
FBS Colloquium

Hyperspherical-Harmonics Methods for
Few-Body Problems*

R. Krivec

J. Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana, Slovenia

Abstract. A review of hyperspherical-harmonics (HH) methods from the standpoint
of their applications is given. In the first lecture, the symmetrized and unsymme-
trized HH bases and symmetrization methods are presented. The physical obstacles
to the straightforward application of the HH expansion are discussed, and expansion
acceleration methods are described. In the second lecture, the main HH methods are
described, including the correlation function hyperspherical harmonic method
(CFHHM), the potential harmonic (PH) methods, and the correlated HH methods
(PHH, CHH). The third lecture discusses the advantages and limitations of different
HH methods in applications, and compares the results for specific few-body
problems obtained by HH methods as well as non-HH methods.

1 Notation

Few-Body Systems 25, 199–238 (1998)

q Springer-Verlag 1998
Printed in Austria

* Written account of lectures held at the International Workshop on Few-Body Problems in Nuclear
Physics and Related Fields, ECT*, Trento, Italy, September 8–27, 1997

mi mass of particlei
mk reduced mass of particlesi and j of the

triple { i; j; k}
Zi charge of particlei
N number of particles
L total angular momentum
K grand total angular momentum

(order of harmonic polynomial)
Ne number of coupled equations
NHH number of HH basis states
Nc number of channels
xk;i , xa;i i-th weighted Jacobi coordinate

(tree labelsk, a)
r k;i , ra;i i-th Jacobi coordinate
r hyperradius
ak;i ; i ¼ 1;…;N¹1 hyperangles (tree labelk)

x̂k;i ; i ¼ 1;…;N angular coordinates of Jacobi
vectors

Qk ¼ fak;i ; x̂k;ig three-body angular
coordinates (tree base onk-th
pair); 3N ¹ 4 angular coordi-
nates for tree labelk

YK ðQÞ generic HH
Yk

KLMðQÞ generic HH
(K ¼ fk;KLMg)

Ylk;1lk;2
KLM ðQkÞ three-body HH (tree base on

k-th pair)
Rmnðak; lkÞ Simonov ‘‘real’’ HH (N ¼ 3,

L ¼ 0, pairk)
Ymnðak; lkÞ Simonov ‘‘complex’’ HH

(N ¼ 3, L ¼ 0, pairk)
Ylm spherical harmonic function



2 Lecture 1: Hyperspherical Harmonics

2.1 The HH Expansion

The motivation for the introduction of hyperspherical harmonics (HH) is to reduce the
N-body, (3N ¹ 3)-variable, centre-of-mass Schro¨dinger equation to a system of coupled
ordinary differential equations (ODE) in a single variable, which makes possible the
application of the existing tools from the theory of Fourier series, orthogonal
polynomials, and the solution of systems of ordinary differential equations. In this
way many quantities appearing in the HH formulation, such as matrix elements of
potentials in the HH basis, are for the most part expressible through closed analytic
expressions. Although with the availability of powerful computers this aspect is
becoming less important by itself, it has the important consequence that it enables
the separation of numerical approximations in different parts of the procedure, thus
making it more controllable. Also, the convergence properties of such expansions are
known, and a proper expansion should converge to the correct answer. This is by no
means guaranteed in variational calculations, for example.

The fact that all save one coordinate can be made cyclic (angular), can be intuitively
illustrated by the following insight: Apart from its size (scale), all other transformations
of the triangle spanned by three particles can be described by the rotation group.
In particular, deformations can be viewed as the shadow (projection) of a rotating
triangle.

The history of the HH began in 1935 as they were introduced by Zernike and Brinkman
[1]. HH were reintroduced 25 years later by Delves [6] and Smith [7]. However, only in
the recent decades methods based on the HH expansion have been developed to their
full potential.

The reduction of the Schrödinger equation to a system of coupled ODE begins with
the expansion of theN-body wave function

Wðr;QÞ ¼
X
K

fKðrÞYK ðQÞ; ð2:1Þ

where the basic quantities are:

YK ðQÞ : HH functions;

r : hyperradius;
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Dj
mk Wigner D-function

Pða;bÞ
n Jacobi polynomial

ð2ÞP
lk;1lk;2
K hyperangular polynomial,

N ¼ 3
hLMjlk;1m1lk;2m2i Clebsch-Gordan coefficient
hkjk0ikm

KL Raynal-Revai coefficient
HH hyperspherical harmonics
PH potential harmonics

OS optimal subset
PHH pair-correlated HH
CHH Jastrow-correlated HH
CFHHM correlation-function hyperspherical

harmonics method
HCM hyperspherical coordinate method
ODE ordinary differential

equations



K : 3N ¹ 4 quantum numbers;

Q : 3N ¹ 4 angular variables.

K comprisesK and the quantum numbers associated with 3N ¹ 5 angular operators
which commute withH and between themselves. The quantum numberK is called
quasi, or grand total, angular momentum. In calculations, the HH basis is truncated to a
finite size except when it is implicitly summed over (see IDEA and its variants, below).
The truncation is defined byK # Km; further truncation is sometimes performed, based
on physical considerations.

The coupled ODE for the hyperradial functions are

1
rn

d
dr

rn d
dr

� �
¹

KðK þ 3N ¹ 5Þ

r2 þ E

� �
fKðrÞ ¼

X
K 0

VK ;K 0 ðrÞfK 0 ðrÞ; ð2:2Þ

wheren ¼ 3N ¹ 4, the matrix elements of the potential are

VK;K 0 ðrÞ ¼

�
YK ðQÞ¬Vðr;QÞYK 0 ðQÞ dQ; ð2:3Þ

and the eigenvalue of the hyperangular part of the Laplacian operator is

K2
3N¹3ðQÞYKðQÞ ¼ KðK þ 3N ¹ 5ÞYK ðQÞ: ð2:4Þ

Many derivations for the generalN will be found in [38]. Certain HH methods are
usable also inP-space: See, for example, Kievsky et al. [71].

2.2 Indistinguishability and Cusps

Symmetryunder exchange of identical particles andclustering(rearrangement) aspects
of N-body systems, trivial or absent forN ¼ 2, become of major importance in the
formalism forN > 2.

2.2.1 Jacobi Coordinates

Each Jacobi coordinate connects the centre of mass of a subsystem with one of the
remaining particles or with the centre of mass of another subsystem. In the caseN ¼ 3
they are

R ¼
1
M

ðmi Ri þ mj Rj þ mk RkÞ;

xk;1 ¼

����������������
mimj

mi þ mj

r
ðRi ¹ RjÞ ¼

����������������
mimj

mi þ mj

r
r k;

xk;2 ¼

������������������������
mkðmi þ mjÞ

M

r
Rk ¹

miRi þ mjRj

mi þ mj

� �
; ð2:5Þ

whereM ¼ m1 þ m2 þ m3 andR is the centre-of-mass coordinate, which is eliminated
in what follows. The three choices (k ¼ 1; 2; 3 in the spectator notation) are connected
by a linear transformation [21, 51] (kinematic rotation, see Eq. (2.16)). In the case of
indistinguishable particles, the kinematic rotations play a role in the symmetrization of
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the basis. Different sets of Jacobi coordinates are employed, for example, in the case of
rearrangement collisions.

Thehyperradiusmeasuring the overall size of the system is defined as

r2 ¼
XN¹1

i ¼ 1

x2
k;i ð2:6Þ

and is independent ofk, i.e., of the permutation of the particles.
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Fig. 1. Relative Jacobi coordinates for a three-body system
(k ¼ 3)

Fig. 2. Two choices of relative Jacobi coordinates for a four-body system. Labelsa andb are not associated
with a particular particle

Fig. 3. The regions of strong potential for three particles withm1 Þ m2, in the coordinates with respect to
particle 3. Two regions appear only at special values of the angle between the Jacobi coordinates



2.2.2 Cusps

Cusps [4] appear with Coulomb-type potentials atcoalescence pointsor lines:

lim
rk→0

1
W

∂W

∂rk
¼ ZiZj

mimj

mi þ mj
: ð2:7Þ

The regions bordering the coalescence lines extend to the channel regions ifr → ∞. This
is illustrated in Fig. 3 for the case of a short-range potential.

2.2.3 Asymptotics

The asymptotics of the wave function depend in different ways onr in different angular
directions. For example, in theN ¼ 3 scattering problem above the breakup threshold
with short-range potentials, in thebreakup regionwhich lies far from coalescence lines,
W has ar¹5=2 dependence. The regions of strong potential have decreasingangular
width as the size of the system increases, and therefore require an increasingly large
expansion basis in theangularvariables.

Thus, cusps in the case of bound states and channels in the case of scattering
states both represent a major obstacle for a direct application of the HH expansion toW.
Figs. 4, 5, and 6 illustrate the appearance of the cusps in two different parametrizations
of the angular coordinates, once as lines and once as points.
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Fig. 4. Unnormalizedmdt ground-state wave function.r ¼ const: × x3;1 is the distance betweend and t;
s ¼ const: × x3;2 is the distance between the muon and the centre of mass ofd and t;
arccos(̂x3;1 · x̂3;2Þ ¼ 0:001o. Km ¼ 40. Parametrization off : a1 ¼ b1, a2 ¼ b2 (cusp values),a3 ¼ ¹0:29
d.a.u. (nonlinear);n3 ¼ 0:7. Cusps appear as lines. Only two cusp lines can be seen: thed–t repulsive cusp
at r ¼ 0 and them–t attractive cusp ats ¼ rmt=ðmd þ mtÞ. From Krivec et al. [97]



2.3 Parametrizations

There are two basic approaches to the definition of theangularcoordinates starting from
the Jacobi coordinates. One treats all Jacobi coordinates on an equal footing, while the
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Fig. 5. As in Fig. 4, but for theðL ¼ 0; v ¼ 1Þ excited state (v is the vibrational quantum number)

Fig. 6. Unnormalized CFHHM He-atom wave function ina3, l3 coordinates where particle 3 is the He
nucleus (degrees).r ¼ 1, Km ¼ 36. Cusps appear as points ata3 ¼ 908. W is almost indistinguishable from
the correlation factoref at this scale



other involves a separation into Euler and internal angles. The choice of parametrization
affects (a) the separation of variables in the Schro¨dinger equation and (b) the
symmetrization and generalization toN > 3 andL > 0.

