PHYSICAL REVIEW A VOLUME 55, NUMBER 2 FEBRUARY 1997

Hyperspherical approach to the calculation of few-body atomic resonances

S. Berkovic, R. Krivec, V. Mandelzweig, and L. Stotland
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(Received 5 August 1996

Direct solution of the Schidinger equation for the doubly excited resonast state of the helium atom is
obtained with the help of the complex rotation mettadhich reduces the resonance problem to that of bound
states with complex enerfyand the correlation function hyperspherical harmot@&EHH) method. In the
CFHH method the solution is a product of a correlation function and a smooth factor expanded into hyper-
spherical harmonic functions. Given a proper correlation function, chosen from physical considerations, the
method generates resonant wave functions, accurate in the whole range of interparticle distances. Since the
method is nonvariational no stabilization procedure is needed. The calculated energy and width are shown to
be strictly independent of the angle of complex rotation, hence there is no need for the angle optimization
procedure as well. The results are compared with variational and other precise computations.
[S1050-294{@7)03602-0

PACS numbds): 31.15.Ja

Resonances are common phenomena in all branches @r few-body bound states by variational method, become
physics. They play a significant role in different low-energy available now also for few-body resonant states.
scattering cross sections, such as in electron-atom and The use of the variational approach for the calculation of
electron-molecular scattering processes as well as iresonance wave function means, however, the necessity of
positron-atom scattering and in photoionization. Doubly ex-guessing the mathematical form of the wave function, which
cited two-electron resonances, for example, apart from theican result in a low-quality wave function even in cases where
theoretical importance as the simplest few-body resonarttundreds of variational parameters generate extremely pre-
systems, are of interest for atomic processes in fusion plasise energie$28]. Theoretically, variational wave functions
mas[1] as well as for beam foil spectroscof®,3], electron  are accurate only in the region where the probability density
impact[4], and single-collision bea] experiments and for is high [29]. The analytical structure of three-body wave
charge-exchange proces$és-8] between heliumlike atoms functions calculated variationally is therefore uncertain,
and multicharged ions. During the past 20 years the calculaSince inclusion or omission of logarithmic terms, or negative
tion of these atomic resonances has been performed by RPWers of interparticle distances in case, for example, of
variety of methods, among them the close-coupling approxipound states, has a negllg|.ble effect on Fhe va!ue. of the'varla—
mation [9], the Feshbach projection operator formalism tional energy[28,3q. A variational function comc[des with
[10,11], the multiconfiguration Hartree-Fock methd?2], Fhe. precise one only on the average and could W!ldly or even
and the hyperspherical coordinate metlfad]. Most of the infinitely deviate from it locally{31]. These local discrepan-

recent resonance computatiddS—1d are, however, made cies could lead to wrong estimates of expectation values of
. P o St different operators that have significant contributions from
with the use of the complex coordinate rotation method

: : . . . the regions of the configuration space where the deviations
based on the dilatation analytic continuati®-21. Such occur. This could result, in principle, in an error in estimate

computations were pioneered by Nuttall and co-workersy rejativistic, finite-size, and QED effects for both resonant
[22—-24 and developed further in numerous papers by differ-;nq pound states.

