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Nonvariational calculation of the hyperfine splitting and other properties of the ground state
of the muonic helium atom

R. Krivec1,2 and V. B. Mandelzweig2
1Department of Theoretical Physics, J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

2Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
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The properties of the ground state of the muonic Helium atomem 4He21 have been calculated nonvaria-
tionally. The correlation function hyperspherical harmonic method utilizing a nonlinear parametrization of the
correlation function has been used. Up toN5561 coupled second-order differential equations were taken
into account. Although all parametrizations of the correlation function accelerate the convergence with respect
to linear parametrizations by several orders of magnitude, an especially fast converging parametrization
was found. All parametrizations make the observables converge to the same values in the limit of largeN.
The lowest-order hyperfine splitting obtained, 4454.206~3! MHz, has error margins smaller than the differences
in the literature. One variational value is 0.023 MHz lower and another 0.013 MHz higher, after the adjust-
ment for the different masses used. The expectation value of the distance between the electron and the muon
also differs slightly from that in the literature, while the energy obtained was below the variational values.
@S1050-2947~97!06311-7#

PACS number~s!: 36.10.Dr, 36.10.Gv, 31.15.Ja, 32.10.Fn
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I. INTRODUCTION

The muonic helium atom, which consists of an alpha p
ticle, a negative muon, and an electron, is of great interes
atomic physicists for the following reasons:

~i! It is a pure atomic three-body system, which is qu
unusual since all three particles are not identical, have v
different masses, and no Pauli principle applies.

~ii ! The atom is produced in the reaction of capture of
negative muon by the positive helium ion. It is one of t
products in the process of muon catalyzed fusion, and
spectroscopic properties have to be therefore studied c
fully to properly understand the fusion reactions.

~iii ! The precise knowledge of the hyperfine splitting
this atom is especially important since it, together with t
Zeeman effect, provides the most accurate and direct m
surements of the muon magnetic momentum and of
electron-muon interaction constant.

In this work we concentrate on the computation of t
lowest-order hyperfine splitting, which is given by~see Refs.
@1,2# and references therein!

nHF5
8

3
pa2

me

mm
^d~rem!&,

representing an expectation value of the contact term of
spin-spin interaction obtained in the nonrelativistic reduct
of the Breit equation;rem is the muon-electron separatio
and ^d(rem)& is the expectation value calculated with th
help of the spatial part of the wave function. In the Conc
sion we will make a comparison of our result with the valu
in the literature that exibit rather large discrepancies@1–6#.
The radiative and recoil corrections amount to about 10 M
@1,2,4,5# such that the lowest-order value isnHF'4454.2
MHz.
561050-2947/97/56~5!/3614~9!/$10.00
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II. APPLICATION OF CFHHM TO MUONIC HELIUM

A. Construction of the correlation function

To calculate precisely the wave function and observab
of the ground state of the muonic helium atom, we used
correlation function hyperspherical harmonic meth
~CFHHM! @7,8# in which the wave function is decompose
as C5eff, where f is a correlation function andf is a
smooth function expandable in hyperspherical harmon
~HH!. The Schro¨dinger equation is converted into an equ
tion for f with the non-Hermitian effective potentialW̄,
which is a function off . As a consequence, the eigenval
obtained by solving the equation is not the true energy;^H&
must be calculated for this purpose fromC.

For the total angular momentum zero,W̄ and C depend
on the hyperradiusr and on two hyperangles,a andl @7#.

The CFHHM system of differential equations is a syste
of coupled second-order differential equations in a sin
variable in the hyperspherical–harmonic basis, which is tr
cated at a maximum valueKm of the global angular momen
tum K50,2,4, . . . ,Km @8#. The hyperradial interval@0,zU#,
where zU52A2ErU , E is the eigenvalue, andrU is the
maximum value of the hyperradius, is subdivided using
parameterTz @8# in a sequence of subintervals of increasi
length equal tozTz . The parameterpW is the maximum
power p in the expansion ofW̄ into a series of termsrp,
p521,0, . . . ,pW , with matrix coefficients.

We use the following general form of the correlatio
function f :

f 5(
i 51

3

@ai1~bi2ai !e
2r i /~ni r i !#r i , ~1!

where the spectator notation is used. The pa
icles $1,2,3% correspond to the electron (e), the muon (m),
and 4He21, respectively; e.g.,r 3 denotes the distance be
3614 © 1997 The American Physical Society
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56 3615NONVARIATIONAL CALCULATION OF THE HYPERFINE . . .
tween the electron and the muon. Thebi are the cusp param
eters whose rounded values are~2402.141,21.999 726,
0.995 187!. r i is a constant approximately equal to the eq
librium distances of the particles in thei th pair. We used
r 1̄50.0037 a.u., andr 25r 351.5 a.u..

The form ~1! takes all the cusp conditions exactly in
account.

For the purpose of calculating the matrix elements of
expansion coefficients ofW̄ into a series of termsrp, the
form ~1! is first expanded in a series inr i

q , i 5 1,2,3,
q50,1, . . . ,pW12. In the part of the matrix elements calc
lated by quadrature, those terms are expressed as functio
(r,a,l).

