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Abstract

We pioneered the application of the quasilinearization method (QLM) to resonance
calculations. The quartic anharmonic oscillatior?/2) + Ax* with a negative coupling

constants was chosen as the simplest example of the resonant potential. The QLM has been
suggested recently for solving the bound state Schrédinger equation after conversion into
Riccati form. In the quasilinearization approach the nonlinear differential equation is treated
by approximating the nonlinear terms by a sequence of linear expressions. The QLM is
iterative but not perturbative and gives stable solutions to nonlinear problems without
depending on the existence of a smallness parameter. The choice of zero iteration is based on
general features of solutions near the boundaries. Comparison of our approximate analytic
expressions for the resonance energies and wavefunctions obtained in the first QLM iteration
with the exact numerical solutions demonstrate their high accuracy in the wide range of the
negative coupling constant. The results enable accurate analytic estimates of the effects of the
coupling constant variation on the positions and widths of the resonances.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Sq, 03.65.Db

1. Introduction involve the necessity of choosing the basis set (which should

be sulfficiently large), or the rotation angle.
The concept of quasi-stationary (metastable) states and A novel two-potential approach to tunneling problems
resonances plays a fundamental role in quantum mechanigas recently proposed by Gurvitz and Kalbermahg].[In
Metastable states arise as resonances in scattering reactibes approach the ‘unperturbed’ bound states are required
when the particle enters the classically forbidden region g input. However, such states do not exist in some cases.
tunneling effect. Such a quasi-bound state, observed in atorhiar instance, they are not available in the case of large
and molecular collisions, can be described with a complegupling constant. of the quartic anharmonic oscillator
energy eigenvalue (QAO) considered below.

One should also mention a very powerful method of
E=E—-il'/2 (1) summation of divergent seriesld] which is based on

generating the perturbation series used in the construction of
The resonance width" for the resonance energli; was the so-called ‘intelligent approximants’. This approach was
found long ago by Gamowd]. It was shown that a purely successfully applied to resonance calculations in both quartic
outgoing wave, known as the Gamow-Siegéitijoundary and cubic anharmonic oscillators with negative coupling
condition, determines the resonance spectrum. This isc@nstants.
computationally difficult boundary condition and therefore  Quantum anharmonic oscillator has been, and continues
resonance states have been studied by complex scalingoobe, the subject of intensive theoretical study, due to the va-
complex coordinate rotation methods-11]. However, these riety of its applications in different fields of physics. The most
successful techniques are not without disadvantages. Thegd example is the QAO. The Schrddinger equation for it has
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the form The necessary condition for validity of the quasiclassical
Y approximation has the form (see, e 21]):
— 10 +V(OY (X) = EY (%), @ P (see, el
U’(x)
where < 1. 7
’ p3(x) ()

V(X) = gxz +ax?. (3)

For A > 0, the QAQ exhibits bound states, whereasXoet 0 Itis easy to verify that for the QAO potentig)(one has:

it forms resonance states. . V'(X)
In what follows we use the atomic unit system£e= XETOO —[E IRVIOSEE = (8)
h=1).

Complex eigenvalueg of the QAO resonances were firstThis limit relation confirms the validity of condition7) at
calculated by Bender and Wii4]. Their approach was further sufficiently largex for QAO.
developed in the paperd 4] using the Rayleigh—-Schrédinger ~ Substituting the potentiaBj into the rhs of equationgj
perturbation theory and Wentzel-Kramers—Brillouin (WKBpne obtains:

methods: _ o _ X (k + 4x2)
In this paper, we pioneer the application of the quasi-y,g (x, E) =
linearization method (QLM) to the resonance calculations. 2(2E —kx? —2ax4)

QLM has been suggested recently for solving the Schrédinger
equation for bound states after conversion into the Riccati

form [16-20Q]. In the QLM the nonlinear differential equa- . . .
tion is treated by approximating the nonlinear terms by a s-ghe I_atter_ expression enabl_es_ us to f_md_the pehawor (.)f the
garithmic derivativey(x) at infinity which is antisymmetric

guence of linear expressions. The QLM is iterative but ni% . . . o
perturbative and gives stable solutions to nonlinear proble X both symmetric and antisymmetric solutions:
without depending on the existence of a smallness parame- 1
ter. The choice of the zeroth iteration is based on general fea- Re{y(x)} = % (X — +£00), (10)
tures of solutions near the boundaries. The precise form of the
zeroth iteration is not important in view of the very fast
quadratic convergence of the quasilinear iterations.

