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Hyperspherical approach to the calculation of few-body atomic resonances

S. Berkovic, R. Krivec,* V. Mandelzweig, and L. Stotland
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

~Received 5 August 1996!

Direct solution of the Schro¨dinger equation for the doubly excited resonant1Se state of the helium atom is
obtained with the help of the complex rotation method~which reduces the resonance problem to that of bound
states with complex energy! and the correlation function hyperspherical harmonic~CFHH! method. In the
CFHH method the solution is a product of a correlation function and a smooth factor expanded into hyper-
spherical harmonic functions. Given a proper correlation function, chosen from physical considerations, the
method generates resonant wave functions, accurate in the whole range of interparticle distances. Since the
method is nonvariational no stabilization procedure is needed. The calculated energy and width are shown to
be strictly independent of the angle of complex rotation, hence there is no need for the angle optimization
procedure as well. The results are compared with variational and other precise computations.
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Resonances are common phenomena in all branche
physics. They play a significant role in different low-ener
scattering cross sections, such as in electron-atom
electron-molecular scattering processes as well as
positron-atom scattering and in photoionization. Doubly e
cited two-electron resonances, for example, apart from t
theoretical importance as the simplest few-body reson
systems, are of interest for atomic processes in fusion p
mas@1# as well as for beam foil spectroscopy@2,3#, electron
impact@4#, and single-collision beam@5# experiments and for
charge-exchange processes@6–8# between heliumlike atoms
and multicharged ions. During the past 20 years the calc
tion of these atomic resonances has been performed
variety of methods, among them the close-coupling appro
mation @9#, the Feshbach projection operator formalis
@10,11#, the multiconfiguration Hartree-Fock method@12#,
and the hyperspherical coordinate method@13#. Most of the
recent resonance computations@13–18# are, however, made
with the use of the complex coordinate rotation meth
based on the dilatation analytic continuation@19–21#. Such
computations were pioneered by Nuttall and co-work
@22–24# and developed further in numerous papers by diff
ent authors~see, for example, reviews of Ho@25# and Rein-
hardt @26# and references therein!.

The advantage of the complex coordinate rotat
r i→r ie

iu is that it transforms the continuum resonance wa
function to the normalizable wave function of the bou
state. The computation of the non-normalizable resona
wave functions thus becomes unnecessary, which bring g
simplifications. Furthermore, the resonance wave func
could be now obtained by a simple modification of existi
bound-state codes mostly based on the variational an
~formulated for the complex Hamiltonian by Herzenberg a
Mandl @27#!. Bound and resonant states thus are treated
the same footing and the accurate results, normally obta
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for few-body bound states by variational method, beco
available now also for few-body resonant states.

The use of the variational approach for the calculation
resonance wave function means, however, the necessit
guessing the mathematical form of the wave function, wh
can result in a low-quality wave function even in cases wh
hundreds of variational parameters generate extremely
cise energies@28#. Theoretically, variational wave function
are accurate only in the region where the probability den
is high @29#. The analytical structure of three-body wav
functions calculated variationally is therefore uncerta
since inclusion or omission of logarithmic terms, or negat
powers of interparticle distances in case, for example,
bound states, has a negligible effect on the value of the va
tional energy@28,30#. A variational function coincides with
the precise one only on the average and could wildly or e
infinitely deviate from it locally@31#. These local discrepan
cies could lead to wrong estimates of expectation values
different operators that have significant contributions fro
the regions of the configuration space where the deviati
occur. This could result, in principle, in an error in estima
of relativistic, finite-size, and QED effects for both resona
and bound states.

