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Abstract. A review of hyperspherical-harmonics (HH) methods from the standpoint

of their applications is given. In the first lecture, the symmetrized and unsymme-
trized HH bases and symmetrization methods are presented. The physical obstacles
to the straightforward application of the HH expansion are discussed, and expansion
acceleration methods are described. In the second lecture, the main HH methods are
described, including the correlation function hyperspherical harmonic method
(CFHHM), the potential harmonic (PH) methods, and the correlated HH methods
(PHH, CHH). The third lecture discusses the advantages and limitations of different
HH methods in applications, and compares the results for specific few-body

problems obtained by HH methods as well as hon-HH methods.

1 Notation
m mass of particle Xi,1=1..,N angular coordinates of Jacobi
I reduced mass of particleandj of the vectors
triple {i, j, k} Q= {ouis Xii } three-body angular
Z charge of particle coordinates (tree base &fth
N number of particles pair); 3N — 4 angular coordi-
L total angular momentum nates for tree labet
K grand total angular momentum Y (@) generic HH
(order of harmonic polynomial) Vim(Q) generic HH
Ne number of coupled equations (K = {k, KLM})
Nyy number of HH basis states lekﬁbf(Qk) three-body HH (tree base on
N number of channels k-th pair)
Xki» Xaj  i-th weighted Jacobi coordinate R(@6 N Simonov “real” HH (N = 3,
(tree labelk, a) L = 0, pairk)
Iir Tai i-th Jacobi coordinate Y (@, No) Simonov “complex” HH
0 hyperradius (N =3,L =0, pairk)
ayj,i=1,...,N—1 hyperangles (tree labk) Yim spherical harmonic function

* Written account of lectures held at the International Workshop on Few-Body Problems in Nuclear

Physics and Related Fields, ECT*, Trento, Italy, September 8—27, 1997
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D Wigner D-function oS optimal subset
ph) Jacobi polynomial PHH pair-correlated HH
(Z)P'}EJ'“ hyperangular polynomial, CHH Jastrow-correlated HH
N=3 CFHHM  correlation-function hyperspherical
(LM[lg 1yl omp)  Clebsch-Gordan coefficient harmonics method
(k| ) Raynal-Revai coefficient HCM hyperspherical coordinate method
HH hyperspherical harmonics ODE ordinary differential
PH potential harmonics equations

2 Lecture 1 Hyperspherical Harmonics

2.1 The HH Expansion

The motivation for the introduction of hyperspherical harmonics (HH) is to reduce the
N-body, (N — 3)-variable, centre-of-mass S¢hinger equation to a system of coupled
ordinary differential equations (ODE) in a single variable, which makes possible the
application of the existing tools from the theory of Fourier series, orthogonal
polynomials, and the solution of systems of ordinary differential equations. In this
way many quantities appearing in the HH formulation, such as matrix elements of
potentials in the HH basis, are for the most part expressible through closed analytic
expressions. Although with the availability of powerful computers this aspect is
becoming less important by itself, it has the important consequence that it enables
the separation of numerical approximations in different parts of the procedure, thus
making it more controllable. Also, the convergence properties of such expansions are
known, and a proper expansion should converge to the correct answer. This is by no
means guaranteed in variational calculations, for example.

The fact that all save one coordinate can be made cyclic (angular), can be intuitively
illustrated by the following insight: Apart from its size (scale), all other transformations
of the triangle spanned by three particles can be described by the rotation group.
In particular, deformations can be viewed as the shadow (projection) of a rotating
triangle.

The history of the HH began in 1935 as they were introduced by Zernike and Brinkman

[1]. HH were reintroduced 25 years later by Delves [6] and Smith [7]. However, only in

the recent decades methods based on the HH expansion have been developed to their
full potential.

The reduction of the Schrainger equationto a system of coupled ODE begins with
the expansion of thdl-body wave function

Vo, ) = dxlp)Yx(D), 2.1)
X

where the basic quantities are:

Y (@) : HH functions;

o . hyperradius;
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XK : 3N —4 quantum numbers;
Q: 3N — 4 angular variables.

XK compriseK and the quantum numbers associated with-35 angular operators
which commute withH and between themselves. The quantum nunkbés called
quasij or grand total, angular momenturin calculations, the HH basis is truncated to a
finite size except when it is implicitly summed over (see IDEA and its variants, below).
The truncation is defined ¢ = K,,;; further truncation is sometimes performed, based
on physical considerations.

The coupled ODE for the hyperradial functions are

1d nd K(K+3N -5) _
[E do (" a) 2 " E} bx(p) = ;Vx,x’(p)%c(p), (2.2)

wheren = 3N — 4, the matrix elements of the potential are

Vi x(p) = J Y @D"Vip, DY (Q) dO, (2.3)

and the eigenvalue of the hyperangular part of the Laplacian operator is

I s DY 5(Q) = KK + 3N — 5)Y 5(Q). (2.4)

Many derivations for the gener® will be found in [38]. Certain HH methods are
usable also ifP-space: See, for example, Kievsky et al. [71].

2.2 Indistinguishability and Cusps

Symmetrynder exchange of identical particles atdstering(rearrangement) aspects
of N-body systems, trivial or absent fof = 2, become of major importance in the
formalism forN > 2.

2.2.1 Jacobi Coordinates

Each Jacobi coordinate connects the centre of mass of a subsystem with one of the
remaining particles or with the centre of mass of another subsystem. In thil cag:
they are

1
R=M(mRi+ij+m<Rk),

B L LU TN ALLLLL
Xk,l— m +n] (R| R])— m‘l‘n'] Mg,
+ Ri + mR;
Xk,zzx/immM m) <Rk_—mm+:: ’>, (2.5)

whereM = m; + m, + Mg andR is the centre-of-mass coordinate, which is eliminated
in what follows. The three choicek & 1,2, 3 in the spectator notation) are connected
by a linear transformation [21, 51kihematic rotation see Eq. (2.16)). In the case of
indistinguishable particles, the kinematic rotations play a role in the symmetrization of
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3
X3,2
G 1) Fig. 1. Relative Jacobi coordinates for a three-body system

1 X3,1 2 (k — 3)

Xa, Xb,3

Xa,2 Xb,2
(e O e )
Xa,1 Xb,1

Fig. 2. Two choices of relative Jacobi coordinates for a four-body system. Lalaglgb are not associated
with a particular particle

1 X3 Xz~ —1
X31 Xzo R 1
T3.p
3,1 = pcosas;
[ T3 = psinas;
b >
3,1

Fig. 3. The regions of strong potential for three particles with# m,, in the coordinates with respect to
particle 3. Two regions appear only at special values of the angle between the Jacobi coordinates

the basis. Different sets of Jacobi coordinates are employed, for example, in the case of
rearrangement collisions.
The hyperradiusmeasuring the overall size of the system is defined as

N-1

pP=) K (26)

and is independent d, i.e., of the permutation of the particles.
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2.2.2 Cusps

Cusps [4] appear with Coulomb-type potentialsahlescence pointsr lines
.1 o0v¥ mm
im - —=2Z—"—. 2.7
el s ar, 'Z‘m-i-m @0

The regions bordering the coalescence lines extend to the channel regiensdf This
is illustrated in Fig. 3 for the case of a short-range potential.

2.2.3 Asymptotics

The asymptotics of the wave function depend in different ways iordifferent angular
directions. For example, in thd = 3 scattering problem above the breakup threshold
with short-range potentials, in theakup regiorwhich lies far from coalescence lines,

¥ has ap~>? dependence. The regions of strong potential have decreasipglar

width as the size of the system increases, and therefore require an increasingly large
expansion basis in th@ngularvariables.

Thus, cusps in the case of bound states and channels in the case of scattering
states both represent a major obstacle for a direct application of the HH expan®ion to
Figs. 4, 5, and 6 illustrate the appearance of the cusps in two different parametrizations
of the angular coordinates, once as lines and once as points.

