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Abstract
We pioneered the application of the quasilinearization method (QLM) to resonance
calculations. The quartic anharmonic oscillator(kx2/2)+λx4 with a negative coupling
constantλ was chosen as the simplest example of the resonant potential. The QLM has been
suggested recently for solving the bound state Schrödinger equation after conversion into
Riccati form. In the quasilinearization approach the nonlinear differential equation is treated
by approximating the nonlinear terms by a sequence of linear expressions. The QLM is
iterative but not perturbative and gives stable solutions to nonlinear problems without
depending on the existence of a smallness parameter. The choice of zero iteration is based on
general features of solutions near the boundaries. Comparison of our approximate analytic
expressions for the resonance energies and wavefunctions obtained in the first QLM iteration
with the exact numerical solutions demonstrate their high accuracy in the wide range of the
negative coupling constant. The results enable accurate analytic estimates of the effects of the
coupling constant variation on the positions and widths of the resonances.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Sq, 03.65.Db

1. Introduction

The concept of quasi-stationary (metastable) states and
resonances plays a fundamental role in quantum mechanics.
Metastable states arise as resonances in scattering reactions
when the particle enters the classically forbidden region by
tunneling effect. Such a quasi-bound state, observed in atomic
and molecular collisions, can be described with a complex
energy eigenvalue

E = Er − i0/2. (1)

The resonance width0 for the resonance energyEr was
found long ago by Gamow [1]. It was shown that a purely
outgoing wave, known as the Gamow–Siegert [2] boundary
condition, determines the resonance spectrum. This is a
computationally difficult boundary condition and therefore
resonance states have been studied by complex scaling or
complex coordinate rotation methods [3–11]. However, these
successful techniques are not without disadvantages. They

involve the necessity of choosing the basis set (which should
be sufficiently large), or the rotation angle.

A novel two-potential approach to tunneling problems
was recently proposed by Gurvitz and Kalbermann [12]. In
their approach the ‘unperturbed’ bound states are required
as input. However, such states do not exist in some cases.
For instance, they are not available in the case of large
coupling constantλ of the quartic anharmonic oscillator
(QAO) considered below.

One should also mention a very powerful method of
summation of divergent series [13] which is based on
generating the perturbation series used in the construction of
the so-called ‘intelligent approximants’. This approach was
successfully applied to resonance calculations in both quartic
and cubic anharmonic oscillators with negative coupling
constants.

Quantum anharmonic oscillator has been, and continues
to be, the subject of intensive theoretical study, due to the va-
riety of its applications in different fields of physics. The most
used example is the QAO. The Schrödinger equation for it has
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the form

−
1
2ψ

′′(x)+ V(x)ψ(x)= Eψ(x), (2)

where

V(x)=
k

2
x2 +λx4. (3)

For λ > 0, the QAO exhibits bound states, whereas forλ < 0
it forms resonance states.

In what follows we use the atomic unit system (m = e=

h̄ = 1).
Complex eigenvaluesE of the QAO resonances were first

calculated by Bender and Wu [14]. Their approach was further
developed in the papers [15] using the Rayleigh–Schrödinger
perturbation theory and Wentzel–Kramers–Brillouin (WKB)
methods.

In this paper, we pioneer the application of the quasi-
linearization method (QLM) to the resonance calculations.
QLM has been suggested recently for solving the Schrödinger
equation for bound states after conversion into the Riccati
form [16–20]. In the QLM the nonlinear differential equa-
tion is treated by approximating the nonlinear terms by a se-
quence of linear expressions. The QLM is iterative but not
perturbative and gives stable solutions to nonlinear problems
without depending on the existence of a smallness parame-
ter. The choice of the zeroth iteration is based on general fea-
tures of solutions near the boundaries. The precise form of the
zeroth iteration is not important in view of the very fast
quadratic convergence of the quasilinear iterations.

