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High-energy limit of the double-electron photoionization cross section of the helium atom
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Using a particularly accurate and locally correct helium wave function, obtained by direct solution of the
three-body Schro¨dinger equation, calculations were performed for double- and single-electron photoionization
cross sections of the helium atom in the limit of high but nonrelativistic photon frequencies. In the dipole
approximation, the cross-section ratio is frequency independent and equal to 0.016 45, which should be com-
pared with the values 0.016 44, 0.0167, and 0.0168 calculated recently in the literature using different varia-
tional wave functions.

PACS number~s!: 32.80.Fb, 31.15.Ja
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I. INTRODUCTION

The aim of this paper is to calculate the double@s11(v)#
and single@s1(v),s1* (v)# ionization cross sections, with
ejection of two and one electrons, of the helium atom
collision with a single photon of high but nonrelativistic fre
quencyv.1 In this case one can limit oneself to the dipo
approximation in the photon-electron interaction. The valu
of s11(v),s1(v), ands1* (v) can be expressed directl
via the initial-state atomic helium wave function, thus ope
ing an additional possibility of checking its quality by com
parison of the theoretical predictions and the experime
results.

The problem of double-electron ionization by a sing
photon has a relatively long history, which goes back, as
as we know, to Ref.@1#. Interest in this process is motivate
by the fact that, without taking into account the interacti
between atomic electrons, the ejection of two of them b
single photon is impossible. The simplest mechanism to
plain double ionization by one photon is the shake-off@1#, in
which one of the electrons absorbs the photon and there
leaves the atom. As a result, the atomic field is altered, ca
ing another electron~or even electrons! to be shaken off due
to this field variation. This mechanism works best for hi
photon energies and nonequivalent electrons, namely,
loosely and the other tightly bound. Obviously, this is not t
case for helium, and it was not a surprise that the shake
model gave results for it considerably different from expe
mental data@1#. Soon after@1#, two purely theoretical paper
were published@2,3# discussing double-electron photoioniz
tion. Most attention was given to high but nonrelativis
frequenciesv and important conditions on the radial depe
dence of the two-electron wave function were discovered@2#.
The gauge dependence of the cross section was demons
as well, at least in the case when the interaction between
outgoing electrons was neglected@3#. Soon a many-body ap

1The atomic system of units is used in this paper:me5e5\
51, with me being the electron mass,e its charge, and\ the Planck
constant.
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proach to this problem was developed@4,5#, based on genera
perturbation theory, which automatically led to gaug
invariant results. It is clear, however, that the perturbat
approach is not enough to describe the interelectron inte
tion at least in the initial state. Giving special attention
high v, namely, toI !v!c2, whereI is the double-electron
ionization potential, one can express the double-ionizat
cross section directly via the initial-state wave function@6,7#.
Recently, due to rapid progress in experimental technol
@8,9# and construction of new sources of high-energy a
high-intensity electromagnetic radiation, it has become p
sible to measures11(v) at v<8.8 keV with quite high ac-
curacy@9#. This experimental progress was accompanied
a burst of theoretical investigations of two-electron ioniz
tion in a broad region ofv—from the very threshold up to
the asymptotic valuesI !v!c2 @10–15#.

Although asv increases abovev.c the nondipole cor-
rections to s11(v) become more and more importa
@5,16,17#, it is of great interest to learn the value of th
asymptotic ratio

R5
s11~v!

s1~v!1s1* ~v!
U

v→`

~1!

