Nonvariational calculation of the hyperfine splitting and other properties of the ground state of the muonic helium atom

R. Krivec ${ }^{1,2}$ and V. B. Mandelzweig ${ }^{2}$
${ }^{1}$ Department of Theoretical Physics, J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia
${ }^{2}$ Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

(Received 30 April 1997)

Abstract

The properties of the ground state of the muonic Helium atom $e \mu^{4} \mathrm{He}^{2+}$ have been calculated nonvariationally. The correlation function hyperspherical harmonic method utilizing a nonlinear parametrization of the correlation function has been used. Up to $N=561$ coupled second-order differential equations were taken into account. Although all parametrizations of the correlation function accelerate the convergence with respect to linear parametrizations by several orders of magnitude, an especially fast converging parametrization was found. All parametrizations make the observables converge to the same values in the limit of large N. The lowest-order hyperfine splitting obtained, $4454.206(3) \mathrm{MHz}$, has error margins smaller than the differences in the literature. One variational value is 0.023 MHz lower and another 0.013 MHz higher, after the adjustment for the different masses used. The expectation value of the distance between the electron and the muon also differs slightly from that in the literature, while the energy obtained was below the variational values. [S1050-2947(97)06311-7]

PACS number(s): 36.10.Dr, 36.10.Gv, 31.15.Ja, 32.10.Fn

I. INTRODUCTION

The muonic helium atom, which consists of an alpha particle, a negative muon, and an electron, is of great interest to atomic physicists for the following reasons:
(i) It is a pure atomic three-body system, which is quite unusual since all three particles are not identical, have very different masses, and no Pauli principle applies.
(ii) The atom is produced in the reaction of capture of the negative muon by the positive helium ion. It is one of the products in the process of muon catalyzed fusion, and its spectroscopic properties have to be therefore studied carefully to properly understand the fusion reactions.
(iii) The precise knowledge of the hyperfine splitting in this atom is especially important since it, together with the Zeeman effect, provides the most accurate and direct measurements of the muon magnetic momentum and of the electron-muon interaction constant.

In this work we concentrate on the computation of the lowest-order hyperfine splitting, which is given by (see Refs. [1,2] and references therein)

$$
\nu_{\mathrm{HF}}=\frac{8}{3} \pi \alpha^{2} \frac{m_{e}}{m_{\mu}}\left\langle\delta\left(\mathbf{r}_{e \mu}\right)\right\rangle,
$$

representing an expectation value of the contact term of the spin-spin interaction obtained in the nonrelativistic reduction of the Breit equation; $\mathbf{r}_{e \mu}$ is the muon-electron separation and $\left\langle\delta\left(\mathbf{r}_{e \mu}\right)\right\rangle$ is the expectation value calculated with the help of the spatial part of the wave function. In the Conclusion we will make a comparison of our result with the values in the literature that exibit rather large discrepancies [1-6]. The radiative and recoil corrections amount to about 10 MHz $[1,2,4,5]$ such that the lowest-order value is $\nu_{\mathrm{HF}} \approx 4454.2$ MHz.

II. APPLICATION OF CFHHM TO MUONIC HELIUM

A. Construction of the correlation function

To calculate precisely the wave function and observables of the ground state of the muonic helium atom, we used the correlation function hyperspherical harmonic method (CFHHM) $[7,8]$ in which the wave function is decomposed as $\Psi=e^{f} \phi$, where f is a correlation function and ϕ is a smooth function expandable in hyperspherical harmonics (HH). The Schrödinger equation is converted into an equation for ϕ with the non-Hermitian effective potential \bar{W}, which is a function of f. As a consequence, the eigenvalue obtained by solving the equation is not the true energy; $\langle H\rangle$ must be calculated for this purpose from Ψ.

For the total angular momentum zero, \bar{W} and Ψ depend on the hyperradius ρ and on two hyperangles, a and λ [7].

The CFHHM system of differential equations is a system of coupled second-order differential equations in a single variable in the hyperspherical-harmonic basis, which is truncated at a maximum value K_{m} of the global angular momentum $K=0,2,4, \ldots, K_{m}$ [8]. The hyperradial interval $\left[0, z_{U}\right]$, where $z_{U}=2 \sqrt{2 E} \rho_{U}, E$ is the eigenvalue, and ρ_{U} is the maximum value of the hyperradius, is subdivided using the parameter T_{z} [8] in a sequence of subintervals of increasing length equal to $z T_{z}$. The parameter p_{W} is the maximum power p in the expansion of \bar{W} into a series of terms ρ^{p}, $p=-1,0, \ldots, p_{W}$, with matrix coefficients.

We use the following general form of the correlation function f :

$$
\begin{equation*}
f=\sum_{i=1}^{3}\left[a_{i}+\left(b_{i}-a_{i}\right) e^{-r_{i} /\left(n_{i} \bar{r}_{i}\right)}\right] r_{i} \tag{1}
\end{equation*}
$$

where the spectator notation is used. The particles $\{1,2,3\}$ correspond to electron (e), the muon (μ), and ${ }^{4} \mathrm{He}^{2+}$, respectively; e.g., r_{3} denotes the distance be-
tween the electron and the muon. The b_{i} are the cusp parameters whose rounded values are $(-402.141,-1.999726$, 0.995187). \bar{r}_{i} is a constant approximately equal to the equlibrium distances of the particles in the i th pair. We used $\overline{r_{1}}=0.0037$ a.u., and $\overline{r_{2}}=\overline{r_{3}}=1.5$ a.u..

The form (1) takes all the cusp conditions exactly into account.

For the purpose of calculating the matrix elements of the expansion coefficients of \bar{W} into a series of terms ρ^{p}, the form (1) is first expanded in a series in $r_{i}^{q}, i=1,2,3$, $q=0,1, \ldots, p_{W}+2$. In the part of the matrix elements calculated by quadrature, those terms are expressed as functions of (ρ, a, λ).

Two of the a_{i} can in principle be determined from asymptotic conditions in the breakup channels [9]. In the present case the electron tail is expected to be the most important. Because the heavy negative particle has charge -1 , in our case the sum $b_{2}+b_{3}$ already has approximately the naively expected 'screening' type value of -1 . One would therefore expect that a linear f of the form (1) where $a_{i}=b_{i}$, $i=1,2,3$, would be a good first approximation. (Additionally, the muon mass lies in the correct range for $b_{3}+b_{1}$ to have approximately the correct value for the muon tail.)

