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Quasilinearization approach to computations with singular potentials
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We pioneered the application of the quasilinearization method (QLM) to the numerical solution of the
Schrödinger equation with singular potentials. The spiked harmonic oscillator r2 + λr−α is chosen as
the simplest example of such potential. The QLM has been suggested recently for solving the Schrödinger
equation after conversion into the nonlinear Riccati form. In the quasilinearization approach the nonlinear
differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions.
The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without
depending on the existence of a smallness parameter. The choice of zero iteration is based on general
features of solutions near the boundaries.
We show that the energies of bound state levels in the spiked harmonic oscillator potential which are
notoriously difficult to compute for small couplings λ, are easily calculated with the help of QLM for any
λ and α with accuracy of twenty significant figures.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Singular potentials have been and continue to be the subject of
intensive theoretical study, due to the variety of their applications
in different fields of physics. The most used example is the spiked
harmonic oscillator potential

V (r) = r2 + λ

rα
[λ > 0,α � 0] (1)

which derives its name from the graphical form which has a sub-
stantial peak near the origin due to the perturbative term λr−α .
This peak becomes more pronounced with increase of the cou-
pling constant λ and especially with growth of power α which
characterizes a degree of the singularity at the origin. The spiked
oscillator has a practical importance since it corresponds to dif-
ferent interactions which occur in atomic, molecular, nuclear and
particle physics. For α > 2 it is also of relevance to the quan-
tum field theory describing so-called supersingular interactions for
which matrix elements of the perturbation in the nonperturbed
harmonic oscillator quantum states diverge, so that every term in
the perturbation series is infinite and the perturbation expansion
does not exist [1].

Aside of the physical relevance the spiked harmonic oscilla-
tor has very interesting and nontrivial mathematical properties.
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Indeed, the singular term λr−α provides an infinite repulsive bar-
rier near the origin and therefore could not be neglected even
for very small λ. Because of this the singular term in potential
could not be smoothly turned off with λ → 0, the phenomenon
first pointed out by Klauder [2–7]. On the other side, the har-
monic oscillator r2 term could not be neglected either, because its
absence destroys the possibility of existence of the bound states.
Therefore no dominance of one of those potentials could be estab-
lished, which makes the construction of the perturbation theory a
rather difficult proposition. This was first stressed by Detwiler and
Klauder [1] who pointed out that the usual perturbation theory
could not be used for α > 5

2 . Later Aguilera-Navarro and Guardi-
ola [8] confirmed that for α < 5

2 the ground state energy could be
expanded in powers of λ while Harrel [9], using a specially con-
structed modified singular perturbation theory, was able to show
that in the case of α < 5

2 for λ � 1 there exists a non-power se-
ries expansion containing, along with the powers of λ, also powers
of ln λ.

The works of Klauder and Harrel started the era of intensive
study of the spiked harmonic oscillator resulting in many different
approaches to the problem [10–34,36–40]. Variational computa-
tions [13,14] and strong coupling perturbation expansions [14] as
well as large order perturbative expansions [17] were employed
beside the different specially adjusted numerical procedures [30–
34,36–40].

Recently the quasilinearization method (QLM) was suggested
for solving the Schrödinger equation after conversion to the Riccati
equation [41–46]. In the QLM the nonlinear differential equation is
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treated by approximating the nonlinear terms with a sequence of
linear expressions. The QLM is iterative but not perturbative and
gives stable solutions to nonlinear problems without depending on
the existence of a smallness parameter. The choice of zero itera-
tion is based on general features of solutions near the boundaries.
The method provides finite and reasonable results for both small
and large values of the coupling constant and is able to handle
even super singular potentials for which each term of the pertur-
bation theory is infinite and the perturbation expansion does not
exist [41,42].