Two of the ai can in principle be determined from
asymptotic conditions in the breakup channels@9#. In the
present case the electron tail is expected to be the mos
portant. Because the heavy negative particle has charge21,
in our case the sumb21b3 already has approximately th
naively expected ‘‘screening’’ type value of21. One would
therefore expect that a linearf of the form~1! whereai5bi ,
i 51,2,3, would be a good first approximation.~Additionally,
the muon mass lies in the correct range forb31b1 to have
approximately the correct value for the muon tail.!

However, it was first found that the linearf gives ex-
tremely slow convergent results~see Tables I and V!. Sec-
ond, it was found that the primary cause of the slow conv
gence is the divergence ofef with the linear f at large
distances between the electron and the muon. Therefore
attempted to construct several parametrizations off with the
least possible number of free parameters, each stressing
expectedly important aspect off that would accelerate con
vergence.~All parametrizations eventually converge to th
same limits, but the rate of convergence is of decisive
portance.!

The parametrizationA is defined bya15b1, a25b2 in
Eq. ~1!:

f 5b1r 11b2r 21@a31~b32a3!e2r 3 /~n3r 3!#r 3 .

This ansatz assumes the weak coupling of the electron
muon and only corrects thee–m term, which would other-
wise be non-negative.a3 andn3 are free parameters.

The parametrizationB is defined bya15b1, a350:

f 5b1r 11@a21~b22a2!e2r 2 /~n2r 2!#r 21b3e2r 3 /~n3r 3!r 3 .

This form attempts to control, with the single parametera2,
the electron tail of the form'ea2s1 wheres1 is the distance
between the electron and the center of mass of them- 4He21

system.
The parametrizationC is defined bya15b1, a250:

f 5b1r 11b2e2r 2 /~n2r 2!r 21@a31~b32a3!e2r 3 /~n3r 3!#r 3 .

This controls the electron tail witha3 instead ofa2 ~param-
etrization B), but also removes asymptotically the line
term a2r 2, which is a somewhat arbitrary proposition.

To find the optimal parameters off , it is not necessary to
perform a time-consuming variational procedure@8#. A few
values of the free parameters need to be tested only, at f
small Km .
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B. Convergence of the expectation values

In some systems the CFHHM basis exhibits a twofo
convergence of the expectation values of some opera
with respect toKm . In the present case, the expectation v
ues converge smoothly in two subsequences determine
whetherKm /2 is even or odd. The subsequences appro
the limit from different sides. This is the case for the eige
valueE and for all operators except^H&. ^H& values in both
subsequences are essentially the same~Fig. 4!.

Another example are the (2p)2 helium resonances@10#
where there are subsequences determined by whetherKm /8
is even or odd.

The described pattern of twofold convergence offers
way of accelerating the convergence. We take the expe
tion valueŝ O&Km

of an operatorO for three successive val

ues ofKm and calculate the arithmetic mean of the linea
interpolated subsequences:

^O&Km
5

1

2F ^O&Km
1

1

2
~^O&Km221^O&Km12!G ,

^O&Km
typically converges much faster than^O&Km

.

TABLE I. Eigenvalues and expectation values of the Ham
tonian for the parametrizationA (a3524, n350.5), using
(zU ,pW ,Tz) 5 ~700, 100, 0.05! and (nsub,nG) 5 ~1, 64! ~see Secs.
I, III B !. The subseries withKm/2 even and odd are displayed sep
rately. The final result forn350.7, which is more optimal for̂H&,
is also shown. For comparison the results with the linear~cusp!
correlation function@ai 5 bi in Eq. ~1!# are shown in the last part o
the table forKm/2 even.

Km 2E 2^H&

32 402.640 950 660 402.641 015 359
36 402.641 096 568 402.641 015 351
40 402.641 149 784 402.641 015 337
44 402.641 158 391 402.641 015 339
48 402.641 146 896 402.641 015 345
52 402.641 127 811 402.641 015 348
56 402.641 107 328 402.641 015 352

34 402.640 974 478 402.641 015 359
38 402.640 887 229 402.641 015 345
42 402.640 863 367 402.641 015 342
46 402.640 869 013 402.641 015 339
50 402.640 886 882 402.641 015 344
54 402.640 908 323 402.641 015 350

(n350.5) 402.641 0153~1!a

(n350.7) 402.641 01534~1!b

Ref. @4# 402.641 0153

32 402.627 61 402.637 27
40 402.662 85 402.640 63
48 402.670 40 402.639 24
56 402.667 78 402.638 90
64 402.661 91 402.639 36

aThe main contribution to the error is due to the plateau smoothn
estimated as]^H&(zq)/]zq ~see Sec. III B!.
bError estimated fromKm<52 calculations~see Fig. 4!.
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3616 56R. KRIVEC AND V. B. MANDELZWEIG
C. Numerical considerations

Compared to calculations of systems with compara
masses, the upper value of the hyperradius in the pre
system had to be increased by a factor of 6–8. This is
cause the electron and the muon define very different ‘‘na
ral’’ scales via their very different binding energies to4He.