Recently, we used the QLM for analytic calculations of
the bound-state energies and wavefunctions of the quartic and
pure quartic oscillators [17] that correspond to the positive
coupling constantλ in the potential (3). The goal of the
present paper is to employ the QLM for computation of the
resonant states, which appear in the QAO at negative values
of λ. One should emphasize, that also here, in analogy with
the bound state case, the first QLM iteration provides an
approximate but very accurate analytic presentation of both
resonance energies and resonance wavefunctions. The next
iterations could serve for precise numerical computation of
these quantities.

2. Quasiclassical solution and the asymptotic
behavior

First of all, we resort to the basic quasiclassical (WKB)
wavefunction:

ψWKB(x)'
const

√
p(x)

exp

(
−i
∫

p(x)dx

)
(4)

with
p(x)=

√
2[E −U (x)]. (5)

It is very important to stress that one should take the minus
sign in the exponent, if we consider, for example, a particle
which tends to escape by tunneling to the region of negative
potential energy to reachx = −∞ (‘outgoing’ condition).

For the logarithmic derivative of the quasiclassical
wavefunction (4), we have

yWKB(x)≡
ψ ′

WKB(x)

ψWKB(x)
= −i p(x)−

p′(x)

2p(x)
, (6)

where prime denotes the first derivative in variablex.

The necessary condition for validity of the quasiclassical
approximation has the form (see, e.g. [21]):∣∣∣∣U ′(x)

p3(x)

∣∣∣∣� 1. (7)

It is easy to verify that for the QAO potential (3) one has:

lim
x→±∞

V ′(x)

[E − V(x)]3/2 = 0. (8)

This limit relation confirms the validity of condition (7) at
sufficiently largex for QAO.

Substituting the potential (3) into the rhs of equation (6)
one obtains:

yWKB(x, E)=
x(k + 4λx2)

2
(
2E − kx2 − 2λx4

)
− i
√

2E − x2
(
k + 2λx2

)
, (x 6 0). (9)

The latter expression enables us to find the behavior of the
logarithmic derivativey(x) at infinity which is antisymmetric
for both symmetric and antisymmetric solutions:

Re{y(x)} ' −
1

x
, (x → ±∞), (10)

Im {y(x)} ' ±
√

−2λx2, (x → ±∞). (11)

3. QLM iteration scheme for resonances

It is well known that the one-dimensional Schrödinger
equation for the wavefunctionψ(x) can be easily transformed
into the Riccati equation

y′(x)+ y2(x)= 2[U (x)− E] , (12)

for the logarithmic derivativey(x)= ψ ′(x)/ψ(x) and arbi-
trary potentialU (x).

For the complex energyE defined by equation (1) in the
tunneling/resonance problems,y(x) in general is a complex
function:

y(x)= α(x)+ iβ(x). (13)

The QLM enables one to solve the exact Riccati equa-
tion (12) by the iteration procedure using the approximate
equation [18–20]:

y′

n+1(x)+ 2yn+1(x)yn(x)= y2
n(x)+ 2[U (x)− En] . (14)

whereEn is the energy of thenth iteration. Let us consider
a solution of this equation at the first iteration (n = 0). The
general solution can be written in the form:

y1(x)= Ce−2
∫ x

x0
y0(t)dt

+
∫ x

x0

e−2
∫ x

s y0(t)dt
[
y2

0(s)+ 2U (s)− 2E0
]

ds, (15)

where x0 and C are arbitrary constants andE0 is the
zero iteration energy. Only one of the constantsx0, C is
independent, of course. Settingx = x0 in equation (15), one
obtains:

C = y1(x0). (16)
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Using equation (16), it is easy to rewrite the solution (15) in
the form:

y1(x)= e−2
∫ x

x0
y0(t)dt

×

{
y1(x0)+

∫ x

x0

e2
∫ s

x0
y0(t)dt[y2

0(s)+ 2U (s)−2E0
]

ds

}
.

