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Local properties of three-body atomic wave functions
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The local properties and accuracy of the positronium negative-ion)(Bound-state wave functions ob-
tained by the stochastic variational meth@&V/M) and by direct solution of the Schiimger equation with the
help of the correlation-function hyperspherical-harmonic meti@feHHM) are studied and compared. Though
the energy, calculated by both methods, agrees to up to ten digits, the amplitudes of the values of the operator
D=HW/EW -1, characterizing local deviation of the wave function from its true value, in all of the coordi-
nate space in the SVM are consistently lar@®r up to five orders of magnitugiéhan in the CFHHM, despite
the fact that the SVM observables exc€p(ry)) converge to significantly more digits than the CFHHM
observables for their respective selected bases.

PACS numbds): 31.15.Ja, 31.15.Pf, 36.10.Dr

I. INTRODUCTION ground state in Ref4], but the present comparison is espe-
cially interesting. On one side, the CFHHM is the only
The question of accurate calculation of wave functions ofmethod that not only yields precision comparable to that ob-
few-body Coulomb systems and the importance of knowl+tained by elaborate variational calculations but by its nature
edge of their proper analytical structure for the calculation ofof producing a direct solution of the few-body Sctimger
observables is of long standing. It was first raised in theequation generates the correct analytic structure of the wave
literature by Bartlettet al. [1,2] many years ago and more function, including proper logarithmic terms and imposing
recently discussed once again in Réf4]. Until recently, exactly the Kato cusp conditions. On the other side, the SVM
by far the most accurate estimates of observables were olgields extremely accurate expectation values, converged to
tained in different variational calculationb—9], which,  many significant digits.
however, sophisticated and precise as they currently are, are We restrict ourselves here to comparison of the wave
not able to reproduce the correct analytical structure of threefunctions obtained by these two methods though investiga-
body wave functions, since the inclusion or omission oftion of the wave functions produced by other precise meth-
logarithmic termg6], or negative powers of interparticle dis- ods could be very instructive as well. For example, the finite-
tances[3], has negligible effect on the value of the varia- element method, similarly to the CFHHM, yields accurate
tional energy. A variational function coincides with the pre- direct solution of the three-body Scliinger equatiof12].
cise one only on the average, and can wildly or evenThough it cannot, by virture of being a pure numerical
infinitely deviate from it locally[3]. These local discrepan- method, show explicitly the analytic structure of the solution,
cies could lead to wrong estimates of expectation values ahe proper analysis of accuracy of its wave functions and
different operators which have significant contributions fromtheir comparison with variational wave functions is certainly
the regions of the configuration space where the deviationgery interesting and should be done in the future.
occur. Of the local properties of the CFHHM and SVM wave
To allow a more quantitative discussion of this problem,functions, ¥ cepyym and Wsyy, the stress is on the relative
we have compared the observables and the local propertiéscal deviationD=HW/EW —1 and the derivatives at the
of the positronium negative-ion (Py ground-state wave coalescence points, which show directly to what extent the
functions calculated by two contemporary methods, the stoKato cusp conditions are satisfied. These two quantities are
chastic variational methotBVM) [7,8], and the correlation- extremely sensitive measures of the local goodness of the
function  hyperspherical-harmonic  method(CFHHM)  wave function and could be used therefore for proper judging
[10,11. The local convergence and accuracy of wave funcof the accuracy of any method of solving the Sclinger
tions obtained by the CFHHM were previously analyzed forequation. For example, for a true eigenfunct®ris strictly
ground and excited states of the helium atom and for the Psequal to zero. However, it becomes infinite at any of the
singularities if they are not properly included in the calcu-
lated wave function, even when the wave function itself dis-
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FIG. 1. Jacobi coordinates for a three-body system, for the pair
indexk=3. 0.00132

1). The angle between, ands, is denoted byp, . The odd-
man-out notation for relative coordinates is used where g¢.go130 !

single indices appear on quantities; frequently, the particle 37.90 3.0 38.10
pairs are denoted explicitly for readability. Thug=r,.
All results are given in atomic units. FIG. 3. As in Fig. 2(curvesa andb), but at large distance :

