Nonvariational calculation of the hyperfine splitting and other properties of the ground state of the muonic ${ }^{3} \mathrm{He}$ atom

R. Krivec ${ }^{1}$ and V. B. Mandelzweig ${ }^{2}$
${ }^{1}$ Department of Theoretical Physics, J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia
${ }^{2}$ Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

(Received 11 December 1997)

Abstract

The properties of the ground state of the muonic helium atom $e \mu^{3} \mathrm{He}^{2+}$ have been calculated nonvariationally, using the correlation function hyperspherical harmonic method utilizing a nonlinear parametrization of the correlation function. The parametrization is similar to the one used in an earlier paper for $e \mu^{4} \mathrm{He}^{2+}$ but the differences in the convergence were found to be important for the choice of optimal parameters. The parametrization is especially suited to accelerate the convergence of singular operators. As a result, the obtained expectation values of the $\delta\left(\mathbf{r}_{k}\right)$ operators have error margins smaller than the differences in the literature. The lowest-order hyperfine splitting, which depends on the fine structure constant and on the magnetic moment of the ${ }^{3} \mathrm{He}^{2+}$ nucleus, is compared with values in the literature. [S1050-2947(98)11106-X]

PACS number(s): 31.15.Ja, 32.10.Fn, 36.10.Dr, 36.10.Gv

This paper, which deals with the system $e \mu^{3} \mathrm{He}^{2+}$, is a continuation of Ref. [1], which deals with the system $e \mu{ }^{4} \mathrm{He}^{2+}$. In this work the main objective is the computation of the lowest-order hyperfine splitting, which is given by the equation [2]

TABLE I. Eigenvalues and expectation values of the Hamiltonian for the parametrization $A\left(a_{3}=-5, n_{3}=0.5\right),\left(z_{U}, p_{W}, T_{z}\right)$ $=(700,100,0.05)$, and mass set I [6]. The matrix elements were calculated using the same parameters as in Ref. [1]. The subseries with $K_{m} / 2$ even and odd are displayed separately in the first and second parts of the table. The third part displays the final values obtained from the convergence of the interpolated values, as well as final values corresponding to additional parametrizations. The fourth part compares values for the mass set II.

K_{m}	$-E$	$-\langle H\rangle$
48	399.042412541	399.042336819
52	399.042400861	399.042336819
56	399.042388694	399.042336830
50	399.042259133	399.042336810
54	399.042272833	399.042336810
CFHHM		$399.04233683024^{\mathrm{a}}$
		$399.04233680927^{\mathrm{a}, \mathrm{b}}$
		$399.04233679332^{\mathrm{a}, \mathrm{c}}$
Ref. [6]		399.0432938385859
CFHHM		$399.0482223122257^{\mathrm{e}, \mathrm{f}}$
Ref. [2]		
Ref. [6]		

[^0]$$
\nu_{\mathrm{HF}}=\nu_{\mathrm{HF}}^{(e \mu)}+\nu_{\mathrm{HF}}^{(e)},
$$
where
\[

$$
\begin{aligned}
& \nu_{\mathrm{HF}}^{(e \mu)}=2 \pi \alpha^{2} \frac{m_{e}}{m_{\mu}}\left\langle\delta\left(\mathbf{r}_{e-\mu}\right)\right\rangle=\omega^{(e \mu)}\left\langle\delta\left(\mathbf{r}_{e-\mu}\right)\right\rangle, \\
& \nu_{\mathrm{HF}}^{(e)}=2 \pi \alpha^{2} \mu_{n}\left\langle\delta\left(\mathbf{r}_{3_{\mathrm{He}-e}}\right)\right\rangle=\omega^{(e)}\left\langle\delta\left(\mathbf{r}_{3_{\mathrm{He}-e}}\right)\right\rangle,
\end{aligned}
$$
\]

μ_{n} being the magnetic moment of the ${ }^{3} \mathrm{He}^{2+}$ nucleus. $r_{e-\mu}$ ($r_{3}{ }_{\mathrm{He}-e}$) is the electron-muon (electron-nucleus) separation, respectively, and $\left\langle\delta\left(\mathbf{r}_{e-\mu}\right)\right\rangle\left(\left\langle\delta\left(\mathbf{r}_{3 \mathrm{He}-e}\right)\right\rangle\right)$ are the corresponding expectation values calculated with the help of the spatial part of the wave function. We compare our results with the values in the literature, which exhibit rather large discrepancies [2-6]. For this reason, we did not include the recoil, relativistic, and radiative corrections, and consequently the comparison with experiment (cf. Ref. [2]).

