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Local properties of three-body atomic wave functions
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The local properties and accuracy of the positronium negative-ion (Ps2) ground-state wave functions ob-
tained by the stochastic variational method~SVM! and by direct solution of the Schro¨dinger equation with the
help of the correlation-function hyperspherical-harmonic method~CFHHM! are studied and compared. Though
the energy, calculated by both methods, agrees to up to ten digits, the amplitudes of the values of the operator
D5HC/EC21, characterizing local deviation of the wave function from its true value, in all of the coordi-
nate space in the SVM are consistently larger~by up to five orders of magnitude! than in the CFHHM, despite
the fact that the SVM observables except^d(r k)& converge to significantly more digits than the CFHHM
observables for their respective selected bases.

PACS number~s!: 31.15.Ja, 31.15.Pf, 36.10.Dr
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I. INTRODUCTION

The question of accurate calculation of wave functions
few-body Coulomb systems and the importance of kno
edge of their proper analytical structure for the calculation
observables is of long standing. It was first raised in
literature by Bartlettet al. @1,2# many years ago and mor
recently discussed once again in Refs.@3,4#. Until recently,
by far the most accurate estimates of observables were
tained in different variational calculations@5–9#, which,
however, sophisticated and precise as they currently are
not able to reproduce the correct analytical structure of th
body wave functions, since the inclusion or omission
logarithmic terms@6#, or negative powers of interparticle dis
tances@3#, has negligible effect on the value of the vari
tional energy. A variational function coincides with the pr
cise one only on the average, and can wildly or ev
infinitely deviate from it locally@3#. These local discrepan
cies could lead to wrong estimates of expectation value
different operators which have significant contributions fro
the regions of the configuration space where the deviat
occur.

To allow a more quantitative discussion of this proble
we have compared the observables and the local prope
of the positronium negative-ion (Ps2) ground-state wave
functions calculated by two contemporary methods, the
chastic variational method~SVM! @7,8#, and the correlation-
function hyperspherical-harmonic method~CFHHM!
@10,11#. The local convergence and accuracy of wave fu
tions obtained by the CFHHM were previously analyzed
ground and excited states of the helium atom and for the2
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ground state in Ref.@4#, but the present comparison is esp
cially interesting. On one side, the CFHHM is the on
method that not only yields precision comparable to that
tained by elaborate variational calculations but by its nat
of producing a direct solution of the few-body Schro¨dinger
equation generates the correct analytic structure of the w
function, including proper logarithmic terms and imposin
exactly the Kato cusp conditions. On the other side, the S
yields extremely accurate expectation values, converge
many significant digits.

We restrict ourselves here to comparison of the wa
functions obtained by these two methods though invest
tion of the wave functions produced by other precise me
ods could be very instructive as well. For example, the fin
element method, similarly to the CFHHM, yields accura
direct solution of the three-body Schro¨dinger equation@12#.
Though it cannot, by virture of being a pure numeric
method, show explicitly the analytic structure of the solutio
the proper analysis of accuracy of its wave functions a
their comparison with variational wave functions is certain
very interesting and should be done in the future.

Of the local properties of the CFHHM and SVM wav
functions,CCFHHM and CSVM , the stress is on the relativ
local deviationD5HC/EC21 and the derivatives at th
coalescence points, which show directly to what extent
Kato cusp conditions are satisfied. These two quantities
extremely sensitive measures of the local goodness of
wave function and could be used therefore for proper judg
of the accuracy of any method of solving the Schro¨dinger
equation. For example, for a true eigenfunctionD is strictly
equal to zero. However, it becomes infinite at any of t
singularities if they are not properly included in the calc
lated wave function, even when the wave function itself d
plays very smooth behavior@1,2,4#.

In this paper the particles$1,2,3% correspond to$e,e,p%,
wheree denotes an electron andp denotes the positron. Th
Jacobi vectors, the first connecting thekth pair and the sec-
ond connecting the center of mass of thekth pair with the
third particle, are denoted respectively byr k andsk ~see Fig.
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R. KRIVEC, V. B. MANDELZWEIG, AND K. VARGA PHYSICAL REVIEW A 61 062503
1!. The angle betweenr k andsk is denoted bywk . The odd-
man-out notation for relative coordinates is used wh
single indices appear on quantities; frequently, the part
pairs are denoted explicitly for readability. Thus,r15rep .
All results are given in atomic units.