However, it was first found that the linear f gives extremely slow convergent results (see Tables I and V). Second, it was found that the primary cause of the slow convergence is the divergence of e^{f} with the linear f at large distances between the electron and the muon. Therefore we attempted to construct several parametrizations of f with the least possible number of free parameters, each stressing one expectedly important aspect of f that would accelerate convergence. (All parametrizations eventually converge to the same limits, but the rate of convergence is of decisive importance.)

The parametrization A is defined by $a_{1}=b_{1}, a_{2}=b_{2}$ in Eq. (1):

$$
f=b_{1} r_{1}+b_{2} r_{2}+\left[a_{3}+\left(b_{3}-a_{3}\right) e^{-r_{3} /\left(n_{3} \overline{r_{3}}\right)}\right] r_{3} .
$$

This ansatz assumes the weak coupling of the electron and muon and only corrects the $e-\mu$ term, which would otherwise be non-negative. a_{3} and n_{3} are free parameters.

The parametrization B is defined by $a_{1}=b_{1}, a_{3}=0$:

$$
f=b_{1} r_{1}+\left[a_{2}+\left(b_{2}-a_{2}\right) e^{-r_{2} /\left(n_{2} \overline{r_{2}}\right)}\right] r_{2}+b_{3} e^{-r_{3} /\left(n_{3} \overline{r_{3}}\right)} r_{3}
$$

This form attempts to control, with the single parameter a_{2}, the electron tail of the form $\approx e^{a_{2} s_{1}}$ where s_{1} is the distance between the electron and the center of mass of the $\mu-{ }^{4} \mathrm{He}^{2+}$ system.

The parametrization C is defined by $a_{1}=b_{1}, a_{2}=0$:

$$
f=b_{1} r_{1}+b_{2} e^{-r_{2} /\left(n_{2} \overline{r_{2}}\right)} r_{2}+\left[a_{3}+\left(b_{3}-a_{3}\right) e^{-r_{3} /\left(n_{3} \overline{r_{3}}\right)}\right] r_{3}
$$

This controls the electron tail with a_{3} instead of a_{2} (parametrization B), but also removes asymptotically the linear term $a_{2} r_{2}$, which is a somewhat arbitrary proposition.

To find the optimal parameters of f, it is not necessary to perform a time-consuming variational procedure [8]. A few values of the free parameters need to be tested only, at fairly small K_{m}.

TABLE I. Eigenvalues and expectation values of the Hamiltonian for the parametrization $A \quad\left(a_{3}=-4, n_{3}=0.5\right)$, using $\left(z_{U}, p_{W}, T_{z}\right)=(700,100,0.05)$ and $\left(n_{\text {sub }}, n_{G}\right)=(1,64)$ (see Secs. I, III B). The subseries with $K_{m} / 2$ even and odd are displayed separately. The final result for $n_{3}=0.7$, which is more optimal for $\langle H\rangle$, is also shown. For comparison the results with the linear (cusp) correlation function [$a_{i}=b_{i}$ in Eq. (1)] are shown in the last part of the table for $K_{m} / 2$ even.

K_{m}	$-E$	$-\langle H\rangle$
32	402.640950660	402.641015359
36	402.641096568	402.641015351
40	402.641149784	402.641015337
44	402.641158391	402.641015339
48	402.641146896	402.641015345
52	402.641127811	402.641015348
56	402.641107328	402.641015352
34	402.640974478	402.641015359
38	402.640887229	402.641015345
42	402.640863367	402.641015342
46	402.640869013	402.641015339
50	402.640886882	402.641015344
54	402.640908323	402.641015350
	$\left(n_{3}=0.5\right)$	$402.6410153(1)^{\mathrm{a}}$
	$\left(n_{3}=0.7\right)$	$402.64101534(1)^{\mathrm{b}}$

Ref. [4]
402.6410153

32
402.62761
402.63727

40
48
56
402.66285
402.67040
402.66778
402.64063
402.66191

64
${ }^{\text {a }}$ The main contribution to the error is due to the plateau smoothness estimated as $\partial\langle H\rangle\left(z_{q}\right) / \partial z_{q}$ (see Sec. III B).
${ }^{\mathrm{b}}$ Error estimated from $K_{m} \leqslant 52$ calculations (see Fig. 4).

B. Convergence of the expectation values

In some systems the CFHHM basis exhibits a twofold convergence of the expectation values of some operators with respect to K_{m}. In the present case, the expectation values converge smoothly in two subsequences determined by whether $K_{m} / 2$ is even or odd. The subsequences approach the limit from different sides. This is the case for the eigenvalue E and for all operators except $\langle H\rangle .\langle H\rangle$ values in both subsequences are essentially the same (Fig. 4).

Another example are the $(2 p)^{2}$ helium resonances [10] where there are subsequences determined by whether $K_{m} / 8$ is even or odd.

The described pattern of twofold convergence offers a way of accelerating the convergence. We take the expectation values $\langle O\rangle_{K_{m}}$ of an operator O for three successive values of K_{m} and calculate the arithmetic mean of the linearly interpolated subsequences:

$$
{\overline{\langle O\rangle_{K_{m}}}}=\frac{1}{2}\left[\langle O\rangle_{K_{m}}+\frac{1}{2}\left(\langle O\rangle_{K_{m}-2}+\langle O\rangle_{K_{m}+2}\right)\right],
$$

$\overline{\langle O\rangle}_{K_{m}}$ typically converges much faster than $\langle O\rangle_{K_{m}}$.

C. Numerical considerations

Compared to calculations of systems with comparable masses, the upper value of the hyperradius in the present system had to be increased by a factor of $6-8$. This is because the electron and the muon define very different 'natural", scales via their very different binding energies to ${ }^{4} \mathrm{He}$.

The larger value of z_{U} necessitated a careful consideration of the permissible values of z_{U} and p_{W}. Too large z makes the expansion of \bar{W} meaningless because the large intermediate z^{p} terms in the alternating-sign summation cause loss of precision in the sum. Also, at large p the coefficients have less significant digits.