2.3.1 Nonsymmetric Parametrization

This was the first type of parametrization, but later proved to be the most suitable one for
constructing symmetrized bases in the general case. It was constructed by thetree
method (Vilenkin et al. [13]); see also Nyiri et al. [22]; Krivec et al. [89]: The basis
functions are eigenfunctions of subsystem-angular momentalk;i . This basis has the
following advantages:

– has good subsystem-quantum numbers (lk;i) andK, L; M;
– is generalizable to anyL and anyN;
– serves as starting point for symmetrizationwith the advent of fast algorithms.

The hyperspherical angleak;1 for 3 particles is defined as follows:

xk;1 ¼ r cosak;1;

xk;2 ¼ r sinak;1: ð2:8Þ

Definition of anglesak;i ; i ¼ 1;…;N ¹ 2 for N particles is:

xk;1 ¼ r cosak;1;

xk;2 ¼ r sinak;1 cosak;2;

xk;3 ¼ r sinak;1 sinak;2 cosak;3;

…

xk;N¹1 ¼ r sinak;1 sinak;2
… sinak;N¹2;

ak;N¹1 ¼ 0; ð2:9Þ

i.e., starting from pair (i j ), each ‘‘spectator’’ coordinate becomes in turn a ‘‘pair’’
coordinate. The volume element is

dQk ¼ dx̂k;N¹1

YN¹1

p¼2

dx̂k;N¹pðsinak;N¹pÞ
3p¹4 cos2 ak;N¹pdak;N¹p: ð2:10Þ

The basis in the three-body case, with eigenvaluesKðK þ 4Þ, K ¼ 0;1;2;…, by virtue
of the weight function determined by the volume element, is composed of Jacobi
polynomials:

Y l k;1l k;2
KLM ðQkÞ ¼ N

l k;1l k;2
K

X
m1m2

hLMjlk;1m1lk;2m2iYl k;1m1
ðx̂k;1ÞYl k;2m2

ðx̂k;2Þ

× ðcosak;1Þ
l k;1ðsinak;1Þ

l k;2P
ðlk;2þ1=2;lk;1þ1=2Þ
n ðcos 2ak;1Þ: ð2:11Þ

The following notation is used:

hLMjl k;1m1l k;2m2i : Clebsch-Gordan coefficient;
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Pða;bÞ
n : Jacobi polynomial;

Ylm : ordinary spherical harmonic function;

n ¼ 1
2 ðK ¹ l k;1 ¹ l k;2Þ:

The normalization coefficient is

Na;b
c ¼

������������������������������������������������������
2ðc þ 2Þn!Gðn þ a þ b þ 2Þ

G
ÿ
n þ a þ 3

2

�
Gðn þ b þ 3

2Þ

s
; n ¼

c ¹ a ¹ b
2

; ð2:12Þ

whereQk ¼ ðak;1; x̂k;1; x̂k;2Þ denotes the five angular coordinates on the six-dimensional
hypersphere; 0# ak;1 # p=2; x̂k;1, x̂k;2 are solid angles connected with the vectorsxk;1,
xk;2, respectively; and the angular volume element is given by

dQk ¼ 1
4 dx̂k;1 dx̂k;2 sin2 2ak;1dak;1:

Remark on Notation.The function

ðcosak;1Þ
l k;1ðsinak;1Þ

l k;2Pðl k;2þ1=2;l k;1þ1=2Þ
n ðcos 2ak;1Þ ð2:13Þ

up to a normalization factor is denotedð2ÞP
l k;1l k;2
K in Ballot et al. [38], but the

corresponding notation in Kievsky et al. [71] isð2ÞP
l k;1l k;2
K , whereK is the order of

the Jacobi polynomial (n in our notation); ourK is denoted byG.

2.3.2 Symmetric Parametrization

In this approach symmetry is imposed by construction (Simonov et al. [14], Barnea et al.
[54]): HH simultaneously realize irreps of ‘‘kinematic rotations’’OðN ¹ 1Þ together with
irreps of the permutation groupSN and the rotation group. The first construction by
Simonov [14] was spawned by the interest in the nuclear three-body problem. The Dalitz-
Fabri coordinates (see the Redish lectures [169]) were used to accomplish the separation
of motion in Euler and internal coordinates. The explicit expression forL ¼ 0 is:

sinak sinlk ¼
2
r 2 xk;1 ·xk;2

sinak coslk ¼
1
r2

ÿ
x2

k;1 ¹ x2
k;2

�
;

Rmnðak;lkÞ ¼

����������������������
2m þ 2

p3ð1 þ dn0Þ

s
cosðnlkÞðsinakÞ

nPðn;0Þ
ðm¹nÞ=2ðcos 2akÞ; n $ 0;

m ¼
K
2

¼ 0;1;2;3;…; n ¼ ¹m;¹m þ 2;…; m:

This is symmetric for particles 1 and 2. (Note thatlk is the coordinate of kinematic
rotations, andn is the label of the kinematic rotation groupOð2Þ.) K is the order of the
harmonic polynomial, therefore each HH limits the subsystem angular momenta to at
mostK. (In the Sommerfeld approach, a part of the Laplacian operator is rewritten as
the equation for the Wigner functionsD j

mk; the counting of possible eigenvalues
and polynomial orders gives the set ofK, n pairs.)
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The problem with this parametrization is that it is very difficult to generalize the
basis to largeL and N. Works [9–37] were devoted to finding expressions for
symmetrized HH realizing irreducible representations of the permutation groupSN.
This presents a very difficult problem even for the three-particle case (Smith et al. [7, 9–
37]). Simple expressions in closed form were found only forL ¼ 0 (Smith et al. [7],
Whitten et al. [17]), andL ¼ 1 (Barnea et al. [44, 46]) (see also Zickendraht [9], Nyiri
et al. [22], Whitten [20]). ForL $ 2, the difficulties were in finding the proper ‘‘fifth’’
operator of the complete set (containingK 2

6ðQÞ, L2, Lz and the generator ofSOð2ÞÞ

which would have equally spaced, easily calculable, and nonirrational eigenvalues (Racah
[8]).

2.3.3 Symmetrization Algorithms

Symmetrization algorithms are necessary in order to keep the dimension of the HH basis
manageable if one goes beyondN ¼ 4. Up toN ¼ 4, several different prescriptions are
used in practice to reduce the basis.

The basic property of the HH employed is the fact that HH for different choices
(k;m;…; a;b;…) of Jacobi coordinates are connected via the so-called Raynal-Revai
coefficients [21]

Yk
KLMðQkÞ ¼

X
k 0

Y k0

KLMðQmÞhkjk0ikm
KL; ð2:15Þ

xk;1

xk;2

…

xk;N¹1

0BBBBB@

1CCCCCA ¼ cðkmÞ

xm;1

xm;2

…

xm;N¹1

0BBBBB@

1CCCCCA; ð2:16Þ

where thekinematic rotationmatrix cðkmÞ depends on masses.
In a variational setting, symmetry can be imposed by Faddeev decomposition and

reduction of resulting linearly dependent HH (Efros [26], Kievsky et al. [71]), which,
however, is tractable mainly in nuclear physics with a limited number of channels, as
well as relatively low accuracy requirements as compared with atomic physics.

Useful algebraic generalizations of the symmetrization algorithms and fast imple-
mentations of these algorithms for largerN have been obtained only recently.

The work by Efros [55] first obtains the Raynal-Revai coefficients [51, 52] as
solutions of a linear system generated by writing Eq. (2.15) for a (random) set of
coordinate vectorsQðiÞ

k , where i takes as many values ask. The coefficients of the
symmetrized linear combinations of HH can be expressed withhkjk0ikm

KL:

A completely general, even faster algorithm, especially forN > 4, is constructed by
recursion in Novoselsky et al. [53, 54] and Barnea et al. [56]. Most of the work from the
1970’s up to now was devoted to the problem of symmetrizing thetree-methodbasis
functions. In most of these works it was attempted to realize analytically (Raynal-Revai
[51, 52], Kildyushov [29]) or numerically (Efros [55]) the Young symmetrizer. The new
idea of Novoselsky [53] was to improve the symmetrization process by a recursive
method rather than to improve the realization of the Young operator. In [54] this
approach is further improved using the kinematic group.
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2.4 Convergence and Its Acceleration

2.4.1 The Simple HH Method

It was recognized rather early that the simple HH method has very limited accuracy:

– Banville [57] found in the three-nucleon problem, using a Gaussian potential, that
with 35 HH states it was possible to come within 0.03 MeV to the correct result, but
that 65 HH states were needed for 4-digit accuracy.

– Erens et al. [23] discuss their result that the number of Simonov HH was too large
for use with realistic nuclear potentials.