In the SVM @7,8#, the wave function is expanded in bas
functions which usually, as well as in the present work,
of Gaussian type. The cusp conditions are not imposed
the wave function.

In the CFHHM@10,11#, the wave function is decompose
asCCFHHM5efF, wheref is the correlation function andF
is a smooth function expandable in hyperspherical harm
ics. The maximum global angular momentum used is
noted byKm and corresponds toN5(Km/411)2 basis func-
tions.

The nonlinear parametrizations off are of the form
@11,13#

f 5 (
k51

3

@ak1~bk2ak!e
2r k /(nkr̄ k)#r k , ~1!

wherer̄ k are equilibrium interparticle distances,nk are small
numbers, andbk are the cusp parameters. Allf parametriza-
tions satisfy the Kato cusp conditions exactly;ak andnk are
free parameters, some of which are fixed by asymptotic c
ditions.

We use the fastest converging nonlinearf parametrization,
denoted by ‘‘B,’’ used in Ref.@13#:

FIG. 1. Jacobi coordinates for a three-body system, for the
index k53.

FIG. 2. CFHHM and SVM wave functions, normalized to 1
the origin, forr ep50 and the favorable casewep590°, as functions
of sep . Curvea: CFHHM, Km5100, parametrization B; Curveb:
SVM, N5800. sep is in a.u.
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f 520.5r 1e2r 1 /(n1r̄ 1)20.5r 2e2r 2 /(n2r̄ 2)2~20.126 517 825

10.626 517 825e2r 3 /(n3r̄ 3)!r 3 , ~2!

in which a3 was fixed from asymptotic conditions, and th
remaining optimized values area15a250, n15n25n3
55. ~For this work the previous Ps2 calculation@13# was
extended toKm5100.!

II. OBSERVABLES

The CFHHM expectation values with the parametrizati
B should be calculated withKm at least 100 to give nine-digi
precision in energy. At thisKm the oscillatory convergence
of observables also becomes negligible.

Table I contains the final CFHHM and SVM as well a
classical exponential variational expansion~EVE! @9# esti-
mates of different Ps2 expectation values and their error
We note that in the CFHHMKm could be increased stil
further, but for the purpose of the present discussion
precision reached is sufficient. Comparing expectation val
in Table I and taking coincident digits in observables o
tained by the two different methods as the true ones we m
the following conclusions.

~i! The CFHHM with Km5100, which includes 676 hy-
perspherical basis functions, yields energy convergen
nine significant digits~SD!, ^d(rep)& to eight SD;̂ d(ree)& to
6–7 SD, and negative and positive powers of interparti
distances to six and five SD, respectively.

~ii ! The SVM with 800 basis functions produces ener
convergent to twelve SD;̂d(rep)& to four SD; ^d(ree)& to
three SD, and negative and positive values of powers of
terparticle distances to twelve and ten SD, respectively.

III. DIRECT COMPARISON OF C

Figure 2 shows the different behavior of the CFHHM a
SVM wave functions, arbitrarily normalized to 1 at the or
gin, at the attractive coalescence point (r ep50), as functions
of sep . It appears that the Gaussian-type basis used in
SVM calculation causes undulations of the order of 0.002
the detailed behavior ofCSVM near the origin due to insuf
ficient convergence.CCFHHM for Km556, 80, and 100 can

ir

FIG. 3. As in Fig. 2~curvesa andb), but at large distances.L:
CFHHM, Km580; 1: CFHHM, Km556.
3-2
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FIG. 4. Relative difference of the CFHHM
and SVM wave functions, R5(CCFHHM

2CSVM)/CSVM , for r ee,see<10 a.u., wee

51°. CFHHM: Km580; SVM: N5800. The
wave functions are normalized to 1 at the origi
r ee andsee are in a.u.

FIG. 5. As in Fig. 4, but for
r ee,see<0.1 a.u.

TABLE I. CFHHM, SVM, and EVE observables.N5676 ~CFHHM!, N5800 ~SVM!, and N51000
~EVE!. The CFHHM values are presented with error estimates in parentheses. Square brackets denote the
powers of 10. For values other than^H&, the converged digits are given, but not more than 12~rounded!.