calculated in the dipole approximation, but with as good
two-electron initial-state wave function as possible. Usua
a multiparameter variational wave function is used, which
able to reproduce the experimentally well-known heliu
ground-state energy with high accuracy. There exists a w
spread belief that the wave function which gives the grou
state energy accurately enough is equally good in reprod
ing other measurable ground-state atomic characteristics
principle it is possible, however, that different wave fun
tions which reproduce the ground state energy equally w
can be rather different in describing other atomic charac
istics ~such as, for instance, the photoionization cross s
tion!, which are determined by quite specific space parts
the atomic wave function. Despite the fact that several me
ods can now provide good values of most physical obse
ables in these systems, the precision of their description
wave functions, especially of their local properties, has
been properly addressed.
©2000 The American Physical Society01-1
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Until recently by far the most accurate estimates of o
servables were obtained in different variational calculatio
@18–22#; see also@23# and references therein. These, ho
ever, sophisticated and precise as they currently are, do
reproduce the correct analytical structure of the three-b
wave functions, since the inclusion or omission of logari
mic terms@22#, or negative powers of interparticle distanc
@24#, has negligible effect on the value of the calculated
ergy. A variational function coincides with the precise o
only on the average, and could wildly or even infinitely d
viate from it locally @24#. These local discrepancies cou
lead to wrong estimates of expectation values of differ
operators that have significant contributions from the regi
of the configuration space where the deviations occur. Th
fore a thorough analysis of the quality of the wave functi
is needed. Its necessity was first raised in the literature
Bartlett, Gibbons, and Dunn@25,26# many years ago. It was
more recently discussed once again in@27,28#.

Recently@27#, the local behavior of wave functions ca
culated by two precise contemporary methods, the stocha
variational method~SVM! @18# and the correlation function
hyperspherical harmonic method~CFHHM! @29,30# was
compared. Although the energies calculated by both meth
coincide to ten significant figures, it was found that the v
ues of the relative local deviation defined as

D5
HC

EC
21 ~2!

at and near the coalescence points were larger in the SVM
five orders of magnitude than in the CFHHM. Thus cons
erably more accurate expectation values of the^d(rep)& op-
erators were given by the CFHHM, despite the fact that m
other SVM observables converge to significantly more dig
than CFHHM observables for the comparable number of
sis functions.

The local accuracy of the CFHHM wave function w
previously studied in Ref.@28# for the ground and the 21S
state of the helium atom and for the ground state of
positronium ion (Ps2!. It was analyzed in more detail and fo
higher excitations as well in Ref.@31#.

The necessity of proper description of local properties
wave functions in variational calculations was stressed
Ref. @32# where a variational principle for the minimizatio
of the local energye5HC/C2E instead ofE was devel-
oped and realized within the quantum Monte Carlo meth
The two best calculations of the helium atom ground st
gaveE with errors of 0.004 and 231026, respectively. The
corresponding standard deviations of the local energys,
were 0.14 and 0.001, respectively, showing that the erro
energy was still decreasing faster thans. An example of a
CFHHM calculation with the same precision 231026 in en-
ergy is the CFHHM calculation of the 21S state withKm
532 @33#. HereKm is the maximum global angular momen
tum used in the expansion basis. The measure of local a
racy analogous and comparable tos, the expectation value
^ueu&5E^uDu&, was 0.0023. This is of the same order
magnitude as 0.001 of Ref.@32#, indicating that the propose
variational principle@32#, while giving better accuracy of the
06470
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wave function than the usual Ritz variational approach,
roughly equivalent in precision to the CFHHM approach u
ing relatively smallKm . That is, the CFHHM calculation in
Ref. @33# was done forKm up to 56, wherêueu& fell to 0.0003
~andE improved by two digits!.

Given this specific feature of the CFHHM wave functio
that it is locally better than several of the above-mention
variational wave functions, our aim in this paper is to che
whether this wave function can lead to results different fro
those obtained in the previous calculations. In fact,
asymptotic value ofR depends only on the ground-sta
wave function@2,12#. In Ref. @7#, an old parametric corre
lated representation was used, givingR50.0168. In Ref.
@12#, a seven-term multiconfiguration Hartree-Fock~MCHF!
wave function, which gave energy with three-digit precisi
only, was used, yieldingR50.0167. In Ref.@14#, which uti-
lizes a finite-element approach, the resulting wave funct
gave energy accurate to four digits, and the asymptotic
tension ofR(v) was not computed. Reference@15# is the
only work known to us utilizing rather accurate variation
wave functions.