Recently, we used the QLM for analytic calculations of ) )
the bound-state energies and wavefunctions of the quartic ahdLM iteration scheme for resonances
pure guartic oscillatorsl]7] that correspond to the positive ] ] L
coupling constant. in the potential 8). The goal of the It is _vveII known that th_e one-dlmensmn_al Schrédinger
present paper is to employ the QLM for computation of th_%quatlon fpr thg wavefunctlo@(x) can be easily transformed
resonant states, which appear in the QAO at negative valifa® the Riccati equation
of A. One should emphasize, that also here, in analogy with , 2
the bound state casg, the first QLM iteration proviggs an Yy 00+y ) =2[U() — B, (12)

approximate but very accurate analytic presentation of ba#y the logarithmic derivativey(x) = v'(x)/¥(x) and arbi-
resonance energies and resonance wavefunctions. The ¥} potentiall (x).

iterations could serve for precise numerical computation of "For the complex energig defined by equationtj in the

—i2E -2 (k+2x?),  (x<0).  (9)

Im{y(x)} ~ £v/—=2Ax% (X = +00). (11)

these quantities. tunneling/resonance problemgx) in general is a complex
function:

2. Quasiclassical solution and the asymptotic Y(X) = a(X) +iB(X). (13)

behavior

The QLM enables one to solve the exact Riccati equa-
on (12) by the iteration procedure using the approximate
quation 18-20Q]:

const . " 100 + 2V () Yn(X) = Y2(X) +2[U(X) — Eq] . (14
e () ~ = exp<—|/p(x)dx) @ Y1 (O + 2¥n100 Yn(X) = YR (00 +2[U () — En] . (14)
VP where E,, is the energy of thath iteration. Let us consider

with a solution of this equation at the first iteratiom=€ 0). The
p(X) =v2[E-UX)]. (5) general solution can be written in the form:

It is very important to stress that one should take the minus
sign in the exponent, if we consider, for example, a particley1(X) =
which tends to escape by tunneling to the region of negative
potential energy to reach= —oo (‘outgoing’ condition).

For the logarithmic derivative of the quasiclassical
wavefunction 4), we have where xo and C are arbitrary constants an#, is the
zero iteration energy. Only one of the constargs C is

First of all, we resort to the basic quasiclassical (WKBi
wavefunction:

Ce2he Yotk

X
+/ e 2/< Yot [y3(s)+2U(s) — 2Eo]ds, (15)

Xo

Ywks (X) = Ve (%) = —ip(X) — P00 , (6) independent, of course. Settimg= X in equation {5), one
where prime denotes the first derivative in variakle C = y1(Xo). (16)
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Using equation16), it is easy to rewrite the solutiori§) in 4. Constructing the initial guess function
the form:
Let us consider the Schrodinger equati@ for the quartic

Yi(x) = & 2o PO anharmonic potential3] and introduce the new variable
X s = x2. The diff ial ioni
o {yl(XO) +f 2 yo(t)dt[yg(s) +2U (5)—2Ey] ds} . o=X e differential equation is now
o , 1, k » E
(17) ¢(0)"'54’(0)—(2"'7—5)(15(0):0, (25)

Both even and odd solutions to the Riccati equati®f) ( _ _ _
with the symmetric potentiaBj, in view of the antisymmetry for ¢(o) = (x). Using the asymptotic functions1Q)
of the logarithmic derivative, satisfy the following Dirichlet2nd (1), one obtains the following expression at large

boundary condition at the origin: (and hence, at large = x):
y(0)=0. 18)  yx) ~ exp/ y(x) dx ~ exp/ <—; +i —2Ax2> dx.
Putting Xo =0 in the rhs of equation1{) and using the (26)

condition (L8) one obtains the QLM logarithmic derivative of Then, one has:
the first order in the form: dp(o) idlﬁ(x) ~

do = 2x dx

X 2i <—E +i —2/\x2) ¥ (X)
yi(X) = / g2 yottoat [Yé(s)+2V(s) — 2Eq]ds.  (19) XA X
0