In the SVM[7,8], the wave function is expanded in basis CFHHM, K,=80; +: CFHHM, K= 56.
functions which usually, as well as in the present work, are B -
of Gaussian type. The cusp conditions are not imposed onf= —(.5-,e "1/("r) (.5 ,e "2/("2r2) — (- 0.126 517 825
the wave function. —

In the CFHHM[10,11], the wave function is decomposed +0.626517 826 "3/(N3ra)yr o 2
asW crpuv=€'®, wheref is the correlation function and
is a smooth function expandable in hyperspherical harmonin which a; was fixed from asymptotic conditions, and the
ics. The maximum global angular momentum used is defemaining optimized values ara;=a,=0, n;=n,=n;

noted byK ,, and corresponds td= (K,/4+1)? basis func- =5. (For this work the previous Pscalculation[13] was
tions. extended tK,,= 100,
The nonlinear parametrizations df are of the form
(11,13 Il. OBSERVABLES
The CFHHM expectation values with the parametrization
3 _ B should be calculated witl ,, at least 100 to give nine-digit
f=> [a,+(by—a e «/MW]r,, (1)  precision in energy. At thi¥, the oscillatory convergence
k=1 of observables also becomes negligible.

Table | contains the final CFHHM and SVM as well as
o classical exponential variational expansiVE) [9] esti-
wherer are equilibrium interparticle distances, are small  mates of different PS expectation values and their errors.
numbers, andb, are the cusp parameters. Alparametriza- We note that in the CFHHMK,, could be increased still
tions satisfy the Kato cusp conditions exacty;andn, are  further, but for the purpose of the present discussion the
free parameters, some of which are fixed by asymptotic conprecision reached is sufficient. Comparing expectation values

ditions. in Table | and taking coincident digits in observables ob-
We use the fastest converging nonlineparametrization, tained by the two different methods as the true ones we make
denoted by “B,” used in Ref[13]: the following conclusions.
(i) The CFHHM with K,,= 100, which includes 676 hy-
1.000 : : : perspherical basis functions, yields energy convergent to
nine significant digit§SD), ( 5(rp)) to eight SD}(8(ree)) t0
0.999 - 7 6—7 SD, and negative and positive powers of interparticle

distances to six and five SD, respectively.

(i) The SVM with 800 basis functions produces energy
. 0997 convergent to twelve SD(rep)) to four SD;(8(ree)) to
0 three SD, and negative and positive values of powers of in-

0.998

e r ’ 1 terparticle distances to twelve and ten SD, respectively.
0.995 u

0.994 |- | Ill. DIRECT COMPARISON OF W

0.993 . ! ! Figure 2 shows the different behavior of the CFHHM and

0.00 0.05 0.10 0.15 0.20 SVM wave functions, arbitrarily normalized to 1 at the ori-
Sep i . . .
gin, at the attractive coalescence point=0), as functions
FIG. 2. CFHHM and SVM wave functions, normalized to 1 at Of Sep. It appears that the Gaussian-type basis used in the
the origin, forr,=0 and the favorable case,,= 90°, as functions SVM calculation causes undulations of the order of 0.002 in
of s¢p. Curvea: CFHHM, K =100, parametrization B; Curve: the detailed behavior o¥ g\, near the origin due to insuf-
SVM, N=800. s is in a.u. ficient convergence¥ cgyym for K,=56, 80, and 100 can-
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1000

676 (CFHHM), N=800 (SVM), and N

(EVE). The CFHHM values are presented with error estimates in parentheses. Square brackets denote the

powers of 10. For values other théH), the converged digits are given, but not more thar(rb2nded.

CFHHM, SVM, and EVE observables\

TABLE I.