The larger value ofzU necessitated a careful considerati
of the permissible values ofzU andpW . Too largez makes

the expansion ofW̄ meaningless because the large interm
diate zp terms in the alternating-sign summation cause l
of precision in the sum. Also, at largep the coefficients have
less significant digits.

The terms ofW̄ that are quadratic inf have to be calcu-
lated by numerical quadrature, while all other terms are c
culated algebraically@7#. The quadrature is done as follow
The interval of the variablea is divided into @0,p/22da#
and@p/22da ,p/2#. The interval of the variablel is divided
into @0,s22dl#, @s22dl ,s2#, @s2 ,s21dl#, @s21dl,
s32dl], @s32dl ,s3#, @s3 ,s31dl#, @s31dl ,s12dl#,
@s12dl ,s1#, @s1 ,s11dl#, and @s11dl,2p#. Here si are
the points where, ata5p/2, r i50. The integrands are finite

at r i50 becausef cancels the Coulomb terms inW̄ but
]r i /]a and]r i /]l entering the numerically calculated pa

of W̄ are discontinuous; the weight factor sin2a makes the
integrand continuous but complicated close tor i50.

da anddl are small numbers~smaller than 0.1 and 0.03!,
which make the quadrature grid dense in the vicinity of s
gularities. The twoa intervals are divided intonsub,r

(a) and
nsub,s

(a) equal subintervals, respectively. Thel intervals are
subdivided intonsub,r

(l) or nsub,s
(l) subintervals, depending o

whether they include one ofsi points. Since different subdi
visions are rarely taken, we use the simple notationnsub

(a) ,
nsub

(l) , or evennsub in the case equal subdivisions were tak
in all variables and intervals. The same Gaussian ordernG is
taken in alla,l subintervals.

The corresponding parameters of the quadrature for
expectation values are denoted with primes.

Because the main problem to be overcome in this ca
lation, besides the construction of an appropriate correla
function, was the accuracy of the numerical quadrature u
in part of the matrix elements ofW̄, we would like to point
out that the solution of this problem had to preserve the g
efficiency of the calculations of the quadratures. For
ample, atKm 5 64 and pW 5 100, one has to calculat
(64/211)23102325222 156 two-dimensional integrals o
products of Jacobi polynomials and complex functions
r i(a,l). Using 8-byte arithmetic and recurrence relations
Jacobi polynomials, we need only 1300 sec on a 300-Mfl
machine for the integrals atnsub 5 8, nG 5 16 ~10 3 2
subregions giving a 12803 256 grid!. At Km 5 56, nsub 5
4 we calculate 171 564 integrals in 275 sec using dou
precision arithmetic, and in 71 000 sec using quadruple p
cision arithmetic. In the latter case, this is still only 0.4 s
per integral, and we decided to keep the method also
quadruple precision instead of going to Romberg–ty
schemes.~The complete matrix elements calculation time
creases by a lesser factor of 40, due to the unchanged an
momentum coupling algebra part.!
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The solution of the Schro¨dinger equations was performe
in the usual~8-byte, double! precision arithmetic; thus the
two-scale nature of the physical system was reflected onl
the need for more precise quadrature in the matrix eleme
and for a largerzU ; all other parameters likeTz andpW were
found to be as in other, more ordinary systems such as
atom or positronium negative ion.

III. RESULTS

A. Initial estimates of the CFHHM parameters

From first tests it was deduced that we can attempt to

the intrinsic parameters so as to givenHF̄ to aboutd50.03
MHz accuracy without improving the precision of the matr
elements. These tests served to obtain the convergence
terns of the expectation values and to identify possible ot
necessary improvements in accuracy.

The best results for parametrizationA were obtained with
a3524, despite the fact that in that case the su
b21a3'26 does not correspond to the expected form
the asymptotics of the wave function when the electron
removed from them- 4He21 subsystem. A similar effect wa
observed in Ref.@11# in a variational calculation~behavior of
the parametersa andb), where it was impossible to fix the
behavior of the electron tail~see also@4#!. The explanation of
this effect may have to do with the short-range behavior of ,
as follows.

Generally it turns out thatn3 should be as small as pos
sible, with the lower limit constrained by the numerical st
bility of the sum of the power series forf at the largest
hyperradius. The smallness ofn3 indicates that the nonlinea
term in f should decay as fast as possible. A large abso
value ofa3 then assures the fast decay of theO(r 3

2) term in
f .

The results with parametrizationB did show the effect
that a2 tended to be much smaller than expected (24, as in
parametrizationA), which is similar to the behavior in Ref
@11#, but it shows that the idea thatf should be modeled afte
the variational results for the optimum exponents is misle
ing.

In addition, we tested several parametrizations that t
into account the ‘‘cutoff’’ effect that the solutionf has, for
small coupled systems, asymptotics that can differ appre
bly from those ofC5eff ~see Refs.@8,12#!. This entails a
self-consistent determination of the parametersai so as to
give the correct asymptotics ofC in the first approximation,
usually atKm50 @13#. For the cases tested, the imposition
asymptotic constraints onf was found to be of little rel-
evance, and we could not find parametrizations as good aA
in this way.