The terms of \bar{W} that are quadratic in f have to be calculated by numerical quadrature, while all other terms are calculated algebraically [7]. The quadrature is done as follows. The interval of the variable a is divided into [$0, \pi / 2-d_{a}$] and $\left[\pi / 2-d_{a}, \pi / 2\right]$. The interval of the variable λ is divided into $\left[0, s_{2}-d_{\lambda}\right], \quad\left[s_{2}-d_{\lambda}, s_{2}\right], \quad\left[s_{2}, s_{2}+d_{\lambda}\right], \quad\left[s_{2}+d_{\lambda}\right.$, $\left.s_{3}-d_{\lambda}\right], \quad\left[s_{3}-d_{\lambda}, s_{3}\right], \quad\left[s_{3}, s_{3}+d_{\lambda}\right], \quad\left[s_{3}+d_{\lambda}, s_{1}-d_{\lambda}\right]$, $\left[s_{1}-d_{\lambda}, s_{1}\right],\left[s_{1}, s_{1}+d_{\lambda}\right]$, and $\left[s_{1}+d_{\lambda}, 2 \pi\right]$. Here s_{i} are the points where, at $a=\pi / 2, r_{i}=0$. The integrands are finite at $r_{i}=0$ because f cancels the Coulomb terms in \bar{W} but $\partial r_{i} / \partial a$ and $\partial r_{i} / \partial \lambda$ entering the numerically calculated part of \bar{W} are discontinuous; the weight factor $\sin 2 a$ makes the integrand continuous but complicated close to $r_{i}=0$.
d_{a} and d_{λ} are small numbers (smaller than 0.1 and 0.03), which make the quadrature grid dense in the vicinity of singularities. The two a intervals are divided into $n_{\mathrm{sub}, r}^{(a)}$ and $n_{\text {sub }, s}^{(a)}$ equal subintervals, respectively. The λ intervals are subdivided into $n_{\text {sub }, r}^{(\lambda)}$ or $n_{\text {sub, } s}^{(\lambda)}$ subintervals, depending on whether they include one of s_{i} points. Since different subdivisions are rarely taken, we use the simple notation $n_{\text {sub }}^{(a)}$, $n_{\text {sub }}^{(\lambda)}$, or even $n_{\text {sub }}$ in the case equal subdivisions were taken in all variables and intervals. The same Gaussian order n_{G} is taken in all a, λ subintervals.

The corresponding parameters of the quadrature for the expectation values are denoted with primes.

Because the main problem to be overcome in this calculation, besides the construction of an appropriate correlation function, was the accuracy of the numerical quadrature used in part of the matrix elements of \bar{W}, we would like to point out that the solution of this problem had to preserve the great efficiency of the calculations of the quadratures. For example, at $K_{m}=64$ and $p_{W}=100$, one has to calculate $(64 / 2+1)^{2} \times 102 \times 2=222156$ two-dimensional integrals of products of Jacobi polynomials and complex functions of $r_{i}(a, \lambda)$. Using 8-byte arithmetic and recurrence relations for Jacobi polynomials, we need only 1300 sec on a $300-\mathrm{Mflop}$ machine for the integrals at $n_{\text {sub }}=8, n_{\mathrm{G}}=16(10 \times 2$ subregions giving a 1280×256 grid). At $K_{m}=56, n_{\text {sub }}=$ 4 we calculate 171564 integrals in 275 sec using double precision arithmetic, and in 71000 sec using quadruple precision arithmetic. In the latter case, this is still only 0.4 sec per integral, and we decided to keep the method also for quadruple precision instead of going to Romberg-type schemes. (The complete matrix elements calculation time increases by a lesser factor of 40 , due to the unchanged angular momentum coupling algebra part.)

The solution of the Schrödinger equations was performed in the usual (8-byte, double) precision arithmetic; thus the two-scale nature of the physical system was reflected only in the need for more precise quadrature in the matrix elements, and for a larger z_{U}; all other parameters like T_{z} and p_{W} were found to be as in other, more ordinary systems such as He atom or positronium negative ion.

III. RESULTS

A. Initial estimates of the CFHHM parameters

From first tests it was deduced that we can attempt to fix the intrinsic parameters so as to give $\overline{\nu_{\mathrm{HF}}}$ to about $\delta=0.03$ MHz accuracy without improving the precision of the matrix elements. These tests served to obtain the convergence patterns of the expectation values and to identify possible other necessary improvements in accuracy.

The best results for parametrization A were obtained with $a_{3}=-4$, despite the fact that in that case the sum $b_{2}+a_{3} \approx-6$ does not correspond to the expected form of the asymptotics of the wave function when the electron is removed from the $\mu-{ }^{4} \mathrm{He}^{2+}$ subsystem. A similar effect was observed in Ref. [11] in a variational calculation (behavior of the parameters α and β), where it was impossible to fix the behavior of the electron tail (see also [4]). The explanation of this effect may have to do with the short-range behavior of f, as follows.

Generally it turns out that n_{3} should be as small as possible, with the lower limit constrained by the numerical stability of the sum of the power series for f at the largest hyperradius. The smallness of n_{3} indicates that the nonlinear term in f should decay as fast as possible. A large absolute value of a_{3} then assures the fast decay of the $O\left(r_{3}^{2}\right)$ term in f.

The results with parametrization B did show the effect that a_{2} tended to be much smaller than expected (-4 , as in parametrization A), which is similar to the behavior in Ref. [11], but it shows that the idea that f should be modeled after the variational results for the optimum exponents is misleading.

In addition, we tested several parametrizations that take into account the 'cutoff'" effect that the solution ϕ has, for small coupled systems, asymptotics that can differ appreciably from those of $\Psi=e^{f} \phi$ (see Refs. [8,12]). This entails a self-consistent determination of the parameters a_{i} so as to give the correct asymptotics of Ψ in the first approximation, usually at $K_{m}=0$ [13]. For the cases tested, the imposition of asymptotic constraints on f was found to be of little relevance, and we could not find parametrizations as good as A in this way.