The reasons for slow convergence are as follows:

– In atomic physics (Coulomb potential) or nuclear physics (realistic potentials)W
converges asK¹2

m (coefficients asK¹3
m ); E converges asK¹4

m (Gaussian potentials:
e¹cKm), see Schneider [28], and [38, 84, 27]. (See also Ballot et al. [34], Haftel et al.
[87].)

– A finite number of HH cannot describeW at the origin in the case of Coulomb-type
singularities (the wave function in this case contains the well-known Bartlett or
Fock logarithmic terms).

– NHH (basis size) grows very fast withK andN: see Table 1.

2.4.2 Reduction of the Degeneracy

Reducing the degeneracy of HH states is an approximate method for selecting only the
most important basis functions. This method entails a numerical error which usually
proves tolerable only in nuclear physics.

R. Krivec208

Table 1. Rounded power of 10 of the degeneracy of unsymme-
trized HH as function ofN andK. The second part of the table
showsNHH (the sum of degeneracies up toK). Degeneracy grows
exponentially withN

K

N 20 40 60 80 100

Degeneracy

3 4 5 6 7 7
4 6 8 9 10 11
5 8 10 12 13 14
6 9 12 14 16 17

Number of HH

3 5 6 7 8 8
4 7 9 10 11 12
5 8 11 13 14 15
6 9 13 15 17 18



The potential harmonics (PH) method (also called the optimal subset (OS) method)
expandsW on the subset of HH needed to expand the interparticle potentialsVk. This OS
truncation means that only two-body correlations are included in the wave function.
Permutational symmetry is usually included in the construction of the OS (Ballot et al.
[38]). For modifications of PH like the full-set PH see Fabre et al. [121].

The IDEA (integro-differential equation approach) is derived from PH. It is based on
the approximation thatW depends only onxk;1; k ¼ 1;…;N ¹ 1 andr. This leads to an
integro-differential equation representing an infinite, untruncated sum over the PH
basis, i.e., IDEA contains only two-body correlations but a complete sum over the PH.

Ordering and elimination of linearly dependent HH is another method of reducing the
number of HH in nuclear physics. This approach, after several years of the development of
sophisticated correlated schemes, resurrects, by virtue of more computer power being
available, thesimpleHHmethod innuclearphysics (Kievskyetal. [71], see alsoEfros [26]).

2.4.3 Removing the Singularities: Correlated HH Methods

Typical problems, where correlation factors are called for, is atomic physics and nuclear
physics using realistic potentials. Inserting correlation factors by itself does not entail
numerical approximations. Mathematically, it represents a method of accelerating the
convergence of the HH expansion. The modifiedW converges one power ofKm faster
for each derivative smoothened. It should be noted that in a non-variational setting, the
factorizationof the singularities is only possible in a simple way for the Schro¨dinger
equation, despite the fact that in the Faddeev formulation each pair-correlation factor
appears in a single Faddeev component.

The idea of using the hyperspherical expansion together with the correlation functions
originated in the works by Zakharyev et al. [18], Raynal [31], and Revai et al. [32] in
scattering, and to works by Fenin et al. [58] and Gorbatov et al. [41] is bound-state nuclear
problems.

ThePHH andCHH methods have been developed by the Pisa group. They have been
used in and adapted for nuclear-physics problems. In order to facilitate the use of
correlation factors in bound as well as scattering problems, the Kohn-type variational
method is used to determine the hyperradial dependence ofW. Partly, these methods
employ both correlation functions and the PH (OS) basis (Kievsky et al. [67]). Lately
the group switched back touncorrelated, full HH expansions, where the necessary basis
sizes forN # 4 reach several thousand functions.

The correlation function hyperspherical harmonic method (CFHHM ) addresses the
problem of precise nonvariational calculations primarily in atomic physics. The
complete HH basis is used, and the cusps are factored out ofW: This is a favourable
tradeoff despite the non-self-adjointness of the resulting effectiveH. The Fock terms at
the origin are included completely by construction. (HH basis truncation may also be
used for largerN.) The method is used for bound states.

2.4.4 Adjusting the Angular Scale

A method which strictly speaking cannot be counted as a HH method is interesting from
the physical viewpoint because it addresses directly the problem of clustering: the
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hyperspherical coordinate method (HCM ). In this method the angular basis depends onr
(adiabatic approach) [104, 73]. In this property it is similar to the Born-Oppenheimer
approach. The precision of the method is limited compared with the state-of-the-art
variational or correlated HH methods; however, it is applicable to a large set of problems,
and it canprovide good insight into the structure ofspectra. It can alsobeused for scattering.

3 Lecture 2: HH Methods

In this lecture we shall give a more detailed overview of the basic formalism of the HH
methods. Most formulas given are not limited to specific methods.

3.1 Introduction

The basic advantages of HH methods are as follows:

– Analytic expressions for matrix elementsare available in most cases. This was
one of the original motivations for the introduction of the HH methods.

– Knowledge of the radial solutions at the origin (Bartlett-Fock type expansions,
etc.) is available. The behaviour at the coalescence points is also known. These
points are not ‘‘natural’’ in a HH setting.

– Convergence propertiesof the HH expansion are known.

3.2 CFHHM

One of the most important properties of the CFHHM is that it solves the Schro¨dinger
equation directly (i.e., it is not a variational method). This means that the wave function
will have uniform precision over a finite region of the configuration space, and that
observables will have almost uniform precision, whether they correspond to singular or
nonsingular operators. This is not the case in variational calculations where the variational
functional emphasizes the regions important for the optimization of the energy.

Details of the CFHHM will give insight into analytic expressions for the matrix
elements of interparticle potentials, and into how the correlations are included in order
to eliminate singularities.

Equations. The correlation functionf in the factoref should makef smooth and
therefore expandable in HH:

W ¼ ef f; ð3:1Þ

1
2=

2f þ ðE ¹ WÞf ¼ 0; ð3:2Þ

W ¼ V ¹ ð=f ;=Þ ¹ 1
2=

2f ¹ 1
2ð=f Þ2

; ð3:3Þ

f ¼
x

r2 ; ð3:4Þ

x00
mn þ

1
r
x0

mn þ 2E ¹
ð2m þ 2Þ2

r 2

� �
xmn ¼ 2

X
m0n0

Wmn;m0n0xm0n0 ; ð3:5Þ

W ¼ W þ
2
r2

∂f
∂r

: ð3:6Þ
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Matrix elements (I). As an example of expansion in thesymmetrical basis, we give the
expressions in the Simonov ‘‘complex’’ basis forL ¼ 0 [87]:

gðr; ak;lkÞ ¼
X
mn

gk;mnðrÞYmnðak;lkÞ; ð3:7Þ

hmnjgjm0n0i ¼
Xm0þm

m00¼jm0¹mj

g
m00

mn;m0n0gm00n¹n0 ðrÞ; ð3:8Þ

g
m00

mn;m0n0 ¼ ð¹1Þðm
0¹m¹3m00Þ=2 m0

2
n0

2
m00

2
n ¹ n0

2

���� m2 n

2

� � ��������������������������������
ðm00 þ 1Þðm0 þ 1Þ

p3ðm þ 1Þ

s
; ð3:9Þ

and ifgðr;ak;lkÞ is a series in powers ofrmðr;ak;lkÞ, m ¼ 1; 2; 3 (like a pair potential),
then

gðr;ak;lkÞ ¼
X∞

p¼ p0

gkm;pr p
m; ð3:10Þ

rk ¼
������������������������������������������������������
2kkð1 þ sinak cosðlk þ qkÞÞ

p
; ð3:11Þ

ðr p
mÞmn ¼ exp i qm ¹

p

2

� �
n

h i
4prpð2kmÞp=2ð¹1Þ3m=2 G pþ3

2

ÿ � �����������
m þ 1

p
ð¹ p

2Þm

G m þ p
2 þ 3

ÿ �" #
: ð3:12Þ

Matrix elements (II). In thenonsymmetrical basis(see Krivec et al. [89]) one uses the
Raynal-Revai coefficients to express a matrix element in the HH basis with respect to
pair k with the matrix elements of potentialsViðxi;1Þ and Vjðxj;1Þ in their respective
hyperspherical basesY l i;1l i;2

KLM ðQiÞ andY l j;1l j;2

KLM ðQjÞ,

hKl k;1l k;2LMjVjK 0l 0
k;1l 0

k;2L0M0i

¼ dLL0dMM0

X
k0 ¼ i;j;k

X
l k 0

;1l k 0
;2

hl k;1l k;2jl k 0
;1l k 0

;2iKL

× hKjVk 0 jK 0il k 0
;1l k 0

;2
hl k 0

;1l k 0
;2jl

0
k;1l

0
k;2iK0L0 ; ð3:13Þ

which, as far as the radial dependence of the potentials is concerned, requires only the
calculation of the integrals

hKjVkjK
0il k;1l k;2

¼
X∞

p¼¹2

VkphKjðcosak;1Þ
pjK 0il k;1l k;2

r p
: ð3:14Þ

These integrals usually depend onk in a trivial way (via masses and charges), and
reduce to the calculation of matrix elements between functions (2.13). In CFHHM,
additional matrix elements from velocity-dependent terms must be calculated. This is
usually done partly numerically because of the slow convergence of the matrix product
in the¹ 1

2 ð=f Þ2 matrix element [92].