One has to stress, however, that modern variational
culations use a sufficiently complete set of a few hundred
even a few thousand basis functions of appropriate symm
and therefore, in practice, some of the conclusions
Bartlett, Gibson, and Dunn@31#, which were based on cal
culations with only a six-term wave function, are no long
relevant. In particular, the present variational calculations
atomic resonances@14–16,18# give very accurate and reli
able results for energies as well as other quantities. Ne
theless, an independent nonvariational corroboration of t
results would be of value. A careful verification of the cu
rently accepted theoretical values of these parameters c
be done using the direct solution of the complex rota
Schrödinger equation by the correlation function hype
spherical harmonics~CFHH! method unifying the correlation
function approach@32# with the hyperspherical harmoni
method~see the reviews in@33# and references therein!.
39,
988 © 1997 The American Physical Society
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55 989HYPERSPHERICAL APPROACH TO THE CALCULATION . . .
The CFHH method@33–35# provides a very accuratedi-
rect solution of the Schro¨dinger equation for different three
body systems. Given the proper correlation function, cho
from physical considerations, the CFHH method provid
analytically correct wave functions, accurate in the wh
range of interparticle distances, including coalescence po
which leads, in turn, to precise estimates of the expecta
values of the Hamiltonian and of different functions of inte
particle distances. To date, the accuracy of the CF
method has been verified for ground (11S), first excited
(2 1S), and highly excited (31S–51S) states of one heavy
and two light particles, such as the helium atom, as wel
for the ground states of mesomolecularppm, ddm, dtm, and
ttm systems containing one light and two heavy particles
for the ground state of the positronium negative ione2e2e1

~also denoted Ps2! consisting of particles of equal masses.
was shown@33–35# that the direct bound-state solution
the Schro¨dinger equation obtained by the CFHH meth
yields precision comparable to that obtained previously o
by elaborate variational calculations. With 225 hypersph
cal harmonic functions, up to nine significant figure precis
were obtained for the energies of the ground and exc
states of the helium atom and of the positronium ion. T
wave functions for the whole range of the interparticle d
tances and different expectation values for these syst
have about six significant figure precision and the overall
local quality of the corresponding wave functions is ve
high. Relativistic and QED corrections calculated by usin
direct solution of the Schro¨dinger equation for the 21S ex-
cited state of the helium atom obtained with the CFH
method confirmed that the discrepancy between theory
experiment is not a result of our inaccurate knowledge of

TABLE I. Energies of the ground state of the helium atom~a.u.!
calculated for the dilatation parameteru50.4 rad. The results are
for the infinite mass of the helium nucleus.Km is the maximum
global angular momentum andN5(Km/411)2 is the number of
hyperspherical functions included and coupled equations sol
The number of digits indicates the numerical precision of calcula
values. The results for the correlation parametersg52 andd50 in
Eq. ~4! corresponding to the cusp parametrization are displaye
the first line of each entry, while the results for the independe
particle parametrizationg52A2E and d50 are displayed in the
second line.

Km N 2Er G/2

4 4 2.907 574 78 0.000 000 00
3.060 143 74 0.000 000 00

8 9 2.902 332 03 0.000 000 00
3.011 942 95 0.009 703 26

12 16 2.903 880 66 0.000 000 00
2.964 006 11 0.002 367 89

16 25 2.903 548 75 0.000 000 00
2.935 259 10 0.000 208 95

20 36 2.903 737 33 0.000 000 00
2.923 645 24 0.000 022 22

24 49 2.903 680 37 0.000 000 00
2.916 516 67 0.000 001 52

28 64 2.903 723 44 0.000 000 00
2.912 735 44 0.000 000 15
n
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helium wave functions, but is rooted in our inadequa
knowledge of the QED operators.

The complex rotation method is most successful in
calculation of atomic and molecular resonances since for
ticles interacting with Coulomb forces, the kinetic- an
potential-energy operators in the HamiltonianH simply scale
as exp(22iu) and exp(2 iu), respectively,

Hu5Te22iu1Ve2 iu. ~1!

In this paper, which is our first attempt to calculate res
nances by direct solution of the complexly rotated Sch¨-
dinger equation, we present the results of CFHH calculati
of the position and the width of the lowest1Se helium reso-
nance. We compare our results with previous computati
of the doubly excited helium states that were performed
the close-coupling approximation@9#, the Feshbach projec
tion operator formalism@10,11#, as well as the hyperspher
cal coordinates method@13# and the complex coordinate ro
tation method@14–18#.