We can summarize the above observations on the choice of the optimal f in the same way as suggested in the CFHHM calculation of the properties of the $\mu d t$ system [12], namely, that it is not necessary to impose the proper asymptotic behavior on Ψ itself. It is sufficient to impose it on the correlation factor e^{f}, which is straightforward and eliminates the self-consistent determination of a_{i}. The only exception to this rule so far has been the positronium negative ion [9], although even in this case the a_{i} determination

FIG. 1. Convergence of ν_{HF} and ${\overline{\left(\nu_{\mathrm{HF}}\right)}}_{K_{m}}$ with K_{m} for the parametrization A (see Sec. II A), using the masses of Refs. [1,11], α of Ref. [15], and $a_{3}=-4$. ' + '" denotes the curves with $n_{3}=0.5$. The curve denoted by \diamond has the same value of n_{3}, but includes the global correction, while the curve denoted by \times corresponds to $n_{3}=0.7$.
was far from intractable because only 1 significant digit in a_{i} is required.

The averaged expectation values $\overline{\langle O\rangle}_{K_{m}}$ were convergent and stable as functions of K_{m} for $K_{m}=50-60$, which are not much larger than the K_{m} needed in simpler systems. (A calculation at $K_{m}=50$ takes three times less CPU time than at $K_{m}=64$.)

The arithmetic mean reduces the error of the method by two orders of magnitude. The degree of convergence of $\overline{\langle O\rangle}_{K_{m}}$ was the same in the test calculation and in the final accurate calculation. Because of this, as can be seen from Figs. 1-3 depicting the final results, a higher-order interpo-

FIG. 2. As in Fig. 1, but showing the ${\overline{\left(\nu_{\mathrm{HF}}\right)}}_{K_{m}}$ values only. The curve denoted by O presents the CFHHM values using the masses of Ref. [6] and α of Ref. [15] (see Sec. III C). The solid horizontal line is obtained from the value of Ref. [5] by adding 0.002 MHz (see Sec. IV). The dotted horizontal line is obtained by adding the difference (0.013 MHz) between Ref. [6] and CFHHM when using the same masses (see Sec. IV), to the CFHHM value (denoted by " + ").

FIG. 3. As in Fig. 2, but for $\left\langle\bar{r}_{3}\right\rangle_{K_{m}}$. The solid and dotted horizontal lines are obtained from the values of Refs. [4] and [6], respectively, by adjusting for the mass differences (see Table IV and Sec. IV) (adding and subtracting 0.000001 a.u., respectively).
lation is not necessary. It was only necessary to ensure that the accuracy of the separate $\langle O\rangle_{K_{m}}$ values matched the degree of convergence of $\overline{\langle O\rangle_{K_{m}}}$.

In particular, ${\overline{\left(\nu_{\mathrm{HF}}\right)}}_{K_{m}}$ is stable to within 0.002 MHz , which by far exceeds the absolute error of the individual points in the test calculation, and shows the accuracy we ought to strive for in the improved calculation.

The dependence on n_{3} was tested to be rather large for the $K_{m} / 2$ odd and even values separately, but smaller for $\overline{\langle O\rangle_{K_{m}}}$, so we need not be concerned with n_{3} at this level of accuracy except to the extent it is constrained by the numerical convergence.

In the present work it was also considered desirable to test the stability of the numerical algorithm at larger systems of equations; we calculated several cases with up to 561 equations ($K_{m}=64$) with linear and nonlinear f and found no evidence of numerical instability.

We deduced that the most critical parameters were the following: (a) quadrature in matrix elements: $n_{\text {sub }}, n_{G}, d_{a}$,

FIG. 4. Convergence of $\left\langle r_{3}\right\rangle$ as function of K_{m}, separately for $K_{m} / 2$ even and odd. Labels are as in Fig. 1. The error due to plateau smoothness for $n_{3}=0.5$ is about 0.001 units on the ordinate while for $n_{3}=0.7$ it is negligible (see Sec. III B).

TABLE II. As in Table I, but expectation values of functions of $\mathbf{r}_{1}=\mathbf{r}_{\mu-\mathrm{He}}$ for $n_{3}=0.5$. The third part of the table shows the CFHHM interpolated values. The last part of the table compares the CFHHM interpolated values using the masses of Ref. [6] with the values of Ref. [6]. The numbers in parentheses are last digit uncertainties defined as the differences of the interpolated values at $K_{m}=52$ and 54 , showing the convergence but not the final error estimates (see Secs. III C and IV).

K_{m}	$\left\langle r_{1}^{-2}\right\rangle \times 10^{-3}$	$\left\langle r_{1}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle \times 10^{-6}$	$\left\langle r_{1}\right\rangle \times 10^{3}$	$\left\langle r_{1}^{2}\right\rangle \times 10^{6}$
32	323.4404104	402.1429759	20.7007107	3.7300345	18.5508797
36	323.4406124	402.1431071	20.7007278	3.7300333	18.5508680
40	323.4407040	402.1431640	20.7007359	3.7300328	18.5508635
44	323.4407319	402.1431792	20.7007386	3.7300327	18.5508626
48	323.4407248	402.1431725	20.7007383	3.7300328	18.5508635
52	323.4407001	402.1431554	20.7007364	3.7300329	18.5508651
56	323.4406682	402.1431345	20.7007337	3.7300331	18.5508669
34	323.4403964	402.1429739	20.7007086	3.7300344	18.5508785
38	323.4402588	402.1428864	20.7006967	3.7300352	18.5508859
42	323.4402051	402.1428545	20.7006918	3.7300354	18.5508881
46	323.4401985	402.1428529	20.7006909	3.7300354	18.5508879
50	323.4402169	402.1428666	20.7006923	3.7300352	18.5508864
54	323.4402469	402.1428867	20.7006947	3.7300351	18.5508846
	$323.4404655(5)$	$402.1430158(2)$	$20.70071488(5)$	$3.730034042(1)$	$18.550875307(5)$
	$323.4344296(5)$	$402.1392635(2)$	$20.70013542(6)$	$3.730068847(3)$	$18.551221503(5)^{\mathrm{a}}$
Ref. [6]		402.13730303	20.7001373610	3.730069345	18.55122347

${ }^{2}$ CFHHM values computed using masses from Ref. [6] (see Sec. III C).
d_{λ}; the irregular dependence on these indicates insufficient precision arithmetic; (b) K_{m}; (c) density of the z points (parameter T_{z}); (d) a_{3}, n_{3}.