Solution of equations.The method developed by Haftel et al. [100] expresses, in the
variablez ¼ 2kr on the interval [0,zU], the hyperradial vector solutionxðzÞ as aNe × Ne

matrix, as required by the, in general,Ne × Ne boundary conditions. The matrix solution
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is propagated fromz ¼ 0 to z ¼ zM and fromz ¼ zU to z ¼ zM. The latter is the stable
direction of the system of coupled ODE (self-stabilization). In matrix notation,

x 00 þ Px 0 þ Qx ¼ 0; ð3:15Þ

P ¼
1
z
¹

1
k

WðDÞ
; ð3:16Þ

Q ¼ ¹
1
4

¹
L2

z2 ¹
1

2k2 WðSÞ
; ð3:17Þ

W ¼ WðSÞ
þ WðDÞ ∂

∂r
; ð3:18Þ

where Ljj0 ¼ djj0 ðKj þ 2Þ; j; j0 ¼ 1;2;…;Ne; k ¼
����������
¹2E

p
. E is prescribed by the

iteration (zero-search) algorithm (see below). Because of the self-stabilization, the
boundary condition at the maximum valuezU of z can be specified as:xmnðzUÞ ¼ I ,
x0

mnðzUÞ ¼ ð¹azU ¹ b ln zUÞI . The Fock-type terms atz ¼ 0 are calculatedexactlyon
0 < z< zF (S: upper triangular):

X1 ¼ zSzL
XnF

n¼ 0

C1nz
n
; C10 ¼ I ; ð3:19Þ

L2 þ ðP¹1 ¹ I ÞL þ Q¹2 ¼ 0: ð3:20Þ

x is expanded in matrix power series on smallz subintervals, yielding matrix recursion
formulas for coefficients. The reexpansion ofWmn;m0n0 (i.e.,P, Q) in local power series is
necessary:

xiðzÞ ¼ XiðzÞV i ; ð3:21Þ

Xi ¼
Xnw

n¼ 0

Cinðz¹ ziÞ
n
; ð3:22Þ

Ci0 ¼ I ; ð3:23Þ

Ci1 ¼ X0
i¹1ðziÞX

¹1
i¹1ðziÞ: ð3:24Þ

The renormalization of the solution on subintervals according to Eq. (3.23) helps to
maintain numerical stability.

The method reduces to the search for the zero of the determinant of Eq. (3.25). Only
about 7 steps are needed forE to converge to precision required in atomic physics. In the
final pass the vectorsV i are constructed in order to generate the solution. Atz ¼ zM,
after propagation ofV i from both sides ofz ¼ zM, a homogeneous linear system must
be solved as follows:

½RþðzMÞ ¹ R¹ðzMÞÿXþðzMÞV þ ¼ 0; ð3:25Þ

ðV þÞ1 ¼ 1; ð3:26Þ

discardNe-th equation: ð3:27Þ
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Wave function. W is expressed, onz subintervals, by coefficients calculated fromXi

andV i ,

W ð r; ak;lkÞ ¼
ef

r2

Xnw

p¼¹1

ðz¹ ziÞ
p
X
mn

ðCipV iÞmnRmnðak; lkÞ; zi < z< ziþ1 ð3:28Þ

and correspondingly on½0; zFÿ. Observables are calculated by numerical quadrature
directly fromW.

In special systems likeem4Heþþ because of its two-scale nature, it is necessary to
use quadruple precision in the calculation of the matrix elements but not the solution of
the radial equations. Quadrature accuracy needed in the calculation of the expectation
values is smaller than that for the matrix elements. BecauseW is velocity-dependent,
the energy is obtained ashHi; this expression in contrast to the eigenvalueE has a
variational property with respect to quadrature parameters.

Correlation function. The general form suitable for atomic physics problems, which
describes exactly the cusp structure, and can also partly control the asymptotics of the
solution, is

f ¼
X3

k¼ 1

½ak þ ðbk ¹ akÞe
¹rk=nkhrkiÿrk; ð3:29Þ

bk ¼ ZiZj
mimj

mi þ mj
: ð3:30Þ

In the linearf , f ¼ S3
k¼1 ckrk, ck ¼ bk, if bk > 0, it may be necessary to useck < 0 instead

to enable convergence, thus violating the cusp condition. Nonlinearf eliminates this
need, and improves convergence as well as the values of the deviation of the local
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Fig. 7. As in Fig. 4, but the correlation factoref



energy from the true energy as measured by the operatorhHi=E ¹ 1, by at least an order
of magnitude [99] compared to the linearf . The forms of various correlation functions
are shown in Figs. 7 and 8 (see also Fig. 6). The convergence of operators can be
improved by several orders of magnitude [102].

Numerical parameters.These are of two types:

– Intrinsic (for the solution of equations): (nF;nw; Tz;Tw; zF; zM; zU) (numbers of terms
in the expansion of the solution; lengths ofz-intervals; boundary/joiningz-points).

– Free (to optimize the form off ): (ak; nk), k ¼ 1; 2; 3.

For the optimization of the CFHHM parameters, see Haftel et al. [100]. Generally it
suffices to impose cluster asymptotics onf alone, not onW; the latter is a nonlinear
problem. This nonlinear problem has been solved in several cases by optimizing the
parameters atNe ¼ 1 which turned out to be sufficient. Usually, only two parameters
actually remain free after physical considerations are taken into account.

Plateaux may appear in the dependence of the integrals on the upper integration
limit in the zvariable. The plateau values are used to calculate observables and estimate
precision. Usually, the plateaux move towards largerz as Km is increased.Km is
increased until the dependence on free parameters, onKm and on plateaux is of the same
order of magnitude.

Convergence of observables.This is discussed in Haftel et al. [87]. The naive picture
that the observables converge as fast asW surprisingly holds, but convergence rates are
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Fig. 8. As in Fig. 7, but for the modified-cusp linear correlation functionf ¼ Sk ckrk with c1 ¼ b1, c2 ¼ b2,
and c3 ¼ ¹0:282 d.a.u. (c3 < 0 replaces the repulsive cuspc3 ¼ b3 > 0 to preventf from increasing as
r k → ∞)



substantially higher than in the simple HH method, as illustrated in Table 2. Conver-
gence rates depend on the physical system, but more importantly, the rate of
convergence of singular operators depends strongly on the type of correlations used
(see Table 3).

Hyperspherical-Harmonics Methods for Few-Body Problems 215

Table 2. Rates of convergence (fitted, rounded) in the simple HH method and in CFHHM for the Helium-
atom ground state, using finite and infinite nuclear masses. The entries with and without brackets
correspond to the electron-nucleus and electron-electron distances, respectively. From Haftel et al. [87]

Method W hHi hrki hr¹1
k i hr¹2

k i hdðr kÞi

Simple HH theoretical 2 5 5 4 3 3

CFHHM (cusp,∞ mass) 3.3–4 5.5 4 (6) 4 (6) 4 (5) 4 (5)
CFHHM (cusp) 3.3–4 5.5 4 (6) 4 (4) 4 (3) 5.5 (4)

Table 3. Approximate number of correct significant digits inhHi and hdðr3Þi as function ofKm for the
CFHHM calculations of the ground states with systems having none or two indistinguishable particles.r3 is
the distance between the repulsive particles. L: linear correlation functionf (cusp or one with repulsive
cusp modified). NL: nonlinearf . Italics: interpolated values if observables converge withKm in two
separate subsequences

Symmetric systems Nonsymmetric systems

He Ps¹ mdd mdt mdt em4He

L L NL L L NL L NL

Separate Interpolatedd

Km Ne Ne Km

hHi

24 49 7 5a 5 3b 91 3 3 7 7
32 81 8 5 5 4 153 4 4 5 10 10
40 121 8 5 6 5 231 5 5 6 10 10
48 169 8 6 7 5 325 5 6 10 10
56 225 7 435 10 10

hdðr3Þi

24 49 5 1a 2 1b 91 1 1c 3 3
32 81 5 1 3 1 153 1 1 4
40 121 6 1 3 2 231 1 2 3 4
48 169 6 1 4 2 325 3 3 5
56 225 1 5 435 3 6

a Uncorrelated cuspf
b Modified linear cuspf
c See Fig. 9
d Observables converge in separate subsequences corresponding toKm=2 even and odd



3.3 HHGLF, CFHHGLF

This method is similar to CFHHM in the expansion ofV into a matrix-power series, but
the hyperradial functions are expanded in generalized Laguerre polynomials (including
at r ¼ 0) and the resulting linear system for coefficients is solved (Zhang et al. [77],
Wang et al. [78]). This expansion converges much faster than a single power series on
the entirer interval, but is less flexible than the CFHHM piecewise series.

3.4 HCM

The expansion

W ¼ r¹5=2
X

m

FðnÞ
m ð rÞFmðQ; rÞ ð3:31Þ

leads to the equation

d2

dr2 ¹
15
4r2 þ E ¹ Vmð rÞ þ Wmmð rÞ

� �
FðnÞ

m ð rÞ ¼
X
n Þ m

Wmnð rÞFðnÞ
n ð rÞ; ð3:32Þ

wherem is the angular channel label andn is the hyperradial excitation number.FmðQ; rÞ

are generated by

L2

r2 þ V

� �
FmðQ; rÞ ¼ Vmð rÞFmðQ; rÞ ð3:33Þ

and

Wmn ¼ 2hFmj
d
dr

jFni
d
dr

þ hFmj
d2

dr2 jfni: ð3:34Þ

The uncoupled adiabatic approximation deletes the terms on the right-hand side. This
proved valid for two-electron atoms [76, 75]. See also [105–113, 43]. Solving Eq. (3.33) is
difficult due to localized solutions for larger. Ref. [108] proposes a variational approach.