The spectrum of the rotated Hamiltonian~1! has the fol-
lowing features@19–26#: ~i! the position of the bound-stat
poles remains unchanged;~ii ! the cuts are rotated downwar
of the real axis by an angle 2u; ~iii ! a resonant pole is ex
posed by the cuts once the rotational angleu is greater than
b/2, whereb is the phase of the pole

d.
d

in
t-

TABLE II. Dependence of the resonance energyEr and of the
width, calculated with the independent-particle correlation factor
the dilatation parameteru for different numbers of the hyperspher
cal basis states.

u Km Er G/2

0.10 4 20.777 580 72 0.002 236 79
0.20 4 20.777 580 72 0.002 236 79
0.30 4 20.777 580 72 0.002 236 79
0.40 4 20.777 580 72 0.002 236 79
0.50 4 20.777 581 17 0.002 237 00
0.10 8 20.790 688 50 0.009 451 67
0.20 8 20.790 688 50 0.009 451 67
0.30 8 20.790 688 50 0.009 451 68
0.40 8 20.790 688 50 0.009 451 68
0.50 8 20.790 688 50 0.009 451 67
0.60 8 20.790 688 50 0.009 451 68
0.70 8 20.790 688 50 0.009 451 66
0.80 8 20.790 688 50 0.009 451 68
1.00 8 20.790 688 50 0.009 451 67
0.10 20 20.775 796 35 0.002 214 27
0.20 20 20.775 796 49 0.002 214 39
0.30 20 20.775 796 49 0.002 214 40
0.10 24 20.776 166 68 0.002 241 29
0.20 24 20.776 166 48 0.002 241 01
0.30 24 20.776 166 48 0.002 241 02
0.10 28 20.776 441 11 0.002 256 27
0.20 28 20.776 441 11 0.002 256 27
0.30 28 20.776 441 11 0.002 256 28
0.20 36 20.776 936 26 0.002 267 66
0.30 36 20.776 936 26 0.002 267 67
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TABLE III. Energy and width of the1Se state of the helium atom~a.u.!. The first two columns correspon
to the eigenvalue of the Hamiltonian, while the third and fourth columns display its expectation value
other notations are the same as in Table I. The last lines of the table display the results of calcu
performed by the close-coupling approximation@9#, the Feshbach projection operator formalism@10,11# the
hyperspherical coordinates method@13#, and the complex coordinate rotation method@14–18#. The last two
lines are the results of two experiments@36,37# that measured the positions and lifetimes of the1Se helium
resonance.

Km 2Er G/2 2Er G/2

8 0.778 239 52 0.005 269 18
12 0.787 546 41 0.002 986 05
16 0.781 962 56 0.002 172 34
20 0.779 818 12 0.002 240 00 0.777 395 0.002 236 1
24 0.779 048 69 0.002 248 84
28 0.778 479 60 0.002 259 90 0.777 801 533 0.002 273 004
32 0.778 296 96 0.002 261 92
36 0.778 105 17 0.002 266 23 0.777 848 732 0.002 271 317
40 0.778 050 72 0.002 266 73
44 0.777 974 14 0.002 268 59 0.777 860 427 0.002 270 900
48 0.777 955 40 0.002 268 71 0.777 863 624 0.002 270 787
56 0.777 913 64 0.002 269 61 0.777 865 632 0.002 270 720
64 0.777 893 50 0.002 270 06 0.777 866 534 0.002 270 690
72 0.777 883 03 0.002 270 29 0.777 866 984 0.002 270 675
extrapolated 0.777 867 6 0.002 270 65

Reference
@9# 0.777 8 0.002 29
@10# 0.778 035 0.002 295
@11# 0.778 41 0.002 27
@13# 0.777 35 0.002 205
@14# 0.777 868 0.002 265
@15# 0.777 858 0.002 285 35
@16# 0.777 872 0.002 27
@17# 0.777 868 0.002 270 5
@18# 0.777 867 636 0.002 270 653
@52# 0.778 16460.001 47 0.002 53660.000 276
@53# 0.779 63460.001 10 0.002 53660.000 276
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5uEue2 ib, ~2!

whose real and imaginary parts correspond to the reson
energyEr and widthG, respectively, and its position rema
unchanged with a further increase of the angleu; ~iv! the
rotated resonant wave function is asymptotically converg
decaying exponentially with an overall oscillatory factor.