B. Optimization of the CFHHM parameters

Using quadruple-precision quadrature, we immediately reduced the quadrature error of ν_{HF} to the $0.002-\mathrm{MHz}$ level. The individual integrals became converging to some 14 sig-
nificant digits in contrast to the double-precision calculation where it was impossible to stabilize them to more than about 10 significant digits. This enabled the matrix elements to be accurate enough even at large z and large powers (about 100). We found that the results converge enough at $\left(d_{a}, d_{\lambda}\right)$ $=(0.05,0.015)$, respectively. These values are smaller by a factor of 2 than those used in other systems. Still smaller values neither improve results nor cause instability.

TABLE III. As in Tables I and II, but expectation values of functions of $\mathbf{r}_{2}=\mathbf{r}_{\mathrm{He}-\mathrm{e}}$.

K_{m}	$\left\langle r_{2}^{-2}\right\rangle$	$\left\langle r_{2}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$	$\left\langle r_{2}\right\rangle$	$\left\langle r_{2}^{2}\right\rangle$
32	1.9997424	0.9998616	0.3206137	1.5002496	3.0010103
36	2.0003544	1.0000437	0.3207256	1.4999412	2.9997741
40	2.0005438	1.0001025	0.3207590	1.4998353	2.9993382
44	2.0005424	1.0001044	0.3207575	1.4998273	2.9993056
48	2.0004649	1.0000832	0.3207424	1.4998586	2.9994211
52	2.0003639	1.0000543	0.3207234	1.4999051	2.9996054
56	2.0002645	1.0000254	0.3207049	1.4999529	2.9997970
34	1.9996482	0.9998496	0.3205874	1.5002358	3.0009195
38	1.9992788	0.9997382	0.3205207	1.5004295	3.0017076
42	1.9991984	0.9997119	0.3205073	1.5004798	3.0019159
46	1.9992420	0.9997228	0.3205165	1.5004671	3.0018790
50	1.9993323	0.9997483	0.3205338	1.5004270	3.0017207
54	1.9994324	0.9997773	0.3205526	1.5003783	3.0015176
	$1.9998733(1)$	$0.99990858(2)$	$0.32063337(7)$	$1.5001536(2)$	$3.000609(3)$
			$0.9999083308(4)$	$0.32063327(6)$	$1.5001550(1)$
		0.9999057442	0.32062688	1.500160720	3.00066555964
Ref. [6]	$1.9998726(1)$				

${ }^{\text {a See footnote of Table II. }}$

TABLE IV. As in Tables I and II, but expectation values of functions of $\mathbf{r}_{3}=\mathbf{r}_{e-\mu}$.

K_{m}	$\left\langle r_{3}^{-2}\right\rangle$	$\left\langle r_{3}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$	$\left\langle r_{3}\right\rangle$	$\left\langle r_{3}^{2}\right\rangle$
32	1.9991899	0.9998471	0.3137421	1.5002556	3.0010279
36	1.9998018	1.0000292	0.3138520	1.4999471	2.9997917
40	1.9999912	1.0000879	0.3138849	1.4998412	2.9993558
44	1.9999898	1.0000899	0.3138836	1.4998333	2.9993232
48	1.9999123	1.0000686	0.3138689	1.4998645	2.9994387
52	1.9998113	1.0000398	0.3138503	1.4999110	2.9996230
56	1.9997119	1.0000108	0.3138322	1.4999588	2.9998147
34	1.9990958	0.9998351	0.3137166	1.5002417	3.0009371
38	1.9987266	0.9997237	0.3136516	1.5004354	3.0017252
42	1.9986462	0.9996974	0.3136387	1.5004857	3.0019335
46	1.9986898	0.9997083	0.3136478	1.5004730	3.0018966
50	1.9987801	0.9997338	0.3136648	1.5004329	3.0017383
54	1.9988801	0.9997628	0.3136832	1.5003842	3.0015352
	$1.9993209(1)$	$0.99989406(2)$	$0.31376223(8)$	$1.5001596(2)$	$3.000627(3)$
Ref. [6]	$1.9993202(1)$	$0.9998938168(5)$	$0.31376207(7)$	$1.5001608(1)$	$3.000639(2)^{\mathrm{a}}$
Ref. [4]		0.9998912309	0.3137630	1.500166625	3.000673563

${ }^{\text {a }}$ See footnote of Table II.

The results deviate from the initial results (Sec. III A) by about 0.02 MHz , showing that the test calculation accuracy estimate δ was correct.

An important result is that the precision obtained by $n_{\text {sub }} \times n_{G}=1 \times 64$ was equivalent to 4×32 and 16×16, which means a fourfold CPU time reduction in each case. High-order Gaussian quadrature with no subdivisions is therefore much more efficient than lower-order quadrature with more subdivisions at the same value of $n_{\text {sub }} \times n_{G}$.

To estimate the accuracy, we calculated the expectation values at $K_{m}=32$ for a set of values of $n_{\text {sub }}, n_{G}, p_{W}, z_{U}$, and T_{z}, and observed the global upper and lower limits of values on this set of results, taking into account only those results where all parameters lie in sufficiently narrow convergence regions. This is justified because we have finite regions of convergence in all parameters and a large enough set of results to be able to rely on mutual cancellations of some errors.