We can summarize the above observations on the ch
of the optimal f in the same way as suggested in t
CFHHM calculation of the properties of themdt system
@12#, namely, that it is not necessary to impose the pro
asymptotic behavior onC itself. It is sufficient to impose it
on the correlation factoref , which is straightforward and
eliminates the self-consistent determination ofai . The only
exception to this rule so far has been the positronium ne
tive ion @9#, although even in this case theai determination
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56 3617NONVARIATIONAL CALCULATION OF THE HYPERFINE . . .
was far from intractable because only 1 significant digit inai
is required.

The averaged expectation values^O&Km
were convergent

and stable as functions ofKm for Km550260, which are not
much larger than theKm needed in simpler systems.~A cal-
culation atKm550 takes three times less CPU time than
Km564.!

The arithmetic mean reduces the error of the method
two orders of magnitude. The degree of convergence
^O&Km

was the same in the test calculation and in the fi
accurate calculation. Because of this, as can be seen
Figs. 1–3 depicting the final results, a higher-order interp

FIG. 1. Convergence ofnHF and (nHF)Km
with Km for the pa-

rametrizationA ~see Sec. II A!, using the masses of Refs.@1,11#, a
of Ref. @15#, anda3524. ‘‘ 1 ’’ denotes the curves withn350.5.
The curve denoted byL has the same value ofn3, but includes the
global correction, while the curve denoted by3 corresponds to
n350.7.

FIG. 2. As in Fig. 1, but showing the(nHF)Km
values only. The

curve denoted bys presents the CFHHM values using the mass
of Ref. @6# anda of Ref. @15# ~see Sec. III C!. The solid horizontal
line is obtained from the value of Ref.@5# by adding 0.002 MHz
~see Sec. IV!. The dotted horizontal line is obtained by adding th
difference~0.013 MHz! between Ref.@6# and CFHHM when using
the same masses~see Sec. IV!, to the CFHHM value~denoted by
‘‘ 1 ’’ !.
t

y
of
l
m
-

lation is not necessary. It was only necessary to ensure
the accuracy of the separate^O&Km

values matched the de

gree of convergence of^O&Km
.

In particular, (nHF)Km
is stable to within 0.002 MHz,

which by far exceeds the absolute error of the individu
points in the test calculation, and shows the accuracy
ought to strive for in the improved calculation.

The dependence onn3 was tested to be rather large for th
Km/2 odd and even values separately, but smaller for^O&Km

,

so we need not be concerned withn3 at this level of accuracy
except to the extent it is constrained by the numerical c
vergence.

In the present work it was also considered desirable to
the stability of the numerical algorithm at larger systems
equations; we calculated several cases with up to 561 e
tions (Km 5 64! with linear and nonlinearf and found no
evidence of numerical instability.

We deduced that the most critical parameters were
following: ~a! quadrature in matrix elements: nsub,nG ,da ,

s

FIG. 3. As in Fig. 2, but for̂ r 3&̄Km
. The solid and dotted hori-

zontal lines are obtained from the values of Refs.@4# and @6#, re-
spectively, by adjusting for the mass differences~see Table IV and
Sec. IV! ~adding and subtracting 0.000 001 a.u., respectively!.

FIG. 4. Convergence of̂r 3& as function ofKm , separately for
Km/2 even and odd. Labels are as in Fig. 1. The error due to pla
smoothness forn350.5 is about 0.001 units on the ordinate whi
for n350.7 it is negligible~see Sec. III B!.
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3618 56R. KRIVEC AND V. B. MANDELZWEIG
TABLE II. As in Table I, but expectation values of functions ofr15rm-He for n350.5. The third part of
the table shows the CFHHM interpolated values. The last part of the table compares the CFHHM inter
values using the masses of Ref.@6# with the values of Ref.@6#. The numbers in parentheses are last d
uncertainties defined as the differences of the interpolated values atKm552 and 54, showing the convergenc
but not the final error estimates~see Secs. III C and IV!.

Km ^r 1
22&31023 ^r 1

21& ^d(r1)&31026 ^r 1&3103 ^r 1
2&3106

32 323.440 4104 402.142 9759 20.700 7107 3.730 0345 18.550 879
36 323.440 6124 402.143 1071 20.700 7278 3.730 0333 18.550 868
40 323.440 7040 402.143 1640 20.700 7359 3.730 0328 18.550 863
44 323.440 7319 402.143 1792 20.700 7386 3.730 0327 18.550 862
48 323.440 7248 402.143 1725 20.700 7383 3.730 0328 18.550 863
52 323.440 7001 402.143 1554 20.700 7364 3.730 0329 18.550 865
56 323.440 6682 402.143 1345 20.700 7337 3.730 0331 18.550 866

34 323.440 3964 402.142 9739 20.700 7086 3.730 0344 18.550 878
38 323.440 2588 402.142 8864 20.700 6967 3.730 0352 18.550 885
42 323.440 2051 402.142 8545 20.700 6918 3.730 0354 18.550 888
46 323.440 1985 402.142 8529 20.700 6909 3.730 0354 18.550 887
50 323.440 2169 402.142 8666 20.700 6923 3.730 0352 18.550 886
54 323.440 2469 402.142 8867 20.700 6947 3.730 0351 18.550 884

323.440 4655~5! 402.143 0158~2! 20.700 71488~5! 3.730 034042~1! 18.550 875307~5!