-

o

75.0

75.0

Fig. 4. Unnormalizedudt ground-state wave functiom.= const x X3, is the distance betweeshandt;
s=constxxz, is the distance between the muon and the centre of massd ohnd t;
arccoska; - X3) = 0.001°. K, = 40. Parametrization df: a; = by, a, = b, (cusp values)as = —0.29
d.a.u. (nonlinear)n; = 0.7. Cusps appear as lines. Only two cusp lines can be seedr-thepulsive cusp
atr = 0 and theu—t attractive cusp as = rmy/(my + my). From Krivec et al. [97]
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Fig. 5. As in Fig. 4, but for theL = 0,v = 1) excited state\( is the vibrational quantum number)
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Fig. 6. Unnormalized CFHHM He-atom wave function &3, A3 coordinates where particle 3 is the He
nucleus (degrees).= 1, K, = 36. Cusps appear as pointssat= 90°. ¥ is almost indistinguishable from
the correlation factoe' at this scale

2.3 Parametrizations

There are two basic approaches to the definition otigularcoordinates starting from
the Jacobi coordinates. One treats all Jacobi coordinates on an equal footing, while the
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other involves a separation into Euler and internal angles. The choice of parametrization
affects (a) the separation of variables in the Sdhrger equation and (b) the
symmetrization and generalization tb> 3 andL > 0.

2.3.1 Nonsymmetric Parametrization

This was the first type of parametrization, but later proved to be the most suitable one for
constructing symmetrized bases in the general case. It was constructed togethe
method (Vilenkin et al. [13]); see also Nyiri et al. [22]; Krivec et al. [89]: The basis
functions are eigenfunctions of subsystem-angular momintarhis basis has the
following advantages:

— has good subsystem-quantum numbgsg &ndK, L, M;
— is generalizable to anly and anyN;
— serves as starting point for symmetrizatisith the advent of fast algorithms.

The hyperspherical angtg,; for 3 particles is defined as follows:
X1 = p COSoyy 1,
X2 = p SiNoy ;. (2.8)
Definition of anglesy;,i = 1,...,N — 2 for N particles is:
X1 = p COScy 1,
Xk2 = p SiNoy 1 COSay 2,

X3 = p SiNay; SiNay » COSey 3,

XkN—1 = P SiNay 1 SiNoy o " SiNay 2,
OKN-1 = O’ (29)

i.e., starting from pairif), each “spectator” coordinate becomes in turn a “pair”
coordinate. The volume element is

N-—-1
ko = d)“(k,N_l H df(k’N_p(Sin(Xk’N_p)3p74 COS2 ak,N—pdak,N—p- (210
p=2

The basis in the three-body case, with eigenvakigé + 4), K =0, 1, 2, ..., by virtue
of the weight function determined by the volume element, is composed of Jacobi
polynomials:

Ial 4l A ~
Vin? (@0 = N¢ 2D (IMIliameli oMY Rie) Vi, om, Ric2)
mm

x (COSa 1) *(Sinoy y) P a2 2t ¥ cos 2 ). (2.11)

The following notation is used:

(LM[l' ;! omp) - Clebsch-Gordan coefficient;
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P@® : Jacobi polynomial;
Ym : ordinary spherical harmonic function;
n=3(K -l —lp).
The normalization coefficient is

Ng,b:¢2(0+2)n!I‘(n+a+b+2) c—a—b

, N=—————, (212
I'(h+a+3rin+b+3 2

whereQy = (a1, Xk 1, X 2) denotes the five angular coordinates on the six-dimensional

hypersphere; €& oy ; = 7/2; Xy 1, Xk > are solid angles connected with the vectays,

X2, respectively; and the angular volume element is given by

ko = %df(k,l d)’zk’z Sln2 ZOlk’]_dOlk,l.

Remark on NotationThe function

(COSay 1) ¥ (sinay 1) k2Ph 2 2tV (cos 2y, ) (2.13)

up to a normalization factor is denotéaP'Kkvllk'2 in Ballot et al. [38], but the
corresponding notation in Kievsky et al. [71] @P'Kk'““, whereK is the order of
the Jacobi polynomialn(in our notation); ouK is denoted byG.

2.3.2 Symmetric Parametrization

In this approach symmetry is imposed by construction (Simonov et al. [14], Barnea et al.
[54]): HH simultaneously realize irreps of “kinematic rotationS{N — 1) together with

irreps of the permutation groufy and the rotation group. The first construction by
Simonov [14] was spawned by the interest in the nuclear three-body problem. The Dalitz-
Fabri coordinates (see the Redish lectures [169]) were used to accomplish the separation
of motion in Euler and internal coordinates. The explicit expressioh fer0 is:

. . 2
SiNg SINA, = —5 X1 " X2
Jo)

_ 1
sina, Cos\, = 2 (%1 — X2),

2u+2 N
R, (86 N = | /mcos{v%k)(sma& PeO, a(cos By,  »=0,

K
n= 5:0,1,2,3,..., v=—u,—p+2, ..., 4

This is symmetric for particles 1 and 2. (Note thatis the coordinate of kinematic
rotations, and is the label of the kinematic rotation gro@g2).) K is the order of the
harmonic polynomial, therefore each HH limits the subsystem angular momenta to at
mostK. (In the Sommerfeld approach, a part of the Laplacian operator is rewritten as
the equation for the Wigner function®! ; the counting of possible eigenvalues
and polynomial orders gives the setkf » pairs.)
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The problem with this parametrization is that it is very difficult to generalize the
basis to largeL and N. Works [9-37] were devoted to finding expressions for
symmetrized HH realizing irreducible representations of the permutation ggeup
This presents a very difficult problem even for the three-particle case (Smith etal. [7, 9—
37]). Simple expressions in closed form were found onlylfes 0 (Smith et al. [7],
Whitten et al. [17]), and. = 1 (Barnea et al. [44, 46]) (see also Zickendraht [9], Nyiri
et al. [22], Whitten [20]). FolL = 2, the difficulties were in finding the proper “fifth”
operator of the complete set (containidg3(Q), L?, L, and the generator dbQ2))
which would have equally spaced, easily calculable, and nonirrational eigenvalues (Racah

[8]).

2.3.3 Symmetrization Algorithms

Symmetrization algorithms are necessary in order to keep the dimension of the HH basis
manageable if one goes beyoNd= 4. Up toN = 4, several different prescriptions are
used in practice to reduce the basis.

The basic property of the HH employed is the fact that HH for different choices
(k,m,...;a,b,...) of Jacobi coordinates are connected via the so-called Raynal-Revai
coefficients [21]

Vik(@0 = > Vkam@m (el (2.15)
Xk,1 Xm1
w2 | m2 2.16)
Xk N—1 XmN—-1

where thekinematic rotationmatrix ™ depends on masses.

In a variational setting, symmetry can be imposed by Faddeev decomposition and
reduction of resulting linearly dependent HH (Efros [26], Kievsky et al. [71]), which,
however, is tractable mainly in nuclear physics with a limited number of channels, as
well as relatively low accuracy requirements as compared with atomic physics.

Useful algebraic generalizations of the symmetrization algorithms and fast imple-
mentations of these algorithms for largérhave been obtained only recently.

The work by Efros [55] first obtains the Raynal-Revai coefficients [51, 52] as
solutions of a linear system generated by writing Eqg. (2.15) for a (random) set of
coordinate vectorgl’, wherei takes as many values as The coefficients of the
symmetrized linear combinations of HH can be expressed with) I

A completely general, even faster algorithm, especiallyNor 4, is constructed by
recursion in Novoselsky et al. [53, 54] and Barnea et al. [56]. Most of the work from the
1970’s up to now was devoted to the problem of symmetrizingitbe-methodasis
functions. In most of these works it was attempted to realize analytically (Raynal-Revai
[51, 52], Kildyushov [29]) or numerically (Efros [55]) the Young symmetrizer. The new
idea of Novoselsky [53] was to improve the symmetrization process by a recursive
method rather than to improve the realization of the Young operator. In [54] this
approach is further improved using the kinematic group.



208 R. Krivec

2.4 Convergence and Its Acceleration

2.4.1 The Simple HH Method
It was recognized rather early that the simple HH method has very limited accuracy:

— Banville [57] found in the three-nucleon problem, using a Gaussian potential, that
with 35 HH states it was possible to come within 0.03 MeV to the correct result, but
that 65 HH states were needed for 4-digit accuracy.

— Erens et al. [23] discuss their result that the number of Simonov HH was too large
for use with realistic nuclear potentials.

The reasons for slow convergence are as follows:

— In atomic physics (Coulomb potential) or nuclear physics (realistic potenffals)
converges a¥,,> (coefficients a¥,°); E converges a&,* (Gaussian potentials:

e %m), see Schneider [28], and [38, 84, 27]. (See also Ballot et al. [34], Haftel et al.
[87].)