(17)

Both even and odd solutions to the Riccati equation (12)
with the symmetric potential (3), in view of the antisymmetry
of the logarithmic derivative, satisfy the following Dirichlet
boundary condition at the origin:

y(0)= 0. (18)

Putting x0 = 0 in the rhs of equation (17) and using the
condition (18) one obtains the QLM logarithmic derivative of
the first order in the form:

y1(x)=

∫ x

0
e2
∫ s

x y0(t)dt
[
y2

0(s)+ 2V(s)− 2E0
]

ds. (19)

Note that according to equation (10) the QAO exhibits
very slow convergence of the corresponding wavefunction
|ψ(x)| ∼ exp[

∫
Re{y(x)} dx] ' x−1 at infinity. This circum-

stance does not enable one to use equation (19) directly for
the calculation of the complex zero iteration resonance energy
E0, as it was done previously for bound states by settingy1 at
infinity equal to zero [19].

Therefore, we propose instead to match the QLM
approximation (19) with the quasiclassical expression (9),
which is valid at large|x|. Note that expression (9) is valid
only for nonpositivex. Hence, one should set a negative
matching pointx = xm with sufficiently large|xm|.

Thus, the zero iteration resonance energyE0 can be
calculated by solving the equation:

yWKB(xm0, E0)= P0(xm0)− 2Q0(xm0)E0, (20)

where

P0(t)= ψ−2
0 (t)

∫ t

0
ψ2

0(s)
[
y2

0(s)+ 2V(s)
]

ds, (21)

Q0(t)= ψ−2
0 (t)

∫ t

0
ψ2

0(s)ds, (22)

and

ψ0(s)= exp

[∫ s

y0(u)du

]
. (23)

The problems of finding the matching points and the initial
guess functiony0(x) will be considered in the following
sections.

The resonance energyE1 in the first QLM iteration could
be calculated by applying the first iteration equation:

yWKB(xm1, E1)= P1(xm1)− 2Q1(xm1)E1. (24)

The functionsP1(t) and Q1(t) are obtained with the help of
equations (21)–(23) by replacingy0(x) by the functiony1(x)
obtained earlier according to equation (19). The next iterations
could be calculated in a similar fashion.

4. Constructing the initial guess function

Let us consider the Schrödinger equation (2) for the quartic
anharmonic potential (3) and introduce the new variable
σ = x2. The differential equation is now

φ′′(σ )+
1

2σ
φ′(σ )−

(
k

4
+
λσ

2
−

E

2σ

)
φ(σ)= 0, (25)

for φ(σ)= ψ(x). Using the asymptotic functions (10)
and (11), one obtains the following expression at large|x|

(and hence, at largeσ = x2):

ψ(x)∼ exp
∫

y(x)dx ' exp
∫ (

−
1

x
± i

√
−2λx2

)
dx.

(26)
Then, one has:

dφ(σ)

dσ
=

1

2x

dψ(x)

dx
'

1

2x

(
−

1

x
± i

√
−2λx2

)
ψ(x)

≡

(
−

1

2σ
± i

√
−
λσ

2

)
φ(σ), (27)

whence

φ′(σ )

2σ
'

(
−

1

4σ 2
± i

√
−
λ

8σ

)
φ(σ). (28)

Our key assumption now consists in neglecting the terms
Eφ(σ)/2σ and φ′(σ )/2σ in equation (25) at sufficiently
largeσ .

Equation (25) then reduces to

φ′′(σ )−

(
k

4
+
λσ

2

)
φ(σ)= 0, (29)

with the general solution of the form:

φ(σ)= C1Ai (z)+ C2Bi (z). (30)

Here the Airy functions Ai (z) and Bi (z) depend on the
variable

z =

(
2

λ

)2/3(k

4
+
λσ

2

)
. (31)

The corresponding logarithmic derivative has the form:

y(x,C)≡
dφ(x2)

dx

[
φ(x2)

]−1

=

(
2

λ

)2/3

λx
Ai ′(z)+ CBi ′(z)

Ai (z)+ CBi (z)
, (32)

whereC = C2/C1 is an arbitrary constant, whereas the prime
denotes differentiation over the variablez.