The complex resonance energyE is obtained by solving
the Schro¨dinger equation for bound states with the rotat
Hamiltonian ~1!. In the CFHH method@33–35# one writes
the complexly rotated resonance wave function as a pro
of two factors

c5xf, ~3!

wherex is the ‘‘correlation function’’ andf is expanded in
the usual hyperspherical harmonic~HH! functions~which are
eigenfunctions of the angular part of kinetic-energy opera
TV! with complex coefficients depending on radius. If t
correlation functionx is chosen to describe the importa
physical features ofc ~such as cusps or asymptotics!, the
ce

t,

ct

r

convergence of the HH expansion forf should be rapid.
Since the height of the centrifugal potential barrier det
mined by the eigenvaluesK(K14) of the operatorTV in-
creases quadratically with grand orbital quantum momen
K50,1,2,... ~which is the analog of orbital quantum numb
L in the two-body case!, for bound states the contributions o
higherK are expected to be negligible beyond someK5Km ,
which is called the maximal global angular momentum. T
expansion of the wave function, therefore, may be trunca
at thisKm , leading to a finite system of the differential equ
tions inr. This is the only approximation in the hypersphe
cal harmonics method, which is, in addition, well under co
trol since a comparison of calculated values for subsequ
Km allows for an exact estimate of the errors. The resona
solution forf is sought as the bound-state solution of t
Schrödinger equation with the complexly rotated Ham
tonian ~1! in the usual HH method, except that the potent
V is replaced by an effective velocity-dependent poten
V8,

V85V2
1

2

¹2x

x
2~¹ lnx!¹. ~4!
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55 991HYPERSPHERICAL APPROACH TO THE CALCULATION . . .
Here¹ is the six-dimensional gradient operator andV is a
sum of the pair Coulomb potentials.

In the computation of the1Se helium resonance represen
ing a doubly excited state it is natural to use the same
relation factor as for the helium atom. The simplest corre
tion factor for the helium atom is given by@33–35#

x5exp~ f !,

where f is a spatially symmetric linear correlation function

f52g~r 131r 23!2dr 12. ~5!

Here particle 3 is the helium nucleus, whose massM , for the
sake of a comparison with the previous calculations, is p
sumed infinite.

We have used two choices of the parameterg, namely,
g52 and 2A2E, corresponding to cusp@33–35# and
independent-particle parametrizations, respectively. The
choice is the consequence of the Kato cusp condition, w
the second choice corresponds to the model in which
uncorrelated 2s electrons interacting with a nucleus with e
fective screened chargeZeff have energyE52Zeff

2 /4 and a
wave function exp@2Zeff(r131r 23)#5exp@22A2E(r 13
1r 23)#. In both cases, since electrons in doubly exci
states are located rather far from one another, we negle
their correlation, settingd50.

The results of computations are displayed in Tables I–
and in Fig. 1. The values in Table I show the change of
position of the pole corresponding to the ground state a
result of the complex rotation by an angleu50.4 rad. One

FIG. 1. Dependence of a resonance energy eigenvalue onKm for
the cusp parametrization~dashed line! and for the independent
particle parametrization~dot-dashed line!. The solid line displays
theKm dependence of an expectation value of the resonance en
for the cusp parametrization. The position of arrows, denoted ba;
b; c; d; e; f ; andg; corresponds to resonance positions calcula
in Refs.@13;9;15;14,16;10;11;17,18#, respectively.
r-
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sees that in case of the cusp parametrization the pole fo
Km remains strictly on the real axis. In the case of t
independent-particle parametrization the width for smallKm
is nonzero but disappears with increasing number of the
perspherical basis functions. It is in agreement with the f
that the cusp correlation factor describes the physics of
ground state much better than the independent-particle
relation factor that is derived under the assumption that b
electrons are in the 2s state. The dependence of the ener
and the width calculated with the independent-particle co
lation factor on the dilatation parameteru for different num-
bers of the hyperspherical basis states is displayed in T
II. The table shows that the results of calculations are in
pendent of the rotation angle, that is, provided the rotatio
large enough for resonant poles to be exposed by the c
the numerical procedure is stable and the results are no
fected by choice of a specific rotation angle. We found t
the stability increases with an increase ofKm . A similar
numerical stability with respect to the rotation angle w
registered also by Lindroth@17#. The calculations were don
with u50.2 and 0.4 for the cusp and independent-parti
parametrizations, respectively. They are displayed in Ta
III, where the results of variational and other precise com
tations are also given. Theoretically@34#, the complex en-
ergy eigenvalueE(Km) should converge as 1/K m