ent authorgsee, for example, reviews of H@5] and Rein- One has to stress, however, that modern variational cal-
hardt[26] and references thergin culations use a sufficiently complete set of a few hundred or
The advantage of the complex coordinate rotationeven a few thousand basis functions of appropriate symmetry
r,—r;e'? is that it transforms the continuum resonance waveand therefore, in practice, some of the conclusions of
function to the normalizable wave function of the boundBartlett, Gibson, and Dunf1], which were based on cal-
state. The computation of the non-normalizable resonanceulations with only a six-term wave function, are no longer
wave functions thus becomes unnecessary, which bring gres¢levant. In particular, the present variational calculations of
simplifications. Furthermore, the resonance wave functioratomic resonancelsl4—-16,18 give very accurate and reli-
could be now obtained by a simple modification of existingable results for energies as well as other quantities. Never-
bound-state codes mostly based on the variational ansataeless, an independent nonvariational corroboration of their
(formulated for the complex Hamiltonian by Herzenberg andresults would be of value. A careful verification of the cur-
Mandl [27]). Bound and resonant states thus are treated orently accepted theoretical values of these parameters could
the same footing and the accurate results, normally obtainelse done using the direct solution of the complex rotated
Schralinger equation by the correlation function hyper-
spherical harmonic€CFHH) method unifying the correlation
*Permanent address: J. Stefan Institute, P.O. Box 100, Jamova 3@inction approach{32] with the hyperspherical harmonic
61111 Ljubljana, Slovenia. method(see the reviews ih33] and references thergin
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TABLE I. Energies of the ground state of the helium at@mu) TABLE Il. Dependence of the resonance enekjyand of the
calculated for the dilatation parametér0.4 rad. The results are width, calculated with the independent-particle correlation factor on
for the infinite mass of the helium nucleus,, is the maximum the dilatation parametet for different numbers of the hyperspheri-
global angular momentum anld= (K, /4+1)? is the number of cal basis states.
hyperspherical functions included and coupled equations solved
The number of digits indicates the numerical precision of calculated? Km E, /2
values. The results for the correlation parameter® and6=0 in

Eq. (4) corresponding to the cusp parametrization are displayed i0-10 4 —0.777 580 72 0.002 236 79
the first line of each entry, while the results for the independent-20 4 —0.777 580 72 0.002 236 79
particle parametrizationy=2—E and 6=0 are displayed in the 0.30 4 —0.777 580 72 0.002 236 79
second line. 0.40 4 —0.777 580 72 0.002 236 79
0.50 4 —0.777 581 17 0.002 237 00

Km N —E 2 0.10 8 —0.790 688 50 0.009 451 67

4 4 2.907 574 78 0.000 000 00 0.20 8 —0.790 688 50 0.009 451 67
3.060 143 74 0.000 000 00 0.30 8 —0.790 688 50 0.009 451 68

8 9 2902 332 03 0.000 000 00 0.40 8 —0.790 688 50 0.009 451 68
3.011 942 95 0.009 703 26 0.50 8 —0.790 688 50 0.009 451 67

12 16 2.903 880 66 0.000 000 00 0.60 8 ~0.790688 50 0.009 451 68
2964 006 11 0.002 367 89 0.70 8 —0.790 688 50 0.009 451 66

16 25 2.903548 75 0.000 000 00 0.80 8 ~0.790 688 50 0.009 451 68
2,935 259 10 0.000 208 95 1.00 8 —0.790 688 50 0.009 451 67

20 36 2903 737 33 0.000 000 00 0.10 20 —0.775796 35 0.002 214 27

2 923 645 24 0.000 022 22 0.20 20 —0.775 796 49 0.002 214 39

24 49 2 903 680 37 0.000 000 00 0.30 20 —0.775 796 49 0.002 214 40
2916 516 67 0.000 001 52 0.10 24 —0.776 166 68 0.002 241 29

28 64 2903 723 44 0.000 000 00 0.20 24 —0.776 166 48 0.002 241 01
2912 735 44 0.000 000 15 0.30 24 —0.776 166 48 0.002 241 02

0.10 28 —0.776 441 11 0.002 256 27

0.20 28 —0.776 441 11 0.002 256 27

The CFHH method33—-39 provides a very accuraidi-  0.30 28 —0.776 441 11 0.002 256 28
rect solution of the Schidinger equation for different three- 0.20 36 —0.776 936 26 0.002 267 66
body systems. Given the proper correlation function, chosef.30 36 —0.776 936 26 0.002 267 67

from physical considerations, the CFHH method provides
analytically correct wave functions, accurate in the whole

range of interparticle distances, including coalescence pointsielium wave functions, but is rooted in our inadequate
which leads, in turn, to precise estimates of the expectatioknowledge of the QED operators.