— Afinite number of HH cannot describle at the origin in the case of Coulomb-type
singularities (the wave function in this case contains the well-known Bartlett or
Fock logarithmic terms).

— Nyy (basis size) grows very fast witk andN: see Table 1.

2.4.2 Reduction of the Degeneracy

Reducing the degeneracy of HH states is an approximate method for selecting only the
most important basis functions. This method entails a numerical error which usually
proves tolerable only in nuclear physics.

Table 1. Rounded power of 10 of the degeneracy of unsymme-
trized HH as function oN andK. The second part of the table
showsNyy (the sum of degeneracies upk®. Degeneracy grows
exponentially withN

K
N 20 40 60 80 100
Degeneracy
3 4 5 6 7 7
4 6 8 9 10 11
5 8 10 12 13 14
6 9 12 14 16 17
Number of HH
3 5 6 7 8 8
4 7 9 10 11 12
5 8 11 13 14 15
6 9 13 15 17 18
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The potential harmonic${H) method (also called the optimal subset (OS) method)
expands?t on the subset of HH needed to expand the interpatrticle potelialhis OS
truncation means that only two-body correlations are included in the wave function.
Permutational symmetry is usually included in the construction of the OS (Ballot et al.
[38]). For modifications of PH like the full-set PH see Fabre et al. [121].

The IDEA (integro-differential equation approach) is derived from PH. It is based on
the approximation tha¥ depends only ow,;,k =1, ...,N — 1 andp. This leads to an
integro-differential equation representing an infinite, untruncated sum over the PH
basis, i.e., IDEA contains only two-body correlations but a complete sum over the PH.

Ordering and elimination of linearly dependent HH is another method of reducing the
number of HH in nuclear physics. This approach, after several years of the development of
sophisticated correlated schemes, resurrects, by virtue of more computer power being
available, the simple HHmethod in nuclear physics (Kievsky etal. [71], see also Efros [26]).

2.4.3 Removing the Singularities: Correlated HH Methods

Typical problems, where correlation factors are called for, is atomic physics and nuclear
physics using realistic potentials. Inserting correlation factors by itself does not entail
numerical approximations. Mathematically, it represents a method of accelerating the
convergence of the HH expansion. The modifie¢onverges one power &, faster

for each derivative smoothened. It should be noted that in a non-variational setting, the
factorizationof the singularities is only possible in a simple way for the Sdhrger
eqguation, despite the fact that in the Faddeev formulation each pair-correlation factor
appears in a single Faddeev component.

The idea of using the hyperspherical expansion together with the correlation functions
originated in the works by Zakharyev et al. [18], Raynal [31], and Revai et al. [32] in
scattering, and to works by Fenin et al. [58] and Gorbatov et al. [41] is bound-state nuclear
problems.

The PHH andCHH methods have been developed by the Pisa group. They have been
used in and adapted for nuclear-physics problems. In order to facilitate the use of
correlation factors in bound as well as scattering problems, the Kohn-type variational
method is used to determine the hyperradial dependende Bfartly, these methods
employ both correlation functions and the PH (OS) basis (Kievsky et al. [67]). Lately
the group switched back tmcorrelated full HH expansions, where the necessary basis
sizes forN = 4 reach several thousand functions.

The correlation function hyperspherical harmonic methG&#HHM ) addresses the
problem of precise nonvariational calculations primarily in atomic physics. The
complete HH basis is used, and the cusps are factored olt dhis is a favourable
tradeoff despite the non-self-adjointness of the resulting effettivEhe Fock terms at

the origin are included completely by construction. (HH basis truncation may also be
used for largeN.) The method is used for bound states.

2.4.4 Adjusting the Angular Scale

A method which strictly speaking cannot be counted as a HH method is interesting from
the physical viewpoint because it addresses directly the problem of clustering: the
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hyperspherical coordinate methddM ). In this method the angular basis dependg on
(adiabatic approach) [104, 73]. In this property it is similar to the Born-Oppenheimer
approach. The precision of the method is limited compared with the state-of-the-art
variational or correlated HH methods; however, it is applicable to a large set of problems,
and it can provide good insightinto the structure of spectra. It can also be used for scattering.

3 Lecture 2 HH Methods

In this lecture we shall give a more detailed overview of the basic formalism of the HH
methods. Most formulas given are not limited to specific methods.

3.1 Introduction
The basic advantages of HH methods are as follows:

— Analytic expressions for matrix elementsare available in most cases. This was
one of the original motivations for the introduction of the HH methods.

— Knowledge of the radial solutions at the origin (Bartlett-Fock type expansions,
etc.) is available. The behaviour at the coalescence points is also known. These
points are not “natural” in a HH setting.

— Convergence propertiesof the HH expansion are known.

3.2 CFHHM

One of the most important properties of the CFHHM is that it solves the Sirtger
equation directly (i.e., it is not a variational method). This means that the wave function
will have uniform precision over a finite region of the configuration space, and that
observables will have almost uniform precision, whether they correspond to singular or
nonsingular operators. This is not the case in variational calculations where the variational
functional emphasizes the regions important for the optimization of the energy.

Details of the CFHHM will give insight into analytic expressions for the matrix
elements of interparticle potentials, and into how the correlations are included in order
to eliminate singularities.

Equations. The correlation functiorf in the factore’ should make smooth and
therefore expandable in HH:

¥ = efp, (3.1)
2

V26 + (E—W)¢ = 0, (3.2

W=V — (Vf,V) — v — LVf)?,  (3.3)

o=, (34)

Jo)
, / (u+2)° _
Xuv + ;X;w + |:2E - a 2 :| w = ZZ wr v Xu'v' s (35)
M/V/
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Matrix elements (). As an example of expansion in tegmmetrical basisve give the
expressions in the Simonov “complex” basis for= 0 [87]:

90, 86 N = D Gy (0) Y (@i N, 37)
wy
Wtp
Wl Yy = > A G (0), 38
w'=Iw —pl
e R A A e LR AW Gl V)
Yooy = (1) <2 55 3 |3 2>\/ Pt D (3.9)

and ifg(o, a, \y) is a series in powers of,(o, a, \), m= 1, 2, 3 (like a pair potential),
then

90,86 M) = Y Gampl b (310
P="Po
Me = /21 + sina, cog\ + wy)), (3.11)
p _ . o p P2, 153 /ZF(%:’)) B+ 1(_2)14
(8, = exp[u (wm 2) V} [47rp () (~D*2 22 (MV+ | (3.12)

Matrix elements (Il). In thenonsymmetrical basisee Krivec et al. [89]) one uses the
Raynal-Revai coefficients to express a matrix element in the HH basis with respect to
pair k with the matrix elements of potlentlahs(x| 1) and V(X 1) in their respective
hyperspherical basey /\i2(Q) and Y K‘ﬁ,\}f(ﬂ ),

(Kl 1l i aLMIVIK Tl oL'™M)

=Sl dww Y Z (leal k2l al e 2)ke

K =ijkl 4l
x (KIVie KDy 2(' ka2l k2)kews (313

which, as far as the radial dependence of the potentials is concerned, requires only the
calculation of the integrals

KIVIK ) = Y Vip(KI(€0sai )P 1K) 1,,0 (314
p=-2

These integrals usually depend krin a trivial way (via masses and charges), and
reduce to the calculation of matrix elements between functions (2.13). In CFHHM,
additional matrix elements from velocity-dependent terms must be calculated. This is
usually done partly numerically because of the slow convergence of the matrix product
in the — 3(Vf)* matrix element [92].

Solution of equations.The method developed by Haftel et al. [100] expresses, in the
variablez = 2xp on the interval [0z,], the hyperradial vector solutiog(z) as aNg X Ng
matrix, as required by the, in generdl, x N, boundary conditions. The matrix solution
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is propagated from = 0 to z = z, and fromz = 7z, to z= z,. The latter is the stable
direction of the system of coupled ODE (self-stabilization). In matrix notation,

x"+Px'+Qx=0, (3.15)
p_ i _1lwo, (3.16)
Z K
1 A% 1 __
Q= 73— 252" (3.17)
W=w" +WD)3, (3.18)

where A,y = 6,(K, +2),0,0 =1,2,...,Ns,k = \/—2E. E is prescribed by the
iteration (zero-search) algorithm (see below). Because of the self-stabilization, the
boundary condition at the maximum valag of z can be specified ax,,(zy) =1,
X;V(zu) = (—azy — BIn zy)l. The Fock-type terms &= 0 are calculate@xactlyon

0 < z< z (S upper triangular):

X, =27 ZF CiZ', Cp=1, (3.19
n=0
A+ P —-DA+Q ,= 0. (3.20)

x is expanded in matrix power series on snzalbintervals, yielding matrix recursion
formulas for coefficients. The reexpansion®f, ., (i.e.,P, Q) in local power series is

v,V

necessary:
xi(@ = X Vi, (3.21)
Ny
Xi=> Cnz—2)", (322
n=0
Cio=1, (3.23
Ci1 = X_1(Z)X 4(2). (3.24)

The renormalization of the solution on subintervals according to Eq. (3.23) helps to
maintain numerical stability.