EVE [9]

SVM7,8]

CFHHM

Operator

(H)

0.262 005 070 232 965

5.489 633 252 37

0.262 005070 226
5.489 633 252 180
8.548 580 655 061
0.339 821023 027
0.155631 905632
0.279 326 539 097
0.036 022 059 431
0.020731 048976

0.262 005069 5

5.489 &1)
8.548 §2)

(Tep

(Tee)

(r

8.548 580 655 12

0.339 821023 059
0.155 631 905 653
0.279 326 542 159
0.036 022 058 49
0.0207331980
0.170996 9p-3]

0.3398221)
0.155 6331)
0.279327 21)
0.036022 ®)

)
)
)
)

-1
ep
-1
ee
-2

(r

(r

-2
ee

(r

0.020 733 146) 2
0.1709972)[ 3]

(8(rep))

0.171 112 600 7413]

(3(ree)
#The globally corrected value ¢#(ree) ), [14] 0.020 733 1{3), newly calculated in the present work, has an

error twice as small.

FIG. 4. Relative difference of the CFHHM
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FIG. 7. As in Fig. 6, but for
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FIG. 9. As in Fig. 8, but the SVMN=800. TheD surface in

FIG. 8. D=HW/E¥—1 in percent(i.e., 1¢D) for the CF- the SVM has a more short-range structure and much larger ampli-
HHM, K,,=100, in a narrow rectangular region adjoining thg tudes of theD values than in the CFHHM: thB scale is 15000
axis, where 0 a.U<rg.<0.02 a.u., 0 a.u<se<10 a.u. times larger than in Fig. 8.
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not be distinguished in Fig. 2. Figure 3 shows the same wave IV. RELATIVE LOCAL DEVIATION OF W

functions at large distances, and at smaller vertical scale. The

extent of CFHHM convergence is shown by comparison of. In this section we show figures of the relative local Qevia-
the points obtained withK,=56 and K,=80 at s, tion D=HW/EV—1 for the unfavorable case whep is

=38 a.u. Wy and Weyy agree to within the error of 1°,_Wh_ere the particles are_almost_at the coalescence point if
W ceny CONVergence, i.e., to a few times 10 their distances are _appropna(é. ¢i is 90°, the surfaces are
Figures 4—7 show the relative differencestogqyyy and ~ &lmost flat) HereE is the valye of energy co_rrespondmg to
Veums R=(Ycrrmm—Ysum)/Psyu, in the parts of con- the ground-state wave function. This value in both methods
figuration space relevant for expectation value calculationcoincides to up to the tenth significant figure and is displayed
Wave functions are normalized to 1 at the origin, so that thdn the first line of Table I.
rather different behavior at the origin enforces a relative dif- Figures 8, 9, and 10 show the values of relative local
ference of the order of 210 2 in the regions up to about deviationD in percent for the CFHHM and SVM, in narrow
the equilibrium distances. However, only the variation®of regions of coordinate space near g axis, i.e., whereg .
across the coordinate space are relevant; small differences & small. TheD surfaces have structure which appears at
the normalizations o’ gy or ¥ cepum Would only shift the  different scales for the CFHHM and SVM; to present more
R axis, but not change the surfaces. The oscillating deviadetail, we give two different,, scales for the CFHHM. The
tions at large distances are partly due to finite grid size. Themplitudes of the SVM values are about five orders of mag-
undulations at small distances are presumably caused by timitude larger than the amplitudes of the CFHHM values.
SVM wave function. The sharp peaks in Figs. 9 and 10 are spurious: they cor-

FIG. 11. As in Fig. 10, but the CFHHND
surface in coordinates ¢p,Sep (0 au. <rg,
<0.5 au., 0 a.u<sy<10 a.u.).
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FIG. 13. As in Fig. 12, but the SVM\|=800. TheD surface in
the SVM has a more short-range structure than in the CFHHM and
larger amplitudes of th® values. TheD scale is 1200 times larger

than in Fig. 12.

ytically, only the finite-

grid makes the surfaces less than ideal. In the

, the effect of expandin’ on a Gaussian-type basis is
uch stronger than the effect of grid spacing, and the cusps
are rounded instead of having strictly rectangular structure as

in the CFHHM.