323.434 4296~5! 402.139 2635~2! 20.700 13542~6! 3.730 068847~3! 18.551 221503~5!a

Ref. @6# 402.137 30303 20.700 1373610 3.730 069345 18.551 2234

aCFHHM values computed using masses from Ref.@6# ~see Sec. III C!.
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a
ller
dl ; the irregular dependence on these indicates insuffic
precision arithmetic;~b! Km; ~c! density of the z points (pa
rameter Tz); ~d! a3,n3.

B. Optimization of the CFHHM parameters

Using quadruple-precision quadrature, we immediat
reduced the quadrature error ofnHF to the 0.002-MHz level.
The individual integrals became converging to some 14
nt

y

-

nificant digits in contrast to the double-precision calculati
where it was impossible to stabilize them to more than ab
10 significant digits. This enabled the matrix elements to
accurate enough even at largez and large powers~about
100!. We found that the results converge enough at (da ,dl)
5 ~0.05,0.015!, respectively. These values are smaller by
factor of 2 than those used in other systems. Still sma
values neither improve results nor cause instability.
3
1
2
6
1
4
0

5
6
9
0
7
6

964
TABLE III. As in Tables I and II, but expectation values of functions ofr25rHe-e .

Km ^r 2
22& ^r 2

21& ^d(r2)& ^r 2& ^r 2
2&

32 1.999 7424 0.999 8616 0.320 6137 1.500 2496 3.001 010
36 2.000 3544 1.000 0437 0.320 7256 1.499 9412 2.999 774
40 2.000 5438 1.000 1025 0.320 7590 1.499 8353 2.999 338
44 2.000 5424 1.000 1044 0.320 7575 1.499 8273 2.999 305
48 2.000 4649 1.000 0832 0.320 7424 1.499 8586 2.999 421
52 2.000 3639 1.000 0543 0.320 7234 1.499 9051 2.999 605
56 2.000 2645 1.000 0254 0.320 7049 1.499 9529 2.999 797

34 1.999 6482 0.999 8496 0.320 5874 1.500 2358 3.000 919
38 1.999 2788 0.999 7382 0.320 5207 1.500 4295 3.001 707
42 1.999 1984 0.999 7119 0.320 5073 1.500 4798 3.001 915
46 1.999 2420 0.999 7228 0.320 5165 1.500 4671 3.001 879
50 1.999 3323 0.999 7483 0.320 5338 1.500 4270 3.001 720
54 1.999 4324 0.999 7773 0.320 5526 1.500 3783 3.001 517

1.999 8733~1! 0.999 90858~2! 0.320 63337~7! 1.500 1536~2! 3.000609~3!

1.999 8726~1! 0.999 9083308~4! 0.320 63327~6! 1.500 1550~1! 3.000621~2!a

Ref. @6# 0.999 9057442 0.320 62688 1.500 160720 3.000 655

aSee footnote of Table II.
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TABLE IV. As in Tables I and II, but expectation values of functions ofr35re-m .

Km ^r 3
22& ^r 3

21& ^d(r3)& ^r 3& ^r 3
2&

32 1.999 1899 0.999 8471 0.313 7421 1.500 2556 3.00 102
36 1.999 8018 1.000 0292 0.313 8520 1.499 9471 2.999 79
40 1.999 9912 1.000 0879 0.313 8849 1.499 8412 2.999 35
44 1.999 9898 1.000 0899 0.313 8836 1.499 8333 2.999 32
48 1.999 9123 1.000 0686 0.313 8689 1.499 8645 2.999 43
52 1.999 8113 1.000 0398 0.313 8503 1.499 9110 2.999 62
56 1.999 7119 1.000 0108 0.313 8322 1.499 9588 2.999 81

34 1.999 0958 0.999 8351 0.313 7166 1.500 2417 3.000 93
38 1.998 7266 0.999 7237 0.313 6516 1.500 4354 3.001 72
42 1.998 6462 0.999 6974 0.313 6387 1.500 4857 3.001 93
46 1.998 6898 0.999 7083 0.313 6478 1.500 4730 3.001 89
50 1.998 7801 0.999 7338 0.313 6648 1.500 4329 3.001 73
54 1.998 8801 0.999 7628 0.313 6832 1.500 3842 3.001 53

1.999 3209~1! 0.999 894 06~2! 0.313 76223~8! 1.500 1596~2! 3.000 627~3!

1.999 3202~1! 0.999 893 8168~5! 0.313 762 07~7! 1.500 1608~1! 3.000 639~2!a

Ref. @6# 0.999 891 2309 0.313 7630 1.500 166625 3.000 673

Ref. @4# 1.500 166572

aSee footnote of Table II.
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The results deviate from the initial results~Sec. III A! by
about 0.02 MHz, showing that the test calculation accur
estimated was correct.

An important result is that the precision obtained
nsub3nG 5 1 3 64 was equivalent to 43 32 and 163 16,
which means a fourfold CPU time reduction in each ca
High-order Gaussian quadrature with no subdivisions
therefore much more efficient than lower-order quadrat
with more subdivisions at the same value ofnsub3nG .