The method reduces to the search for the zero of the determinant of Eq. (3.25). Only
about 7 steps are needed Ebto converge to precision required in atomic physics. In the
final pass the vectors/; are constructed in order to generate the solutiornz Atzy,
after propagation ofV; from both sides of = z,, a homogeneous linear system must
be solved as follows:

[Ri(zw) — R.zw)X(zw) V4 =0, (3.25)
(V=1 (3.26)
discardNc-th equation (3.27)
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Wave function. ¥ is expressed, om subintervals, by coefficients calculated frofn
and V;,

f ny
Y(p.ah =5 > @ 2P Y G VouRu@ ). a<2<zi (329

p=—1 uy

and correspondingly of0,z-]. Observables are calculated by numerical quadrature
directly from ¥.

In special systems likeu*He™™ because of its two-scale nature, it is necessary to
use quadruple precision in the calculation of the matrix elements but not the solution of
the radial equations. Quadrature accuracy needed in the calculation of the expectation
values is smaller than that for the matrix elements. Bec&se velocity-dependent,
the energy is obtained g#l); this expression in contrast to the eigenvakidas a
variational property with respect to quadrature parameters.

Correlation function. The general form suitable for atomic physics problems, which
describes exactly the cusp structure, and can also partly control the asymptotics of the
solution, is

3
f=" la+ b —ae ™V, (3.29)
k=1
mm
b= 22 . (3.30)

Inthe linearf, f = T2_; cry, ck = by, if b > 0, it may be necessary to uge< 0 instead
to enable convergence, thus violating the cusp condition. Nonlinediminates this
need, and improves convergence as well as the values of the deviation of the local
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Fig. 8. Asin Fig. 7, but for the modified-cusp linear correlation functioa £, ¢.ry with ¢, = by, ¢, = by,
andcz = —0.282 d.a.u. ¢; < 0 replaces the repulsive cusp = b; > 0 to preventf from increasing as
I — )

energy from the true energy as measured by the opeftdidiE — 1, by at least an order

of magnitude [99] compared to the linelarThe forms of various correlation functions

are shown in Figs. 7 and 8 (see also Fig. 6). The convergence of operators can be
improved by several orders of magnitude [102].

Numerical parameters. These are of two types:

— Intrinsic (for the solution of equations)ng, n,; T,, Tw;: Z=, 2u, Zy) (numbers of terms
in the expansion of the solution; lengthsaintervals; boundary/joining-points).
— Free(to optimize the form of): (a, ny), k= 1,2, 3.

For the optimization of the CFHHM parameters, see Haftel et al. [100]. Generally it
suffices to impose cluster asymptotics foalone, not on¥; the latter is a nonlinear
problem. This nonlinear problem has been solved in several cases by optimizing the
parameters al, = 1 which turned out to be sufficient. Usually, only two parameters
actually remain free after physical considerations are taken into account.

Plateaux may appear in the dependence of the integrals on the upper integration
limit in the zvariable. The plateau values are used to calculate observables and estimate
precision. Usually, the plateaux move towards largeas K,, is increasedK,, is
increased until the dependence on free parameteis,,@md on plateaux is of the same
order of magnitude.

Convergence of observablesThis is discussed in Haftel et al. [87]. The naive picture
that the observables converge as fas¥aurprisingly holds, but convergence rates are
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Table 2. Rates of convergence (fitted, rounded) in the simple HH method and in CFHHM for the Helium-
atom ground state, using finite and infinite nuclear masses. The entries with and without brackets
correspond to the electron-nucleus and electron-electron distances, respectively. From Haftel et al. [87]

Method 4 (H) () rch re (8(ry)
Simple HH theoretical 2 5 5 4 3 3
CFHHM (cusp, mass) 3.3-4 5.5 4 (6) 4 (6) 4 (5) 4 (5)
CFHHM (cusp) 3.3-4 5.5 4 (6) 4 (4) 4 (3) 5.5 (4)

substantially higher than in the simple HH method, as illustrated in Table 2. Conver-
gence rates depend on the physical system, but more importantly, the rate of
convergence of singular operators depends strongly on the type of correlations used
(see Table 3).

Table 3. Approximate number of correct significant digits {H) and (6(r3)) as function ofK,, for the
CFHHM calculations of the ground states with systems having none or two indistinguishable pattisles.
the distance between the repulsive particles. L: linear correlation funtctfonsp or one with repulsive
cusp modified). NL: nonlineaf. Italics: interpolated values if observables converge with in two
separate subsequences

Symmetric systems Nonsymmetric systems
He Ps pdd pdt  pdt eu*He
L L NL L L NL L NL

Separate Interpolated1

Km Ne Ne Km
(H)
24 49 7 5 5 3 91 3 3 7 7
32 81 8 5 5 4 153 4 4 5 10 10
40 121 8 5 6 5 231 5 5 6 10 10
48 169 8 6 7 5 325 5 6 10 10
56 225 7 435 10 10
(6(r3))

24 49 5 i 2 1° 91 1 1° 3 3
32 81 5 1 3 1 153 1 1 4
40 121 6 1 3 2 231 1 2 3 4
48 169 6 1 4 2 325 3 3 5
56 225 1 5 435 3 6

& Uncorrelated cusp

® Modified linear cusd

¢ See Fig. 9

4 Observables converge in separate subsequences corresponkljy@ ®ven and odd
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3.3 HHGLF, CFHHGLF

This method is similar to CFHHM in the expansion\6fnto a matrix-power series, but

the hyperradial functions are expanded in generalized Laguerre polynomials (including
at p = 0) and the resulting linear system for coefficients is solved (Zhang et al. [77],
Wang et al. [78]). This expansion converges much faster than a single power series on
the entirep interval, but is less flexible than the CFHHM piecewise series.

3.4 HCM
The expansion
¥ =0 F(0)%,(Q.0) (33D
W
leads to the equation
d* 15 M )
h;—@;+E—wm»+wwm}1unzggme&<m, (332

wherey is the angular channel label ands the hyperradial excitation numbdr, (22, p)
are generated by

A2
[? + v] ©,(2,0) = V,.(0)2,(2, ) (333
and
d d d?
W, = 2<<I>,L|d—p |®,) 4 + (P, 402 |o,). (3.39)

The uncoupled adiabatic approximation deletes the terms on the right-hand side. This
proved valid for two-electron atoms [76, 75]. See also [105—-113, 43]. Solving Eq. (3.33) is
difficult due to localized solutions for large Ref. [108] proposes a variational approach.

3.5 PH, IDEA

PH. To illustrate the generation of the optimal subset, we give just a simple example for
a spherically-symmetric potential (Erens et al. [25]). The OS is defined as the basis
needed for expansion &f: Let (Vi mIVk) = CVk; then

3
V= Z Z CkVik Ykem (@)

k=1KLMk
° k
1
= ch Z Vk Z(KW)KL Yiam(2)
k=1 KM« «

3
KL 4 g
KE Ck E (k&YKL Yikim(Q)
k=1 LMk«

k Bk (). (3.35)

:zK:v
:;v
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For the general definitions of the HH basis, the potential multipoles, and the symmetry
considerations, the reader is referred to Ballot et al. [38].