II. APPROXIMATIONS

In order to obtain an expression for the parameterR, the
approach of Ref.@34# can be used. In the approximatio
where the energy of one of the electrons is high, the dou
excitation cross section is given by the formula~correcting
misprints in@34#!

s11~v!'
32&Z2p2

3cv7/2 H E uC~0,s!u2ds

2(
nlm

U E C~0,s!cnlm~s!dsU2J , ~3!

where C is the three-body wave function obtained by t
CFHHM, and cnlm(s) is the unperturbed single-particl
wave function of the second electron in the field of t
nucleus, after the first electron has left the atom. HereC
depends on Jacobi coordinatesr ands, wherer connects the
nucleus and one electron, ands connects the center of mas
of these two particles with the other electron. In the fram
work of the present approximation, we setr50; thens rep-
resents the distance of the second electron from the nuc
ThusC(0,s) represents the three-body wave function at
coalescence, or cusp, region, in which, as one can see
the discussion in the Introduction and from referenc
therein, local high accuracy of the wave function is esp
cially difficult to obtain. Finally,n is the single-particle prin-
cipal quantum number,l and m are the angular momentum
quantum numbers, andc is the speed of light.

The first integral is equal to the expectation value^d(r )&
providedC is normalized in the six-dimensional space co
responding to the volume elementdr ds. Since we are using
a wave function with total angular momentumL50, Eq.~3!
simplifies, atv→`, to
1-2
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s11~v!5
32&Z2p2

3cv7/2 S ^d~r !&2(
n

I n0D , ~4!

where

I n054pU E
0

`

C~0,s!Rn0~qs!s2dsU2

, ~5!

q52Zma /(11ma), Z is the charge of the nucleus, andRnl
are the two-particle bound Coulomb radial functions. Al
@34#,

s1~v!1s1* ~v!5
32&Z2p2

3cv7/2 (
n

I n0 , ~6!

which is the quantity measured in experiments, so that fin

R5
^d~r !&2SnI n0

SnI n0
. ~7!

We have also calculated the values of

R05
s11~v!

s1~v!
5

^d~r !&2SnI n0

I 00
~8!

and

R15
s1~v!1s1* ~v!1s11~v!

s1~v!
5

^d~r !&
I 00

. ~9!

III. RESULTS

We used the nuclear massma57294.2996 from Ref.@35#,
giving q53.999 45. Use of infinitema changed(nI n0 and
^d(r )& in the fourth digit, and does not affectR or R0 to the
quoted precision.

In the CFHHM, the wave function is decomposed asC
5efF, where the correlation functionf contains the physica
singularities ~i.e., cusps! and F is a smooth function ex-
panded in the hyperspherical harmonic basis. The calcula
was performed with a linear correlation function that satisfi
all three cusp conditions exactly:

f 5 (
i , j 52

3

ZiZj

mimj

~mi1mj !
r i j , ~10!

where Zi and mi , i 51,2,3, are the particle charges an
masses, respectively, andr i j are the interparticle distance
Suchf gives very precise local behavior and precise obse
ables of the helium ground state. We used the CFHHM
lium atom ground-state wave functionC with Km580 ~441
hyperspherical states! from Ref.@31#, where the local energy
and different expectation values are also computed. T
wave function gives the energy to 10 significant digits and
local accuracy is characterized bŷuDu&57.231025 or
^ueu&5E^uDu&52.131024. Furthermore, our entire calcula
tion @31# is completely devoid of free parameters.