To estimate the accuracy, we calculated the expecta
values atKm532 for a set of values ofnsub, nG , pW , zU ,
and Tz , and observed the global upper and lower limits
values on this set of results, taking into account only th
results where all parameters lie in sufficiently narrow co
vergence regions. This is justified because we have fi
regions of convergence in all parameters and a large eno
set of results to be able to rely on mutual cancellations
some errors.

The convergence was confirmed by testing the critical
rameters atKm540. Furthermore, these parameters w
tested again atn350.7 and for differenta3 at n350.5. For
example,zU had to be taken different~700 for n350.5, 900
for n350.7). Except where explicitly noted, the followin
descriptions apply ton350.5; in general the parameter d
pendence is appreciably smaller forn350.7.

~i! nsub3nG : among 4316, 2332, and 4332, 1364, at
Km 5 32, the latter was apparently the best, the depende
on the Gaussian density in the last three cases being w
0.0002 MHz. The smallest difference between ca
(zU ,pW) 5 ~700, 92! and ~800,100! is at 1364. At Km 5
48, the difference between the cases 4332 and 1364 @at
(Tz ,zU ,pW) 5 ~0.05,700,100!# is 0.0002 MHz.

~ii ! Tz : the dependence onTz is about 0.002 MHz in the
range 0.0120.1. We took 0.05 for the final runs. The depe
dence on Tz for Tz50.0320.1 is 0.003 MHz for
y
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(zU ,pW)5(700,100), and 0.0015 MHz for (700,92). Th
indicatespW 5 100 is a good choice. AtKm548 the values
of nHF were 4455.7202 and 4455.7208 MHz forTz50.1 and
0.05, respectively.

~iii ! zU : at Km 5 48, (Tz ,pW) 5 ~0.05,100!, the differ-
ence between the values forzU 5 700 and 800 is 0.0005
MHz; ^H& is higher atzU 5 800 than at 700 by 131028,
indicating that 800 is slightly too large and in the instabili
region.

~iv! pW : for pW5842120, nHF decreases untilpW592,
then increases and starts to decrease, or stabilizes
pW5962100; at larger values the oscillations cease and
stability sets in atzU57002800. There is therefore jus

enough accuracy to sum the power series forW̄ in a stable
manner at largez. The above oscillations due topW are well
within the 0.002 MHz range.

~v! nsub8 3nG8 : we used 4316 throughout. AtKm 5 40,
the use of 8316 increasesnHF by 0.0004 MHz.

~vi! n3: ^d(r k)&Km
and^r k&Km

, k52,3, and related observ

ables have extrema ata3524, while for k51 they depend
negligibly on a3; ^d(r3)&5050.313 7615,0.313 7622
0.313 7620 a.u., and̂r 3&5051.500 165,1.500 160,1.500 16
a.u. atn350.5 anda3523,24,25 respectively.

~vii ! Plateaus: the expectation values as functions of t
upper z limit of integration, ^O&(zq), wherezq<zU , may
exhibit plateaus@8# at z5zp<zU , because the tail of the
wave function may be inaccurate enough at very largez to
affect the integrals. In the present calculation several
calculations with nonoptimal parameters exhibited plate
in several expectation values withzp,zU . In all final runs
displayed in the tables,zp5zU , and the error was deduce
from ]^O&(zq)/]zq at z5zU . Except for^H& this error was
found to be negligible.
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~viii ! Behavior of̂ H&: ^H& starts to decrease atKm 5 44,
showing that the variational property@8#, depending on both
the quadrature parameters andKm , is setting in as required
At Km 5 32, (zU ,pW)5(800,96) is no longer sufficient fo
^H&: the value 2402.641 015 15 a.u. is higher tha
2402.641 015 36 a.u. at (zU ,pW)5(800,100); this in turn
agrees with (zU ,pW)5(700,100) so thatzU 5 700 is suffi-
cient. The plateau error is 131027 a.u. for n3 5 0.5 and
3310210 a.u. forn3 5 0.7. Therefore in then3 5 0.5 case
the main error comes from the plateau flatness. This sign
that our f , which was optimized fornHF is not optimal for
^H&. In Fig. 4, then350.5 curves have much larger erro
than then350.7 ones.

~ix! Global correction: for the first time in CFHHM we
have calculated the global correction to the delta funct
operator@14#

TABLE V. As in Table I, but the hyperfine splitting in lowes
order, nHF and (nHF)GC, for n350.5, obtained as
nHF514196.1209̂d(r3)&. For comparison the results using the li
ear ~cusp! correlation function are shown in the last part of t
Table forKm/2 even. For comparison the works where correctio
or the factor@111/(mHe1mm)#23 are not included in their multi-
plicative factors are quoted.

Km nHF (nHF)GC
a

32 4453.921 4453.920
36 4455.480 4455.280
40 4455.948 4455.700
44 4455.929 4455.696
48 4455.721 4455.523
52 4455.457 4455.298
56 4455.200 4455.077

34 4453.558 4453.704
38 4452.636 4452.883
42 4452.453 4452.703
46 4452.581 4452.800
50 4452.823 4453.001
54 4453.085 4453.223

4454.206~3! 4454.206~3!b

Ref. @4# 4454.14~5!