IDEA by Fabre et al. [42, 45, 49] is based on the following derivation starting from one

Table 4. Triton binding energy (experimental: 8.48 MeV)

Method N Nun Ne MT(V) AV14 AV18
all p.w.
Uncorr. HH-PH, 6 6 7.128
Rosati [64] 12 12 8.100
CHH-PH, ref. [64] 7 7 8.2526
CHH, Kievsky [65] 8 6 48 7.642
PHH, Ref. [65] 8 6 48 7.660
12 6? 727 7.678
Ref. [67] 18 67? 108? 7.68%
Uncorr. HH, 18 7.61786
Kievsky [71] 22 7.61809
26 750 7.61812
IDEA, Fabre [142] 8.25
VIDE, Braun [50] 8.2525
IDEA (see [50] (?)) 8.1924
SIDE (see [50] (?)) 8.0408
CS/Fadd., Papp [142],
li=6 8.25215
Faddeev, Friar [127] 8.251
Schellingerhout [135] 8.2523
Chen [131] 34 7.678
Glocke [140] 34 7.680
Wu [137] 52 7.673
Tensor,
Schellingerhout [133] 8.2527
Euler+ CHO,
Kievsky cf. [64] 8.250
ATMS, Akaishi [129] 8.26(1)
GFMC,
Zabolitzky [128] 8.26(1)
Pudliner [144] 7.670(8)
SVM, Varga [141] 8.2527
Gauss, var.,
Kameyana [134] 26 7.684

& CHH turns out to be worse than PHH — hindered by angular momentum mixing from Jastrow factors
b More channels are required for four-digit accuracy than in CHH (although uncorrelated HH is described

as “more accurate”)

¢ Agrees with [134] — eliminates doubts about “missing contributions”
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of the Faddeev equations:

(T—Béx =—-V(xX V. (3.36)
Let Vo(p) be the projection o¥/(x, 1) on Y. Then
N(N -1
<T + (T)VO(P) - E) o = —[V(Xc1) — Vo(p)] VY. (3.37)

If ¢, were expanded in HH (or PH), one would get a system of equations which would
have to be truncated & = K,,,. IDEA (here forL = 0) [42, 49] is based on the
approximation of only two-body correlations, which impligg = BoF (X1, 0)/p 2,

where By is the lowest PH. Projecting o, one gets

N(N-1
<T + D) - E> FO410) = — V() = Vo(p)] > J dQ F(na. o).

(3.38)

whereT and the sum of the integrals can be expressed in terms of 2 variakdes]
z=7(0) = z(¢y) = COS 2y 1. Here

2

2p) = 25"(;”) —1, (3.39)
0

£k(@) = Xy 1 COSe + Xy 2 Sing, (3.40

whereé,(¢) is the “kinematic rotation vector” giving all threg, ;, k = 1, 2, 3 at special
valuesyy of the angler. Two variables can describe two-body correlations but in the general
case, the HH expansion contains all HH (PH) terms and is exact in the HH (PH) expansion.

SIDE is a special case of IDEA f&-state projected potentials, wherelyis also set to
zero (and is generally worse than IDEA).

VIDE is a new version if IDEA based on the Sctioger equation as opposed to the
Faddeev equations in order to eliminate multiple counting of certain contributions
which is an artifact of the Faddeev equations (see refs. [50, 65] and Table 4; there is a
threefold reduction in the number of equations).

3.6 PHH, CHH (CHH-PH)

The ansatz for in these combined variational and HH methods is as follows: The
channel functions for Faddeev components are

Ke
M ) = 0 e R i) D UR(0) PPE (), (34D)

K=lg1+H k2

Ky
CHH o o Lot 2 k!
5 (X1 Xie2s Kkt Ki2) =0 K62 £ (X 1) (%, (X 1) E ug(0) PP (0 ).
K=I k,1+| k2

(3.42)

The important difference between PHH and CHH, apparent from the abovianisa
that CHH is applicable also to hard-core interactions. The expansion basis initially was
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PH, while recently the full HH basis has been used, also in the four-nucleon problem
[69]. In the four-nucleon problem, both types of Jacobi coordinates (see Fig. 2) are used
in order to facilitate the channel truncation. This is one of the benefits of the use of the
Rayleigh-Ritz variational principle(é,¥|H — E|¥) = 0, to obtain the energy and the
wave function. This approach is also used in scattering problems liké-thgcattering,
where thanternal part of ¥ is expanded in HH. This is an example of correlations being
both multiplicative (the pairwise Jastrow-type correlation factors) autlitive (the
channels), as was discussed in the first lecture. However, the approximation involved in
the formulation of the Kohn-type functional for th&matrix above the breakup
threshold without including the time-reversed final three-body state, which contains
single and double rescattering terms [170], is left open.

4 Lecture 3: Comparison of HH Methods

4.1 Applications and Accuracy

In this section we present the intrinsic accuracies of individual methods and their
applicability to specific physical problems. Methods separate roughly in two classes:

— very precise methods, typically applied in atomic physics with sidalind not in
scattering;

— approximate methods, which gain in practical efficiency compared to the “precise”
methods adN is increased; typically applied ilN > 3 atomic problems and in
nuclear problems, including scattering problems. Already Ballot et al. [34] observed
that the first PH term gives increasing percentage of binding with increékiog
the ground states of atoms.

4.1.1 CFHHM

Because of the factorization of correlation factors frdm the applicability of the
method at present is limited to bound states. In most cases CFHHM gives better
converged results than variational calculations, especially for singular operators. This is
especially the case if convergence is improved by interpolating the recently observed
double convergence of observables wiij [102, 103].

Advantages:

— The full HH basis is employed (truncatedkat= K,,).

— The radial part of the Schdinger equation is solved directly (precisely);has the
correct analytic form ap = O.

— Expectation values of observables are of uniform accuracy, including the singular
operators.

— Combined with complex coordinate rotation method (CR), CFHHM can be used for
atomic resonance studies [101].

Limitations:

— Vr-type singular potentials are the limitation for analyticity of integrals (although
numerical integration poses no problems).
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— The condition of the system being “spherical” (not veyy/He-like) does not seem
to be a restriction; but in such cases the useful region of the parameter space of
nonlinearf is rather small.

— Becomes complicated (larg¢,) for N > 3.

— Parametrization of correlation function may prove difficult, or state—dependént (
must be >0 in order not to affect the nodesiot

Applications:

— Muonic molecules likeudt (sticking probability and fusion rate) [99, 97].
— Doubly excited Helium atom [101].

— Ps annihilation rate [95].

— eu®**He™™ hyperfine splitting [102, 103].

In the above applications the values of singular operators were obtained in general to
better precision than in the literature. The precision of the value of the enggy (
(even thougH is not optimized to get a googH)) is shown in Table 3, whence some
observations can be extracted:

— To get comparable accuracy in nonsymmetrical as in symmetrical sys€gnmmsyst
be the sameN; larger).

— Nonlinear parametrizations are much better than the linear ones.

— For nonlinear parametrizations, accuracy of noninterpolated observables (and
probably interpolated) is quite uniform across different systems, excepifor

— The interpolated values f¢H) have the same accuracy as the separ#ig values.

— For other observables, interpolated values are improved by 2 orders of magnitude.

4.1.2 PH, IDEA, VIDE
These methods are used in nuclear physics.
Advantages:

— Their relative efficiency increases fiir> 3.

— The first PH term gives increasing percentage of binding with increasing
— Precision of OS is “at least as in Faddeev formulations” (Ballot et al. [38]).
— PH fulfills the Rayleigh-Ritz principle in contrast to the Faddeev formalism.

Limitations:

— Only two-body correlations are included.

— Inadequate in atomic physics fisr= 3.

— Even in the first excited state of He atom, the first term contributes only 50% of
binding.

Applications: As discussed in Fabre et al. [121], an early calculation by Erens et al. [25]
showing OS gives trinucleon energy to 0.001% udipg= 18. Ballot et al. [38] found

that non-potential terms have small contributions. This was also studied by Erens et al.,
see also Kievsky et al. [71]. Loss of precision due to OS was studied by Desplanques et
al. [47]. Accuracy was studied also by Erens et al. [25] and Ballot et al. [34].
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A recent application is the DFM model of the nucleon, based on the PH:
Dziembowski et al. [48] claim 99.5% accuracy in the overlap between PH and exact
¥ (see Richard et al. [39], TableE converges to 4 SD &, = 3; (6(r1»)) converges to
4 SD atN, = 10). However, wroné—i-, % — state ordering is obtained for the nucleon. In
fact, the recalculation of the DFM model in SVM and Faddeev methods gives even
worse ordering of these states [145].

4.1.3 PHH, CHH

This method combined with variational principles is used in nuclear bound-state and
scattering problems.