1 A
= (-==i/-2 ) s, (27)
Note that according to equatiori@ the QAO exhibits 20 2

very slow convergence of the corresponding wavefunction
[ (x)| ~ exp[/ Re{y(x)} dx] ~ x~* at infinity. This circum- whence
stance does not enable one to use equati@h directly for ,
the calculation of the complex zero iteration resonance energy ¢'(0) ~ <_i +i /_l> #(0). (28)
Eo, as it was done previously for bound states by setyingt 20 4o 8o
infinity equal to zero19]. , ) , i
Therefore, we propose instead to match the QLI@‘” key assumption now c0n5|st§ in neglectlng_ t_he terms
approximation {9) with the quasiclassical expressiog),( E¢(¢)/20 and ¢'()/20 in equation g9) at sufficiently
which is valid at largex|. Note that expressiorg) is valid |ar9€o.
only for nonpositivex. Hence, one should set a negative ~Eduation g5) then reduces to
matching pointx = X, with sufficiently large|Xm|. K o
Thus, the zero iteration resonance eneigy can be ¢ (o) — <— + —) ¢(c)=0, (29)
calculated by solving the equation: 4 2

with the general solution of the form:
Ywks (Xmo, Eo) = Po(Xmo) — 2Qo(Xmo) Eo, (20) g

where ¢ (o) = C1Ai (2) + C2Bi (2). (30)

t Here the Airy functions A(z) and B (z) depend on the
Po(t) = v *(t) / ¥5(s) [¥5() +2V(s)] s, (21) variable
0 2\?2 (k o

t

Qo(t) =y 2(,[)/0 wé(s) ds, (22) The corresponding logarithmic derivative has the form:
and . dep (x?) 21

Vo(S) = exp [/ Yo(U) du} . (23) yx.© == [005)]

2\?®_ Ai'(2)+CBi'(2)
The problems of finding the matching points and the initial = <X) kxm, (32)
guess functionyp(x) will be considered in the following
sections. whereC = C,/C; is an arbitrary constant, whereas the prime
The resonance enerdy in the first QLM iteration could denotes differentiation over the varialde

be calculated by applying the first iteration equation: Let us consider the question of how to set the value of the

coefficientC in the latter equation. The asymptotic expansion
Ywks (Xm1, E1) = P1(Xm1) — 2Q1(Xm1) E;. (24)  for Ai(2) is [22, 23]

The functionsPy (t) and Q1 (t) are obtained with the help of o0

equations 21)—(23) by replacingyo(x) by the functiony; (x) Ai(z) ~ 32z Vet Z(—l)mcmé“_m,
obtained earlier according to equatid®). The next iterations m=0

could be calculated in a similar fashion. (arg2)| < m), (33)
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where = 14 | |
=522 (34 Z 2 Rely, (0}
. ) . . . ) g 10 “otm
Herecn, is defined in 2, 23], however, its explicit form is not sl |77 Rely, ()} / \
important for our consideration. 06 / \
The asymptotic expansion foriB&) can be found in 04 ! \
equation 46) of [23] 02 — -~ \
[e’e] | [ee] é -------- 8 6 X -4 2 0
Bi(z) ~ n Y2z V4| ¢ My et - T
@=~n D omtME ey en(=O)T" |, EE
m=0 m=0 %
(0< +arg2) < %n) (35) E\i R —
Note that for negative and positivek equation 81) yields at ~ Z
~
=

sufficiently large positiver :

arg(z) = arg[—(-1)?®] = - (36) Figure 1. Real part of the logarithmic derivative function of the

QAO with negative coupling constaht= —0.05. The exact

: : solution Réyexac(X)} is depicted by the solid line. The initial guess
which obeys the asymptotic formulae33 and @5). function Reyy(x)} of the form @0) is represented by the dashed

Substituting this value into the rhs of equatioB4), one |ine The logarithmic derivative of the first QLM iteration

obtains: . Re(y2™(x)}, calculated by equationd®—(46), is shown in the
arg¢) = 5 (37) form of its deviation (on the logarithmic scale) from the exact
function depicted on the upper graph. This logarithmic deviation

This means that parametertakes pure imaginary values.NR&(y1(X)}/Re{Yexac(X)} — 1| is represented by the dotted line on
This in turn implies that the asymptotic expansiorgg)( e lower graph.
and @5) represent oscillatory functions due to the factors

exp(¢) or exp—¢) with the imaginarys. The presence of = /

5»

such exponentials in numerator and in denominator causeg
the oscillatory behavior of the logarithmic derivative2lin 7 ™
the asymptotic region. The correct asymptotic formulb@ ( E
and (1) as well as the exact numerical calculations, however, -2
exhibit non-oscillatory curves.