The convergence was confirmed by testing the critical parameters at $K_{m}=40$. Furthermore, these parameters were tested again at $n_{3}=0.7$ and for different a_{3} at $n_{3}=0.5$. For example, z_{U} had to be taken different (700 for $n_{3}=0.5,900$ for $n_{3}=0.7$). Except where explicitly noted, the following descriptions apply to $n_{3}=0.5$; in general the parameter dependence is appreciably smaller for $n_{3}=0.7$.
(i) $n_{\text {sub }} \times n_{G}$: among $4 \times 16,2 \times 32$, and $4 \times 32,1 \times 64$, at $K_{m}=32$, the latter was apparently the best, the dependence on the Gaussian density in the last three cases being within 0.0002 MHz . The smallest difference between cases $\left(z_{U}, p_{W}\right)=(700,92)$ and $(800,100)$ is at 1×64. At $K_{m}=$ 48 , the difference between the cases 4×32 and 1×64 [at $\left.\left(T_{z}, z_{U}, p_{W}\right)=(0.05,700,100)\right]$ is 0.0002 MHz .
(ii) T_{z} : the dependence on T_{z} is about 0.002 MHz in the range $0.01-0.1$. We took 0.05 for the final runs. The dependence on T_{z} for $T_{z}=0.03-0.1$ is 0.003 MHz for
$\left(z_{U}, p_{W}\right)=(700,100)$, and 0.0015 MHz for $(700,92)$. This indicates $p_{W}=100$ is a good choice. At $K_{m}=48$ the values of ν_{HF} were 4455.7202 and 4455.7208 MHz for $T_{z}=0.1$ and 0.05 , respectively.
(iii) z_{U} : at $K_{m}=48,\left(T_{z}, p_{W}\right)=(0.05,100)$, the difference between the values for $z_{U}=700$ and 800 is 0.0005 $\mathrm{MHz} ;\langle H\rangle$ is higher at $z_{U}=800$ than at 700 by 1×10^{-8}, indicating that 800 is slightly too large and in the instability region.
(iv) p_{W} : for $p_{W}=84-120, \nu_{\mathrm{HF}}$ decreases until $p_{W}=92$, then increases and starts to decrease, or stabilizes, at $p_{W}=96-100$; at larger values the oscillations cease and instability sets in at $z_{U}=700-800$. There is therefore just enough accuracy to sum the power series for \bar{W} in a stable manner at large z. The above oscillations due to p_{W} are well within the 0.002 MHz range.
(v) $n_{\text {sub }}^{\prime} \times n_{G}^{\prime}$: we used 4×16 throughout. At $K_{m}=40$, the use of 8×16 increases ν_{HF} by 0.0004 MHz .
(vi) $n_{3}:{\overline{\left\langle\delta\left(\mathbf{r}_{k}\right)\right\rangle}}_{K_{m}}$ and ${\overline{\left\langle r_{k}\right\rangle}}_{K_{m}}, k=2,3$, and related observables have extrema at $a_{3}=-4$, while for $k=1$ they depend negligibly on $a_{3} ; \quad \overline{\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle_{50}}=0.3137615,0.3137622$, 0.3137620 a.u., and $\overline{\langle r} 33=1.500165,1.500160,1.500169$ a.u. at $n_{3}=0.5$ and $a_{3}=-3,-4,-5$ respectively.
(vii) Plateaus: the expectation values as functions of the upper z limit of integration, $\langle O\rangle\left(z_{q}\right)$, where $z_{q} \leqslant z_{U}$, may exhibit plateaus [8] at $z=z_{p} \leqslant z_{U}$, because the tail of the wave function may be inaccurate enough at very large z to affect the integrals. In the present calculation several test calculations with nonoptimal parameters exhibited plateaus in several expectation values with $z_{p}<z_{U}$. In all final runs displayed in the tables, $z_{p}=z_{U}$, and the error was deduced from $\partial\langle O\rangle\left(z_{q}\right) / \partial z_{q}$ at $z=z_{U}$. Except for $\langle H\rangle$ this error was found to be negligible.

TABLE V. As in Table I, but the hyperfine splitting in lowest order, ν_{HF} and $\left(\nu_{\mathrm{HF}}\right)_{\mathrm{GC}}$, for $n_{3}=0.5$, obtained as $\nu_{\mathrm{HF}}=14196.1209\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$. For comparison the results using the linear (cusp) correlation function are shown in the last part of the Table for $K_{m} / 2$ even. For comparison the works where corrections or the factor $\left[1+1 /\left(m_{\mathrm{He}}+m_{\mu}\right)\right]^{-3}$ are not included in their multiplicative factors are quoted.

K_{m}	ν_{HF}	$\left(\nu_{\mathrm{HF}}\right)_{\mathrm{GC}}{ }^{\mathrm{a}}$
32	4453.921	4453.920
36	4455.480	4455.280
40	4455.948	4455.700
44	4455.929	4455.696
48	4455.721	4455.523
52	4455.457	4455.298
56	4455.200	4455.077
34	4453.558	4453.704
38	4452.636	4452.883
42	4452.453	4452.703
46	4452.581	4452.800
50	4452.823	4453.001
54	4453.085	4453.223
	$4454.206(3)$	$4454.206(3)^{\mathrm{b}}$
Ref. [4]	$4454.14(5)$	
Ref. [5]	$4454.181(1)$	
Ref. [1]	$4455.2(1.0)$	
Ref. [6]	4454.226^{c}	
Ref. [2]	4452.5	
Ref. [3]	4452.9^{d}	
32	4844.177	
40	4217.573	
48	4023.569	
56	4013.421	
64	4081.879	

${ }^{\mathrm{a}}$ Global correction included (see Sec. III B).
${ }^{\mathrm{b}}$ Error estimate includes the $n_{3}=0.7, a_{3}=0.5$, and the $n_{3}=0.5$, $a_{3}=-3,-4,-5$ calculations.
${ }^{\mathrm{c}}$ Converted from $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ using our value of α (Sec. III C).
${ }^{\mathrm{d}}$ Approximate value obtained from the quoted total value by subtracting 10 MHz (see Sec. I).
(viii) Behavior of $\langle H\rangle:\langle H\rangle$ starts to decrease at $K_{m}=44$, showing that the variational property [8], depending on both the quadrature parameters and K_{m}, is setting in as required. At $K_{m}=32,\left(z_{U}, p_{W}\right)=(800,96)$ is no longer sufficient for $\langle H\rangle$: the value -402.64101515 a.u. is higher than -402.64101536 a.u. at $\left(z_{U}, p_{W}\right)=(800,100)$; this in turn agrees with $\left(z_{U}, p_{W}\right)=(700,100)$ so that $z_{U}=700$ is sufficient. The plateau error is 1×10^{-7} a.u. for $n_{3}=0.5$ and 3×10^{-10} a.u. for $n_{3}=0.7$. Therefore in the $n_{3}=0.5$ case the main error comes from the plateau flatness. This signifies that our f, which was optimized for ν_{HF} is not optimal for $\langle H\rangle$. In Fig. 4, the $n_{3}=0.5$ curves have much larger errors than the $n_{3}=0.7$ ones.
(ix) Global correction: for the first time in CFHHM we have calculated the global correction to the delta function operator [14]

$$
\left(\nu_{\mathrm{HF}}\right)_{\mathrm{GC}}=\nu_{\mathrm{HF}}+\frac{m_{e \mu}}{\pi}\left(\langle H\rangle\left\langle r_{3}^{-1}\right\rangle-\left\langle\frac{H}{r_{3}}\right\rangle\right)
$$

where $m_{e \mu}$ is the reduced mass of the electron and muon. The correction term becomes negligible at $K_{m}=48$, which is, interestingly, at the start of the convergence region (see Fig. 2). If this were not so, the validity of the application of the correction formula, in view of the non-Hermiticity of the effective Hamiltonian in CFHHM, should be questioned.