3.5 PH, IDEA

PH. To illustrate the generation of the optimal subset, we give just a simple example for
a spherically-symmetric potential (Erens et al. [25]). The OS is defined as the basis
needed for expansion ofV: Let hYk

KLMjVki ¼ ckvK ; then

V ¼
X3

k¼ 1

X
KLMk

ckvKYk
KLMðQkÞ

¼
X3

k¼ 1

ck

X
KLMk

vK

X
k0

hkjk0ik1
KLYk0

KLMðQ1Þ

¼
X

K

vK

X3

k¼ 1

ck

X
LMkk0

hkjk0ik1
KLYk0

KLMðQ1Þ

¼
X

K

vKBKðQ1Þ: ð3:35Þ
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For the general definitions of the HH basis, the potential multipoles, and the symmetry
considerations, the reader is referred to Ballot et al. [38].

IDEA by Fabre et al. [42, 45, 49] is based on the following derivation starting from one
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Table 4. Triton binding energy (experimental: 8.48 MeV)

Method Nc NHH Ne MT(V) AV14 AV18
all p.w.

Uncorr. HH-PH, 6 6 7.128
Rosati [64] 12 12 8.100

CHH-PH, ref. [64] 7 7 8.2526
CHH, Kievsky [65] 8 6 48 7.642a

PHH, Ref. [65] 8 6 48 7.660a

12 6? 72? 7.678
Ref. [67] 18 6? 108? 7.683c

Uncorr. HH , 18 7.61786
Kievsky [71] 22 7.61809b

26 750 7.61812

IDEA, Fabre [142] 8.25
VIDE, Braun [50] 8.2525
IDEA (see [50] (?)) 8.1924
SIDE (see [50] (?)) 8.0408

CS/Fadd., Papp [142],
l i # 6 8.25215

Faddeev, Friar [127] 8.251
Schellingerhout [135] 8.25273
Chen [131] 34 7.678
Glöcke [140] 34 7.680
Wu [137] 52 7.673

Tensor,
Schellingerhout [133] 8.2527

Eulerþ CHO,
Kievsky cf. [64] 8.250

ATMS, Akaishi [129] 8.26(1)
GFMC,

Zabolitzky [128] 8.26(1)
Pudliner [144] 7.670(8)

SVM, Varga [141] 8.2527
Gauss, var.,

Kameyana [134] 26 7.684

a CHH turns out to be worse than PHH – hindered by angular momentum mixing from Jastrow factors
b More channels are required for four-digit accuracy than in CHH (although uncorrelated HH is described

as ‘‘more accurate’’)
c Agrees with [134] – eliminates doubts about ‘‘missing contributions’’



of the Faddeev equations:

ðT ¹ EÞfk ¼ ¹Vðxk;1ÞW: ð3:36Þ

Let V0ð rÞ be the projection ofVðxk;1Þ on Y0. Then

T þ
NðN ¹ 1Þ

2
V0ð rÞ ¹ E

� �
fk ¼ ¹½Vðxk;1Þ ¹ V0ð rÞÿW: ð3:37Þ

If fk were expanded in HH (or PH), one would get a system of equations which would
have to be truncated atK ¼ Km. IDEA (here for L ¼ 0Þ [42, 49] is based on the
approximation of only two-body correlations, which impliesfk ¼ B0Fðxk;1; rÞ=r

¹5=2,
whereB0 is the lowest PH. Projecting onB0 one gets

T þ
NðN ¹ 1Þ

2
V0ð rÞ ¹ E

� �
Fðxk;1; rÞ ¼ ¹½Vðxk;1Þ ¹ V0ð rÞÿ

X
m

�
dQ Fðxm;1; rÞ;

ð3:38Þ

whereT and the sum of the integrals can be expressed in terms of 2 variables,r and
z ¼ zð0Þ ¼ zðJkÞ ¼ cos 2ak;1. Here

zðJÞ ¼ 2
y2

kðJÞ

r 2 ¹ 1; ð3:39Þ

ykðJÞ ¼ xk;1 cosJ þ xk;2 sinJ; ð3:40Þ

whereykðJÞ is the ‘‘kinematic rotation vector’’ giving all threexk;1, k ¼ 1; 2; 3 at special
valuesJk of the angleJ. Two variables can describe two-body correlations but in the general
case, the HH expansion contains all HH (PH) terms and is exact in the HH (PH) expansion.

SIDE is a special case of IDEA forS-state projected potentials, wherebyV0 is also set to
zero (and is generally worse than IDEA).

VIDE is a new version if IDEA based on the Schro¨dinger equation as opposed to the
Faddeev equations in order to eliminate multiple counting of certain contributions
which is an artifact of the Faddeev equations (see refs. [50, 65] and Table 4; there is a
threefold reduction in the number of equations).

3.6 PHH, CHH (CHH-PH)

The ansatz forW in these combined variational and HH methods is as follows: The
channel functions for Faddeev components are

FPHH
a ðxk;1; xk;2Þ ¼ r l k;1þl k;2 faðxk;1Þ

XKa

K ¼ l k;1þl k;2

ua
Kð rÞ ð2ÞP

l k;1l k;2
K ðak;1Þ; ð3:41Þ

FCHH
a ðxk;1; xk;2; x̂k;1·x̂k;2Þ ¼ rl k;1þl k;2 faðxk;1Þgaðxj;1Þgaðxi;1Þ

XKa

K ¼ l k;1þl k;2

ua
Kð rÞ ð2ÞP

l k;1;l k;2
K ðak;1Þ:

ð3:42Þ

The important difference between PHH and CHH, apparent from the above ansa¨tze, is
that CHH is applicable also to hard-core interactions. The expansion basis initially was
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PH, while recently the full HH basis has been used, also in the four-nucleon problem
[69]. In the four-nucleon problem, both types of Jacobi coordinates (see Fig. 2) are used
in order to facilitate the channel truncation. This is one of the benefits of the use of the
Rayleigh-Ritz variational principle, hduWjH ¹ EjWi ¼ 0, to obtain the energy and the
wave function. This approach is also used in scattering problems like theN-d scattering,
where theinternalpart ofW is expanded in HH. This is an example of correlations being
both multiplicative (the pairwise Jastrow-type correlation factors) andadditive (the
channels), as was discussed in the first lecture. However, the approximation involved in
the formulation of the Kohn-type functional for theS-matrix above the breakup
threshold without including the time-reversed final three-body state, which contains
single and double rescattering terms [170], is left open.

4 Lecture 3:Comparison of HH Methods

4.1 Applications and Accuracy

In this section we present the intrinsic accuracies of individual methods and their
applicability to specific physical problems. Methods separate roughly in two classes:

– very precise methods, typically applied in atomic physics with smallN, and not in
scattering;

– approximate methods, which gain in practical efficiency compared to the ‘‘precise’’
methods asN is increased; typically applied inN > 3 atomic problems and in
nuclear problems, including scattering problems. Already Ballot et al. [34] observed
that the first PH term gives increasing percentage of binding with increasingN for
the ground states of atoms.

4.1.1 CFHHM

Because of the factorization of correlation factors fromW, the applicability of the
method at present is limited to bound states. In most cases CFHHM gives better
converged results than variational calculations, especially for singular operators. This is
especially the case if convergence is improved by interpolating the recently observed
double convergence of observables withKm [102, 103].

Advantages:

– The full HH basis is employed (truncated atK ¼ Km).
– The radial part of the Schro¨dinger equation is solved directly (precisely);W has the

correct analytic form atr ¼ 0.
– Expectation values of observables are of uniform accuracy, including the singular

operators.
– Combined with complex coordinate rotation method (CR), CFHHM can be used for

atomic resonance studies [101].

Limitations:

– 1=r-type singular potentials are the limitation for analyticity of integrals (although
numerical integration poses no problems).
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– The condition of the system being ‘‘spherical’’ (not veryem4He-like) does not seem
to be a restriction; but in such cases the useful region of the parameter space of
nonlinearf is rather small.

– Becomes complicated (largeNe) for N > 3.
– Parametrization of correlation function may prove difficult, or state-dependent (ef

must be > 0 in order not to affect the nodes ofW).

Applications:

– Muonic molecules likemdt (sticking probability and fusion rate) [99, 97].
– Doubly excited Helium atom [101].
– Ps¹ annihilation rate [95].
– em3;4Heþþ hyperfine splitting [102, 103].

In the above applications the values of singular operators were obtained in general to
better precision than in the literature. The precision of the value of the energy (hHi)
(even thoughf is not optimized to get a goodhHi) is shown in Table 3, whence some
observations can be extracted:

– To get comparable accuracy in nonsymmetrical as in symmetrical systems,Km must
be the same (Ne larger).

– Nonlinear parametrizations are much better than the linear ones.
– For nonlinear parametrizations, accuracy of noninterpolated observables (and

probably interpolated) is quite uniform across different systems, except forhHi.
– The interpolated values forhHi have the same accuracy as the separate¹Km values.
– For other observables, interpolated values are improved by 2 orders of magnitude.

4.1.2 PH, IDEA, VIDE

These methods are used in nuclear physics.

Advantages:

– Their relative efficiency increases forN > 3.
– The first PH term gives increasing percentage of binding with increasingN.
– Precision of OS is ‘‘at least as in Faddeev formulations’’ (Ballot et al. [38]).
– PH fulfills the Rayleigh-Ritz principle in contrast to the Faddeev formalism.

Limitations:

– Only two-body correlations are included.
– Inadequate in atomic physics forN ¼ 3.
– Even in the first excited state of He atom, the first term contributes only 50% of

binding.

