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Nonvariational calculation of the hyperfine splitting and other properties of the ground state
of the muonic helium atom

R. Krivect? and V. B. Mandelzweit
lDepartment of Theoretical Physics, J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia
2Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
(Received 30 April 1997

The properties of the ground state of the muonic Helium agpm*He?* have been calculated nonvaria-
tionally. The correlation function hyperspherical harmonic method utilizing a nonlinear parametrization of the
correlation function has been used. UpNa=561 coupled second-order differential equations were taken
into account. Although all parametrizations of the correlation function accelerate the convergence with respect
to linear parametrizations by several orders of magnitude, an especially fast converging parametrization
was found. All parametrizations make the observables converge to the same values in the limit &f. large
The lowest-order hyperfine splitting obtained, 4454(2D8Hz, has error margins smaller than the differences
in the literature. One variational value is 0.023 MHz lower and another 0.013 MHz higher, after the adjust-
ment for the different masses used. The expectation value of the distance between the electron and the muon
also differs slightly from that in the literature, while the energy obtained was below the variational values.
[S1050-294{@7)06311-1

PACS numbdps): 36.10.Dr, 36.10.Gv, 31.15.Ja, 32.10.Fn

I. INTRODUCTION Il. APPLICATION OF CFHHM TO MUONIC HELIUM
. . . . A. Construction of the correlation function
The muonic helium atom, which consists of an alpha par-
ticle, a negative muon, and an electron, is of great interest to T calculate precisely the wave function and observables
atomic physicists for the following reasons: of the ground state of the muonic helium atom, we used the
(i) It is a pure atomic three-body system, which is quitecorrelation function hyperspherical harmonic method
unusual since all three particles are not identical, have verfCFHHM) [7,8] in which the wave function is decomposed
different masses, and no Pauli principle applies. as¥=e'¢p, wheref is a correlation function and is a
(i) The atom is produced in the reaction of capture of thesmooth function expandable in hyperspherical harmonics
negative muon by the positive helium ion. It is one of the(HH). The Schrdinger equation is converted into an equa-
products in the process of muon catalyzed fusion, and itsion for ¢ with the non-Hermitian effective potentia,
spectroscopic properties have to be therefore studied caresich is a function off. As a consequence, the eigenvalue
fully to properly understand the fusion reactions. obtained by solving the equation is not the true enetgl)
(iii) The precise knowledge of the hyperfine splitting in must be calculated for this purpose frobn
this atom is espema!ly important since it, together_wnh the  For the total angular momentum zely, and ¥ depend
Zeeman effect, provides the mos_t accurate and direct megy, the hyperradiug and on two hyperangles, and\ [7].
surements of the muon magnetic momentum and of the the CFHHM system of differential equations is a system
electron-muon interaction constant. _ of coupled second-order differential equations in a single
In this work we concentrate on the computation of theyariaple in the hyperspherical—harmonic basis, which is trun-
lowest-order hyperfine spl|tt_|ng, which is given tsee Refs.  5ied at a maximum valug,, of the global angular momen-
[1,2] and references thergin tum K=0,2,4 ... K., [8]. The hyperradial intervdl0,z,],
where z,=22Epy, E is the eigenvalue, angy is the
8 M maximum value.of the hyperradius, ig subdivideq using 'the
VHF:§7Ta2_<5(reM)>! parameteiT, [8] in a sequence of subintervals of increasing
my length equal tozT,. The parametep,y is the maximum

power p in the expansion of/V into a series of termgP,

representing an expectation value of the contact term of the=—1,0,...,pw, with matrix coefficients. .
spin-spin interaction obtained in the nonrelativistic reduction We use the following general form of the correlation
of the Breit equationy,, is the muon-electron separation function f:

and (&(re,)) is the expectation value calculated with the 3

help of the spatial part of the wave function. In the Conclu- f=> [a+(b,—a)e "M 1)
sion we will make a comparison of our result with the values =1

in the literature that exibit rather large discrepandies6].

The radiative and recoil corrections amount to about 10 MHzavhere the spectator notation is wused. The part-
[1,2,4,3 such that the lowest-order value ig~4454.2 icles{1,2,3} correspond to the electror), the muon ),
MHz. and “He?", respectively; e.g.r; denotes the distance be-
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tween the electron and the muon. Tiyeare the cusp param-

3615

TABLE I. Eigenvalues and expectation values of the Hamil-

eters whose rounded values afe402.141;-1.999726, tonian for the parametrizatiorA (az=—4, n3=0.5), using
0.995187. r; is a constant approximately equal to the equ-(Zu.Pw.T2) = (700, 100, 0.0and (sup,Nc) = (1, 64 (see Secs.

librium distances of the particles in tti¢h pair. We used

r,=0.0037 a.u., and,=r;=1.5 a.u..
The form (1) takes all the cusp conditions exactly into

account. the table fork /2 even.