values of the Hamiltonian and of different functions of inter- The complex rotation method is most successful in the
particle distances. To date, the accuracy of the CFHHalculation of atomic and molecular resonances since for par-
method has been verified for ground @), first excited ticles interacting with Coulomb forces, the kinetic- and
(219), and highly excited (3S-51S) states of one heavy potential-energy operators in the Hamiltontdrsimply scale
and two light particles, such as the helium atom, as well aas exp(- 2i ) and exp(-i6), respectively,

for the ground states of mesomolecutgyu, ddu, dtw, and

ttu systems containing one light and two heavy particles and
for the ground state of the positronium negative @re e”
(also denoted P9 consisting of particles of equal masses. It
was shown[33-35 that the direct bound-state solution of In this paper, which is our first attempt to calculate reso-
the Schrdinger equation obtained by the CFHH methodnances by direct solution of the complexly rotated Sehro
yields precision comparable to that obtained previously onlydinger equation, we present the results of CFHH calculations
by elaborate variational calculations. With 225 hyperspheriof the position and the width of the lowe$8® helium reso-

cal harmonic functions, up to nine significant figure precisionnance. We compare our results with previous computations
were obtained for the energies of the ground and excitedf the doubly excited helium states that were performed by
states of the helium atom and of the positronium ion. Thethe close-coupling approximatid®], the Feshbach projec-
wave functions for the whole range of the interparticle dis-tion operator formalisnf10,11], as well as the hyperspheri-
tances and different expectation values for these systenwal coordinates methdd 3] and the complex coordinate ro-
have about six significant figure precision and the overall andation method 14-18§.

local quality of the corresponding wave functions is very The spectrum of the rotated Hamiltonigh) has the fol-
high. Relativistic and QED corrections calculated by using dowing feature§19-26: (i) the position of the bound-state
direct solution of the Schidinger equation for the %S ex-  poles remains unchange() the cuts are rotated downward
cited state of the helium atom obtained with the CFHHof the real axis by an angled2(iii) a resonant pole is ex-
method confirmed that the discrepancy between theory anplosed by the cuts once the rotational anglis greater than
experiment is not a result of our inaccurate knowledge of thes/2, whereg is the phase of the pole

Hy=Te 2%+ve '’ (6h)
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TABLE Ill. Energy and width of the'S? state of the helium atorfa.u). The first two columns correspond
to the eigenvalue of the Hamiltonian, while the third and fourth columns display its expectation value. The
other notations are the same as in Table I. The last lines of the table display the results of calculations
performed by the close-coupling approximati@l, the Feshbach projection operator formaligtf,11] the
hyperspherical coordinates methid®], and the complex coordinate rotation methjdéd—1§. The last two
lines are the results of two experimefi&$,37] that measured the positions and lifetimes of #$8 helium

resonance.

Km —-E, r/2 —-E, T2

8 0.778 239 52 0.005 269 18

12 0.787 546 41 0.002 986 05

16 0.781 962 56 0.002 17234

20 0.779818 12 0.002 240 00 0.777 395 0.002 236 1

24 0.779 048 69 0.002 248 84

28 0.778 479 60 0.002 259 90 0.777 801 533 0.002 273 004

32 0.778 296 96 0.002 261 92

36 0.778 105 17 0.002 266 23 0.777 848 732 0.002 271 317

40 0.778 050 72 0.002 266 73

44 0.777 974 14 0.002 268 59 0.777 860 427 0.002 270 900

48 0.777 955 40 0.002 268 71 0.777 863 624 0.002 270 787

56 0.777 913 64 0.002 269 61 0.777 865 632 0.002 270 720

64 0.777 893 50 0.002 270 06 0.777 866 534 0.002 270 690

72 0.777 883 03 0.002 270 29 0.777 866 984 0.002 270 675

extrapolated 0.777 867 6 0.002 270 65

Reference

[9] 0.7778 0.002 29

[10] 0.778 035 0.002 295

[11] 0.778 41 0.002 27

[13] 0.777 35 0.002 205

[14] 0.777 868 0.002 265

[15] 0.777 858 0.002 285 35

[16] 0.777 872 0.002 27

[17] 0.777 868 0.002 2705

[18] 0.777 867 636 0.002 270 653

[52] 0.778 164:0.001 47 0.002 5360.000 276

[53] 0.779 634:0.001 10 0.002 5360.000 276

r , convergence of the HH expansion fgr should be rapid.

