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Abstract. Quasilinear solutions of the radial Schr€oodinger equation for differ-
ent potentials are compared with corresponding WKB solutions. For this study,
the Schr€oodinger equation is first cast into a nonlinear Riccati form. While the
WKB method generates an expansion in powers of �h, the quasi-linearization
method (QLM) approaches the solution of the Riccati equation by approximat-
ing its nonlinear terms by a sequence of linear iterates. Although iterative, the
QLM is not perturbative and does not rely on the existence of any kind of
smallness parameters. If the initial QLM guess is properly chosen, the usual
QLM solution, unlike the WKB, displays no unphysical turning-point singular-
ities. The first QLM iteration is given by an analytic expression. This allows
one to estimate analytically the role of different parameters, and the influence
of their variation on the boundedness or unboundedness of a critically stable
quantum system, with much more precision than provided by the WKB approx-
imation, which often fails miserably for systems on the border of stability. It is
therefore demonstrated that the QLM method is preferable over the usual WKB
method.

1 Introduction and Brief History

The application of a very powerful approximation technique called the quasilinear-
ization method (QLM), which was introduced years ago by Bellman and Kalaba
[3] in the theory of linear programming, to various physics problems was discussed
in a series of recent papers [1, 2]. The QLM approaches the solution of a nonlinear
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differential equation by approximating the nonlinear terms by a sequence of linear
ones, and is not based on the existence of any smallness parameter. Indeed,
although iterative, the QLM is not perturbative and it has very fast quadratic con-
vergence. It has been shown [1, 2] that the QLM solution sums an infinite number
of terms of the expansion in powers of the different parameters and therefore well
approximates the exact solution in a wide region of the parameter values.

When the structure of a critically stable quantum system is analyzed, under-
standing the analytic behavior of the solution as a function of different physical
parameters is often of decisive importance. In one-dimensional two-body prob-
lems, or in three-dimensional two-body problems with central potentials, such
understanding is usually provided by the application of the WKB method, which
supplies an approximate solution accurate up to some low (usually the first) power
of �h.

The derivation of the WKB solution starts by casting the radial Schr€oodinger
equation into nonlinear Riccati form and solving that equation by expansion in
powers of �h. It is interesting instead to solve this nonlinear equation with the help
of the quasilinearization technique and compare with the WKB results. Such a
procedure was performed in the work [4], where it was shown that the first
QLM iteration reproduces the structure of the WKB series generating an infinite
series of the WKB terms, but with different coefficients. Besides being a better
approximation, the first QLM iteration is also expressible in a closed integral form.
Similar conclusions are reached for all the higher QLM approximations and it can
be shown [5] that the n-th QLM iteration yields the correct structure of the infinite
WKB series and reproduces 2n terms of the expansion of the solution in powers of
�h exactly, as well as a similar number of terms approximately.

That the first QLM iteration already provides a much better approximation to
the exact solution than the usual WKB is obvious, not only from comparison of
terms of the QLM and WKB series [4, 5], but also from the fact that the quantiza-
tion condition in the first QLM iteration leads to exact energies for many poten-
tials [5]; namely, for the Coulomb, harmonic oscillator, P€ooschl-Teller, Hulthen,
Hylleraas, Morse, Eckart and some other well-known physical potentials, which
have a simple analytic structure. By comparison, the WKB approximation repro-
duces exact energies only in the case of the first two potentials.

The goal of the present work is to show that also in the general case of
arbitrary potentials that do not have a simple analytic structure, both the wave
functions and energies are very well reproduced by the first QLM iteration and
show significant improvement over those obtained by the usual WKB approxi-
mation. In addition, we show that if the initial QLM guess is properly chosen, the
wave function in the first QLM iteration, unlike the WKB wave function, is free
of unphysical turning-point singularities. Since the first QLM iteration is given
by an analytic expression [1, 2, 4], it allows one to analytically estimate the role
of different parameters and the influence of their variation on boundedness or
unboundedness of a critically stable quantum system with much more precision
than obtained by the WKB approximation, which often fails miserably for sys-
tems on the border of stability. In addition, we show that five QLM iterations are
usually enough to obtain both the wave function and energies with the extreme
accuracy of ten significant figures.
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2 Computation and the Results

The usual WKB substitution

�ðrÞ ¼ C exp

�
�

ðr
Yðr0Þ dr0

�
ð1Þ

converts the radial Schr€oodinger equation

�00ðrÞ þ �2k2�ðrÞ ¼ 0 ð2Þ
to nonlinear Riccati form

y0ðzÞ þ ðk2 þ y2ðzÞÞ ¼ 0: ð3Þ
Here k2 ¼ E � V � lðlþ 1Þ=z2, �2 ¼ 2m=�h2, z ¼ �r, and yðzÞ ¼ YðrÞ.