For the purpose of calculating the matrix elements of the

I, 11 B). The subseries witK /2 even and odd are displayed sepa-
rately. The final result fon;=0.7, which is more optimal fofH),

is also shown. For comparison the results with the lin@arsp
correlation functiorfa; = b; in Eq.(1)] are shown in the last part of

expansion coefficients dlV into a series of termgP, the K,

—E

—(H)

form (1) is first expanded in a series irf', i = 1,2,3,
g=0,1, ... pwt2. In the part of the matrix elements calcu- 3
lated by quadrature, those terms are expressed as functions40§‘
(p.a,\).

Two of the a; can in principle be determined from 44
asymptotic conditions in the breakup channgds. In the 48
present case the electron tail is expected to be the most in?2
portant. Because the heavy negative particle has chafge 56
in our case the surb,+b; already has approximately the 34
naively expected “screening” type value efl. One would  3g
therefore expect that a line&rof the form(1) wherea;=b; , 42
i=1,2,3, would be a good first approximatigAdditionally, 46
the muon mass lies in the correct range ligr-b, to have ¢
approximately the correct value for the muon jail.

402.640 950 660
402.641 096 568
402.641 149 784
402.641 158 391
402.641 146 896
402.641 127 811
402.641 107 328

402.640 974 478
402.640 887 229
402.640 863 367
402.640 869 013
402.640 886 882

402.641 015 359
402.641 015 351
402.641 015 337
402.641 015 339
402.641 015 345
402.641 015 348
402.641 015 352

402.641 015 359
402.641 015 345
402.641 015 342
402.641 015 339
402.641 015 344

. . . . 54 402.640 908 323 402.641 015 350

However, it was first found that the linedr gives ex-
tremely slow convergent resulfsee Tables | and V Sec- (nz=0.5) 402.641 0153)2
ond, it was found that the p(gfmary cause of the slow conver- (n3=0.7) 402.641 01534)°

ence is the divergence with the linear f at large

gistances between ?he electron and the muon. There?ore W%Ef' [4] 402.641 0153
attempted to construct several parametrization with the 32 402.627 61 402.637 27
least possible number of free parameters, each stressing ong 402.662 85 402.640 63
expectedly important aspect éfthat would accelerate con- 4g 402.670 40 402.639 24
vergence.(All parametrizations eventually converge to the gg 402.667 78 402.638 90
same limits, but the rate of convergence is of decisive img4 402.661 91 402.639 36
portance.

The parametrizatio\ is defined bya;=b;, a,=b, in #The main contribution to the error is due to the plateau smoothness
Eq. (1): estimated ag(H)(z,)/ 9z, (see Sec. Il B.

_ bError estimated fronK <52 calculationgsee Fig. 4.
f=byri+b,r,+[ag+(by—az)e "3/(Ms3)]r,.
B. Convergence of the expectation values
This ansatz assumes the weak coupling of the electron and
muon and only corrects the—ux term, which would other-
wise be non-negativea; andns are free parameters.
The parametrizatio® is defined bya;=b,, az=0:

In some systems the CFHHM basis exhibits a twofold
convergence of the expectation values of some operators
with respect t&K,,. In the present case, the expectation val-
ues converge smoothly in two subsequences determined by
whetherK,/2 is even or odd. The subsequences approach
the limit from different sides. This is the case for the eigen-

This form attempts to control, with the single parametgr ~ valueE and for all operators excepH). (H) values in both
the electron tail of the form=e2°1 wheres; is the distance Subsequences are essentially the séfig: 4).

between the electron and the center of mass ofutHtHe? Another example are the (3° helium resonancefl0]
system. where there are subsequences determined by whkth&

The parametrizatio is defined bya;=b;, a,=0: is even or odd.

The described pattern of twofold convergence offers a
way of accelerating the convergence. We take the expecta-
tion vaIues(O)Km of an operato© for three successive val-
This controls the electron tail withs instead ofa, (param-  yes ofK, and calculate the arithmetic mean of the linearly
etrization B), but also removes asymptotically the linear interpolated subsequences:
terma,r,, which is a somewhat arbitrary proposition.

To find the optimal parameters 6f it is not necessary to
perform a time-consuming variational proced(i8¢ A few
values of the free parameters need to be tested only, at fairly
smallK,,. (O)«,, typically converges much faster tha®) .

f=byry+[a,+(by—ay)e "2/, + e '3/ (Nla)yr ;.

f=byry+b,e "2/ M2y 4 [az+ (by—ag)e "3/ (e3)]r,.

@Km:% <O>Km+;(<o>Km—2+<o>Km+2) :
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C. Numerical considerations The solution of the Schdinger equations was performed

Compared to calculations of systems with comparablén the usual(8-byte, doubl¢ precision arithmetic; thus the

masses, the upper value of the hyperradius in the preseH‘t’O'Scale nature of the physical system was reflected only in

system had to be increased by a factor of 6-8. This is pethe need for more precise quadrature in the matrix elements,

cause the electron and the muon define very different “natu@nd for @ largeey ; all other parameters likg, andpy, were

ral” scales via their very different binding energies4sie. ~ found to be as in other, more ordinary systems such as He
The larger value of,, necessitated a careful consideration 810M OF positronium negative ion.