From the computational standpoint, the aim of this paper is to check the applicability of the optimal parametrization of the CFHHM correlation function for the system $e \mu{ }^{4} \mathrm{He}^{2+}$ on a system with a different mass of one of the particles.

We used the correlation function hyperspherical harmonic method (CFHHM) [7,8]. The wave function is decomposed

FIG. 1. Convergence of $\overline{-\langle H\rangle_{K_{m}}}-399$ a.u. with K_{m} and a_{3} for the parametrization A with $n_{3}=0.5 ; z_{U}=700$. Masses of Ref. [6] are used. The dotted rectangle is the value from Ref. [6].

FIG. 2. As in Fig. 1, but showing the values of $\left\langle\overline{\delta\left(\mathbf{r}_{2}\right\rangle_{K_{m}}}\right.$ (a.u.). Values of ${\overline{\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle}}_{K_{m}}$ for $a_{3}=-6$ and $K_{m}=34-40$ indicate divergence from the plateau in the figure.
as $\Psi=e^{f} \phi$, where f is the correlation function and ϕ is a smooth function expandable in hyperspherical harmonics. The nonlinear parametrization of f denoted by " A " is of the form [1]:

$$
f=b_{1} r_{1}+b_{2} r_{2}+\left[a_{3}+\left(b_{3}-a_{3}\right) e^{-r_{3} /\left(n_{3} \overline{r_{3}}\right)}\right] r_{3}
$$

The particles $\{1,2,3\}$ correspond to $\left\{e, \mu,{ }^{3} \mathrm{He}^{2+}\right\}$; in the odd-man-out notation $r_{e-\mu}=r_{3}, r_{3 \mathrm{He}-e}=r_{2} . b_{i}$ are the precise values of the cusp parameters $[\approx(-398.5,-2.000,0.9952)$ for the masses of Ref. [6]]. $\overline{r_{1}}=0.0037$ a.u., $\overline{r_{2}}=\overline{r_{3}}=1.5$ a.u. are constants equal to average particle pair distances. The same values as in Ref. [1] were used, although in the present case $\overline{r_{1}}$ is about 0.0038 a.u., so n_{3} will tend to be proportionally larger. (In practice such minor changes have negligible effects.)

Parametrization A employs the weak coupling of the electron and muon and regularizes the $e-\mu$ term, which in the cusp parametrization $\left(a_{3}=b_{3}\right)$ would be non-negative and cause slow convergence $[1,8]$.
a_{3} and n_{3} are free parameters. To find their optimal values, an extended region of parameter space including the values of Ref. [1] was investigated.

Due to the non-Hermitian property [9] of the effective potential \bar{W} appearing in the equation for ϕ, the expectation value $\langle H\rangle$ represents the energy value.

The CFHHM system of differential equations is truncated at a maximum value K_{m} of the global angular momentum $K=0,2,4, \ldots, K_{m}$ [8]. The hyperradial interval $\left[0, z_{U}\right]$, where $z_{U}=2 \sqrt{2 E} \rho_{U}, E$ is the eigenvalue, and ρ_{U} is the maximum value of the hyperradius, is subdivided using the

FIG. 3. As in Fig. 1, but showing the values of $\left\langle\overline{\left.\delta\left(\mathbf{r}_{3}\right)\right\rangle_{K_{m}}}\right.$ (a.u.).

FIG. 4. As in Fig. 1, but showing the values of $\overline{\left\langle r_{3}\right\rangle_{K_{m}}}$ (a.u.).
parameter T_{z} [8] in a sequence of subintervals $\left[z_{i}, z_{i+1}\right]$ of increasing length equal to $z_{i} T_{z}$. The matrix \bar{W} is expanded in powers $\rho^{p}, p=-1,0, \ldots, p_{W}$.