Advantages:

— Accommodate most potentials (CHH also hard core).

— Inclusion of Coulomb potential below threshold is easier than in the Faddeev
formulation.

— Large HH bases (and the Lanczos method) can be used because of the variational
formulation.

— Variational formulation enables the treatment of scattering problems using a trial
function of the form¥ = ¥, + ¥, where ¥, is a quadratic integrable part
describing clustered subsystems, dnds the long-range part describing channels.

Limitations:

— PHH is sometimes faster converging than CHH due to absence of angular
momentum mixing.

— Simple HH eventually turned out to be more accurate than both PHH and CHH,
provided a large enougl;, is used.

— Variational principle for radial solutions limits accuracy.

— Study of the importance of single- and double-scattering terms is not possible at
present.

— Boundary conditions in the transition region cannot be controlled easily.

Applications: For a list of results see Table 4.

4.1.4 HCM
This method is used primarily in atomic physics.
Advantages:

— Relative ease of extraction of qualitative properties.
— HCM can treat channel regions because of the adaptable angular basis.

Limitations:
— Accuracy (see Tables 9, 10).

Applications: A recent calculation of the binding energies shows errors ranging from
0.001% in H to 0.1% in B"** [114]. A recent application in the close-coupling
method is [115]. For an application of HCM to muon-catalyzed fusion-related problems,
where the relevant states of the different muonic molecules were calculated with
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uniform precision of up to 3 digits for the sticking coefficients and the fusion rates, see
[116] (also shown in Table 9). A recent development is a two-dimensional HCM basis
[117], as well as several further variants of HCM, for example [118]. The application of
HCM to theN = 4 problem of the lithium atom is discussed in [119].

4.2 Comparisons

In this section, early and modern HH methods are compared with each other and with
other methods, for a set of specific physical problems. The qubtedues by CFHHM

refer to(H). It should be noted that some non-HH methods, notably the finite element
method (FE), though they are less precise on the presented examples, are directly
applicable to scattering problems, where they may be more successful than HH-based
methods. FE can be adapted to the local structur without affecting the expansion
globally as is the case in other methods (variational and HH) [125].

4.2.1 Trinucleon Ground State

PHH, CHH. In the work by Rosati et al. [64], the PH basis together with Jastrow-type
correlation factors is used, without Faddeev-type decomposition (fixed choice of Jacobi
coordinates). Correlation factors generate terms not describable by PH, but the effect is
found to be small.

In the works by Kievsky et al. [65, 67], Faddeev decomposition and PHH, CHH are
compared. In ref. [71], the HH method without correlation factors is reexamined, but a
reduction technique originally developed by Efros [26] and first applied in Demin et al.
[59] is used. This reduction makes the simple HH method more precise than the
correlated version, at the price of larghg (but N, can rather easily be increased
because of the variational setting).

In ref. [65], it is shown that only 12 channels are sufficient for an accurate solution.
The Faddeev formulation would require 36 components; this was one of the insights
leading to VIDE [50] based on the Scliager equation.

4.2.2nd Scattering

Table 5. swave phase shift (degrees) for MT(I-IIl) compared with the
Bochum and lowa/Los Alamos results. From [68]

Method Phase shift

0.75 1.5
PHH 010 —1212 —20.66
Fadd.P-space —-12.1 —20.7
Fadd.R-space —-121 —20.7
PHH 6%0 —42.37 —55.86
Fadd.P-space —42.4 —55.9
Fadd.R-space —42.4 —55.8
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Table 6. o particle binding energy

223

Method N Ne AV14 AV14 MT MT
+Ur.8 V) V)

CHH, Viviani [69] 23 164 23.93 27.48

EAA + UAA, Fabre [42] 30.63

EAA + UAA, Fabre [42] 29.34

SIDE, Oehm [45] 28.47

IDEA, Oehm [45] 29.37

FY, Kamada [138] 23.87

GFMC, Carlson [139] 24.2(2) 28.3(2)

VMC, Wiringa [136] 27.2(2)

SVM, Varga [141] 31.360

GFMC, Zabolitzky [128] 31.3(2)

ATMS, Akaishi [130] 31.36

Table 7. Comparison of FE, variational, and CFHHM methods for the ground-state energ§f@sy

which is proportional to the annihilation rate, for positronium negative ionPs

Reference Km Ne E (6(ry))
FE, Hu [123] 1080 0.223 115
12096 0.266 880
9216 0.262 023 4
12096 0.262 021 7
CFHHM, Krivec [95] 40 121 0.262 004 99 0.020 733 56
48 169 0.262 005 04 0.020 732 42
56 225 0.262 005 058 0.020 733 02
CFHHM 0.0207330(6)
SVM, Varga [141] 150 0.262004
Faddeev,
Schelli. [135] 0.26202
Variational
Ho, see [95] 0.262 004 895 0.020 713
Bhatia, cf. [95] 0.262 005 045 0.020 730
0.262 005 056 0.020 733
Petelenz, cf. [95] 0.262 005 069
Ho [168] 744 0.262 005 07023286 0.020 733 1980
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4.2.3. Four-Nucleon Ground State

4.2.4 Positronium Negative lon (Ps

The work by Hu et al. [123] uses the FE method by collocation (like the Los Alamos
group), employing quintic splines, and thénterval transformed to [0, 1]. The method,
though less precise, has the advantage over variational calculations in that it is
applicable to scattering problems. See Table 7.

4.2.5 Crandall Model

Table 8. Crandall analytically solvable model. Harmonic and inverse-square poten-
tials, 0m%?2 = 1; see ref. [120]

mM Ne HH PH CFHHM Exact
1 1 4.88 4.88 4.63 4.46
4 1 7.71 7.71 7.20 6.32

25 1 17.59 17.59 16.27 12.58

4 13.31 12.89 12.58
6 12.89 12.58

Table 9. Probability ofd andt being at the same pointy = (5(r ) (in units of 10 fm~2), for the ground
state ofudt for different parametrizations B, C, and D of the correlation functicemd its comparison with
HCM and variational calculations

Source Km Ne C B D

CFHHM (Krivec et al. [99]) 32 153 0.5204 0.5250 0.5285
40 231 0.5250 0.5273 0.5290
48 325 0.5269 0.5280 0.5287

CFHHM 325 0.528(1)

HCM (Abramov et al. [112]) 15 0.582

HCM (Abramov et al. [116]) 15 0.528

Alexander et al. [159] 1200 0.5296

Szalewicz et al. [160] ~1000 0.5502 (adiabatic)

0.5294 (nonadiabatic)

Variational (different works) ~1000 0.5295(1)

Bogdanova et al. [161] 0.594
Langanke et al. [162] 0.6
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4.2.6 Muonic Moleculeudt

Comparison of CFHHM with the result by Ceperley et al. [158] in Krivec et al. [99] is
interesting because of the oscillations observed in the GFMC wave function, as

I | | I

- A \ 4
\\
- \ 4
\\
\
0.70 F N i
\\‘
\\
L N 4
\\
\\
(6(r3))
(10713 fm=3) |
0.60 - i
+

D R e U
L B ,—/”—/—_—__’ -

0.50 C | 1 | 1

' 24 32 40 48

Ky,

Fig. 9. Expectation values of the delta-function operator of the distance between the deuteron and the
triton, proportional to the fusion rate according to the Jackson formula, in units &t o3, for the linear
(parametrization A) and nonlinear (parametrizations B, C, D) correlation functions. Separate points on the
right display the results of variational calculations. The variational results in sequence from left to right on
the graph correspond to refs. [159] and [160], respectively, with the upper (lower) points corresponding to
the adiabatic (nonadiabatic) values. From Krivec et al. [99]; see Table 9

displayed in Fig. 10. Thedt ground-state fusion rate and sticking probability are
examples of CFHHM being more precise than differences in the literature (see Tables 9,
10, and Fig. 9). The difference of sticking probabilities with respect to a recent HCM
calculation is up to 0.02 while the CFHHM values are converged within 0.0001. The
differences with variational works are substantial. In addition, this system is an example
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A(log V)

0 1 2 3 4 5 6 7 8

Tu—dt

Fig. 10.Divided differences (approximate derivative) of the logarithm of the wave function atltthe
coalescence point. The differences correspond to intervals of 015 fgr= 5 and to intervals of 1 for

li—at > 5 (in w.a.u.). The solid curve is the CFHH wave function calculated with the nonlinear correlation
function (parametrization G,, = 40) while the dashed curve represents the Green-function Monte-Carlo
wave function of Ceperley et al. [158]. The Born-Oppenheimer wave function (an exponential) would give
a constant value. From Krivec et al. [99]

where wrong convergence of some local observables (sticking probability) was
explicitly observed in variational calculations (Haywood et al. [165]).