2 , which is
indeed the case as one can see from the dashed and
dashed lines of the formA1B/K m

2 on Figs. 1 and 2, fitted to
the calculated complex energy eigenvalues by the le
squares method

(
Km

Km
6 FE~Km!2SA1

B

Km
2 D G25min. ~6!

The weight factorK m
6 in the sum stresses the better accura

of eigenvalues for higherKm .

rgy

d

FIG. 2. Same as in Fig. 1, but for the width.
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992 55BERKOVIC, KRIVEC, MANDELZWEIG, AND STOTLAND
The accuracy of the CFHH results is significantly i
creased by using our solution of the complex Schro¨dinger
equation as a trial function for the Rayleigh-Ritz variation
principle ~modernized for complex Hamiltonians by Herze
berg and Mandl@27#!, which is stationary with respect t
changes in the trial wave function. Such a method of impr
ing the precision of the energy values has proved to be
tremely useful in the bound-state CFHH calculations@33–
35#. The corresponding computations for the cu
parametrization that we found most rapidly convergent
displayed in third and fourth columns of Table III. The n
merical precision of the presented results is around ele
significant figures, so our numerical errors are less than
errors due the to the truncation of the basis set atK5Km ,
which could be estimated by the comparison of the val
for the subsequentKm . One can see that the final accuracy
the expectation values of energy and width in the third a
fourth columns of Table III, derived by a comparison of t
results forKm572 and 64, is six significant figures for th
energy and seven significant figures for the width, judging
a comparison of expectation values forKm564 and 72. We
represented these results also by a solid curve of the f
A1B/K m

5 ~since expectation values theoretically@34# should
converge as 1/K m

5 ! in Figs. 1 and 2, fitted to the calculate
complex expectation values by the least-squares method
the same weight factorK m

6 . We have tried the weight factor
K m

8 , K m
10, andK m

12 as well in order to check the stability o
our interpolation procedure. Values ofA obtained for the
different weights that are extrapolated values correspond
to Km5` are displayed in Table IV. From this table on
deduces that the extrapolated value of the energy~width!,
which is independent of extrapolation procedure with ac
ys

s.

an

ys
l

-
x-

e

n
e

s
f
d

y

m

ith

g

-

racy of seven ~eight! figures, equals 0.777 867
~0.002 270 65! a.u. These values of energy and width agr
well with the most accurate previous computation of Bu
gers, Wintgen, and Rost@18#.

Summing up, we calculated the1Se resonance of the he
lium atom by combining the complex rotation and the cor
lation function hyperspherical harmonic methods. It is a
rect computation of the resonances with the CFHH meth
The method generates resonant wave functions, accura
the whole range of interparticle distances. Since the met
is nonvariational no stabilization procedure is needed. T
calculated energy and width are shown to be strictly in
pendent of the angle of complex rotation, hence there is
need for the angle optimization procedure as well. The ac
racy of the results is high and they agree excellently w
most accurate recent computation of Buergers, Wintgen,
Rost @18#.

TABLE IV. Extrapolated valuesEext andGext/2 of expectation
values of energy and width for different extrapolation procedur
Then in the first column denotes a power used in the weight fac
Km

n ; a value ofKm in the second column corresponds to the la
value ofKm in Table III taken into account in extrapolation proc
dure.

n Km 2Eext Gext/2

6 64 0.777 867 649 0.002 270 649
6 72 0.777 867 604 0.002 270 652
8 72 0.777 867 585 0.002 270 653
10 72 0.777 867 566 0.002 270 655
12 72 0.777 867 551 0.002 270 656
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