The expectation values of operators except $\langle H\rangle$ converge in two subsequences determined by whether $K_{m} / 2$ is even or odd [1], approaching the limit from different sides. The interpolated sequence $\overline{\langle\mathcal{O}}_{K_{m}}$ converges about two orders of magnitude faster [1]:

$$
\overline{\langle\mathcal{O}}_{K_{m}}=\frac{1}{2}\left[\langle\mathcal{O}\rangle_{K_{m}}+\frac{1}{2}\left(\langle\mathcal{O}\rangle_{K_{m}-2}+\langle\mathcal{O}\rangle_{K_{m}+2}\right)\right] .
$$

We use the following two sets of mass values:
(i) Set I: the set of Ref. [6]: $m_{\mu}=206.768262$ a.u., $m_{3}{ }^{\mathrm{He}}$ $=5495.8852$ a.u. (ion mass).
(ii) Set II: $m_{e}=0.5110034 \mathrm{MeV}(1 \quad$ a.u. $), \quad m_{\mu}$ $=105.65948 \mathrm{MeV} \quad(206.76864 \ldots$ a.u. $), \quad 1$ a.m.u. $=931.5016 \mathrm{MeV}[10,11]$, together with the ${ }^{3} \mathrm{He}$ atomic mass $m_{3}{ }_{\mathrm{He}}=3.01602930 \times 931.5016=5497.88145 \ldots \mathrm{MeV}$.
(Note: Refs. [2,12] list the following values: m_{μ} $=105.65948 \mathrm{MeV} ; m_{3}{ }_{\mathrm{He}}=3.0160297 \times 931.5016 \mathrm{MeV}$. It seems that the value of m_{μ} corrected to 105.65946 MeV in the erratum of [12] applies also to Ref. [2]; see Refs. [6,13].)

To calculate ν_{HF} (Table V), $\alpha=1 / 137.0359895$ [14] and $\mu_{n}=0.00115873 \mu_{\mathrm{B}}$ [2] are used.

If the ${ }^{3} \mathrm{He}^{2+}$ mass is increased by 4×10^{-7} a.u. and the muon mass is decreased by 4×10^{-5} a.u., the energy is higher by 7×10^{-5} a.u. (Table I). As was shown in Ref. [1], this is entirely due to the muon mass change.

Our value of $\langle H\rangle$ for mass set I differs from the variational value [6] by 0.3×10^{-8} a.u. (Fig. 1, Table I), which may be due to different manipulations of the mass values.

The dependence of ν_{HF} on the precise value of the ${ }^{3} \mathrm{He}^{2+}$ ion mass is small, but may become significant if one uses the atom mass instead of the ion mass: in Ref. [1] it is estimated

54

FIG. 5. As in Fig. 1, but showing the values of $\overline{\left\langle r_{3}^{-1}\right\rangle_{K_{m}}}$ (a.u.).

TABLE II. As in Table I, but expectation values of functions of $\mathbf{r}_{1}=\mathbf{r}_{\mu-3}{ }^{3} \mathrm{He}$. The numbers in parentheses are uncertainties defined as the differences of the interpolated values for the last two values of K_{m}. They show the degree of convergence for fixed n_{3}, a_{3} but not the final error estimates. The values for the mass set II are calculated for the nonoptimal choice $a_{3}=-4, n_{3}=0.7$ where the K_{m} dependence is stronger.

K_{m}	$\left\langle r_{1}^{-2}\right\rangle\left(\right.$ units of $\left.10^{-3}\right)$	$\left\langle r_{1}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{1}\right)\right\rangle\left(\right.$ units of $\left.10^{-6}\right)$	$\left\langle r_{1}\right\rangle\left(\right.$ units of $\left.10^{3}\right)$	$\left\langle r_{1}^{2}\right\rangle\left(\right.$ units of $\left.10^{6}\right)$
48	317.6777433	398.5444227	20.1499523	3.7637138	18.8873927
52	317.6777256	398.5444107	20.1499509	3.7637139	18.8873937
56	317.6777042	398.5443969	20.1499491	3.7637140	18.8873949
50	317.6774165	398.5442294	20.1499222	3.7637153	18.8874068
54	317.6774376	398.5442434	20.1499239	3.7637152	18.8874056
CFHHM	$317.6775763(1)$	$398.54432360(5)$	$20.14993696(2)$	$3.763714575(2)$	$18.88739995(2)$
Ref. [6]		398.54239761	20.1499388565	3.763715066	18.88740185
CFHHM	$317.687070(4)$	$398.550279(2)$	$20.1508403(3)$	$3.76365834(2)$	$18.8868355(2)^{\mathrm{a}}$
Ref. [2]				$3.76365948641^{\mathrm{b}}$	