Let us consider the question of how to set the value of the
coefficientC in the latter equation. The asymptotic expansion
for Ai (z) is [22, 23]:

Ai (z)'
1
2π

−1/2z−1/4e−ζ

∞∑
m=0

(−1)mcmζ
−m,

(| arg(z)|< π) , (33)

3
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where
ζ =

2
3z3/2. (34)

Herecm is defined in [22, 23], however, its explicit form is not
important for our consideration.

The asymptotic expansion for Bi (z) can be found in
equation (46) of [23]

Bi (z)' π−1/2z−1/4

[
eζ

∞∑
m=0

cmζ
−m

±
i

2
e−ζ

∞∑
m=0

cm(−ζ )
−m

]
,(

0<± arg(z) < 2
3π
)
. (35)

Note that for negativeλ and positivek equation (31) yields at
sufficiently large positiveσ :

arg(z)= arg
[
−(−1)2/3

]
≡ −

π

3
, (36)

which obeys the asymptotic formulae (33) and (35).
Substituting this value into the rhs of equation (34), one
obtains:

arg(ζ )= −
π

2
. (37)

This means that parameterζ takes pure imaginary values.
This in turn implies that the asymptotic expansions (33)
and (35) represent oscillatory functions due to the factors
exp(ζ ) or exp(−ζ ) with the imaginaryζ . The presence of
such exponentials in numerator and in denominator causes
the oscillatory behavior of the logarithmic derivative (32) in
the asymptotic region. The correct asymptotic formulae (10)
and (11) as well as the exact numerical calculations, however,
exhibit non-oscillatory curves.

To resolve this contradiction one has to choose the
coefficient C in such a way that the expressions in the
denominator of equation (32) and, hence, in its numerator
will be reduced to one-exponential expressions. In this case
the oscillating exponentials in the numerator and denominator
are cancelled and non-oscillatory behavior results. There are
two ways to achieve this. The first one is to putC = 0 in
equation (32). The second possibility is to setC = −i . As it is
seen from equations (33)–(35), the latter choice enables us to
cancel the expressions with the factor exp(−ζ ).

Using representations (33)–(35) it is easy to show that
asymptotic behavior of the logarithmic derivative (32) is
defined as follows:

y(x,0)' −
1

2x
± i

√
−2λx2, (x → ±∞), (38)

y(x,−i )' −
1

2x
∓ i

√
−2λx2, (x → ±∞). (39)

Only equation (38) corresponding to the parameterC = 0
exibits the correct asymptotic behavior (within a factor 1/2
for the real part, which is a consequence of our previous
assumption) given by equations (10) and (11), whereas
y(x,−i ) shows the complex conjugate behavior.

Thus, we propose the initial guess of the form:

y0(x)=

(
2

λ

)2/3

λx
Ai ′ [z(x)]

Ai [z(x)]
, (40)

Figure 1. Real part of the logarithmic derivative function of the
QAO with negative coupling constantλ= −0.05. The exact
solution Re{yexact(x)} is depicted by the solid line. The initial guess
function Re{y0(x)} of the form (40) is represented by the dashed
line. The logarithmic derivative of the first QLM iteration
Re{yQLM

1 (x)}, calculated by equations (42)–(46), is shown in the
form of its deviation (on the logarithmic scale) from the exact
function depicted on the upper graph. This logarithmic deviation
ln|Re{y1(x)}/Re{yexact(x)} − 1| is represented by the dotted line on
the lower graph.