E=E—i5= |Ele™"”, (20 Since the height of the centrifugal potential barrier deter-

mined by the eigenvalue§(K +4) of the operatofT, in-

whose real and imaginary parts correspond to the resonan&Ee@ses quadratically with grand orbital quantum momentum
energyE, and widthT’, respectively, and its position remain K=0.1,2... (which is the analog of orbital quantum number
unchanged with a further increase of the angie(iv) the L 1N the two-body casefor bound states the contributions of
rotated resonant wave function is asymptotically convergentligherK are expected to be negligible beyond sdtneK,,
decaying exponentially with an overall oscillatory factor. ~ Which is called the maximal global angular momentum. The
The complex resonance enerfyis obtained by solving €XPansion of the wave function, therefore, may be truncated
the Schidinger equation for bound states with the rotated@! thisKy,, leading to a finite system of the differential equa-
Hamiltonian (1). In the CFHH method33-35 one writes  1ONS INp. This is the only approximation in the hyperspheri-

the complexly rotated resonance wave function as a produ&@@! harmonics method, which is, in addition, well under con-
of two factors trol since a comparison of calculated values for subsequent

K, allows for an exact estimate of the errors. The resonance
=xa, (3)  solution for ¢ is sought as the bound-state solution of the

Schralinger equation with the complexly rotated Hamil-
wherey is the “correlation function” ands is expanded in  tonian (1) in the usual HH method, except that the potential

the usual hyperspherical harmorfitH) functions(which are Vv is replaced by an effective velocity-dependent potential
eigenfunctions of the angular part of kinetic-energy operatoy/’

Tqo) with complex coefficients depending on radius. If the )

correlation functiony is chosen to describe the important 1Vix

physical features ofy (such as cusps or asymptolicéhe V=V ET_(V V. @
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FIG. 1. Dependence of a resonance energy eigenvalig,dor FIG. 2. Same as in Fig. 1, but for the width

the cusp parametrizatiofdashed ling and for the independent-

particle parametrizatioridot-dashed line The solid line displays . L
theK,, dependence of an expectation value of the resonance ener es that in case of the cusp parametrization the pole for all

for the cusp parametrization. The position of arrows, denoted;by .M remains Str'c,tly on the r?al ,ax's' In _the case of the
b; c; d; e; f; andg; corresponds to resonance positions Calcu|atedndependent-par.tlcle paramgtrlz_atlon th_e width for srHa||
in Refs.[13;9:15;14,16;10:11:17,18respectively. is nonzero but disappears with increasing number of the hy-
perspherical basis functions. It is in agreement with the fact
HereV is the six-dimensional gradient operator avids a  that the cusp correlation factor describes the physics of the
sum of the pair Coulomb potentials. ground state much better than the independent-particle cor-
In the computation of thdS® helium resonance represent- "€lation factor that is derived under the assumption that both
ing a doubly excited state it is natural to use the same cor€/€Ctrons are in thestate. The dependence of the energy
relation factor as for the helium atom. The simplest correla2nd the width calculated with the independent-particle corre-

tion factor for the helium atom is given H3—35 lation factor on the dilatation parametefor different num-
bers of the hyperspherical basis states is displayed in Table
x=expf), Il. The table shows that the results of calculations are inde-

pendent of the rotation angle, that is, provided the rotation is
wheref is a spatially symmetric linear correlation function large enough for resonant poles to be exposed by the cuts,
the numerical procedure is stable and the results are not af-
f=—y(ri3try3) —or,. (5) fected by choice of a specific rotation angle. We found that
the stability increases with an increase Kf,. A similar
Here particle 3 is the helium nucleus, whose midsdor the  numerical stability with respect to the rotation angle was
sake of a comparison with the previous calculations, is preregistered also by Lindrotfi7]. The calculations were done

sumed infinite. with §=0.2 and 0.4 for the cusp and independent-particle
We have used two choices of the paramegenamely, parametrizations, respectively. They are displayed in Table
vy=2 and 2/—E, corresponding to cusg33-39 and lll, where the results of variational and other precise compu-