Operator CFHHM SVM@7,8# EVE @9#

^H& 0.262 005 069 5 0.262 005 070 226 0.262 005 070 232 965
^r ep& 5.489 6~1! 5.489 633 252 180 5.489 633 252 37
^r ee& 8.548 5~2! 8.548 580 655 061 8.548 580 655 12

^r ep
21& 0.339 822~1! 0.339 821 023 027 0.339 821 023 059

^r ee
21& 0.155 633~1! 0.155 631 905 632 0.155 631 905 653

^r ep
22& 0.279 327 2~1! 0.279 326 539 097 0.279 326 542 159

^r ee
22& 0.036 022 3~2! 0.036 022 059 431 0.036 022 058 49

^d(rep)& 0.020 733 14~6! a 0.020 731 048 976 0.020 733 198 0
^d(ree)& 0.170 997~2!@23# 0.171 112 600 741@23# 0.170 996 99@23#

aThe globally corrected value of^d(ree)&, @14# 0.020 733 17~3!, newly calculated in the present work, has an
error twice as small.
062503-3
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FIG. 6. As in Fig. 4, but in ther ep ,sep coor-
dinates;r ep ,sep<10 a.u. , wep51°.

FIG. 7. As in Fig. 6, but for
r ep ,sep<0.1 a.u.
pli-
FIG. 8. D5HC/EC21 in percent~i.e., 102D) for the CF-
HHM, Km5100, in a narrow rectangular region adjoining thesee

axis, where 0 a.u.,r ee,0.02 a.u., 0 a.u.,see,10 a.u.
06250
FIG. 9. As in Fig. 8, but the SVM,N5800. TheD surface in
the SVM has a more short-range structure and much larger am
tudes of theD values than in the CFHHM: theD scale is 15 000
times larger than in Fig. 8.
3-4
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FIG. 10. As in Fig. 8, but the CFHHMD
surface in a wider region along thesee axis~0 a.u.
,r ee,0.5 a.u., 0 a.u.,see,10 a.u.), to show
more structure due to the its more extended n
ture.
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not be distinguished in Fig. 2. Figure 3 shows the same w
functions at large distances, and at smaller vertical scale.
extent of CFHHM convergence is shown by comparison
the points obtained withKm556 and Km580 at sep
538 a.u. CCFHHM and CSVM agree to within the error o
CCFHHM convergence, i.e., to a few times 1026.

Figures 4–7 show the relative differences ofCCFHHM and
CSVM , R5(CCFHHM2CSVM)/CSVM , in the parts of con-
figuration space relevant for expectation value calculati
Wave functions are normalized to 1 at the origin, so that
rather different behavior at the origin enforces a relative d
ference of the order of 131023 in the regions up to abou
the equilibrium distances. However, only the variations oR
across the coordinate space are relevant; small differenc
the normalizations ofCSVM or CCFHHM would only shift the
R axis, but not change the surfaces. The oscillating de
tions at large distances are partly due to finite grid size. T
undulations at small distances are presumably caused b
SVM wave function.
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IV. RELATIVE LOCAL DEVIATION OF C

In this section we show figures of the relative local dev
tion D5HC/EC21 for the unfavorable case whenwk is
1°, where the particles are almost at the coalescence po
their distances are appropriate.~If wk is 90°, the surfaces are
almost flat.! HereE is the value of energy corresponding
the ground-state wave function. This value in both metho
coincides to up to the tenth significant figure and is display
in the first line of Table I.

Figures 8, 9, and 10 show the values of relative lo
deviationD in percent for the CFHHM and SVM, in narrow
regions of coordinate space near thesee axis, i.e., wherer ee
is small. TheD surfaces have structure which appears
different scales for the CFHHM and SVM; to present mo
detail, we give two differentr ee scales for the CFHHM. The
amplitudes of the SVM values are about five orders of m
nitude larger than the amplitudes of the CFHHM values.

The sharp peaks in Figs. 9 and 10 are spurious: they
FIG. 11. As in Fig. 10, but the CFHHMD
surface in coordinatesr ep ,sep ~0 a.u. ,r ep

,0.5 a.u., 0 a.u.,sep,10 a.u.).
3-5



(
rid

d
a-
s

bo
th

e-
he

-

e-
the

is
sps
as

M
li-
by
ost

ive

in
uld
tors

by

and
r

R. KRIVEC, V. B. MANDELZWEIG, AND K. VARGA PHYSICAL REVIEW A 61 062503
respond to points near the attractive coalescence pointr ep
50), which because of the finite density of the plotting g
are too few to yield the detailed behavior ofD at r ep50. To
show this part of coordinate space better, Figs. 11, 12, an
show the CFHHM and SVM values of relative local devi
tion in the (r ep ,sep) coordinate system in narrow region
near thesep axis, wherer ep is small.