FIG. 12. As in Fig. 11, but in a narrow region adjoining thg

axis (0 a.u.<rgp<<0.02 a.u., 0 a.uss,,<10 a.u.).
0), which because of the finite density of the plotting grid hess of the

respond to points near the attractive coalescence poit ( structure; since this is included anal
are too few to yield the detailed behavior@fatr,,=0. To

SVM

show this part of coordinate space better, Figs. 11, 12, and 13,

show the CFHHM and SVM values of relative local devia-

tion in the (¢p,Sep) coordinate system in narrow regions

near thes,, axis, wherer g, is small.

VI. CONCLUSION

One sees that the amplitudes of the SVM values are about
two orders of magnitude larger than the amplitudes of the

CFHHM values at.,~0 ands,, not very small. Note that
the SVM gives better relative local deviation valuesr gt

In conclusion, we found that the amplitudes of the SVM
HW/EW —1 values are consistently larger than the ampli-

more digits than the CFHHM observables for their respective

SVM observablegexcept{ 5(r\))] converge to significantly
selected bases.

~0 than atr.,~0. This is because the SVM algorithm se- tudes of the CFHHM values in all of the coordinate space by
lects points predominantly in the region important for theup to five orders of magnitude, despite the fact that most

energy, which is near the attractive coalescence point.

The deviation of the wave function from its true value in
the SVM is especially large at short distances. One should

(1) (oW lorep), approximated by simple first-order dif- expect therefore that the expectation values of the operators

V. BEHAVIOR OF ¥ NEAR CUSPS

(1) (9W/aree andCep

Here we show figures of.¢

getting most contributions from this region, especiailpp-

CFHHM figures(Figs. 14 and 16 exhibit the correct cusp erators, will be more precisely given by the CFHHM than by

ferences on the plotting grid of pointfigs. 14—-17. The

Cé’t’

(oW/or g0/ for the CFHHM,

FIG. 14.Cqq
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FIG. 15. As in Fig. 14, but for the SVMN
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the SVM. From Table | one can see that it is indeed so, ands was done for parametrization B, have proper asymptotics
the values of 8(r.o)) and(8(r.p)) are given in the CFHHM  for a smallK,,. However, the weaker requirement greatly
with accuracy of two significant figures better than in thesimplified the determination of parametersfdfl1,13, and
SVM. The fact that the accuracy of other short-range operawas sufficient for the purpose of obtaining ga@#(r,)) val-

tors, like(r,"), n=1,2, is less in the CFHHM than in the ues.

SVM has nothing to do with the accuracy of the wave func- Summing up, we have shown that direct solution of the
tion, but stems from the slower convergence of expectatiofew-body Schrdinger equation facilitating proper inclusion
values of such operators in the CFHHM due to their specifi®f cusps and analytic structure dramatically increases the
singularity at the origin(Ref. [10]). On the other hand, the quality of the wave function at all interparticle distances so
better accuracy in the SVM of long-range operators {ikg) ~ far as it is characterized by the value of relative local devia-
(Table ) does stem from the fact that the SVM wave func-tion D=HWV/EWV —1.

tion with 800 Gaussians has better asymptotics than the CF-
HHM with 676 hyperspherical basis functions.

Partly this is due to the fact that tfiéunction used in the
CFHHM calculation is optimized to give fast convergence of The research was supported by the bilateral Cooperation
short-range operators like5(r,)), and not long-range opera- Program of the Ministry of Science and Technology of Slo-
tors like (ry) [13]. The fact that the global correction for venia(R.K.), by The Israeli Science Foundation founded by
(8(rep)) gives errors twice as small as for the uncorrectedThe Israeli Academy of Sciences and Humanitig¢sB.M.),
observable in the CFHHM probably has the same origin. and by the U.S. Department of Energy, Nuclear Physics Di-

The deficiency in the CFHHM asymptotics could be curedvision, under Contract No. W-31-109-ENG-39, and OTKA
by increasing the number of basis functions or by paramGrant No. T029003Hungary (K.V.). We thank Dr. R. For-
etrizing f with the requirement tha¥ oy, and not juse’ rey for useful communications.
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