Table I shows the values ofI n0 and the convergence o
their sum. The series turns out to converge as 0.159n23, the
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error of the sum of the firstM terms being eM
50.159/(2M2):e635231025. The increase of error due t
the calculation ofRn0 at highn is compensated by the sho
range of the integrands. Further, we checked that for the
converged wave function withKm540 ~121 hyperspherica
states!, (nI n0 and ^d(r )& agree to five digits, so that th
results stay the same to the quoted precision. The preci
of quadrature in the variables was much higher than the
number of quoted digits.

We get (nI n051.7804 and̂ d(r )&51.809 67. From this
we obtainR50.016 45,R050.017 41, andR151.0758. The
values ofR ~or R0! are slightly different from the values
calculated earlier in the literature, namely, 0.0168@7#, or
0.0167@12# calculated by using the so-called close-coupli
configuration method. The results are given in Table II. T
experimental result is 0.017260.0012 atv58 keV. In our
units, wherec5137.02, one obtains the following values fo
the photoionization cross sections:

s11~v!50.1273v27/2,

s1* ~v!50.4268v27/2,

s1~v!57.311v27/2.

Note that, by using asC(0,s) the pure hydrogenlike wave
function of the He1 ion, one would have s1(v)

TABLE I. Convergence ofI n0 with state indexn. Numbers in
square brackets denote powers of 10.

n In0 SnI n0 n In0 SnI n0

1 0.1682@11# 1.682 18 16 0.3940@24# 1.780 10
2 0.8071@21# 1.762 88 17 0.3278@24# 1.780 14
3 0.9923@22# 1.772 81 18 0.2757@24# 1.780 17
4 0.3283@22# 1.776 09 19 0.2341@24# 1.780 19
5 0.1514@22# 1.777 60 20 0.2005@24# 1.780 21
6 0.8291@23# 1.778 43 21 0.1730@24# 1.780 23
7 0.5054@23# 1.778 94 22 0.1504@24# 1.780 24
8 0.3315@23# 1.779 27 23 0.1315@24# 1.780 25
9 0.2296@23# 1.779 50 24 0.1157@24# 1.780 27

10 0.1657@23# 1.779 67 25 0.1023@24# 1.780 28
11 0.1235@23# 1.779 79 30 0.5906@25# 1.780 31
12 0.9461@24# 1.779 88 40 0.2486@25# 1.780 35
13 0.7409@24# 1.779 96 50 0.1272@25# 1.780 37
14 0.5911@24# 1.780 02 60 0.7356@26# 1.780 38
15 0.4793@24# 1.780 07 63 0.6354@26# 1.780 38

TABLE II. Binding energy~in a.u.! andR values.

Reference Basis size E R

This work 121 2.903 724 364 3 0.016 4
This work 441 2.903 724 376 5 0.016 4
@15# 2.903 724 377 034 0.016 44
@12# seven-term MCHF 2.901 81 0.016 7
@7# 20 2.903 717 9 0.016 8
1-3
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511.07v27/2 which is larger than our value by a factor o
1.51. If the Slater effective chargeZeff5

27
16 instead ofZ52

were used for the hydrogenlikeC(0,s), we would have
s1(v)56.65v27/2 which is smaller than our value by a fac
tor of 0.91. Note also that ifZeff5

27
16 substitutes for allZ in

the hydrogenic approximation, one obtains a value ofs1(v)
that is only 65% of our value.

IV. CONCLUSION

In summary, the double- to single-electron photoioniz
tion cross sections and their ratios were calculated in
P.
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high-photon-energy limit in the framework of the dipole a
proximation. The accurate and locally correct three-body
lium wave function employed, obtained by direct solution
the three-body Schro¨dinger equation, gives for this ratio th
value 0.016 45, which should be compared with the result
previous calculations, 0.016 44 of Ref.@15#, 0.0167 of Ref.
@12#, and 0.0168 of Ref.@7#, which used variational wave
functions. These differences with respect to results in
literature reflect the small differences in wave functions
the electron-nucleus cusp region in view of the fact@2# that
the value ofR depends only on the wave-function contrib
tion there@see Eqs.~5! and ~7!#.
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