independent-particle parametrizations, respectively. The firgations are also given. Theoreticallg4], the complex en-

choice is the consequence of the Kato cusp condition, whilergy eigenvalu€(K ) should converge as K£, which is

the second choice corresponds to the model in which twindeed the case as one can see from the dashed and dot-

uncorrelated & electrons interacting with a nucleus with ef- dashed lines of the forrA+ B/K 2, on Figs. 1 and 2, fitted to

fective screened charge; have energyfE=—Z72%/4 and a the calculated complex energy eigenvalues by the least-

wave function  exp-Ze(fis+ra)]=exgd—2V—E(r;3  squares method

+ry3)]. In both cases, since electrons in doubly excited

states are located rather far from one another, we neglected

their correlation, setting=0. > K?{E(Km)—
The results of computations are displayed in Tables [-IIl Km

and in Fig. 1. The values in Table | show the change of the

position of the pole corresponding to the ground state as &he weight factoi $, in the sum stresses the better accuracy

result of the complex rotation by an anghe=0.4 rad. One of eigenvalues for highef,,.

B 2
A+F } =min. (6)

m
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The accuracy of the CFHH results is significantly in-  TABLE IV. Extrapolated valued,,; andT'e,/2 of expectation
creased by using our solution of the complex Sdimger  values of energy and width for different extrapolation procedures.
equation as a trial function for the Rayleigh-Ritz variational Then in the first col_umn denotes a power used in the weight factor
principle (modernized for complex Hamiltonians by Herzen- Km: a value ofK, in the second column corresponds to the last
berg and Mand[27]), which is stationary with respect to value ofK,, in Table Ill taken into account in extrapolation proce-

changes in the trial wave function. Such a method of improv-d“re-
ing the precision of the energy values has proved to be ex-

tremely useful in the bound-state CFHH calculati¢88— n Km ~Eext Texf2

35]. The corresponding computations for the cusp ¢ 64 0.777 867 649 0.002 270 649
parametrization that we found most rapidly convergent are g 72 0.777 867 604 0.002 270 652
displayed in third and fourth columns of Table Ill. The nu- 8 72 0.777 867 585 0.002 270 653

merical precision of the presented results is around eleven ,, 72 0.777 867 566 0.002 270 655
significant figures, so our numerical errors are less than the 12 79 0.777 867 551 0.002 270 656
errors due the to the truncation of the basis seK atkK,,
which could be estimated by the comparison of the values

for the subsequerk,,. One can see that the final accuracy ofracy of seven (eight figures, equals 0.777 8676
the expectation values of energy and width in the third and0.002 270 6% a.u. These values of energy and width agree
fourth columns of Table Ill, derived by a comparison of the well with the most accurate previous computation of Buer-
results forK,,=72 and 64, is six significant figures for the gers, Wintgen, and Ro$18].

energy and seven significant figures for the width, judging by Summing up, we calculated thes® resonance of the he-

a comparison of expectation values #f,=64 and 72. We lium atom by combining the complex rotation and the corre-
represented these results also by a solid curve of the fordation function hyperspherical harmonic methods. It is a di-
A+B/K?3, (since expectation values theoreticdlB4] should  rect computation of the resonances with the CFHH method.
converge as K ) in Figs. 1 and 2, fitted to the calculated The method generates resonant wave functions, accurate in
complex expectation values by the least-squares method withe whole range of interparticle distances. Since the method
the same weight factd¢ 8. We have tried the weight factors is nonvariational no stabilization procedure is needed. The
K8, K10 andK1? as well in order to check the stability of calculated energy and width are shown to be strictly inde-
our interpolation procedure. Values &f obtained for the pendent of the angle of complex rotation, hence there is no
different weights that are extrapolated values correspondingeed for the angle optimization procedure as well. The accu-
to K,= are displayed in Table IV. From this table one racy of the results is high and they agree excellently with
deduces that the extrapolated value of the endvggth),  most accurate recent computation of Buergers, Wintgen, and
which is independent of extrapolation procedure with accuRost[18].
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