Applications: As discussed in Fabre et al. [121], an early calculation by Erens et al. [25]
showing OS gives trinucleon energy to 0.001% usingKm ¼ 18. Ballot et al. [38] found
that non-potential terms have small contributions. This was also studied by Erens et al.,
see also Kievsky et al. [71]. Loss of precision due to OS was studied by Desplanques et
al. [47]. Accuracy was studied also by Erens et al. [25] and Ballot et al. [34].
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A recent application is the DFM model of the nucleon, based on the PH:
Dziembowski et al. [48] claim 99.5% accuracy in the overlap between PH and exact
W (see Richard et al. [39], Table I:E converges to 4 SD atNe ¼ 3; hdðr12Þi converges to
4 SD atNe ¼ 10). However, wrong12þ, 1

2¹ state ordering is obtained for the nucleon. In
fact, the recalculation of the DFM model in SVM and Faddeev methods gives even
worse ordering of these states [145].

4.1.3 PHH, CHH

This method combined with variational principles is used in nuclear bound-state and
scattering problems.

Advantages:

– Accommodate most potentials (CHH also hard core).
– Inclusion of Coulomb potential below threshold is easier than in the Faddeev

formulation.
– Large HH bases (and the Lanczos method) can be used because of the variational

formulation.
– Variational formulation enables the treatment of scattering problems using a trial

function of the form W ¼ Wb þ Ws, where Wb is a quadratic integrable part
describing clustered subsystems, andWs is the long-range part describing channels.

Limitations:

– PHH is sometimes faster converging than CHH due to absence of angular
momentum mixing.

– Simple HH eventually turned out to be more accurate than both PHH and CHH,
provided a large enoughNe is used.

– Variational principle for radial solutions limits accuracy.
– Study of the importance of single- and double-scattering terms is not possible at

present.
– Boundary conditions in the transition region cannot be controlled easily.

Applications: For a list of results see Table 4.

4.1.4 HCM

This method is used primarily in atomic physics.

Advantages:

– Relative ease of extraction of qualitative properties.
– HCM can treat channel regions because of the adaptable angular basis.

Limitations:

– Accuracy (see Tables 9, 10).

Applications: A recent calculation of the binding energies shows errors ranging from
0.001% in H¹ to 0.1% in Bþþþ [114]. A recent application in the close-coupling
method is [115]. For an application of HCM to muon-catalyzed fusion-related problems,
where the relevant states of the different muonic molecules were calculated with

Hyperspherical-Harmonics Methods for Few-Body Problems 221



uniform precision of up to 3 digits for the sticking coefficients and the fusion rates, see
[116] (also shown in Table 9). A recent development is a two-dimensional HCM basis
[117], as well as several further variants of HCM, for example [118]. The application of
HCM to theN ¼ 4 problem of the lithium atom is discussed in [119].

4.2 Comparisons

In this section, early and modern HH methods are compared with each other and with
other methods, for a set of specific physical problems. The quotedE values by CFHHM
refer tohHi. It should be noted that some non-HH methods, notably the finite element
method (FE), though they are less precise on the presented examples, are directly
applicable to scattering problems, where they may be more successful than HH-based
methods. FE can be adapted to the local structure ofW without affecting the expansion
globally as is the case in other methods (variational and HH) [125].

4.2.1 Trinucleon Ground State

PHH, CHH. In the work by Rosati et al. [64], the PH basis together with Jastrow-type
correlation factors is used, without Faddeev-type decomposition (fixed choice of Jacobi
coordinates). Correlation factors generate terms not describable by PH, but the effect is
found to be small.

In the works by Kievsky et al. [65, 67], Faddeev decomposition and PHH, CHH are
compared. In ref. [71], the HH method without correlation factors is reexamined, but a
reduction technique originally developed by Efros [26] and first applied in Demin et al.
[59] is used. This reduction makes the simple HH method more precise than the
correlated version, at the price of largerNe (but Ne can rather easily be increased
because of the variational setting).

In ref. [65], it is shown that only 12 channels are sufficient for an accurate solution.
The Faddeev formulation would require 36 components; this was one of the insights
leading to VIDE [50] based on the Schro¨dinger equation.

4.2.2nd Scattering
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Table 5. s-wave phase shift (degrees) for MT(I–III) compared with the
Bochum and Iowa/Los Alamos results. From [68]

Method Phase shift E

0.75 1.5

PHH d 1
20

¹12:12 ¹20:66
Fadd.P-space ¹12.1 ¹20.7
Fadd.R-space ¹12.1 ¹20.7

PHH d 3
20

¹42.37 ¹55.86
Fadd.P-space ¹42.4 ¹55.9
Fadd.R-space ¹42.4 ¹55.8
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Table 6. a particle binding energy

Method Nc Ne AV14 AV14 MT MT
þ Ur.8 (V) (V)

CHH, Viviani [69] 23 164 23.93 27.48

EAA þ UAA, Fabre [42] 30.63
EAA þ UAA, Fabre [42] 29.34
SIDE, Oehm [45] 28.47
IDEA, Oehm [45] 29.37

FY, Kamada [138] 23.87
GFMC, Carlson [139] 24.2(2) 28.3(2)
VMC, Wiringa [136] 27.2(2)

SVM, Varga [141] 31.360
GFMC, Zabolitzky [128] 31.3(2)
ATMS, Akaishi [130] 31.36

Table 7. Comparison of FE, variational, and CFHHM methods for the ground-state energy andhdðr 2Þi

which is proportional to the annihilation rate, for positronium negative ion (Ps¹)

Reference Km Ne E hdðr2Þi

FE, Hu [123] 1080 0.223 115
12096 0.266 880
9216 0.262 023 4

12096 0.262 021 7

CFHHM, Krivec [95] 40 121 0.262 004 99 0.020 733 56
48 169 0.262 005 04 0.020 732 42
56 225 0.262 005 058 0.020 733 02

CFHHM 0.0207330(6)

SVM, Varga [141] 150 0.262004
Faddeev,

Schelli. [135] 0.26202

Variational
Ho, see [95] 0.262 004 895 0.020 713
Bhatia, cf. [95] 0.262 005 045 0.020 730

0.262 005 056 0.020 733
Petelenz, cf. [95] 0.262 005 069
Ho [168] 744 0.262 005 07023286 0.020 733 1980



4.2.3. Four-Nucleon Ground State

4.2.4 Positronium Negative Ion (Ps¹)

The work by Hu et al. [123] uses the FE method by collocation (like the Los Alamos
group), employing quintic splines, and ther interval transformed to [0, 1]. The method,
though less precise, has the advantage over variational calculations in that it is
applicable to scattering problems. See Table 7.

4.2.5 Crandall Model
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Table 8. Crandall analytically solvable model. Harmonic and inverse-square poten-
tials, 2Qm="2 ¼ 1; see ref. [120]

m=M Ne HH PH CFHHM Exact

1 1 4.88 4.88 4.63 4.46

4 1 7.71 7.71 7.20 6.32

25 1 17.59 17.59 16.27 12.58
4 13.31 12.89 12.58
6 12.89 12.58

Table 9. Probability ofd andt being at the same point,r0 ¼ hdðrdtÞi (in units of 10¹13 fm¹3), for the ground
state ofmdt for different parametrizations B, C, and D of the correlation functionf , and its comparison with
HCM and variational calculations

Source Km Ne C B D

CFHHM (Krivec et al. [99]) 32 153 0.5204 0.5250 0.5285
40 231 0.5250 0.5273 0.5290
48 325 0.5269 0.5280 0.5287

CFHHM 325 0.528(1)

HCM (Abramov et al. [112]) 15 0.582
HCM (Abramov et al. [116]) 15 0.528

Alexander et al. [159] 1200 0.5296
Szalewicz et al. [160] <1000 0.5502 (adiabatic)

0.5294 (nonadiabatic)

Variational (different works) <1000 0.5295(1)

Bogdanova et al. [161] 0.594
Langanke et al. [162] 0.6



4.2.6 Muonic Moleculemdt

Comparison of CFHHM with the result by Ceperley et al. [158] in Krivec et al. [99] is
interesting because of the oscillations observed in the GFMC wave function, as

displayed in Fig. 10. Themdt ground-state fusion rate and sticking probability are
examples of CFHHM being more precise than differences in the literature (see Tables 9,
10, and Fig. 9). The difference of sticking probabilities with respect to a recent HCM
calculation is up to 0.02 while the CFHHM values are converged within 0.0001. The
differences with variational works are substantial. In addition, this system is an example
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Fig. 9. Expectation values of the delta-function operator of the distance between the deuteron and the
triton, proportional to the fusion rate according to the Jackson formula, in units of 10¹13 fm¹3, for the linear
(parametrization A) and nonlinear (parametrizations B, C, D) correlation functions. Separate points on the
right display the results of variational calculations. The variational results in sequence from left to right on
the graph correspond to refs. [159] and [160], respectively, with the upper (lower) points corresponding to
the adiabatic (nonadiabatic) values. From Krivec et al. [99]; see Table 9



where wrong convergence of some local observables (sticking probability) was
explicitly observed in variational calculations (Haywood et al. [165]).