The proper bound-state boundary condition for potentials falling off at z ’ z0 is
yðzÞ ¼ const at z� z0. The quasilinearization [1, 2, 4] of this equation gives a set
of recurrence differential equations

y0p ¼ y2
p�1 � 2ypyp�1 � k2: ð4Þ

The analytic solution [4] of these equations expresses the p-th iterate ypðzÞ in terms
of the previous iterate,

ypðzÞ ¼ fp�1ðzÞ �
ðz
z0

ds f 0p�1ðsÞ exp

�
�2

ðz
s

yp�1ðtÞ dt
�
;

fp�1ðzÞ ¼
y2
p�1ðzÞ � k2ðzÞ

2yp�1ðzÞ
: ð5Þ

Indeed, differentiation of both parts of Eq. (5) leads immediately to Eq. (4) which
proves that ypðzÞ is a solution of this equation.

For the zeroth iterate y0ðzÞ; it seems natural to choose the WKB approximation.
However, that choice has unphysical turning-point singularities. Consequently, if
ypðzÞ in Eq. (4) is a discontinuous function of z in a certain interval, then [6] ypþ1ðzÞ
or its derivatives could also be discontinuous functions in this interval, so the
turning-point singularities of y0ðzÞ will unfortunately propagate to the next iterates.
To avoid this, we choose the Langer [7] WKB wave function �LðxÞ as the zero
iteration, which near a turning point b is given by the simple analytic expression1

�LðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1=3ðxÞ
jkðxÞj

s
Ai½S1=3ðxÞ�; ð6Þ

SðxÞ ¼ 3

2
�

ðx
b

jkðsÞj ds; ð7Þ

where Ai denotes the Airy function. It is easy to check [7] that �LðxÞ is continuous
across the turning points and coincides with the usual WKB solution far from them.

Let us consider a couple of simple examples of how to apply this first iterate to
the Riccati-equation problem.

1 This form is based on a linear potential interpolation near turning points from which the Airy

function arises
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2.1 Ground State of the Anharmonic Oscillator VðrÞ ¼ 1
2
ðr2 þ r4Þ

The exact energy of this state is 2.324406352 in atomic units with mass m ¼ 1. The
WKB energy is different by 2.14% and equals 2.27460 in the same units, while the
first-iteration QLM energy equals 2.32575 and differs from the exact energy only
by 0.058%. The fifth-iteration QLM energy coincides with the exact energy in all
ten digits.

The graphs corresponding to the Langer WKB solution, the exact solution, and
the first QLM iteration are displayed in Fig. 1. One can see that while the Langer
solution is noticeably different from the exact solution, the curve of the first QLM
iteration is almost indistinguishable from the exact curve.

This could be followed more precisely by looking at Fig. 2, where the loga-
rithm of the difference between the exact and WKB solutions and between the
exact solution and the first QLM iteration are shown. One can see that the differ-
ence between the exact solution and the first QLM iteration is two orders of
magnitude smaller than the difference between the exact and the WKB solutions,
that is just one QLM iteration increases the accuracy of the result by remarkably
two orders of magnitude.

2.2 Second Excited State of the Linear Potential VðrÞ ¼ 27=2r

The exact energy in this case is 9.352429642 in atomic units. The WKB energy is
different by 0.49% and equals 9.39863 in the same units. The first-iteration QLM
energy equals 9.3582123 and differs from the exact one only by 0.062%. The QLM

Fig. 1. Comparison of the Langer WKB solution �L (dashed curve), the exact solution �exact (dotted

curve) and the first QLM iteration �1 (solid curve) for the ground state of the anharmonic oscillator.

The last two are almost indistinguishable on the plot. Here x ¼ �r, �2 ¼ 2mE=�h2
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Fig. 3. As in Fig. 2, but for the second excited state of the linear potential

Fig. 2. Logarithm of the differences of the functions uexact and uL corresponding to the exact

solution �exact and the WKB solution �L (dashed curve), and of uexact and u1 corresponding to the

exact solution �exact and the first QLM iteration �1 (solid curve) for the ground state of the

anharmonic oscillator. uðxÞ is defined as uðxÞ¼�arctanð��ðrÞ=�0ðrÞÞ¼�arctanðE=yð�rÞÞ. QLM

iteration is performed on the monotonic function uðxÞ, not on the singular function yð�rÞ
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energy, as in the case of the anharmonic potential, coincides with the exact one
after the fifth iteration in all ten digits.

The accuracy of the WKB approximation increases for higher excitations.
Therefore in the case of the second excited state in the linear potential both the
Langer WKB and QLM curves are indistinguishable from the exact one. Fig. 3
shows, however, that also in this case the difference between the exact solution and
the first QLM iteration is two orders of magnitude smaller than the difference
between the exact and WKB solutions.

3 Conclusion

The quasilinear solutions of the radial Schr€oodinger equation for different potentials
are compared with the corresponding WKB solutions. It is shown by two typical
examples that the use of the Langer WKB solution as initial guess already in the
first QLM approximation gives energies and wave functions two orders of magni-
tude more accurate than the WKB results. Such a QLM solution, unlike the usual
WKB solution, displays no unphysical turning-point singularities. The first QLM
iteration is given by an analytic expression. It allows one therefore to estimate
analytically the role of different parameters and their influence on boundedness
or unboundedness of a critically stable quantum system with much higher precision
than provided by the WKB approximation, which often fails miserably for systems
on the border of stability. In addition, it was shown that five QLM iterations are
usually enough to obtain both the wave function and energy with extreme accuracy
of ten significant figures.
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