It was shown [47] that the first QLM iteration generates closed
analytic representations of the energies and the wave functions for
an arbitrary potential. The subsequent iterates display very fast
quadratic convergence so that the accuracy of both energies and
wave functions obtained after a few iterations is extremely high,
reaching up to 20 significant figures for the sixth iterate, as shown
in Refs. [48,49] on the examples of different widely used physical
potentials.

In view of the multitude of computations concerning different
expansions or numerical solutions of the spiked oscillator prob-
lem it was very interesting and helpful to even approximately
envision an analytic form of the spiked harmonic oscillator wave
function. As we have mentioned above, QLM provides such a possi-
bility. In works [50,51] the closed analytic presentations of ground
and excited energies and of the corresponding wave functions in
the spiked harmonic oscillator potential were obtained for differ-
ent values of parameters α and λ which are accurate to about a
few parts of the percent or even better in the region of variable r
where wave functions are not extremely small.

The goal of this work is to calculate higher iterates in order to
demonstrate that QLM is as good for singular potentials as for the
smooth ones. Namely, we show in this work that the QLM com-
putation of ground state energies for different values of α and
λ of the spiked harmonic oscillator could be performed without
any problems with extreme precision of twenty significant fig-
ures. Our computation includes also the region of small values of
λ which are notoriously difficult to calculate due to the fact that
the greatest reshaping of the potential and correspondingly of the
wave functions for small couplings happens at very small values
of radius near to the origin [34]. This region was not possible to
compute with such an accuracy with any of the whole multitude
of different numerical methods applied earlier.

2. Numerical computations

The Schrödinger equation for the spiked harmonic oscillator has
the form

−ψ ′′(r) + V (r)ψ(r) = Eψ(r), (2)

where V (r) is given by Eq. (1). Throughout this paper we use the
atomic unit system (2m = e = h̄ = 1). In the numerical approach
we solve the corresponding first-order nonlinear equation

du(x)

dx
= f

(
u(x), x

)
, u(0) = 0, (3)

where x = κr, κ2 = |E|, and

κ
χ(r)

χ ′(r)
= − tan u(x), (4)

where χ(r) = rψ(r). In the differential representation of QLM,
Eq. (3) results in the following iteration scheme

u′
k+1(x) = f (uk, x) + (

uk+1(x) − uk(x)
)

fu(uk, x),

uk+1(0) = 0, (5)
where fu(u, x) = ∂ f (u, x)/∂u is the functional derivative of the
functional f (u(x), x). For positive energies, f is given by [44]

f
(
u(x), x

) = −1 + W (x) sin2 u(x), (6)

where W (x) = U (x/κ)κ−2, and U (r) = V (r) + l(l + 1)r−2.
The QLM iteration (5) is performed in several passes until de-

sired precision is attained, as follows. First, the integration interval
[0, xu] of the order of xu = 10 is selected. A matching point xm in-
side the classically allowed region and an approximate value of κ
are fixed. A small number of integration points n on both the left-
hand side and right-hand side of the matching point, of the order
of n = 100, is specified. The QLM iteration is performed up to a
selected number of iterations km of the order of km = 5. For each
iteration the differential equation is integrated towards xm starting
at x = 0 and x = xu . The convergence criterion is the difference be-
tween the left-hand side and right-hand side solutions uk(x) at the
matching point. In the following passes we selectively increase n,
xu and km based on which of these parameters has affected most
strongly the matching precision in the previous pass, until desired
accuracy is achieved. We also repeat the entire process for at least
two different values of xm for each energy value.

Once the desired accuracy at the chosen κ is achieved, a zero
search is performed within a small interval of κ , using the opti-
mized parameters n, xu and km .

Since the computation time increases between passes, the total
time is a small multiple of the time required by the final pass.
Finally, the zero search requires only of the order of 5 passes.