of the permissible values af; andp,y. Too largez makes

the expansion o\‘/TmeaningIess because the large interme-
diate z° terms in the alternating-sign summation cause loss A. Initial estimates of the CFHHM parameters
of precision in the sum. Also, at largethe coefficients have

less significant digits. L —
— o the intrinsic parameters so as to givge to about5=0.03

The terms OM that are quadrat!c ifi have to be calcu- MHz accuracy without improving the precision of the matrix
lated by numerlpal quadrature, while aII'other terms are Calgements. These tests served to obtain the convergence pat-
culated algebraically7]. The quadrature is done as follows. g of the expectation values and to identify possible other
The interval of the varlgbla is divided ||f1to[0,.7r/2_—_da] necessary improvements in accuracy.
and[@/2—d,, m/2]. The interval of the variabla is divided The best results for parametrizatidrwere obtained with
into [05,—dh], [s;=dy.Sol, S8+ dh]. [Sa+dy 5. =4 despite the fact that in that case the sum
S3=dh], [s3=dy.,Ssl, [Sg,Satdy], [sg+dy,si—dyl, b,+a;~—6 does not correspond to the expected form of
[s;—dy.s1], [s1,8:+d)], and [s,+d,,27]. Heres; are o aqymptotics of the wave function when the electron is
the points where, & =/2, r;=0. The integrands are finit¢ romaved from theu-*He?* subsystem. A similar effect was
at r;=0 becausef cancels the Coulomb terms W but  observed in Ref.11] in a variational calculatiotbehavior of
drilda anddr;/o\ entering the numerically calculated part the parameters and g), where it was impossible to fix the
of W are discontinuous; the weight factor sinthakes the behavior of the electron tafbee alsd4]). The explanation of
integrand continuous but complicated close te 0. this effect may have to do with the short-range behavidr, of

d, andd, are small numberé&maller than 0.1 and 0.03 as follows.
which make the quadrature grid dense in the vicinity of sin- Generally it turns out thath; should be as small as pos-

gularities. The twoa intervals are divided intm{®),, and  sible, with the lower limit constrained by the numerical sta-

n{) equal subintervals, respectively. Theintervals are Dbility of the sum of the power series fdr at the largest

subdivided intongﬁ)b, or ngt%)s subintervals, depending on hyperradius. The smaliness of indicates that the nonlinear

whether they include one af points. Since different subdi- t€rm inf should decay as fast as possible. A Izarge absolute
visions are rarely taken, we use the simple notand},  Value ofas then assures the fast decay of thérs) term in
ngﬁ%) or evenng,, in the case equal subdivisions were takenf-

lIl. RESULTS

From first tests it was deduced that we can attempt to fix

in all variables and intervals. The same Gaussian andes The results with parametrizatioB did show the effect

taken in alla,\ subintervals. thata, tended to be much smaller than expected4( as in
The corresponding parameters of the quadrature for thparametrizatiorA), which is similar to the behavior in Ref.

expectation values are denoted with primes. [11], but it shows that the idea thashould be modeled after

Because the main problem to be overcome in this calcuthe variational results for the optimum exponents is mislead-
lation, besides the construction of an appropriate correlatioing.
function, was the accuracy of the numerical quadrature used In addition, we tested several parametrizations that take
in part of the matrix elements M/, we would like to point into account the “cutoff” effect that the solutios# has, for
out that the solution of this problem had to preserve the gres@mall coupled systems, asymptotics that can differ apprecia-
efficiency of the calculations of the quadratures. For exbly from those of¥ =e'¢ (see Refs[8,12)). This entails a
ample, atK,, = 64 andpy = 100, one has to calculate self-consistent determination of the parametgrso as to
(64/2+1)?Xx102x 2= 222 156 two-dimensional integrals of give the correct asymptotics df in the first approximation,
products of Jacobi polynomials and complex functions ofusually atk ,,=0 [13]. For the cases tested, the imposition of
r.(a,\). Using 8-byte arithmetic and recurrence relations forasymptotic constraints of was found to be of little rel-
Jacobi polynomials, we need only 1300 sec on a 300-Mflogvance, and we could not find parametrizations as godd as
machine for the integrals atg,, = 8, ng = 16 (10 X 2 in this way.
subregions giving a 1288 256 grid. At K, = 56, ngy, = We can summarize the above observations on the choice
4 we calculate 171564 integrals in 275 sec using doubl®f the optimal f in the same way as suggested in the
precision arithmetic, and in 71 000 sec using quadruple pre€EFHHM calculation of the properties of thedt system
cision arithmetic. In the latter case, this is still only 0.4 sec[12], namely, that it is not necessary to impose the proper
per integral, and we decided to keep the method also foasymptotic behavior oW itself. It is sufficient to impose it
quadruple precision instead of going to Romberg—typeon the correlation factoe!, which is straightforward and
schemes(The complete matrix elements calculation time in- eliminates the self-consistent determinationapf The only
creases by a lesser factor of 40, due to the unchanged angukception to this rule so far has been the positronium nega-
momentum coupling algebra part. tive ion [9], although even in this case tlag determination
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var; (var) Km GB—)K,,,