The largest contribution to the quoted errors of expectation values other than $\langle H\rangle$ comes from the behavior in the parameter space of $\left(a_{3}, n_{3}\right)$.

C. Dependence on fundamental constants

The tests were performed at $n_{3}=0.5, a_{3}=-4$ except where noted.

For the sake of comparison, we use the following values for the particle masses [1,11]: $m_{e}=0.5110034 \mathrm{MeV}$, $m_{\mu}=105.65948 \mathrm{MeV}$ (206.768 $64 \quad$ a.u.), and $m_{4} \mathrm{H}=4.002603 \times 931.5016 \mathrm{MeV}$. In Ref. [4], $m_{\mu}=105.65946$ (206.768 60 a.u.) is used, and the energy for the former set of masses [1,11] is calculated and compared to.

The effect of the small change in the muon mass is as follows: if we use the smaller muon mass from Ref. [4] (and presumably Ref. [5]), the eigenvalue E and $\langle H\rangle$ increase by 7×10^{-5} a.u., while ν_{HF} increases by $0.0014,0.00015$, and 0.0014 MHz at $K_{m}=32,38$, and 40 , respectively. $\left\langle r_{3}\right\rangle$ decreases by about 1×10^{-6} on average at $K_{m}=32,38$, and 40.

We use $\alpha=1 / 137.0359895$ [15], and employ the conversion factor $\frac{8}{3} \pi \alpha^{2} m_{e} / m_{\mu}=14196.1209 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$. The sensitivity to the value of α is as follows: if α of Ref. [4] is used, one gets the smaller factor $14196.1105 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$. , which would reduce the value of our ν_{HF} by 0.003 MHz .

The ${ }^{4} \mathrm{He}$ mass used in Refs. [1,4,11] and presumably in Ref. [5], as well as in our work, is the atom mass; see also the discussion in Ref. [6]. In Ref. [6], a comparative calculation using the Ref. [4] masses instead of their own ${ }^{4} \mathrm{He}^{2+}$ mass (7294.2996 a.u.) is presented. Also, the muon mass in Ref. [6] (206.768262 a.u.) differs appreciably from our usage.

To make a comparison of our values of observables with the values of Ref. [6], we first tested $\partial \nu_{\mathrm{HF}} / \partial m_{4}{ }_{\mathrm{He}}$ by subtracting 2 a.u. from our $m_{4}{ }_{\mathrm{He}}$ and found it to be positive as expected: ν_{HF} decreased by 0.0009 MHz at $K_{m}=32$ and by 0.004 MHz at $K_{m}=34$. Since $\partial \nu_{\mathrm{HF}} / \partial m_{\mu}$ according to the above is negative as expected, the effects of Ref. [6] masses as compared to ours were expected to partially cancel out, which is what happened.

Our final value of $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ is $0.3137622(2)$ a.u., where the error estimate takes into account the results of the $n_{3}=0.7, a_{3}=-4$ calculation (see Tables IV and V) as well as the $n_{3}=0.5, a_{3}=-3,-4,-5$ calculations (see Sec. III B). Ref. [6] quotes 0.3137630 a.u. (implying the error 0.001 MHz in ν_{HF}). The only fundamental constants affecting the difference between these two values are $m_{4} \mathrm{He}$ and m_{μ}.

We recomputed our observables with the masses of Ref. [6]. This mass change makes $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ smaller by about 1 on the last quoted digit: 0.313 7621(2) a.u. (Table IV; error
estimate taken from the calculation using our masses), moving our value further away from that of Ref. [6].

The effect of these mass differences on ν_{HF} is as follows: the muon mass of Ref. [6] together with our value of α gives the multiplication factor of $14196.1472 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$. Multiplying by the $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ of Ref. [6], this gives 4454.226 MHz . We in turn obtain, using the same values of fundamental constants, $14196.1472 \times 0.3137621(2) \quad \mathrm{MHz}=4454.213(3)$ MHz .

We also note that while our value of $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ using the masses of Ref. [6] is 9×10^{-7} a.u. smaller than in Ref. [6], our value of $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$ is 6×10^{-6} a.u. larger than in Ref. [6]. This is an order of magnitude larger discrepancy than the effect of masses. In fact, if we use the masses of Ref. [6] both $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$ and $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ decrease by about the same small amount of the order of 1×10^{-7} a.u. with respect to values obtained using our masses (Tables III, IV), keeping the difference $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle-\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ unaffected.

Using the masses of Ref. [6] we get $\langle H\rangle=-402.63726301$ a.u., which is slightly higher than $-402.637263035 \cdots$ of Ref. [6]; however, due to the large sensitivity to the muon mass (see above), it is possible that this is due to the way various derived quantities are calculated from masses.

The comparison of our observables and those of Ref. [6] using the same masses is given in Tables II-IV.

IV. CONCLUSION

The tables in Refs. [4,5] show that although the errors of ν_{HF} quoted are derived from a comparison of results using different variational bases, the individual bases make ν_{HF} converge to different values. This is not the case in CFHHM.

We deduce our final value of ν_{HF} as 4454.206 (3) MHz (Fig. 2, Table V).

To make an accurate comparison with Refs. [5,6], we recalculated the values of observables for several K_{m} in the convergence region using the constants from Refs. [5,6]. This comparison is given in Tables II-IV.

Using the muon mass as well as α from Ref. [4] (and presumably Ref. [5]) decreases our ν_{HF} result by about 0.002 MHz , to give 4454.204 (3) MHz as compared with the value 4454.181(1) MHz of Ref. [5].

Using the masses of Ref. [6] and our value of α, we obtain 4454.213 (3) MHz as compared with 4454.226 MHz of Ref. [6].

This indicates that the value of Ref. [5] is $0.023(4) \mathrm{MHz}$ too small while the value of Ref. [6] is $0.013(4) \mathrm{MHz}$ too large, and that our values are more precise than the differences between the different variational calculations, although the quoted accuracy is approximately the same in all cases. These discrepancies are displayed in Fig. 2, where the full and dashed lines are obtained by shifting our final value by -0.023 and 0.013 MHz , respectively.