4.2.7 Helium Atom

Early results by Ballot et al. [34]: The first PH term gives increasing binding with
increasingN. However, even for the first excited state, its contribution is only 50%. See
Table 11. Newer results are displayed in Table 12.
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Fig. 10. Divided differences (approximate derivative) of the logarithm of the wave function at thedt
coalescence point. The differences correspond to intervals of 0.5 forrm¹dt # 5 and to intervals of 1 for
rm¹dt > 5 (in m.a.u.). The solid curve is the CFHH wave function calculated with the nonlinear correlation
function (parametrization C,Km ¼ 40) while the dashed curve represents the Green-function Monte-Carlo
wave function of Ceperley et al. [158]. The Born-Oppenheimer wave function (an exponential) would give
a constant value. From Krivec et al. [99]
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Table 10.Ground-state sticking probabilitiesqnl for Q ¼ 5:844 (unless stated otherwise). The CFHHM
results are calculated with the nonlinear correlation functionf . Parametrizations B, C, and D off give the
same values ofqnl to the number of quoted digits

Method Km 1s 2s 3s 4s 2p

CFHHM, 32 0.6822 0.0978 0.0297 0.0127 0.0238
Krivec [99] 40 0.6820 0.0978 0.0297 0.0127 0.0283

40 0.6807 0.0976 0.0297 0.0126 0.0237a

48 0.6819 0.0978 0.0297 0.0126 0.0238

0.6819(1)

HCM
Abramov [112] 15 0.829 (?)
Abramov [112] 21 0.906 (?)
Abramov [116] 21 0.7001 0.1004 0.0305 0.0130 0.0245a

Variational
Hu [164] 0.6932 0.0992 0.0302 0.0128 0.0241
Haywood [165] 0.6846

GFMC [158] 0.689 0.099 0.030 0.013 0.024

Var., Hu [166] 0.6817
Kamimura [167] 0.6842
Var., Hu [163] 0.6802 0.0975 0.0296 0.0126 0.0237

Var. (recent) 0.6802–0.8422

a Q ¼ 5:846

Table 11. Early results for the helium atom, using ordinary HH and PH methods, compared
with the correct result, for the finite-mass He-atom ground state. The number of digits quoted
shows intrinsic accuracy

Reference Km NHH Ne E

HH (Mandelzweig [80]) 16 25 25 2.887 54
20 36 36 2.893 58

HH (Efros [74]) 18 30 900 2.887 560
30 72 2160 2.899 011
40 121 3630 2.901 775

PH (Ballot [34]) 2 1 2.5
8 4 2.793

16 8 2.881
22 11 2.897

CFHHM (Haftel [85]) 2.903 304 5
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Table 12. Comparison of different HH methods and the Hartree-Fock method for the infinite-mass He
atom. PH gives better results than HF although equivalent in content (Fabre et al. [121]). CFHH with
Ne ¼ 9 gives better results than PH withNe ¼ 23. However, atNe < 20, full PH is better than ordinary HH
because it contains twice the number ofK

Reference Km NHH Ne E

PH (Fabre [121]) 40 10 10 2.877 013 59
48 12 12 2.877 774 70
72 18 18 2.878 609 91

Full PH (Fabre [121]) 16 7 7 2.887 296 35
28 13 13 2.898 757 86
32 15 15 2.900 056 43
40 19 19 2.901 523 00
48 23 23 2.902 259 77
72 31 31 2.903 067 40

Faddeev PH (IDEA) (Fabre [121])a 28 13 13? 2.930 984 40

Distorted Faddeev PH (Fabre [121]) 28 13 13? 2.895 351

HH (FS) (Fabre [121]) 16 9 9 2.887 543 91
28 20 20 2.899 009 20

CFHHM (Haftel [85]) 0 1 1 2.855 504 862
8 9 9 2.903 701 425

16 25 25 2.903 723 654
24 49 49 2.903 724 254
32 81 81 2.903 724 340
40 121 121 2.903 724 361
48 169 169 2.903 724 368

HHGLF (Zhang [77]) 256 768 2.902 64

HCM (Frey [105]) 196 2.903 73
HCM (Tang [110]) 23 2.903594 4 (?)

HF (Roothaan), see [121] 2.8617

aThe work by Fabre et al. [121] compares the results for the ground state of the He atom using the PH,
CFHHM and variational methods



4.2.8 Double Excited States of He Atom

Hyperspherical-Harmonics Methods for Few-Body Problems 229

Table 13.Comparison of FE, variational, and CFHHM methods for the ground-state energy of the helium
atom: Braun et al. [124], Shertzer et al. [122]. The results probably correspond to very roughly the same
computational effort. There is apparently no limit on the number of digits obtainable in the variational
calculations, but the situation is different for other observables. Infinite-mass He atom; in a.u.

Reference Km NHH Ne E

FE, Braun [124] 23652 2.903611 8
Full PH, Fabre [121] 48 23 23 2.902 259 77
CFHHM, Haftel [85] 48 169 169 2.903 724368
Variational

Drake [147], Baker [146] 2.903 7243770340(2)

Table 14. As Table 13, but for the observables of the helium atom 11Sand 41Sstates (in electron-nucleus
separation). From [124]. For the 41Sstate the FE method giveshr31i to within 0.002 relative error (ground
state: 0.00003), while CFHHM retains its accuracy

Reference hr31i hr¹1
31 i hr2

31i hdðr31Þi

11S

FE, Braun [124] 0.929 50815 1.688 2676 1.193 5886 1.810 2686

CFHHM,
Haftel [85] 0.929 47234 1.688 3168 1.193 4831 1.810 42506

Var., Pekeris [148] 0.929 47230 1.688 3168 1.193 4830 1.810 4269
Var., Drake [147] 1.810 429319

41S

FE, Braun [124] 11.549 239 1.032 4762 281.248 70 1.277 1894

CFHHM,
Krivec [92] 11.523 691 1.032 6432 280.230 05 1.277 3070

Var., Accad [149] 11.6 281.5 1.277 21

Table 15.Double excited1Se state of He atom

Method NHH ¹Er G=2

CFHHM [101] 72 0.777 867 6 0.002 270 65
Var. (Ho [150]) 0.777 868 0.002 265
HCM (Tang [110]) 0.777 35 0.002 2(1)



4.2.9 Lithium Atom

4.2.10 Muonic Helium Atom

In the recent works by Krivec et al. [102,103] the lowest-order hyperfine splitting of the
ground states is found to be 4454.206(3) MHz and 4157.691(3) MHz for the muonic4He
and 3He atoms, respectively. The recent variational values from refs. [155, 157] are
0.023 MHz lower and 0.013 MHz higher, respectively, apparently not converging well
for the singular operators involved. In particular, the differencehdðr2Þi ¹ hdðr3Þi is
smaller by about 6× 10¹6 a.u. in ref. [157] than in [102, 103], while the effect of
different masses used in the literature and of computational errors for these operators are
both of the order of only 2× 10¹7 a.u.

4.3 Summary

Milestones
– 1935 HH introduced (Zernike and Brinkman [1]).
– 1965 Nonsymmetric HH (tree method) (Vilenkin et al. [13]).
– 1966 Symmetric HH (Simonov [14], Zickendraht [9]).
– 1969 PH (Fabre de la Ripelle [24]).
– 1969 Slow convergence of HH with realistic nuclear interactions (Erens et al. [23]).
– 1975 The first PH term gives increasing percentage of atomic binding with

increasingN (Ballot et al. [34]).
– 1978 CFHHM (Mandelzweig et al. [84]).
– 1988 IDEA (Fabre de la Ripelle et al. [42, 45]).
– 1990 CHH (Rosati et al. [64]).
– 1997 General symmetrization algorithm (Barnea et al. [56]).

Recent developments.In nuclear physics, forN ¼ 3 andN ¼ 4, the binding energies
given by various HH methods (variants of IDEA and PHH/CHH) are of the same
accuracy as those by other methods (4–5 digits). The Schro¨dinger equation as opposed
to the Faddeev equations is usually favoured. One of the reasons is the recently found
multiple counting of some contributions in the Faddeev formulation (see VIDE, ref.
[50]).
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Table 16.Ground state of lithium atom. The ‘‘average’’ correlation factor needs to be
improved [78]

Method NHH NGLF E

HHGLF [78] 215 6 7.339 14

CFHHGLF [78] 215 6 7.522 282
215 18 7.473 122

Hartree-Fock (Xu et al., see [78]) 7.432 7

Experiment (Kusch et al., see [78]) 7.478 069



PHH and CHH are as good as other methods forN ¼ 3 andN ¼ 4 observables
including scattering parameters [68]. In thepd scattering, the discrepancy in forward
and backward angles at lowE (Coulomb effects) has been confirmed by HH methods
[70]. (Inclusion of Coulomb potential below threshold is easier in these methods than in
the Faddeev formalism.) Lately the Pisa group has tested the simple HH method without
correlation factors again, and found it very accurate in a variational setting where large
systems of equations can be used.

In the three-quark system, the work of the Graz group (ref. [145] and references
therein) shows that a semirelativistic formalism is necessary and likely sufficient to
describe the three-quark system (including the proper flavor operators). The relativistic
approach on the other hand favorsP-space methods. Some results have also been
compared with those by two HH methods; examples of the inadequacy of both the PH
method [48] and of the so-called ‘‘minimal-K’’ approximation [143] (see also [66]) in
this problem has been found. Both approximations give too good ordering of the1

2þ, 1
2¹

states.
The potential accuracy of HHGLF and CFHHGLF is difficult to assess because

these methods so far have listed only energy values; it depends on the convergence in
the hyperradial basis.

There are examples where HCM obtains better energy values than CFHHM, like in
the difficultmdt system, but apparently not better values for singular operators. It should
also be noted that in this case the interpolated doubly-convergent values in the CFHHM
were not used. Otherwise HCM is in general inferior; however, it can be used for a much
larger set of problems including scattering problems.

Conclusion.HH methods have grown up past the phase of constant comparisons with
other methods. Two methods, PHH/CHH and CFHHM, flourish in nuclear and atomic
physics, respectively. In complicated systems, other methods like FE may eventually
overtake them, especially on massively parallel computers.

