandelzweig, J. Math. Phys. 40 (1999) 6266.
For other potentials which have more complicated analytic 111 V:B. Mandelzweig, Few-Body Systems 14 (Suppl.) (2003) 185.

0 p p ) .y 12] R. Krivec, V.B. Mandelzweig, Comput. Phys. Comm. 138 (2001) 69.
structure we show on examples of the anharmonic oscillatofg 3] v.B. Mandelzweig, F. Tabakin, Comput. Phys. Comm. 141 (2001) 268.
logarithmic, two-power (double-well), and Wood—Saxon poten{14] R. Krivec, V.B. Mandelzweig, Comput. Phys. Comm. 152 (2003) 165.
tials and for the solution of the two-body Dirac equation with [15] V.B. Mandelzweig, Quasilinear approach to summation of the WKB se-

: ; ries, 2004, submitted for publication.
Stath COUIomb. pqtentlal, that the u;e of th.e Langer WKB Wavﬁm] R. Krivec, V.B. Mandelzweig, F. Tabakin, Few-Body Systems 34 (2004)
function as an initial guess already in the first QLM approxima-" = g7
tion gives energies and wave functions two orders of magnitudg7] r. Krivec, V.B. Mandelzweig, Quasilinearization method and summation
more accurate than the WKB results. Such a QLM solution,  of the WKB series, Phys. Lett. A 71 (2005) 354.
unlike the usual WKB solution, displays no unphysical turn-[181 E.L. Ince, Ordinary Differential Equations, Dover Publications, New York,
; o . : ; : L 1956.
ing point :smgulanﬂgs. Since the fII"St QLM iterate is given by [19] R.E. Langer, Phys. Rev. 51 (1937) 669:
an anf?‘lyuc expressm(ﬂ)_ for p =1 it allows one to .es_t'mate C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scien-
analytically the role of different parameters and their influence tists and Engineers I, Springer-Verlag, New York, 1999.
on properties of a quantum system with much higher precisiof0] J. Malenfant, Phys. Rev. D 38 (1988) 3295.
than provided by the WKB approximation. In addition, it was [21] T.C. scott, J. Shertzer, R.A. Moore, Phys. Rev. A 45 (1992) 4393.
shown that six QLM iterations are typically enough to obtain[zzl R. Friedberg, T.D. Lee, Ann. Phys. 308 (2003) 263.

: ypically 9 [23] N.E.J. Bjerrum-Bohr, J. Math. Phys. 41 (2000) 2515.

both the wave function and energy with the accuracy of twenty,4) p. park, Introduction to Quantum Theory, McGraw-Hill, New York, 1964,

significant digits. p. 102.



	Quasilinearization method and WKB
	Introduction
	Quasilinearization method
	Examples
	Conclusion
	Acknowledgements
	References