To resolve this contradiction one has to choose thg

coefficient C in such a way that the expressions in theZ 1 ———7 S M D
denominator of equation3p) and, hence, in its numerator % 1| ""j;? T '

will be reduced to one-exponential expressions. In this ca@ —
the oscillating exponentials in the numerator and denommat@ o i
are cancelled and non-oscillatory behavior results. There afe
two ways to achieve this. The first one is to gDi=0 in
equation 82). The second possibility is to s€t= —i. Asitis
seen from equation88)—(35), the latter choice enables us to
cancel the expressions with the factor exp). Figure 2. Ir_naginary_ part of the logarithmic derivative function of
Using representation8®—(35) it is easy to show that the QAO with negative coupling constant= —0.05. The exact

) . . . o . solution IM{Yexac(X)} is depicted by the solid line. The initial guess
asymptotic behavior of the logarithmic derivativ2] is function Im{ys(X)} and the logarithmic derivative of the first QLM

In|Im{y

defined as follows: iteration Im{y=>""(x)} are shown in the form of their deviations (on
1 the logarithmic scale) from the exact function depicted on the upper
y(X,0) ~ —— +iv/=2Ax%, (X = +00), (38) 9graph. These logarithmic deviationglm{y; (X)}/IM{Yexac(X)} — 1|
2X are represented on the lower graph by the dashed and dotted lines

for j =0 andj =1, respectively.

. 1 .
y(X, —i) ~ —o F ivV—20%%, (X — £00). (39)
with
Only equation 88) corresponding to the paramet€r=0 23/ ax2
exibits the correct asymptotic behavior (within a factg@ 1 z(x) = (A) <4 5 >
for the real part, which is a consequence of our previous
assumption) given by equationd0f and (1), whereas Figuresl-4 demonstrate that this initial guess describes the

(41)

y(x, —i) shows the complex conjugate behavior. exact numerically calculated logarithmic derivative (that is
Thus, we propose the initial guess of the form: Rely(x)} and Im{y(x)}) with a reasonable accuracy at both
23 3 small and intermediate values jod|.
Vo) = (g) AxAI [2(x)] (40) Substituting our initial guess4(Q) into the rhs of
A Ai[z(x)]’ equation 19) one obtains the logarithmic derivative in
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Table 1. QLM complex energies for the QAO.

(47)

AE Eo Ex Eexact
—0.025 0.479191-864x 10°% 0.479117-285x 108  0.479117-282x 107i
—0.05 0.450790-M0286576 0.450336—-M03346% 0.450336—M033466
-01 0.395866-M43284 0.397443-M447063 0.397441-®M447061
—-0.15 0.371073-M950959 0.373767-M950571 0.373767-M950567
-0.25 0.359088-07770% 0.361457-QL75754 0.361459-AL7575%
—0.375 0.363399-@51785% 0.364996—-®48940 0.364999—-®248940
= os The complex energi, therefore can be calculated by solving
= os] ‘ ‘ \ the equation:
&) 0.4 ] Re{yexact(x)} 4 \\\
ol ---- Refy, ()} ‘ \ Ywks (Xmo, Eo) = Y1(Xmo, Eo).
0.3
02 _ .’ \ The rhs of this equation is defined by equatioA2){(46),
— - \ whereas the lhs is represented by equat®n (

0.1 = ==

[nRely (0)}/Rely,  (¥)}-1]

Figure 3. The same as in figurg but for the coupling constant
A =0.375.

0

—

-20

-40

Im {ycxact(x)}

-60

-80

InfIm{y ()}/Im{y,  ()}-1]

Figure 4. The same as in figur& but for the coupling constant

y1(X, Eg) = Po(X) — 2EoQo(X), (42)

where

Po(x) = P52(x) /O [[@5(3)]2+2c1>§(s)V(s)] ds, (43)

Qo(X) = ®52(X) /O ®3(s) ds, (44)
with
Do(x) = Ai [z(x)], (45)
2 2/3
Dy(x) = <X) AXAI [z(¥)] . (46)

To calculate the resonance enefgyof the next order in
accuracy, one solves equatidtd) with

Pi(X) = / Q(x, s, Eo) [Yi(s, Eg)+2V(s)] ds,  (48)
0

Qi(x) = /X Q(X, s, Eg) ds, (49)
0

where

Q(X, s, Eg) = exp[Z/ yi(t, Eo) dt:| . (50)

5. Results and discussion

The results of the QLM calculations for the ground state
resonance energies of QAO with the negative coupling
constant A and the parametek =1 are presented in
tablel. For comparison we presented also the exact energies
calculated in 13. Note that the coupling constant
and the energie€ used in [L3] correspond to 2 and
2E in our notation, respectively. The complex QLM zero
iteration energyEy was calculated by solving the algebraic
transcendental equatiodq) using equations4@)—(46). The
first iteration energye; was obtained by solving equatio?d)
with functions Py(x), Qi(x) and yi(X, Eg), defined by
equations48)—(50) and @2), respectively. It is seen from the
data in table 1 that foEy we have an error only in the third
decimal place for both the real and imaginary pagghas an
error only in the sixth decimal place. We obtain slightly higher
precision for smal|i|. All the results were obtained using the
initial guess functions40) and @5).