Ref. @5# 4454.181~1!

Ref. @1# 4455.2~1.0!
Ref. @6# 4454.226c

Ref. @2# 4452.5
Ref. @3# 4452.9d

32 4844.177
40 4217.573
48 4023.569
56 4013.421
64 4081.879

aGlobal correction included~see Sec. III B!.
bError estimate includes then350.7, a350.5, and then350.5,
a3523,24,25 calculations.
cConverted from̂ d(r3)& using our value ofa ~Sec. III C!.
dApproximate value obtained from the quoted total value by s
tracting 10 MHz~see Sec. I!.
es

n

~nHF!GC5nHF1
mem

p S ^H&^r 3
21&2 K H

r 3
L D ,

wheremem is the reduced mass of the electron and mu
The correction term becomes negligible atKm 5 48, which
is, interestingly, at the start of the convergence region~see
Fig. 2!. If this were not so, the validity of the application o
the correction formula, in view of the non-Hermiticity of th
effective Hamiltonian in CFHHM, should be questioned.

The largest contribution to the quoted errors of expec
tion values other than̂H& comes from the behavior in th
parameter space of (a3 ,n3).

C. Dependence on fundamental constants

The tests were performed atn350.5, a3524 except
where noted.

For the sake of comparison, we use the following valu
for the particle masses@1,11#: me50.511 0034 MeV,
mm5105.659 48 MeV ~206.768 64 a.u.!, and
m4He54.002 6033931.5016 MeV. In Ref. @4#,
mm5105.659 46~206.768 60 a.u.! is used, and the energ
for the former set of masses@1,11# is calculated and com
pared to.

The effect of the small change in the muon mass is
follows: if we use the smaller muon mass from Ref.@4# ~and
presumably Ref.@5#!, the eigenvalueE and^H& increase by
731025 a.u., whilenHF increases by 0.0014, 0.00015, an
0.0014 MHz atKm 5 32, 38, and 40, respectively.^r 3&
decreases by about 131026 on average atKm 5 32, 38, and
40.

We usea51/137.035 9895@15#, and employ the conver
sion factor 8

3 pa2me /mm514196.1209 MHz/a.u. The sens
tivity to the value ofa is as follows: ifa of Ref. @4# is used,
one gets the smaller factor 14196.1105 MHz/a.u., wh
would reduce the value of ournHF by 0.003 MHz.

The 4He mass used in Refs.@1,4,11# and presumably in
Ref. @5#, as well as in our work, is the atom mass; see a
the discussion in Ref.@6#. In Ref. @6#, a comparative calcu-
lation using the Ref.@4# masses instead of their own4He21

mass~7294.2996 a.u.! is presented. Also, the muon mass
Ref. @6# ~206.768262 a.u.! differs appreciably from our us
age.

To make a comparison of our values of observables w
the values of Ref.@6#, we first tested]nHF/]m4He by sub-
tracting 2 a.u. from ourm4He, and found it to be positive as
expected:nHF decreased by 0.0009 MHz atKm532 and by
0.004 MHz atKm534. Since]nHF/]mm according to the
above is negative as expected, the effects of Ref.@6# masses
as compared to ours were expected to partially cancel
which is what happened.

Our final value of^d(r3)& is 0.313 7622(2) a.u., wher
the error estimate takes into account the results of
n350.7, a3524 calculation~see Tables IV and V! as well
as then350.5,a3523,24,25 calculations~see Sec. III B!.
Ref. @6# quotes 0.313 7630 a.u.~implying the error 0.001
MHz in nHF). The only fundamental constants affecting t
difference between these two values arem4He andmm .

We recomputed our observables with the masses of R
@6#. This mass change makes^d(r3)& smaller by about 1 on
the last quoted digit: 0.313 7621(2) a.u.~Table IV; error
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estimate taken from the calculation using our masses!, mov-
ing our value further away from that of Ref.@6#.

The effect of these mass differences onnHF is as follows:
the muon mass of Ref.@6# together with our value ofa gives
the multiplication factor of 14 196.1472 MHz/a.u. Multiply
ing by the^d(r3)& of Ref. @6#, this gives 4454.226 MHz. We
in turn obtain, using the same values of fundamen
constants, 14 196.147230.313 7621~2! MHz54454.213~3!
MHz.

We also note that while our value of^d(r3)& using the
masses of Ref.@6# is 931027 a.u. smaller than in Ref.@6#,
our value of^d(r2)& is 631026 a.u. larger than in Ref.@6#.
This is an order of magnitude larger discrepancy than
effect of masses. In fact, if we use the masses of Ref.@6#
both ^d(r2)& and ^d(r3)& decrease by about the same sm
amount of the order of 131027 a.u. with respect to value
obtained using our masses~Tables III, IV!, keeping the dif-
ference^d(r2)&2^d(r3)& unaffected.

Using the masses of Ref. @6# we get
^H&52402.637 263 01 a.u., which is slightly higher tha
2402.637 263 035••• of Ref. @6#; however, due to the large
sensitivity to the muon mass~see above!, it is possible that
this is due to the way various derived quantities are ca
lated from masses.