4.2.7 Helium Atom

Early results by Ballot et al. [34]: The first PH term gives increasing binding with
increasingN. However, even for the first excited state, its contribution is only 50%. See
Table 11. Newer results are displayed in Table 12.
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Table 10. Ground-state sticking probabilities, for Q = 5.844 (unless stated otherwise). The CFHHM
results are calculated with the nonlinear correlation fundtidharametrizations B, C, and D biive the
same values ab,, to the number of quoted digits

Method Km 1s 2s 3s 4s 2p
CFHHM, 32 0.6822 0.0978 0.0297 0.0127 0.0238
Krivec [99] 40 0.6820 0.0978 0.0297 0.0127 0.0283
40 0.6807 0.0976 0.0297 0.0126 0.0237
48 0.6819 0.0978 0.0297 0.0126 0.0238
0.6819(1)
HCM
Abramov [112] 15 0.829 (?)
Abramov [112] 21 0.906 (?)
Abramov [116] 21 0.7001 0.1004 0.0305 0.0130 0.0245
Variational
Hu [164] 0.6932 0.0992 0.0302 0.0128 0.0241
Haywood [165] 0.6846
GFMC [158] 0.689 0.099 0.030 0.013 0.024
Var., Hu [166] 0.6817
Kamimura [167] 0.6842
Var., Hu [163] 0.6802 0.0975 0.0296 0.0126 0.0237
Var. (recent) 0.6802-0.8422
3Q=5.846

Table 11. Early results for the helium atom, using ordinary HH and PH methods, compared
with the correct result, for the finite-mass He-atom ground state. The number of digits quoted
shows intrinsic accuracy

Reference K [\ Ne E
HH (Mandelzweig [80]) 16 25 25 2.887 54
20 36 36 2.893 58
HH (Efros [74]) 18 30 900 2.887 560
30 72 2160 2.899 011
40 121 3630 2.901 775
PH (Ballot [34]) 2 1 25
8 4 2.793
16 8 2.881
22 11 2.897

CFHHM (Haftel [85]) 2.903 304 5
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Table 12. Comparison of different HH methods and the Hartree-Fock method for the infinite-mass He
atom. PH gives better results than HF although equivalent in content (Fabre et al. [121]). CFHH with
Ne = 9 gives better results than PH withh = 23. However, alN, = 20, full PH is better than ordinary HH

because it contains twice the numberkof

Reference Km NhH Ne E
PH (Fabre [121]) 40 10 10 2.877 013 59
48 12 12 287777470
72 18 18 2.878 609 91
Full PH (Fabre [121]) 16 7 7 2.887 296 35
28 13 13 2.898 757 86
32 15 15 2.900 056 43
40 19 19 2.901 523 00
48 23 23 2.9Q 259 77
72 31 31 2.903 067 40
Faddeev PH (IDEA) (Fabre [12£]) 28 13 13? 2.930 984 40
Distorted Faddeev PH (Fabre [121]) 28 13 13?2 2.895 351
HH (FS) (Fabre [121]) 16 9 9 2.887 543 91
28 20 20 2.899 009 20
CFHHM (Haftel [85]) 0 1 1 2.855 504 862
8 9 9 2.903 D1 425
16 25 25 2.903 72654
24 49 49 2.903 724 254
32 81 81 2.903 724 340
40 121 121 2.903 724 361
48 169 169 2.903 724 368
HHGLF (Zhang [77]) 256 768 2.902 64
HCM (Frey [105]) 196 2.90373
HCM (Tang [110]) 23 2.903594 4 (?)

HF (Roothaan), see [121]

2.8617

3The work by Fabre et al. [121] compares the results for the ground state of the He atom using the PH,

CFHHM and variational methods
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Table 13. Comparison of FE, variational, and CFHHM methods for the ground-state energy of the helium
atom: Braun et al. [124], Shertzer et al. [122]. The results probably correspond to very roughly the same
computational effort. There is apparently no limit on the number of digits obtainable in the variational
calculations, but the situation is different for other observables. Infinite-mass He atom; in a.u.

Reference K [\ Ne E

FE, Braun [124] 23652 2.903611 8
Full PH, Fabre [121] 48 23 23 2.9@ 259 77
CFHHM, Haftel [85] 48 169 169 2.903 72488

Variational

Drake [147], Baker [146]

2.903 7243770340(2)

Table 14. As Table 13, but for the observables of the helium atd@®and 4Sstates (in electron-nucleus
separation). From [124]. For théQstate the FE method givess;) to within 0.002 relative error (ground
state: 0.00003), while CFHHM retains its accuracy

Reference (rap) (rat) (r3y) (8(r3p)

1!s
FE, Braun [124] 0.929 50815 1.688 2676 1.193 5886 1.810 2686
CFHHM,

Haftel [85] 0.929 47234 1.688 3168 1.193 4831 1.810 42506
Var., Pekeris [148] 0.929 47230 1.688 3168 1.193 4830 1.810 4269
Var., Drake [147] 1.810 429319

4's
FE, Braun [124] 11.549 239 1.032 4762 281.248 70 1.277 1894
CFHHM,

Krivec [92] 11.523 691 1.032 6432 280.230 05 1.277 3070
Var., Accad [149] 11.6 281.5 1.277 21
4.2.8 Double Excited States of He Atom
Table 15.Double excited'S’ state of He atom
Method Npn —-E r/2
CFHHM [101] 72 0.777 867 6 0.002 270 65
Var. (Ho [150]) 0.777 868 0.002 265
HCM (Tang [110]) 0.777 35 0.002 2(1)
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4.2.9 Lithium Atom

Table 16.Ground state of lithium atom. The “average” correlation factor needs to be
improved [78]

Method Nk NoLr E

HHGLF [78] 215 6 7.339 14

CFHHGLF [78] 215 6 7.522 282
215 18 7.473122

Hartree-Fock (Xu et al., see [78]) 7.4327

Experiment (Kusch et al., see [78]) 7.478 069

4.2.10 Muonic Helium Atom

In the recent works by Krivec et al. [102,103] the lowest-order hyperfine splitting of the
ground states is found to be 4454.206(3) MHz and 4157.691(3) MHz for the mitidaic
and3He atoms, respectively. The recent variational values from refs. [155, 157] are
0.023 MHz lower and 0.013 MHz higher, respectively, apparently not converging well
for the singular operators involved. In particular, the differerid@,)) — (6(r3)) is
smaller by about & 10°® a.u. in ref. [157] than in [102, 103], while the effect of
different masses used in the literature and of computational errors for these operators are
both of the order of only 2107’ a.u.

4.3 Summary

Milestones

— 1935 HH introduced (Zernike and Brinkman [1]).

— 1965 Nonsymmetric HH (tree method) (Vilenkin et al. [13]).

— 1966 Symmetric HH (Simonov [14], Zickendraht [9]).

— 1969 PH (Fabre de la Ripelle [24]).

— 1969 Slow convergence of HH with realistic nuclear interactions (Erens et al. [23]).

— 1975 The first PH term gives increasing percentage of atomic binding with
increasingN (Ballot et al. [34]).

— 1978 CFHHM (Mandelzweig et al. [84]).

— 1988 IDEA (Fabre de la Ripelle et al. [42, 45]).

— 1990 CHH (Rosalti et al. [64]).

— 1997 General symmetrization algorithm (Barnea et al. [56]).

Recent developmentsln nuclear physics, foN = 3 andN = 4, the binding energies
given by various HH methods (variants of IDEA and PHH/CHH) are of the same
accuracy as those by other methods (4-5 digits). The 8oiger equation as opposed

to the Faddeev equations is usually favoured. One of the reasons is the recently found
multiple counting of some contributions in the Faddeev formulation (see VIDE, ref.
[50]).
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PHH and CHH are as good as other methodsNoe 3 andN = 4 observables
including scattering parameters [68]. In tphd scattering, the discrepancy in forward
and backward angles at lo& (Coulomb effects) has been confirmed by HH methods
[70]. (Inclusion of Coulomb potential below threshold is easier in these methods than in
the Faddeev formalism.) Lately the Pisa group has tested the simple HH method without
correlation factors again, and found it very accurate in a variational setting where large
systems of equations can be used.