One sees that the amplitudes of the SVM values are a
two orders of magnitude larger than the amplitudes of
CFHHM values atr ep'0 andsep not very small. Note that
the SVM gives better relative local deviation values atr ep
'0 than atr ee'0. This is because the SVM algorithm s
lects points predominantly in the region important for t
energy, which is near the attractive coalescence point.

V. BEHAVIOR OF C NEAR CUSPS

Here we show figures ofCee5(1/C)(]C/]r ee) andCep
5(1/C)(]C/]r ep), approximated by simple first-order dif
ferences on the plotting grid of points~Figs. 14–17!. The
CFHHM figures~Figs. 14 and 16! exhibit the correct cusp

FIG. 12. As in Fig. 11, but in a narrow region adjoining thesep

axis ~0 a.u.,r ep,0.02 a.u., 0 a.u.,sep,10 a.u.).
06250
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ut
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structure; since this is included analytically, only the finit
ness of the grid makes the surfaces less than ideal. In
SVM, the effect of expandingC on a Gaussian-type basis
much stronger than the effect of grid spacing, and the cu
are rounded instead of having strictly rectangular structure
in the CFHHM.

VI. CONCLUSION

In conclusion, we found that the amplitudes of the SV
HC/EC21 values are consistently larger than the amp
tudes of the CFHHM values in all of the coordinate space
up to five orders of magnitude, despite the fact that m
SVM observables@except^d(r k)&] converge to significantly
more digits than the CFHHM observables for their respect
selected bases.

The deviation of the wave function from its true value
the SVM is especially large at short distances. One sho
expect therefore that the expectation values of the opera
getting most contributions from this region, especiallyd op-
erators, will be more precisely given by the CFHHM than

FIG. 13. As in Fig. 12, but the SVM,N5800. TheD surface in
the SVM has a more short-range structure than in the CFHHM
larger amplitudes of theD values. TheD scale is 1200 times large
than in Fig. 12.
FIG. 14.Cee5(]C/]r ee)/C for the CFHHM,
Km580. r ee and see are in a.u.; Cee is in
(a.u.)21.
3-6
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FIG. 15. As in Fig. 14, but for the SVM,N
5800.

FIG. 16. Cep5(]C/]r ep)/C
for the CFHHM, Km580. r ep

and sep are in a.u.; Cep is in
a.u.21.

FIG. 17. As in Fig. 16, but for
the SVM,N5800.
062503-7
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R. KRIVEC, V. B. MANDELZWEIG, AND K. VARGA PHYSICAL REVIEW A 61 062503
the SVM. From Table I one can see that it is indeed so,
the values of̂ d(ree)& and^d(rep)& are given in the CFHHM
with accuracy of two significant figures better than in t
SVM. The fact that the accuracy of other short-range ope
tors, like ^r k

2n&, n51,2, is less in the CFHHM than in th
SVM has nothing to do with the accuracy of the wave fun
tion, but stems from the slower convergence of expecta
values of such operators in the CFHHM due to their spec
singularity at the origin~Ref. @10#!. On the other hand, the
better accuracy in the SVM of long-range operators like^r i j &
~Table I! does stem from the fact that the SVM wave fun
tion with 800 Gaussians has better asymptotics than the
HHM with 676 hyperspherical basis functions.

Partly this is due to the fact that thef function used in the
CFHHM calculation is optimized to give fast convergence
short-range operators likêd(r k)&, and not long-range opera
tors like ^r k& @13#. The fact that the global correction fo
^d(rep)& gives errors twice as small as for the uncorrec
observable in the CFHHM probably has the same origin.

The deficiency in the CFHHM asymptotics could be cur
by increasing the number of basis functions or by para
etrizing f with the requirement thatCCFHHM, and not justef
v

06250
d
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as was done for parametrization B, have proper asympto
for a small Km. However, the weaker requirement grea
simplified the determination of parameters off @11,13#, and
was sufficient for the purpose of obtaining good^d(r k)& val-
ues.

Summing up, we have shown that direct solution of t
few-body Schro¨dinger equation facilitating proper inclusio
of cusps and analytic structure dramatically increases
quality of the wave function at all interparticle distances
far as it is characterized by the value of relative local dev
tion D5HC/EC21.
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