${ }^{\mathrm{a}}$ CFHHM values computed using mass set II.
${ }^{\mathrm{b}}$ See footnotes e,f of Table I.

TABLE III. As in Table II, but expectation values of functions of $\mathbf{r}_{2}=\mathbf{r}_{3} \mathrm{He}-\mathrm{e}$.

K_{m}	$\left\langle r_{2}^{-2}\right\rangle$	$\left\langle r_{2}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$	$\left\langle r_{2}\right\rangle$	$\left\langle r_{2}^{2}\right\rangle$
48	2.0001188	0.9999839	0.3206909	1.5000286	3.0001192
52	2.0000457	0.9999635	0.3206768	1.5000611	3.0002524
56	1.9999762	0.9999439	0.3206635	1.5000912	3.0003656
50	1.9993392	0.9997610	0.3205434	1.5003874	3.0015428
54	1.9994076	0.9997801	0.3205566	1.5003588	3.0014407
CFHHM	$1.9997093(3)$	$0.9998669(1)$	$0.32061338(2)$	$1.5002175(4)$	$3.000875(3)$
Ref. [6]		0.999863851	0.32060857	1.500223659	3.000907793
CFHHM	$1.99971(1)$	$0.999866(3)$	$0.320613(2)$	$1.500220(5)$	$3.00089(2)^{\mathrm{a}}$
Ref. [2] ${ }^{\mathrm{b}}$			$0.3206116(2)^{\mathrm{c}}$	1.50022356791	

[^1]TABLE IV. As in Table II, but expectation values of functions of $\mathbf{r}_{3}=\mathbf{r}_{e-\mu}$.

K_{m}	$\left\langle r_{3}^{-2}\right\rangle$	$\left\langle r_{3}^{-1}\right\rangle$	$\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$	$\left\langle r_{3}\right\rangle$	$\left\langle r_{3}^{2}\right\rangle$
48	1.9995591	0.9999693	0.3137600	1.5000346	3.0001368
52	1.9994861	0.9999489	0.3137463	1.5000670	3.0002700
56	1.9994166	0.9999293	0.3137333	1.5000971	3.0003832
50	1.9987799	0.9997464	0.3136157	1.5003934	3.0015604
54	1.9988482	0.9997655	0.3136286	1.5003647	3.0014583
CFHHM	$1.999150(1)$	$0.9998523(1)$	$0.313684212(4)$	$1.5002234(4)$	$3.000892(2)$
Ref. [6]		0.9998492590	0.3136848	1.500229562	3.000925384
CFHHM	$1.99915(1)$	$0.999852(2)$	$0.313684(1)$	$1.500225(4)$	$3.00091(2)^{\mathrm{a}}$
Ref. [2] ${ }^{\mathrm{b}}$			$0.31368245(5)^{\mathrm{c}}$	1.50022947075	

[^2]TABLE V. Comparison of the values of the lowest order hyperfine splitting in the literature. Different values of fundamental constants are used.