Each QLM iteration is solved in 128-bit precision arithmetic us-
ing the fourth-order Runge–Kutta method. The same points are
used for all QLM iterations within the same pass, avoiding the
need to interpolate the previous solution uk(x) in Eq. (5). This
method is a compromise between accuracy and the number of
points used. We need only to calculate one intermediate point
between each pair of integration points. Tests showed that the se-
lected nonuniform point density was more effective than low-order
implicit methods.

As initial approximation we use the Langer WKB solution [48].
The calculation of this solution has been automated; it has a dis-
continuity but already the first QLM iteration is smooth [48]. It
is clearly sufficient to calculate the Langer solution to a relatively
small precision.

In order to increase the efficiency of numerical computation
in what is essentially a two-scale problem, for α > 2 we use
a strongly nonuniform integration point distribution, where the
point density near the origin is approximately inversely propor-
tional to the first-order solution of Eq. (2) near the origin [50]:

ψ ≈ exp
(−br−β

)
, β = α

2
− 1, b =

√
λ

β
(7)

and not, as one would expect, inversely proportional to, e.g., u(x) ≈
−(κ/λ)rα/2. Eq. (7) is only used at those x near the origin for
which the point separation is increasing; afterwards a power-law
point distribution up to xm is used. On the RHS, uniform point
density is used.

Since the most difficult cases for calculations with small val-
ues of λ were reported to be grouped near the values of α around
2.5 [34] we started our computation using very a small value of
λ = 0.0001 and “difficult” values of α = 2.5, 3 and 3.5. The cal-
culations have proceeded without any special complications. Their
results with accuracy of 20 significant figures are given in Table 1
together with the results of previous, less precise calculations,
made using a method of one parameter coordinate transformation
suggested by Killingbeck et al. [34]

To be sure that λ = 0.0001 is not accidentally a special case of
small λ and that other small values of λ can also be computed
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Table 1
Ground state energies for λ = 0.0001 and different powers α. All values are guar-
anteed to be correct to 20 significant digits but rounded to 20 digits after decimal
point

α QLM Killingbeck et al. [34]

2.5 3.000 407 898 618 163 168 82 3.000 407 898 621
3.0 3.001 754 252 825 589 676 54 3.001 754 252 826
3.5 3.007 864 636 336 272 961 99 3.007 864 636 336

Table 2
As in Table 1 but for λ = 0.001

α QLM Buendía et al. [35]

2.5 3.004 011 251 013 051 566 32 3.004 011 251 013 044
3.0 3.012 418 523 458 183 683 45
3.5 3.033 848 550 516 771 486 08

Table 3
As in Table 1, but for α = 2.5 and different λ

λ QLM Buendía et al. [35]

0.01 3.036 729 472 634 750 701 64 3.036 729 472 634 750
0.1 3.266 873 026 113 020 288 38 3.266 873 026 113 018
1 4.317 311 689 247 367 365 98 4.317 311 689 247 366
10 7.735 111 103 489 144 371 88 7.735 111 103 489 141
1000 44.955 484 788 095 629 904 00 44.955 484 788 095 62

without difficulties and with the same accuracy, we repeated our
calculations using λ = 0.001 and the same values of α. The results
are summed up in Table 2 together with the value obtained with
the help of the analytic continuation method by Buendía et al. [35].

In order to show that QLM method could be used also for
computations with larger values of λ, we give the results of calcu-
lations for α = 2.5 and λ varied between 0.01 and 1000 in Table 3.
Again, these results are compared with values obtained by the an-
alytic continuation method by Buendía et al. [35].

3. Results and discussion

In conclusion, we pioneered here the application of the quasi-
linearization method (QLM) to the numerical solution of the
Schrödinger equation with singular potentials. The spiked har-
monic oscillator r2 + λr−α was chosen as an example of such a
potential.

We calculated, with the help of QLM, the energies of bound
state levels for different values of coupling constant λ and the
power α of this potential with accuracy of twenty significant fig-
ures and have shown that the energies even for very small λ values
which are notoriously difficult to compute [34] are easily calcu-
lated in the quasilinearization approach.
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