Let us discuss the specific question of the matching
points mentioned above. According to equatidg)(only the
value of Eg is required to calculate the logarithmic derivative
vi(X, Eg). Eg is calculated by solving equatio?) that
includes the matching poingne as a parameter. In the upper
graphs of figure$ and6 the real and imaginary parts of the
energyEq are drawn as functions of the matching paoint
We present only the case af=0.1 as a typical example.
One can see that both functions are oscillatory, with ampli-
tudes that tend to diminish with increasing negative values
of xm. The amplitude of oscillation oAEy falls off very
quickly, so that atx, < —7 one hasAReEp} < 10°° and
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analytic expression4@), and Yexac(X), Obtained by direct
numerical solution of the Riccati equatiot?j with the QAO

] potential @), are presented for two boundary valuesict
0.395866 —0.05 and—0.375. The exact solutiongxac(X) are depicted
0.395864 by solid lines. The real parts of the initial guess functions
Yo(X) are shown by dashed lines in figurkand3.

To obtain the numerical solution we used the exact
complex energies fromlpB]. A purely outgoing logarithmic
derivative @) was applied to start the procedure of solving
the complex differential equationl?) at sufficiently large
negativex.

Our approximate analytic forms of logarithmic deriv-
T S atives y;(x) are very accurate. The differences between

them and the exact numerical values cannot be revealed
Figure 5. Real parts of the complex energiBs andE,, calculated gy a)ly. Therefore we present only the relative logarithmic
by equatlonsz(?) and Q.4), respectwely. The energies are drawn asdeviations from the exact functions ¥3(X),/Yexac(X) — 1|
functions of the matching poing, for A =0.1. : o / yexac

instead ofy;(x). Those deviations are depicted by a dotted

~= 0043285 ] line. The imaginary parts of our initial guess functions are
= ] accurate too and it is difficult to distinguish visually between
E oosszss them and the exact ones. Therefore, we present only the

0.043284 - relative logarithmic deviations from the exact functions,

0.043262 IN[IM{yo(X)}/IM{Yexac(X)} — 1|, instead of Infyo(x)} in
figures2 and4. They are depicted by dashed lines.

One can see that the analytic representations of the
first iteration logarithmic derivatives and the corresponding
wavefunctions are rather accurate and that their precision
increases with distance from the origin. This is caused by
the method of generating the initial guess function since the
corresponding differential equatio29) is accurate only at a
sufficiently large distance from the origin.

In conclusion, the algebraic transcendental equatdh (
Figure 6. Imaginary parts of the complex energiggandE,, and the integral expressiortd) provide approximate but
g?écglgbsg :é' Ejo:]%%t(l)cr)lr;%?tﬁ2dmiztl)c,hrierewng&té‘\;feg.ﬂeoiﬁerg|es accurate analytic representations_ of both resonance energi_es

and resonance wavefunctions which can be used for analytic
) o estimates of the effects of the coupling constant variation
Alm{Eg} < 1075, At negative (but sufficiently large) value o, the positions and widths of the resonances. The higher

Of Xm = Xmo >~ —11.5 one can observe a loss of a regulggerations could serve for precise numerical computation of
behavior of the plots. It is caused by the limited precision gf oge quantities

computer calculations.

We propose two simple ways to determiBig. The first
is to setEq= (E®+EJ'") /2, where EJ'®™ and EJ'™ are Acknowledgments
extrema of Eg, which are next toEq(xmo) in the regular
parts of the plots. The second way is to use the proceddree research was supported by grant no. 2004106 from the
of linear regressionZ4] to approximate the functiofg(x,,) United States—Israel Binational Science Foundation (BSF),
by a straight line in the regular region next xgo. We use Jerusalem, Israel.
the most common form of the linear regression based on the
least squares fitting. Both approaches give the same res%g,ferences
presented in tablg.
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