4457.0 T T X T T T T 1.50020 T T T T T T T

1.50019 |- 7
4456.0 |-

1.50018 4

4455.0 - N 1.50017 -

1.50016 -~
4454.0 -

1.50015 -

4453.0 - T 1.50014 - 7

1.50013 B

44520 |

) ) X~~-~.I-...)< .... . ) ) ) 1.50012 I I I : I I I
32 36 40 44 48 52 56 32 36 40 44 48 52 56
K, Kn
FIG. 1. Convergence ofe and(VHF)Km with K., for the pa- FIG. 3. As in Fig. 2, but for(r3)Km. The solid and dotted hori-

rametrizationA (see Sec. Il A using the masses of Refd, 11, «  Z0ntal lines are obtained from the values of Ré#.and[6], re-
of Ref.[15], andaz= —4. “+" denotes the curves with;=0.5.  SPectively, by adjusting for the mass differen¢ese Table IV and
The curve denoted by has the same value of, but includes the ~ Sec. IV) (adding and subtracting 0.000 001 a.u., respectjvely
global correction, while the curve denoted by corresponds to

Mz 0.7 lation is not necessary. It was only necessary to ensure that
37 . .

the accuracy of the separa(t@}Km values matched the de-
was far from intractable because only 1 significant digiajn ~ 9ree of convergence ¢O)y .

is required. In particular, (vhp)k , is stable to within 0.002 MHz,

The averaged expectation valugB)y were convergent which by far exceeds the absolute error of the individual
and stable as functions &, for K ,=50—60, which are not points in the test calculation, and shows the accuracy we

much larger than th&,, needed in simpler system@ cal-  ought to strive for in the improved calculation.
culation atK,,=50 takes three times less CPU time than at The dependence an; was tested to be rather large for the
Kn=64) K/2 odd and even values separately, but smalle(ﬁ'b)er,

two orders of magnitude. The degree of convergence ofycept to the extent it is constrained by the numerical con-
(O)Km was the same in the test calculation and in the finalergence.

accurate calculation. Because of this, as can be seen from In the present work it was also considered desirable to test
Figs. 1-3 depicting the final results, a higher-order interpothe stability of the numerical algorithm at larger systems of
equations; we calculated several cases with up to 561 equa-
tions (K, = 64) with linear and nonlineaf and found no
evidence of numerical instability.

We deduced that the most critical parameters were the
following: (a) quadrature in matrix elementsg,,Ng,d,,

(vur)

m

4454.30

4454.28 |-

4454.26
10* (—(H) — 402.6410)
4454.24 |-

0.1538 T T T T T T T
4454.22 -

4454.20 0.1536 L

4454.18 -

4454.16 - b 0.1534 -

4454.14 - -

445412 ' L ' 0.1532 I~
32 36 €0 4 4 52 56

KITI

0.1530 |- a

FIG. 2. As in Fig. 1, but showing thﬁKm values only. The
curve denoted by presents the CFHHM values using the masses %188 — % o " " . "
of Ref.[6] anda of Ref.[15] (see Sec. Il ¢ The solid horizontal
line is obtained from the value of Ref5] by adding 0.002 MHz
(see Sec. IY. The dotted horizontal line is obtained by adding the  FIG. 4. Convergence dfr ;) as function ofK,,, separately for
difference(0.013 MH2 between Ref[6] and CFHHM when using  K,/2 even and odd. Labels are as in Fig. 1. The error due to plateau
the same massdsee Sec. 1Y, to the CFHHM valueg(denoted by  smoothness fon;=0.5 is about 0.001 units on the ordinate while
“+7). for n;=0.7 it is negligible(see Sec. Il B.

Kn
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TABLE II. As in Table I, but expectation values of functionsraf=r , ;¢ for n;=0.5. The third part of
the table shows the CFHHM interpolated values. The last part of the table compares the CFHHM interpolated
values using the masses of RE] with the values of Ref[6]. The numbers in parentheses are last digit
uncertainties defined as the differences of the interpolated valligg=ab2 and 54, showing the convergence
but not the final error estimatésee Secs. Il C and IV

Ko (r;?x1073 () (8(ry))x10°8 (ry)x10® (r3yx10°
32 323.440 4104 402.142 9759 20.700 7107 3.730 0345 18.550 8797
36 323.440 6124 402.143 1071 20.700 7278 3.730 0333 18.550 8680
40 323.440 7040 402.143 1640 20.700 7359 3.730 0328 18.550 8635
44 323.440 7319 402.143 1792 20.700 7386 3.730 0327 18.550 8626
48 323.440 7248 402.143 1725 20.700 7383 3.730 0328 18.550 8635
52 323.440 7001 402.143 1554 20.700 7364 3.730 0329 18.550 8651
56 323.440 6682 402.143 1345 20.700 7337 3.730 0331 18.550 8669
34 323.440 3964 402.142 9739 20.700 7086 3.730 0344 18.550 8785
38 323.440 2588 402.142 8864 20.700 6967 3.730 0352 18.550 8859
42 323.440 2051 402.142 8545 20.700 6918 3.730 0354 18.550 8881
46 323.440 1985 402.142 8529 20.700 6909 3.730 0354 18.550 8879
50 323.440 2169 402.142 8666 20.700 6923 3.730 0352 18.550 8864
54 323.440 2469 402.142 8867 20.700 6947 3.730 0351 18.550 8846
323.440 46565) 402.143 015€) 20.700 71486) 3.73003404¢l) 18.550 87530(5)
323.4344296) 402.139 2638) 20.700 1354¢65) 3.730 06884®) 18.551 22150%)2
Ref.[6] 402.137 30303 20.700 1373610  3.730 069345 18.551 22347