Figure 2. Imaginary part of the logarithmic derivative function of
the QAO with negative coupling constantλ= −0.05. The exact
solution Im{yexact(x)} is depicted by the solid line. The initial guess
function Im{y0(x)} and the logarithmic derivative of the first QLM
iteration Im{yQLM

1 (x)} are shown in the form of their deviations (on
the logarithmic scale) from the exact function depicted on the upper
graph. These logarithmic deviations ln|Im{y j (x)}/Im{yexact(x)} − 1|

are represented on the lower graph by the dashed and dotted lines
for j = 0 and j = 1, respectively.

with

z(x)=

(
2

λ

)2/3(k

4
+
λx2

2

)
. (41)

Figures1–4 demonstrate that this initial guess describes the
exact numerically calculated logarithmic derivative (that is
Re{y(x)} and Im{y(x)}) with a reasonable accuracy at both
small and intermediate values of|x|.

Substituting our initial guess (40) into the rhs of
equation (19) one obtains the logarithmic derivative in

4
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Table 1.QLM complex energies for the QAO.

λ/E E0 E1 Eexact

−0.025 0.479191–5.864× 10−6i 0.479117–7.285× 10−6i 0.479117–7.282× 10−6i
−0.05 0.450790–0.00286576i 0.450336–0.0033465i 0.450336–0.0033466i
−0.1 0.395866–0.043284i 0.397443–0.0447063i 0.397441–0.0447061i
−0.15 0.371073–0.0950959i 0.373767–0.0950571i 0.373767–0.0950567i
−0.25 0.359088–0.177705i 0.361457–0.175754i 0.361459–0.175755i
−0.375 0.363399–0.251785i 0.364996–0.248940i 0.364999–0.248940i

Figure 3. The same as in figure1, but for the coupling constant
λ= 0.375.

Figure 4. The same as in figure2, but for the coupling constant
λ= 0.375.

the form:
y1(x, E0)= P0(x)− 2E0Q0(x), (42)

where

P0(x)=8−2
0 (x)

∫ x

0

[[
8′

0(s)
]2

+ 282
0(s)V(s)

]
ds, (43)

Q0(x)=8−2
0 (x)

∫ x

0
82

0(s)ds, (44)

with
80(x)= Ai [z(x)] , (45)

8′

0(x)=

(
2

λ

)2/3

λxAi ′ [z(x)] . (46)

The complex energyE0 therefore can be calculated by solving
the equation:

yWKB(xm0, E0)= y1(xm0, E0). (47)

The rhs of this equation is defined by equations (42)–(46),
whereas the lhs is represented by equation (9).

To calculate the resonance energyE1 of the next order in
accuracy, one solves equation (24) with

P1(x)=

∫ x

0
�(x, s, E0)

[
y2

1(s, E0)+ 2V(s)
]

ds, (48)

Q1(x)=

∫ x

0
�(x, s, E0)ds, (49)

where

�(x, s, E0)= exp

[
2
∫ s

x
y1(t, E0)dt

]
. (50)

5. Results and discussion

The results of the QLM calculations for the ground state
resonance energies of QAO with the negative coupling
constant λ and the parameterk = 1 are presented in
table1. For comparison we presented also the exact energies
calculated in [13]. Note that the coupling constant̃λ
and the energies̃E used in [13] correspond to 2λ and
2E in our notation, respectively. The complex QLM zero
iteration energyE0 was calculated by solving the algebraic
transcendental equation (47) using equations (42)–(46). The
first iteration energyE1 was obtained by solving equation (24)
with functions P1(x), Q1(x) and y1(x, E0), defined by
equations (48)–(50) and (42), respectively. It is seen from the
data in table 1 that forE0 we have an error only in the third
decimal place for both the real and imaginary parts.E1 has an
error only in the sixth decimal place. We obtain slightly higher
precision for small|λ|. All the results were obtained using the
initial guess functions (40) and (45).