The comparison of our observables and those of Ref.@6#
using the same masses is given in Tables II–IV.

IV. CONCLUSION

The tables in Refs.@4,5# show that although the errors o
nHF quoted are derived from a comparison of results us
different variational bases, the individual bases makenHF
converge to different values. This is not the case in CFHH

We deduce our final value ofnHF as 4454.206(3) MHz
~Fig. 2, Table V!.

To make an accurate comparison with Refs.@5,6#, we
recalculated the values of observables for severalKm in the
convergence region using the constants from Refs.@5,6#.
This comparison is given in Tables II–IV.

Using the muon mass as well asa from Ref. @4# ~and
presumably Ref.@5#! decreases ournHF result by about 0.002
MHz, to give 4454.204(3) MHz as compared with the val
4454.181(1) MHz of Ref.@5#.

Using the masses of Ref.@6# and our value ofa, we
obtain 4454.213(3) MHz as compared with 4454.226 M
of Ref. @6#.

This indicates that the value of Ref.@5# is 0.023(4) MHz
too small while the value of Ref.@6# is 0.013(4) MHz too
large, and that our values are more precise than the di
ences between the different variational calculations, altho
the quoted accuracy is approximately the same in all ca
These discrepancies are displayed in Fig. 2, where the
and dashed lines are obtained by shifting our final value
20.023 and 0.013 MHz, respectively.

In particular we note that the difference^d(r2)&2^d(r3)&
is smaller by about 631026 a.u. in Ref.@6# than in our work,
while the effect of different masses and our computatio
error for these operators are both of the order of 231027

a.u.
Our value of ^r 3& @1.500160~5! a.u., i.e., the value o

Table IV with the Km , n3 and a3 dependence taken int
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account, see Fig. 3 and Sec. III B# should be compared with
the value of Ref.@4# adjusted by about10.000 001 a.u.
~which gives 1.500 1676 a.u., see Table IV! because of the
muon mass difference. Likewise, our^r 3& value should be
compared with the value of Ref.@6# decreased by 0.000 00
a.u. ~giving about 1.500 1656 a.u.! because of mass differ
ences~see Table IV!. These discrepancies are displayed
Fig. 3.

It had been shown@8,16# that the CFHHM expectation
value ^H& satisfies a variational property inKm , certain in-
trinsic parameters, and the quadrature parameters. Ther
it gives an upper bound to the true energy, which is an
portant aspect of CFHHM. According to Fig. 4 and Se
III B, the CFHHM energy (̂H&) is lower than
2402.641 015 34 a.u.; this could obviously be improved
calculating more values forn350.7, which, however, was
not our objective. Our ground-state energy is lower than
most recent variational calculations@4#, although the last
decimal places may be affected by the way the derived qu
tities are calculated from masses in various methods. On
other hand, the CFHHM value has a stable dependence
Km .

The direction of the changes inE and^H& using the cor-
responding sets of fundamental constants agrees with th
rection of changes between Refs.@4# and @11#.

With respect to the linear parametrization of the corre
tion function, the best nonlinear parametrization decrea
the errors of the CFHHM expectation values by several
ders of magnitude. We define these errors as the abso
differences between the values for a givenKm and the lim-
iting value. At Km564, udEu is reduced from 0.02 to
0.000 06 a.u.,ud^H&u from 0.002 to 331027 a.u., andudnHFu
from 370 to 0.6 MHz. ThêO&̄Km

values have two orders o

magnitude smaller errors than the^O&Km
values~except for

^H&).
The interpolation procedure is also more reliable than

trapolation employed in earlier works~Refs.@7,10#!.
In the present system, more work was involved in findi

the proper parametrization of the correlation function than
obtaining the final numerical results. This reflects the need
find a general algorithm for parametrizing the correlati
function. On the other hand, the constructed correlation fu
tion reduced the errors of observables by 324 orders of
magnitude with respect to the linear~pure cusp! correlation
function, which is an extreme case. We have establis
again @9# that the most important aspect of the correlati
function for a well-correlated system is the elimination of t
fast increase ofef in the vicinity of the coalescence points, a
the particle separation increases.

We calculated the global correction to delta-function-ty
operators in CFHHM. We have shown that in fact its calc
lation is unnecessary, as it becomes negligible even be
final convergence is reached.

We found the electron tail parameters behave similarly
those in Ref.@11# for all parametrizations, but in CFHHM
this can be interpreted in the best parametrization to sim
be the consequence ofef trying to fall off as fast as possible
This makes it easier for the HH expansion to describe
fine details of the wave function becauseef with f of Eq. ~1!
containing at the most 6 free parameters, of which only 2
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used in parametrizationA, is a rather crude approximation t
the true wave function in this two-scale system.

Summing up, one can state that CFHHM has proved s
cessful in obtaining good convergent values of all obse
ables. Our numerical error estimates are based on experi
.

t.

A

d,
c-
-
ce

in different systems calculated by the CFHHM earli
@9,10,12,13,17–25# as well as on the fact that in the CFHHM
due to its mathematically known convergence proper
@7,8# it is easy to distinguish possible numerical instabiliti
from convergence patterns.
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