3CFHHM values computed using masses from Réf.(see Sec. Il

d, ; the irregular dependence on these indicates insufficiermificant digits in contrast to the double-precision calculation
precision arithmetic(b) K,,; (c) density of the z points (pa- where it was impossible to stabilize them to more than about

rameter T,); (d) ag,ns.

B. Optimization of the CFHHM parameters

10 significant digits. This enabled the matrix elements to be
accurate enough even at largeand large powergabout
100. We found that the results converge enoughdgt, €, )

Using quadruple-precision quadrature, we immediately= (0.05,0.013 respectively. These values are smaller by a

reduced the quadrature error gfg to the 0.002-MHz level.

factor of 2 than those used in other systems. Still smaller

The individual integrals became converging to some 14 sigvalues neither improve results nor cause instability.

TABLE lll. As in Tables | and Il, but expectation values of functionsrgfr e, .

Km (rz2) (r2" (8(ry)) (ra) (r3)
32 1.999 7424 0.999 8616 0.320 6137 1.500 2496 3.001 0103
36 2.000 3544 1.000 0437 0.320 7256 1.499 9412 2.999 7741
40 2.000 5438 1.000 1025 0.320 7590 1.499 8353 2.999 3382
44 2.000 5424 1.000 1044 0.320 7575 1.499 8273 2.999 3056
48 2.000 4649 1.000 0832 0.320 7424 1.499 8586 2.999 4211
52 2.000 3639 1.000 0543 0.320 7234 1.499 9051 2.999 6054
56 2.000 2645 1.000 0254 0.320 7049 1.499 9529 2.999 7970
34 1.999 6482 0.999 8496 0.320 5874 1.500 2358 3.000 9195
38 1.999 2788 0.999 7382 0.320 5207 1.500 4295 3.001 7076
42 1.999 1984 0.999 7119 0.320 5073 1.500 4798 3.001 9159
46 1.999 2420 0.999 7228 0.320 5165 1.500 4671 3.001 8790
50 1.999 3323 0.999 7483 0.320 5338 1.500 4270 3.001 7207
54 1.999 4324 0.999 7773 0.320 5526 1.500 3783 3.001 5176
1.999 87381) 0.999 90858) 0.320 633377) 1.500 15362) 3.0006093)
1.999 87261) 0.999 9083308 0.320 63327) 1.500 15501) 3.0006212)2
Ref.[6] 0.999 9057442 0.320 62688 1.500 160720 3.000 655964

aSee footnote of Table II.
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TABLE IV. As in Tables | and Il, but expectation values of functionsrefre.,, .

Kim (rs?) (rs") (a(rs)) (rs) (rd)

32 1.999 1899 0.999 8471 0.313 7421 1.500 2556 3.00 10279
36 1.999 8018 1.000 0292 0.313 8520 1.499 9471 2.999 7917
40 1.999 9912 1.000 0879 0.313 8849 1.499 8412 2.999 3558
44 1.999 9898 1.000 0899 0.313 8836 1.499 8333 2.999 3232
48 1.999 9123 1.000 0686 0.313 8689 1.499 8645 2.999 4387
52 1.999 8113 1.000 0398 0.313 8503 1.499 9110 2.999 6230
56 1.999 7119 1.000 0108 0.313 8322 1.499 9588 2.999 8147
34 1.999 0958 0.999 8351 0.313 7166 1.500 2417 3.000 9371
38 1.998 7266 0.999 7237 0.313 6516 1.500 4354 3.001 7252
42 1.998 6462 0.999 6974 0.313 6387 1.500 4857 3.001 9335
46 1.998 6898 0.999 7083 0.313 6478 1.500 4730 3.001 8966
50 1.998 7801 0.999 7338 0.313 6648 1.500 4329 3.001 7383
54 1.998 8801 0.999 7628 0.313 6832 1.500 3842 3.001 5352

1.999 32091) 0.999 894 0@2) 0.313 76228) 1.500 15962) 3.000 6213)

1.999 32021) 0.999 893 8168&) 0.313 762 077) 1.500 16081) 3.000 6392)2
Ref. [6] 0.999 891 2309 0.313 7630 1.500 166625 3.000 673563

Ref. [4] 1.500 166572

aSee footnote of Table .