Let us discuss the specific question of the matching
points mentioned above. According to equation (42) only the
value ofE0 is required to calculate the logarithmic derivative
y1(x, E0). E0 is calculated by solving equation (47) that
includes the matching pointxm0 as a parameter. In the upper
graphs of figures5 and6 the real and imaginary parts of the
energyE0 are drawn as functions of the matching pointxm.
We present only the case ofλ= 0.1 as a typical example.
One can see that both functions are oscillatory, with ampli-
tudes that tend to diminish with increasing negative values
of xm. The amplitude of oscillation of1E0 falls off very
quickly, so that atxm <−7 one has1Re{E0}< 10−5 and

5



Phys. Scr.77 (2008) 045004 E Z Livertset al

Figure 5. Real parts of the complex energiesE0 andE1, calculated
by equations (47) and (24), respectively. The energies are drawn as
functions of the matching pointxm for λ= 0.1.

Figure 6. Imaginary parts of the complex energiesE0 andE1,
calculated by equations (47) and (24), respectively. The energies
are drawn as functions of the matching pointxm for λ= 0.1.

1Im{E0}< 10−5. At negative (but sufficiently large) value
of xm = xm0 ' −11.5 one can observe a loss of a regular
behavior of the plots. It is caused by the limited precision of
computer calculations.

We propose two simple ways to determineE0. The first
is to set E0 = (Emax

0 + Emin
0 )/2, where Emax

0 and Emin
0 are

extrema of E0, which are next toE0(xm0) in the regular
parts of the plots. The second way is to use the procedure
of linear regression [24] to approximate the functionE0(xm)

by a straight line in the regular region next toxm0. We use
the most common form of the linear regression based on the
least squares fitting. Both approaches give the same results,
presented in table1.

In the lower graphs of figures5 and 6 the real and
imaginary parts of the resonance complex energyE1 for
λ= 0.1 are drawn as functions of the matching pointxm.
The computations were performed by solving equation (24)
involving xm as a parameter. One obtains the plots of the
oscillatory functions, which are identical in shape to the
plots for E0 discussed above. The only distinction is that the
crucial point has a different value ofxm1 ' −6.5. Therefore
to calculateE1 one can apply the same approach as was
described above forE0.

In figures 1–4 the real and imaginary parts of the
logarithmic derivatives y0(x), y1(x), obtained from the

analytic expression (42), and yexact(x), obtained by direct
numerical solution of the Riccati equation (12) with the QAO
potential (3), are presented for two boundary values ofλ=

−0.05 and−0.375. The exact solutionsyexact(x) are depicted
by solid lines. The real parts of the initial guess functions
y0(x) are shown by dashed lines in figures1 and3.

To obtain the numerical solution we used the exact
complex energies from [13]. A purely outgoing logarithmic
derivative (9) was applied to start the procedure of solving
the complex differential equation (12) at sufficiently large
negativex.

Our approximate analytic forms of logarithmic deriv-
atives y1(x) are very accurate. The differences between
them and the exact numerical values cannot be revealed
visually. Therefore we present only the relative logarithmic
deviations from the exact functions ln|y1(x)/yexact(x)− 1|

instead ofy1(x). Those deviations are depicted by a dotted
line. The imaginary parts of our initial guess functions are
accurate too and it is difficult to distinguish visually between
them and the exact ones. Therefore, we present only the
relative logarithmic deviations from the exact functions,
ln|Im{y0(x)}/Im{yexact(x)} − 1|, instead of Im{y0(x)} in
figures2 and4. They are depicted by dashed lines.

One can see that the analytic representations of the
first iteration logarithmic derivatives and the corresponding
wavefunctions are rather accurate and that their precision
increases with distance from the origin. This is caused by
the method of generating the initial guess function since the
corresponding differential equation (29) is accurate only at a
sufficiently large distance from the origin.

In conclusion, the algebraic transcendental equation (47)
and the integral expression (42) provide approximate but
accurate analytic representations of both resonance energies
and resonance wavefunctions which can be used for analytic
estimates of the effects of the coupling constant variation
on the positions and widths of the resonances. The higher
iterations could serve for precise numerical computation of
these quantities.
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