K_{m}	$\nu_{\mathrm{HF}}^{(e \mu)}$	$\nu_{\mathrm{HF}}^{(e)}$	ν_{HF}
Present work	$3339.830(3)$	$817.861(1)$	$4157.691(3)^{\mathrm{a}}$
Ref. [6]	3347.585	767.2	$4166.34^{\mathrm{b}, \mathrm{c}}$
	$3339.837(1)$	$817.849(0)$	$4157.685(1)^{\mathrm{d}}$
Ref. [3]			$4164.9(3.0)^{\mathrm{e}}$
Ref. [2]	$3339.78(5)$	$817.85(5)$	4157.623^{f}
Ref. [4]	$3339.8037(5)$	$817.8558(5)$	$4157.659(1)^{\mathrm{f}}$
Ref. [5]	3339.8037	817.8558	4157.6595^{f}

${ }^{\mathrm{a}}$ Mass set I. Error estimate based on $n_{3}=0.5,0.7 ; a_{3}=-4,-5$. $\alpha=1 / 137.0359895$, other constants from Ref. [2], see below. $\omega^{(e \mu)}, \omega^{(e)}: 10647.110,2550.926 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$.
${ }^{\mathrm{b}} \boldsymbol{\omega}^{(e \mu)}$, $\boldsymbol{\omega}^{(e)}$ quoted [6]: 10671.81, $0.2393 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$. (see also Ref. [15]).
${ }^{\mathrm{c}}$ Quoted $\left\langle\delta\left(\mathbf{r}_{k}\right)\right\rangle, \omega^{(e \mu)}, \omega^{(e)}$ lead to 4114.801 MHz .
${ }^{\mathrm{d}}\left\langle\delta\left(\mathbf{r}_{k}\right)\right\rangle$ of Ref. [6], $\omega^{(e \mu)}, \omega^{(e)}$ of the present work. Errors inferred from the number of digits quoted for $\left\langle\delta\left(\mathbf{r}_{k}\right)\right\rangle$.
${ }^{\mathrm{e}} m_{\mu}=206.7686$ a.u., 1 a.u. $=6.579684 \times 10^{9} \mathrm{MHz}, \alpha=1 / 137.0360$, etc.
${ }^{\mathrm{f}}$ See footnotes e,f of Table $\mathrm{I} ; \quad \alpha=1 / 137.03604, \quad 1 \quad$ a.u. $=6.57968413 \times 10^{9} \mathrm{MHz}, \quad \mu_{n}=0.00115873 \mu_{\mathrm{B}}, \quad \omega^{(e \mu)}, \quad \omega^{(e)}$: $10647.085,2550.924 \mathrm{MHz} / \mathrm{a} . \mathrm{u}$.
that increasing the ion mass by 2 a.u. (mass set II versus set I) increases $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ by 3×10^{-7} a.u., which changes the hyperfine splitting by several times 0.001 MHz . In contrast, the muon mass difference between sets I and II (0.0004 a.u.) should decrease the $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle,\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ values by 5×10^{-7} a.u. [1]. This cancellation is seen in the CFHHM values (Tables III and IV).

For the two variational calculations, Refs. [6] (mass set I) and [2] (close to mass set II), such cancellation is not apparent as they differ by 3×10^{-6} a.u. in both $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$ and $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$. Interestingly, $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$ and $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ deviate in oppo-
site directions: $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle-\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle=0.0069292$ a.u. in the present work and in Ref. [2], but equals 0.0069238 a.u. in Ref. [6] (see Figs. 2 and 3). The discrepancy of 5×10^{-6} a.u. is an order of magnitude larger than the quoted accuracy of observables in Ref. [6]. Moreover, we found [1] that Ref. [6] deviates the same way in $e \mu^{4} \mathrm{He}^{2+}$.

The above results indicate that the optimized parametrization A is slightly more adapted to singular operators than to nonsingular ones. This is corroborated by the convergence of
 smaller in the latter case.

The main difference in the optimized parametrization with respect to the $e \mu^{4} \mathrm{He}^{2+}$ case [1] is the value of a_{3} $=-5\left(-4\right.$ in $\left.e \mu^{4} \mathrm{He}^{2+}\right) ; n_{3}$ remained the same.