The results deviate from the initial resulSec. Ill A) by  (zy,pw)=(700,100), and 0.0015 MHz for (700,92). This
about 0.02 MHz, showing that the test calculation accuracyndicatesp,, = 100 is a good choice. Af =48 the values

estimates was correct. of vy were 4455.7202 and 4455.7208 MHz fby=0.1 and
An important result is that the precision obtained by(.05, respectively.
NsuwXNg = 1 X 64 was equivalent to & 32 and 16X 16, (i) zy: atK,, = 48, (T,,pw) = (0.05,100, the differ-

which means a fourfold CPU time reduction in each casegnce petween the values fay = 700 and 800 is 0.0005
High-order Gaussian quadrature with no subdivisions ig- (H) is higher atz, = 800 than at 700 by X108

therefore much more efficient than lower-order quadraturg,gicating that 800 is slightly too large and in the instability
with more subdivisions at the same valuengf,X ng .

: . re

To estimate the accuracy, we calculated the expectation
values atK ,=32 for a set of values af,,, Ng, Pw, 2y,

andT,, and observed the global upper and lower limits of

ion.
(iv) pw: for pw=84—120, v decreases untp=92,
then increases and starts to decrease, or stabilizes, at

values on this set of results, taking into account only thos W_.QG_ 100; _at larger values the oscnlat_lons cease a_nd n-

results where all parameters lie in sufficiently narrow con-Stability sets in atz,=700-800. There |siherefore Just

vergence regions. This is justified because we have finitenough accuracy to sum the power seriesvibin a stable

regions of convergence in all parameters and a large enoughanner at large. The above oscillations due fmy are well

set of results to be able to rely on mutual cancellations ofvithin the 0.002 MHz range.

some errors. (V) n{,,Xng: we used 416 throughout. AtK,, = 40,
The convergence was confirmed by testing the critical pathe use of & 16 increases/yr by 0.0004 MHz.

rameters atk,,=40. Furthermore, these parameters were (Vi) n: me andem, k=2,3, and related observ-

tested again ah;=0.7 and for differenta; at ny=0.5. For N . _

example,z, had to be taken differer#00 forn;=0.5, 900 able; .have extrema ag=—4, while for k=1 they depend
for ng=0.7). Except where explicitly noted, the following negligibly  on a3;_(5(r3)>50=0.313 7615,0.313 7622,
descriptions apply tms=0.5; in general the parameter de- 0-313 7620 a.u., andr3)s,=1.500 165,1.500 160,1.500 169
pendence is appreciably smaller foy=0.7. a.u. atnz=0.5 andaz=—3,—4,—5 respectively.

(i) ngX Ng: among 4x 16, 2x 32, and 4< 32, 1X 64, at (vii) Plateaus the expectation values as functions of the
Kn = 32, the latter was apparently the best, the dependendé¢pper z limit of integration, (O)(zy), wherez,<z,, may
on the Gaussian density in the last three cases being withiexhibit plateaug8] at z=z,<z,, because the tail of the
0.0002 MHz. The smallest difference between casesvave function may be inaccurate enough at very larde

(zy,pw) = (700, 92 and (800,100 is at 1x64. AtK,, = affect the integrals. In the present calculation several test
48, the difference between the cases 3R and 1x64 [at  calculations with nonoptimal parameters exhibited plateaus
(T,,zy,pw) = (0.05,700,109 is 0.0002 MHz. in several expectation values wiy<z . In all final runs

(i) T,: the dependence o, is about 0.002 MHz in the displayed in the tables,=z,, and the error was deduced
range 0.0% 0.1. We took 0.05 for the final runs. The depen-from 4(O)(zy)/ 9z, atz=z, . Except for(H) this error was
dence on T, for T,=0.03-0.1 is 0.003 MHz for found to be negligible.
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TABLE V. As in Table I, but the hyperfine splitting in lowest Me H
order, vy and (vpPgc, for nz=0.5, obtained as (Vup)ae= VHF+—M(<H><Y31>_ <—> )
vue=14196.12005(r 3)). For comparison the results using the lin- m M3

ear (cusp correlation function are shown in the last part of the .
. -~ wheremg, is the reduced mass of the electron and muon.
Table forK,,/2 even. For comparison the works where corrections “

or the factor[ 1+ 1/(mye+ m#)]*?’ are not included in their multi- Th? correc_tlo? term hbecomesfnigllglblem = 48, WhICh
plicative factors are quoted. is, interestingly, at the start of the convergence redise