In the three-quark system, the work of the Graz group (ref. [145] and references
therein) shows that a semirelativistic formalism is necessary and likely sufficient to
describe the three-quark system (including the proper flavor operators). The relativistic
approach on the other hand favdPsspace methods. Some results have also been
compared with those by two HH methods; examples of the inadequacy of both the PH
method [48] and of the so-called “minim#&* approximation [143] (see also [66]) in
this problem has been found. Both approximations give too good orderingbitHe-
states.

The potential accuracy of HHGLF and CFHHGLF is difficult to assess because
these methods so far have listed only energy values; it depends on the convergence in
the hyperradial basis.

There are examples where HCM obtains better energy values than CFHHM, like in
the difficult udt system, but apparently not better values for singular operators. It should
also be noted that in this case the interpolated doubly-convergent values in the CFHHM
were not used. Otherwise HCM is in general inferior; however, it can be used for a much
larger set of problems including scattering problems.

Conclusion.HH methods have grown up past the phase of constant comparisons with
other methods. Two methods, PHH/CHH and CFHHM, flourish in nuclear and atomic

physics, respectively. In complicated systems, other methods like FE may eventually
overtake them, especially on massively parallel computers.

Acknowledgement.thank Nir Barnea for clarifying comments on his HH symmetrization algorithm.

5 Exercises

5.1 Analytical

1. Derive the expression for ti@oulomb potential in the y;;h'ﬁ(szk) basis forL = 0, using theorems on

orthogonal polynomials:

k) _
¢ Z COSozk G
3
Har = Z J d% Ykoo( )" cosa (5.2
¢ 115
= Z Q Z J dey K’ |_ M’ (Qm) {[ dey |(1'|_2’|\/|’(Qm)* y I}I<OO(QI<)} (5-3)
m=1 Om

3
= ZQmZ[Jdﬂmy&"oo(Qm) — }Udnmy%’oommfy&oo«zo}. (5.4)
K’

m=1
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The following is a Raynal-Revai coefficient:
Hdﬂmy&%omm)* y&oomk)} = const J A2 ® PR aim(eu 00) @ Pk (c)Pi(costl) (5.5
= 5KK/(—2€kamkSnk)|C8<J721))_| (Chw— )

(D@ +2) 22+ DK — 1+ 1)
@+ K+ 2T(K2)+1+2)

(5.6)

obtained with the help of the addition theorem for the Gegenbauer polynomials [173]

const?PPay) = Ciy(— €OS 2py)

=C, <— (Chk — Shk) COS 2x + 2€miCinkSnk COSOy\/ 1 — cOS 2ak)

_ BATK/R) — k+ (kD)
a T(K/2) +k+2)

(2K + 1)emiCmismd (1 + o 20"
k=0

X Clioy 1 (G — i) Clg i (— €OS ) Pie(COSBy). (5.7)

2. Construcexamples of PH basegalso using the addition theorem for Gegenbauer polynomials):
Symmetrical PH basis fog-states [49], summed over pairs

B () = C Xk: = 2Ccy <2§2 - 1). (5.8

This is evaluated using Egs. (3.39), (3.40) and [49]
Z(p) = z(0)cos 2o + \/1—72@0)23in 2p cOsb, (5.9
Z0) = cos 2, (5.10)

to give
3
BR(@ = 7 ¥C¢ > C(#0) cos 2y + /1 — 20)2 sin 2py cos)
k=1

3 K
= %Z > @+ 1) PP(#) PPi(pPi(cosh) (5.1
k=11=0(2

using the same theorems as Eg. (5.7).
From Simonov HH forSstates, see Eq. (3.12), for p&ir

B® (@ M) = Z{exp[i (wk - g>y] }Y,w(ak, M. (5.12)

3. Checkkj, w; in Eq. (3.12).
m(m — my) — m(m, —m)

k; = arccos R (5.13
(m + m)(m + my)
1
W = 2_.“k (5.1%

4. Calculate th&/, expansion coefficientgEqg. (3.14)): allowed forms for analytic calculability; power
expansion ol and limits on allowed powers using the (only similar) known integral

1
[ dx(1 — x)'(1 4 x)°P 2P ()P 9 (x) (5.15)
1

which requires R > —1, Ret > -1 (p> -2 — 2l ;).
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5. Twofold convergencein CFHHM: Why does it appear (symmetrical basis, nonsymmetrical
system)?
6. CFHHM recursion formulas: Derive L. Stotland’s solution of

1 n-2 n-2
Cin = Z (n—m-— 2)Pi,erl + Z Q,im Ci,n—m—Zy (5-16)
n(n—1) m=-1 m=0
where? and Q are defined by
P=>Y Pnz—2" (5.17)
m=0
Q=) Qmz—2)" (5.18)
m=0

whereby the recurrence formulas are solved (for the case of the Coulomb potential anél)|gedr that
they need to be calculated only once. Try to generalize this to any potential arfd(aay when the
effective potential has an infinite expansion). Is the resulting scheme faster than a repeated calculation of
the recursion formulas on every interval?

7. eu*He™™: Why is linearf in CFHHM not good, although it mimics the asymptotics of the system
rather well?

8. Construction of f: modified cusgd, nonlinearf. Let us discuss a three-charged particle system where
two of the two-particle subsystems have bound states, as is usual in atomic physics. In the leading order, and
for N, = 1, the single differential equation gives

x1 ~ expl(f/p + Caglp] (5.19

asp — o, where we chose the smaller solution

. . 2 .
Coe= WO — \/ (W?f) + WD 2E (5.20)

(see Egs. (3.16), (3.17)). (This can be generalizeéd.ts 1.) If particlek is separated from the bound state
o (xy) of particlesij (clusteringk), x behaves as

exp[—\/ 2Mk6kri} ¢k(xk) (521)

if r; — o, r; — o, wheree, > 0 is the particlek separation energy ad, are the spectator-reduced masses.
Then the asymptotic conditions @ are

a2 + a3 + C\/ Ml = — 1/ 2M1€1, (522)
a3+ a + Cy/My = — /2Mye,, (5.23
a +a +Cy/M; < 0. (5.24)

These equations fik only in the clustering regions of the hypersphere, and leave one ddtlas a
(partially) free parameter. I€ = 0, asymptotics are imposed on €Xp if C = C,s, asymptotics are
imposed on¥. We haveC,s = C,4(8, &, @3, E); using an approximatg, the above equations represent a
set of nonlinear equations f@. This system does not have to be solved by iteration but by mere tabulation
since the results do not depend stronglyGymand the equations are approximate. The third inequality could
be replaced by an equation, except that the asymptotics in the “repulsive” clustering is not known. It turned
out in theudt case, however, that the shapeloétr; = ry; = 0 depends very weakly @, and that good
approximate it well. (The wave function is very small in this region.)

C = 0 turned out to be the best choice in theét case using nonlinedr [97], as well as in the case
of the positronium negative ion [95]. If these systems were calculated with lin€asing a, = by),
proper asymptotic behavior of the solution would be violated. This would force one to modify the like-
charged paig, parameter to assume a negative value instead of the positive cusp value. This requirement is
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roughly equivalent to applying the constraints 8rat N, = 1. Nonlinearf eliminates this necessity [95,
97].

5.2 Computational

1. CFHHM program package: Introduction (available at the WWW location http://www—f1.ijs.si/
“krivec/dist/pack/).

2. Test the stability of thelJacobi polynomials calculation by upward recurrence (see routine
M1PJIXA).

3. Precision in the ey*He calculation (routine M1PJQA,): Why is it sufficient to calculate matrix
elements more precisely, but not the hyperradial solution?

4. Integrals of three Jacobi polynomialsusing a recursive method: Enormous efficiency compared to
numerical evaluation. Numerical evaluation is avoideW is expanded in powers of, Eq. (3.14).

5. The homogeneous systenat z= z,, Eq. (3.25): Test the stability of the solution of such
pathological systems by discarding different equations.

6. The CFHHM *“grid”:  How it covers the configuration space (do mass weightg inake care of
scaling the space, examplgi*He)?

7. Parallelization of the CFHHM code: For a fine-grained variant, see http://www—f1.ij&svec/
bench/cfhhoptsppp.txt.
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