The final values of $\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle=0.3206134(3)$ a.u. and $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle=0.3136842(3)$ a.u. were obtained using the parameter ranges $n_{3}=0.5,0.7 ; z_{U}=700-900 ; a_{3}=-4,-5 ; K_{m}$ $=48-56$. The parameter dependence is strongest for a_{3}, then for K_{m}, and the weakest between $\left(n_{3}, z_{U}\right)=(0.7,900)$ and $(0.5,700) .\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle$ and $\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle$ change by an amount of the order of 1×10^{-8} a.u. between $\left(n_{3}, z_{U}\right)=(0.7,900)$ and $(0.5,700)$, at $a_{3}=-4$. As the results for the mass set II were calculated using nonoptimal values of a_{3}, n_{3}, the final errors lie between the K_{m} dependencies for mass sets I and II listed in Tables II-IV.

As in Ref. [1], the global correction term [15] proved to be negligible, affecting ${\overline{\left\langle\delta\left(\mathbf{r}_{2}\right)\right\rangle_{K_{m}}}}$ and $\overline{\left\langle\delta\left(\mathbf{r}_{3}\right)\right\rangle_{K_{m}}}$ by less than 1×10^{-7} a.u. at $K_{m}=54$.

Our final error of the hyperfine splitting is 0.003 MHz , while its value depends on additional fundamental constants (α and μ_{n}). In Table V we show that the differences in the constants used make direct comparisons of the results in the literature impossible. In fact, the results depend on assumed values of α and μ_{n} more than they do on the computational accuracy.

The research of one of the authors (V.M.) was supported by The Israeli Science Foundation, founded by The Israeli Academy of Sciences and Humanities.
[1] R. Krivec and V. B. Mandelzweig, Phys. Rev. A 56, 3614 (1997).
[2] M.-K. Chen and C.-S. Hsue, J. Phys. B 22, 3951 (1989).
[3] S. D. Lakdawala and P. J. Mohr, Phys. Rev. A 24, 2224 (1981).
[4] M.-K. Chen, J. Phys. B 23, 4041 (1990).
[5] M.-K. Chen, J. Phys. B 26, 2263 (1993).
[6] V. H. Smith and A. M. Frolov, J. Phys. B 28, 1357 (1995).
[7] M. I. Haftel and V. B. Mandelzweig, Ann. Phys. (N.Y.) 189, 29 (1989).
[8] M. Haftel, R. Krivec, and V. B. Mandelzweig, J. Comput. Phys. 123, 149 (1996).
[9] M. I. Haftel and V. B. Mandelzweig, Phys. Lett. 120A, 232 (1987).
[10] K.-N. Huang and V. W. Hughes, Phys. Rev. A 20, 706 (1979); 21, 1071 (1980).
[11] K.-N. Huang, Phys. Rev. A 15, 1832 (1977).
[12] M.-K. Chen and C.-S. Hsue, Phys. Rev. A 40, 5520 (1989); 42, 1830(E) (1990).
[13] M.-K. Chen, Phys. Rev. A 45, 1479 (1992).
[14] Particle Data Group, L. Montanet et al., Phys. Rev. D 50, 1173 (1994).
[15] R. J. Drachman, J. Phys. B 16, L749 (1983).

[^0]: ${ }^{\text {a }}$ The lowest noninterpolated value is taken.
 ${ }^{\mathrm{b}} a_{3}=-4, n_{3}=0.5, z_{U}=700$.
 ${ }^{c} a_{3}=-4, n_{3}=0.7, z_{U}=900$.
 ${ }^{\mathrm{d}}$ Mass set II.
 ${ }^{\text {e }}$ Masses as in set II except $m_{3} \mathrm{He}=3.01602970$ a.m.u.
 ${ }^{\mathrm{f}} m_{\mu}$ actually 105.65946 MeV (see erratum, Ref. [12]).
 ${ }^{\mathrm{g}}$ Refs. [6,2] agree well if using the same m_{μ}, see Ref. [6].

[^1]: ${ }^{\text {a }}$ See footnote a of Table II.
 ${ }^{\mathrm{b}}$ See footnote b of Table II.
 ${ }^{\mathrm{c}}$ Calculated from the published $\nu_{\mathrm{HF}}^{(e)}$.

[^2]: ${ }^{\text {a }}$ See footnote a of Table II.
 ${ }^{\mathrm{b}}$ See footnote b of Table II.
 ${ }^{\mathrm{c}}$ Calculated from the published $\nu_{\mathrm{HF}}^{(e \mu)}$.