Acknowledgement.I thank Nir Barnea for clarifying comments on his HH symmetrization algorithm.

5 Exercises

5.1 Analytical

1. Derive the expression for theCoulomb potential in theY l k;1l k;2
KLM ðQkÞ basis forL ¼ 0, using theorems on

orthogonal polynomials:

z ðkÞ ¼
X3

m¼ 1

Qm

cosak
; ð5:1Þ

z ðkÞ
K00ll ¼

X3

m¼ 1

Qm

�
dQkYll

K00ðQkÞ
¬ 1

cosam
ð5:2Þ

¼
X3

m¼ 1

Qm

X
K 0

�
dQmY l 0

1l 0
2

K 0L0M0 ðQmÞ
1

cosam

�
dQmY l 0

1l 0
2

K 0L0M0 ðQmÞ¬Y ll
K00ðQkÞ

� �
ð5:3Þ

¼
X3

m¼ 1

Qm

X
K 0

�
dQmY 00

K 000ðQmÞ
1

cosam

� � �
dQmY 00

K 000ðQmÞ¬Y ll
K00ðQkÞ

� �
: ð5:4Þ

Hyperspherical-Harmonics Methods for Few-Body Problems 231



The following is a Raynal-Revai coefficient:�
dQmY 00

K 000ðQmÞ¬ Y ll
K00ðQkÞ

� �
¼ const:

�
dQk

ð2ÞP00
K0 ðamðak; vkÞÞ

ð2ÞPll
KðakÞPlðcosvkÞ ð5:5Þ

¼ dKK0 ð¹2emkcmksmkÞ
lCðlþ1Þ

ðK=2Þ¹l c2
mk ¹ s2

mk

ÿ �
×

Gð2l þ 2Þ

ð2l þ 1Þ!!

��������������������������������������������������
2ð2l þ 1ÞGððK=2Þ ¹ l þ 1Þ

ðK þ 2ÞGððK=2Þ þ l þ 2Þ

s
ð5:6Þ

obtained with the help of the addition theorem for the Gegenbauer polynomials [173]

const:ð2ÞP00
K0 ðamÞ ¼ Cð1Þ

K=2ð¹ cos 2amÞ

¼ Cð1Þ
K=2 ¹ c2

mk ¹ s2
mk

ÿ �
cos 2ak þ 2emkcmksmk cosvk

�������������������������
1 ¹ cos2 2ak

q� �

¼
XK=2

k¼ 0

4kGððK=2Þ ¹ k þ 1Þðk!Þ2

GððK=2Þ þ k þ 2Þ
ð2k þ 1Þð2emkcmksmkÞ

2ð1 þ cos2 2akÞ
k=2

× Cð kþ1Þ
ðK=2Þ¹k c2

mk ¹ s2
mk

ÿ �
Cð kþ1Þ

ðK=2Þ¹k ¹ cos 2ak

ÿ �
PkðcosvkÞ: ð5:7Þ

2. Constructexamples of PH bases(also using the addition theorem for Gegenbauer polynomials):
Symmetrical PH basis forS-states [49], summed over pairs

Bs
KðQÞ ¼ CK

X
k

p¹3=2Cð1Þ
K 2

x2
k

r 2 ¹ 1

� �
: ð5:8Þ

This is evaluated using Eqs. (3.39), (3.40) and [49]

zðJÞ ¼ zð0Þ cos 2J þ
������������������
1 ¹ zð0Þ2

p
sin 2J cosv; ð5:9Þ

zð0Þ ¼ cos 2f; ð5:10Þ

to give

Bs
K ðQÞ ¼ p¹3=2CK

X3

k¼ 1

Cð1Þ
K ðzð0Þ cos 2Jk þ

������������������
1 ¹ zð0Þ2

p
sin 2Jk cosvÞ

¼
CK

16
���
p

p
ðK þ 1Þ

X3

k¼ 1

XK

l ¼ 0ð2Þ

ð2l þ 1Þ ð2ÞPll
K ðfÞ ð2ÞPll

KðJkÞPlðcosvÞ ð5:11Þ

using the same theorems as Eq. (5.7).
From Simonov HH forS-states, see Eq. (3.12), for pairk:

B ðkÞ
m ðak; lkÞ ¼

X
n

exp i qk ¹
p

2

� �
n

h io
Ymnðak; lkÞ:

n
ð5:12Þ

3. Check ki , qi in Eq. (3.12).

ki ¼ arccos
miðmk ¹ mjÞ ¹ mjðmk ¹ mjÞ

ðmi þ mjÞðmj þ mkÞ
; ð5:13Þ

qk ¼
1

2mk
: ð5:14Þ

4. Calculate theVk expansion coefficients(Eq. (3.14)): allowed forms for analytic calculability; power
expansion ofVk and limits on allowed powers using the (only similar) known integral�1

¹1
dxð1 ¹ xÞtð1 þ xÞbP ða;bÞ

n ðxÞP ðr ;sÞ
m ðxÞ ð5:15Þ

which requires Reb > ¹1, Ret > ¹1 (p > ¹2 ¹ 2l k;1).
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5. Twofold convergence in CFHHM: Why does it appear (symmetrical basis, nonsymmetrical
system)?

6. CFHHM recursion formulas: Derive L. Stotland’s solution of

Cin ¼ ¹
1

nðn ¹ 1Þ

Xn¹2

m¼ ¹1

ðn ¹ m¹ 2ÞP i;mþ1 þ
Xn¹2

m¼ 0

Q im

" #
Ci;n¹m¹2; ð5:16Þ

whereP andQ are defined by

P ¼
X∞

m¼ 0

P imðz¹ ziÞ
m
; ð5:17Þ

Q ¼
X∞

m¼ 0

Q imðz¹ ziÞ
m
; ð5:18Þ

whereby the recurrence formulas are solved (for the case of the Coulomb potential and linearf ) such that
they need to be calculated only once. Try to generalize this to any potential and anyf (i.e., when the
effective potential has an infinite expansion). Is the resulting scheme faster than a repeated calculation of
the recursion formulas on every interval?

7. em4Heþþ: Why is linearf in CFHHM not good, although it mimics the asymptotics of the system
rather well?

8. Construction of f : modified cuspf , nonlinearf . Let us discuss a three-charged particle system where
two of the two-particle subsystems have bound states, as is usual in atomic physics. In the leading order, and
for Ne ¼ 1, the single differential equation gives

x1 , exp½ð f =r þ CasÞrÿ ð5:19Þ

asr → ∞, where we chose the smaller solution

Cas ¼ WD0
11 ¹

�������������������������������������������
WD0

11

� �2
þ 2WS0

11 ¹ 2E

r
ð5:20Þ

(see Eqs. (3.16), (3.17)). (This can be generalized toNe > 1.) If particlek is separated from the bound state
fkðxk) of particlesij (clusteringk), x behaves as

exp ¹
������������
2Mkek

p
ri

h i
fkðxkÞ ð5:21Þ

if ri → ∞, rj → ∞, whereek > 0 is the particlek separation energy andMk are the spectator-reduced masses.
Then the asymptotic conditions onak are

a2 þ a3 þ C
������
M1

p
¼ ¹

�������������
2M1e1

p
; ð5:22Þ

a3 þ a1 þ C
������
M2

p
¼ ¹

�������������
2M2e2

p
; ð5:23Þ

a1 þ a2 þ C
������
M3

p
< 0: ð5:24Þ

These equations fixf only in the clustering regions of the hypersphere, and leave one of theak as a
(partially) free parameter. IfC ¼ 0, asymptotics are imposed on expðf Þ; if C ¼ Cas, asymptotics are
imposed onW. We haveCas ¼ Casða1; a2; a3;EÞ; using an approximateE, the above equations represent a
set of nonlinear equations forC. This system does not have to be solved by iteration but by mere tabulation
since the results do not depend strongly onC, and the equations are approximate. The third inequality could
be replaced by an equation, except that the asymptotics in the ‘‘repulsive’’ clustering is not known. It turned
out in themdt case, however, that the shape ofW at r3 ¼ rdt ¼ 0 depends very weakly onak, and that goodf
approximate it well. (The wave function is very small in this region.)

C ¼ 0 turned out to be the best choice in themdt case using nonlinearf [97], as well as in the case
of the positronium negative ion [95]. If these systems were calculated with linearf (using ak ¼ bk),
proper asymptotic behavior of the solution would be violated. This would force one to modify the like-
charged pairak parameter to assume a negative value instead of the positive cusp value. This requirement is
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roughly equivalent to applying the constraints onW at Ne ¼ 1. Nonlinearf eliminates this necessity [95,
97].

5.2 Computational

1. CFHHM program package: Introduction (available at the WWW location http://www–f1.ijs.si/
~krivec/dist/pack/).

2. Test the stability of theJacobi polynomials calculation by upward recurrence (see routine
M1PJXA).

3. Precision in the em4He calculation (routine M1PJQA,…): Why is it sufficient to calculate matrix
elements more precisely, but not the hyperradial solution?

4. Integrals of three Jacobi polynomialsusing a recursive method: Enormous efficiency compared to
numerical evaluation. Numerical evaluation is avoided ifV is expanded in powers ofrk, Eq. (3.14).

5. The homogeneous systemat z ¼ zM , Eq. (3.25): Test the stability of the solution of such
pathological systems by discarding different equations.

6. The CFHHM ‘‘grid’’: How it covers the configuration space (do mass weights inxk;i take care of
scaling the space, example:em4He)?

7. Parallelization of the CFHHM code: For a fine-grained variant, see http://www–f1.ijs.si/~krivec/
bench/cfhhoptsppp.txt.
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