Fig. 2). If this were not so, the validity of the application of

Ko Ve (10 o the correction formula, in view of the non-Hermiticity of the
effective Hamiltonian in CFHHM, should be questioned.
32 4453.921 4453.920 The largest contribution to the quoted errors of expecta-
36 4455.480 4455.280 tion values other thagH) comes from the behavior in the
40 4455.948 4455.700 parameter space of§,nz).
44 4455.929 4455.696
48 4455.721 4455.523 C. Dependence on fundamental constants
52 4455.457 4455.298
56 4455 200 4455077 The tests were performed a;=0.5, az;=—4 except
where noted.
34 4453.558 4453.704 For the sake of comparison, we use the following values
38 4452.636 4452.883 for the particle masseq1,11; m.,=0.511 0034 MeV,
42 4452.453 4452.703 m,=105.65948 MeV (206.76864 a.u, and
46 4452.581 4452.800 Maps4.002 603 931.5016  MeV. In Ref. [4],
50 4452.823 4453.001 m, = 105.659 46(206.768 60 a.0.is used, and the energy
54 4453.085 4453.223 for the former set of massd4,11] is calculated and com-
pared to.
4454.2063) 4454.2063)° The effect of the small change in the muon mass is as
Ref. [4] 4454.145) follows: if we use the sma.ller muon mass from Rl (and
Ref. [5] 4454.1811) presumably Reﬂ[&?]), the_elgenvalueE and(H) increase by
Ref. [1] 4455.21.0) 7x10°° a.u., while v increases by 0.0014, 0.(_)0015, and
Ref. [6] 4454 226 0.0014 MHz atK,, = 32, 38, and 40, respectivelyrz)
Ref.[2] 4452 5 igcreases by aboutx110® on average &, = 32, 38, and
Ref. [3] 44529 We usea=1/137.035 989515], and employ the conver-
32 4844.177 sion factor§ ma®me/m,=14196.1209 MHz/a.u. The sensi-
40 4217573 tivity to the value ofa is as follows: ife of Ref.[4] is used,
48 4023.569 one gets the smaller factor 14196.1105 MHz/a.u., which
56 4013.421 would reduce the value of ourye by 0.003 MHz.
64 4081.879 The “He mass used in Reffl,4,11 and presumably in
— Ref. [5], as well as in our work, is the atom mass; see also
ZG'Oba' correction includedsee Sec. Il B. the discussion in Ref6]. In Ref.[6], a comparative calcu-
Error estimate includes thes=0.7, a;=0.5, and then;=0.5,  |ation using the Ref{4] masses instead of their owtHe? "
az=—3,~4,~5 calculations. mass(7294.2996 a.ll.is presented. Also, the muon mass in
“Converted from(&(r3)) using our value otx (Sec. I O. Ref. [6] (206.768262 a.u.differs appreciably from our us-
dApproximate value obtained from the quoted total value by sub-age_
tracting 10 MHz(see Sec.)l To make a comparison of our values of observables with

the values of Ref[6], we first testeddvye/dmay by sub-

(viii) Behavior of(H): (H) starts to decrease Kt, = 44,  tracting 2 a.u. from oumsy, and found it to be positive as
showing that the variational propert§], depending on both expected:vy: decreased by 0.0009 MHz Kt,=32 and by
the quadrature parameters afg, is setting in as required. 0.004 MHz atK;=34. Sincedvye/dm, according to the
At K, = 32, (zy,pw) =(800,96) is no longer sufficient for above is negative as expected, the effects of Fdfimasses
(H): the value —402.64101515 a.u. is higher than as compared to ours were expected to partially cancel out,
—402.641 015 36 a.u. atz(,pw)=(800,100); this in turn which is what happened.
agrees with £, ,pw) =(700,100) so thaz, = 700 is suffi- Our final value of(&(r3)) is 0.313 7622(2) a.u., where
cient. The plateau error is»X10 7 a.u. forny = 0.5 and the error estimate takes into account the results of the
3x10 % a.u. forng = 0.7. Therefore in the@; = 0.5 case Nn3=0.7,a3=—4 calculation(see Tables IV and Vas well
the main error comes from the plateau flatness. This signifieas then;=0.5,a;= —3,—4,— 5 calculationgsee Sec. Il B.
that ourf, which was optimized fow is not optimal for ~ Ref. [6] quotes 0.313 7630 a.u{implying the error 0.001
(H). In Fig. 4, thenz=0.5 curves have much larger errors MHz in vyg). The only fundamental constants affecting the
than then;=0.7 ones. difference between these two values arg,, andm,,.

(ix) Global correction for the first time in CFHHM we We recomputed our observables with the masses of Ref.
have calculated the global correction to the delta functior{6]. This mass change makéé(rs)) smaller by about 1 on
operator{ 14] the last quoted digit: 0.313 7621(2) a.(fable 1V; error
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estimate taken from the calculation using our massesv-  account, see Fig. 3 and Sec. Il Bhould be compared with
ing our value further away from that of RdB]. the value of Ref.[4] adjusted by about-0.000 001 a.u.
The effect of these mass differencesgi is as follows:  (which gives 1.500 1676 a.u., see Table) because of the
the muon mass of Reff6] together with our value of gives  muon mass difference. Likewise, olr;) value should be
the multiplication factor of 14 196.1472 MHz/a.u. Multiply- compared with the value of Rd6] decreased by 0.000 001
ing by the(5(r3)) of Ref.[6], this gives 4454.226 MHz. We a.u. (giving about 1.500 1656 a)ubecause of mass differ-
in turn obtain, using the same values of fundamentaknces(see Table IV. These discrepancies are displayed in
constants, 14196.14%D.313 76212) MHz=4454.2183) Fig. 3.
MHz. It had been shown8,16] that the CFHHM expectation
We also note that while our value ¢b(r3)) using the value(H) satisfies a variational property K,,, certain in-
masses of Ref6] is 9x 10"’ a.u. smaller than in Ref6],  trinsic parameters, and the quadrature parameters. Therefore