In particular we note that the difference $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle-\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ is smaller by about 6×10^{-6} a.u. in Ref. [6] than in our work, while the effect of different masses and our computational error for these operators are both of the order of 2×10^{-7} a.u.

Our value of $\left\langle r_{3}\right\rangle[1.500160(5)$ a.u., i.e., the value of Table IV with the K_{m}, n_{3} and a_{3} dependence taken into
account, see Fig. 3 and Sec. III B] should be compared with the value of Ref. [4] adjusted by about +0.000001 a.u. (which gives 1.5001676 a.u., see Table IV) because of the muon mass difference. Likewise, our $\left\langle r_{3}\right\rangle$ value should be compared with the value of Ref. [6] decreased by 0.000001 a.u. (giving about 1.5001656 a.u.) because of mass differences (see Table IV). These discrepancies are displayed in Fig. 3.

It had been shown [8,16] that the CFHHM expectation value $\langle H\rangle$ satisfies a variational property in K_{m}, certain intrinsic parameters, and the quadrature parameters. Therefore it gives an upper bound to the true energy, which is an important aspect of CFHHM. According to Fig. 4 and Sec. III B, the CFHHM energy $(\langle H\rangle)$ is lower than -402.64101534 a.u.; this could obviously be improved by calculating more values for $n_{3}=0.7$, which, however, was not our objective. Our ground-state energy is lower than in most recent variational calculations [4], although the last decimal places may be affected by the way the derived quantities are calculated from masses in various methods. On the other hand, the CFHHM value has a stable dependence on K_{m}.

The direction of the changes in E and $\langle H\rangle$ using the corresponding sets of fundamental constants agrees with the direction of changes between Refs. [4] and [11].

With respect to the linear parametrization of the correlation function, the best nonlinear parametrization decreases the errors of the CFHHM expectation values by several orders of magnitude. We define these errors as the absolute differences between the values for a given K_{m} and the limiting value. At $K_{m}=64,|\delta E|$ is reduced from 0.02 to 0.00006 a.u., $|\delta\langle H\rangle|$ from 0.002 to 3×10^{-7} a.u., and $\left|\delta \nu_{\mathrm{HF}}\right|$ from 370 to 0.6 MHz . The $\left\langle{\bar{O}\rangle_{K_{m}}}\right.$ values have two orders of magnitude smaller errors than the $\langle O\rangle_{K_{m}}$ values (except for $\langle H\rangle)$.

The interpolation procedure is also more reliable than extrapolation employed in earlier works (Refs. [7,10]).

In the present system, more work was involved in finding the proper parametrization of the correlation function than in obtaining the final numerical results. This reflects the need to find a general algorithm for parametrizing the correlation function. On the other hand, the constructed correlation function reduced the errors of observables by $3-4$ orders of magnitude with respect to the linear (pure cusp) correlation function, which is an extreme case. We have established again [9] that the most important aspect of the correlation function for a well-correlated system is the elimination of the fast increase of e^{f} in the vicinity of the coalescence points, as the particle separation increases.

We calculated the global correction to delta-function-type operators in CFHHM. We have shown that in fact its calculation is unnecessary, as it becomes negligible even before final convergence is reached.

We found the electron tail parameters behave similarly to those in Ref. [11] for all parametrizations, but in CFHHM, this can be interpreted in the best parametrization to simply be the consequence of e^{f} trying to fall off as fast as possible. This makes it easier for the HH expansion to describe the fine details of the wave function because e^{f} with f of Eq. (1) containing at the most 6 free parameters, of which only 2 are
used in parametrization A, is a rather crude approximation to the true wave function in this two-scale system.

Summing up, one can state that CFHHM has proved successful in obtaining good convergent values of all observables. Our numerical error estimates are based on experience
in different systems calculated by the CFHHM earlier [$9,10,12,13,17-25]$ as well as on the fact that in the CFHHM due to its mathematically known convergence properties $[7,8]$ it is easy to distinguish possible numerical instabilities from convergence patterns.
[1] K.-N. Huang and V. W. Hughes, Phys. Rev. A 20, 706 (1979); 21, 1071(E) (1980).
[2] S. D. Lakdawala and P. J. Mohr, Phys. Rev. A 22, 1572 (1980).
[3] M. Ya. Amusia, M. Ju. Kuchiev, and V. L. Yakhontov, J. Phys. B 16, L71 (1983).
[4] M.-K. Chen and C.-S. Hsue, Phys. Rev. A 40, 5520 (1989); 42, 1830(E) (1990).
[5] M.-K. Chen, J. Phys. B 23, 4041 (1990).
[6] V. H. Smith and A. M. Frolov, J. Phys. B 28, 1357 (1995).
[7] M. I. Haftel and V. B. Mandelzweig, Ann. Phys. (N.Y.) 189, 29 (1989).
[8] M. Haftel, R. Krivec, and V. B. Mandelzweig, J. Comput. Phys. 123, 149 (1996).
[9] R. Krivec, M. I. Haftel, and V. B. Mandelzweig, Phys. Rev. A 47, 911 (1993).
[10] S. Berkovic, R. Krivec, V. Mandelzweig, and L. Stotland, Phys. Rev. A 55, 988 (1997).
[11] K.-N. Huang, Phys. Rev. A 15, 1832 (1977).
[12] R. Krivec and V. B. Mandelzweig, Phys. Rev. A 52, 221 (1995).
[13] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 41, 2339 (1990).
[14] R. J. Drachman, J. Phys. B 16, L749 (1983).
[15] Particle Data Group, Phys. Rev. D 50, 1173 (1994).
[16] M. I. Haftel (private communication).
[17] M. I. Haftel and V. B. Mandelzweig, Phys. Lett. A 120, 232 (1987).
[18] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 38, 5995 (1988).
[19] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 39, 2813 (1989).
[20] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 42, 6324 (1990).
[21] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 46, 142 (1992).
[22] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 49, 3344 (1994); 49, 3338 (1994).
[23] R. Krivec, M. I. Haftel, and V. B. Mandelzweig, Phys. Rev. A 44, 7158 (1991).
[24] R. Krivec, M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A 46, 6903 (1992).
[25] R. Krivec, M. I. Haftel, and V. B. Mandelzweig, Few-Body Syst. 17, 229 (1994).