our value of(5(r)) is 6x 10 ° a.u.larger than in Ref[6]. it gives an upper bound to the true energy, which is an im-
This is an order of magnitude larger discrepancy than theyortant aspect of CFHHM. According to Fig. 4 and Sec.
effect of masses. In fact, if we use the masses of F&f. ||B, the CFHHM energy (H)) is lower than

both(4(r2)) and(4(r3)) decrease by about the same small _ 402 641 015 34 a.u.; this could obviously be improved by
amount of the order of X 10”7 a.u. with respect to values calculating more values fon,=0.7, which, however, was
obtained using our massesables ll, IV), keeping the dif-  not our objective. Our ground-state energy is lower than in
ference(5(r,)) —(8(r3)) unaffected. most recent variational calculatiodd], although the last

Using the masses of Ref [6] we get gecimal places may be affected by the way the derived quan-
(H)=—402.637 263 01 a.u., which is slightly higher than ijties are calculated from masses in various methods. On the
—402.637 263 035 - of Ref.[6]; however, due to the large other hand, the CFHHM value has a stable dependence on
sensitivity to the muon magsee abovg it is possible that g

this is due to the way various derived quantities are calcu- m-|'-he direction of the changes B and(H) using the cor-

lated from masses. responding sets of fundamental constants agrees with the di-
The comparison of our observables and those of F&f.  ection of changes between Reff¢] and[11].
using the same masses is given in Tables II-IV. With respect to the linear parametrization of the correla-
tion function, the best nonlinear parametrization decreases
IV. CONCLUSION the errors of the CFHHM expectation values by several or-

ders of magnitude. We define these errors as the absolute

X . . _differences between the values for a giwef and the lim-
vye quoted are derived from a comparison of results usmq,[ing value. At K, =64, |5E| is reduced from 0.02 to
. m— y .

different variational bases, the individual bases make 7
converge to different values. This is not the case in CFHHM.O'000 06 a.u},6(H)] from 0.002 to 3<10™ " a.u., and 6w

We deduce our final value of.r as 4454.206(3) MHz from 370 to 0.6 MHz. ThéO)y  values have two orders of

The tables in Refd4,5] show that although the errors of

(Fig. 2, Table V. magnitude smaller errors than t(@)y values(except for
To make an accurate comparison with R€f5,6], we (H)).
recalculated the values of observables for seviérain the The interpolation procedure is also more reliable than ex-
convergence region using the constants from RES5].  trapolation employed in earlier workRefs.[7,10]).
This comparison is given in Tables [1-IV. In the present system, more work was involved in finding

Using the muon mass as well asfrom Ref.[4] (and  the proper parametrization of the correlation function than in
presumably Ref5]) decreases oury result by about 0.002  obtaining the final numerical results. This reflects the need to
MHz, to give 4454.204(3) MHz as compared with the valuefind a general algorithm for parametrizing the correlation
4454.181(1) MHz of Ref[5]. function. On the other hand, the constructed correlation func-

Using the masses of Ref6] and our value ofa, we  tion reduced the errors of observables by 48 orders of
obtain 4454.213(3) MHz as compared with 4454.226 MHzmagnitude with respect to the linegure cusp correlation
of Ref.[6]. function, which is an extreme case. We have established

This indicates that the value of R¢6] is 0.023(4) MHz  again[9] that the most important aspect of the correlation
too small while the value of Ref6] is 0.013(4) MHz too function for a well-correlated system is the elimination of the
large, and that our values are more precise than the diffefast increase oé' in the vicinity of the coalescence points, as
ences between the different variational calculations, althougthe particle separation increases.
the quoted accuracy is approximately the same in all cases. We calculated the global correction to delta-function-type
These discrepancies are displayed in Fig. 2, where the fubperators in CFHHM. We have shown that in fact its calcu-
and dashed lines are obtained by shifting our final value byation is unnecessary, as it becomes negligible even before
—0.023 and 0.013 MHz, respectively. final convergence is reached.

In particular we note that the differen¢é(r,))—(5(r3)) We found the electron tail parameters behave similarly to
is smaller by about & 10 © a.u. in Ref[6] than in our work,  those in Ref[11] for all parametrizations, but in CFHHM,
while the effect of different masses and our computationathis can be interpreted in the best parametrization to simply
error for these operators are both of the order of 1D’ be the consequence ef trying to fall off as fast as possible.
a.u. This makes it easier for the HH expansion to describe the

Our value of(r3) [1.50016@5) a.u., i.e., the value of fine details of the wave function becauewith f of Eq. (1)
Table IV with theK,,, n; and az dependence taken into containing at the most 6 free parameters, of which only 2 are
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used in parametrizatiof, is a rather crude approximation to in different systems calculated by the CFHHM earlier
the true wave function in this two-scale system. [9,10,12,13,17-ZFas well as on the fact that in the CFHHM

Summing up, one can state that CFHHM has proved sucdue to its mathematically known convergence properties
cessful in obtaining good convergent values of all observ{7,8] it is easy to distinguish possible numerical instabilities
ables. Our numerical error estimates are based on experienfrem convergence patterns.
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