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Density functional plus dynamical mean field calculations are used to show that in transition metal
oxides, rotational and tilting (GdFeO3-type) distortions of the ideal cubic perovskite structure produce a
multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order
of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-
liquid self-energy. For CaRuO3, a material whose measured electromagnetic response in the terahertz
frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these
band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical
response which had previously been regarded as a signature of exotic physics. Signatures of deviations
from Fermi-liquid behavior at higher frequencies (∼100 meV) are discussed.
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Fermi-liquid theory provides the canonical picture of
metals; the observation of deviations from Fermi-liquid
behavior is thus of intense interest as a potential indication
of novel physics. The defining feature of a Fermi liquid is
the existence of electronlike quasiparticles whose low
temperature and frequency properties are characterized
by an effective mass that is independent of frequency
and a scattering rate that is parametrically smaller than
frequency or temperature (typically varying as ω2 or T2).
The perovskite ruthenate CaRuO3 has been the subject of
considerable attention in this context because its frequency-
dependent conductivity has been reported [1,2] to vary as a
power of frequency with an exponent less than unity. The
anomalous dependence extends to very low frequencies of
the order of 1 THz (∼4 meV) [2], and this has been
interpreted as indicating a breakdown of Fermi-liquid
physics in this material. Similar interpretations have been
given of optical data in SrRuO3 [3]. On the other hand,
recent dc transport measurements in CaRuO3 found quan-
tum oscillations and a quadratic temperature dependence of
the resistivity [4] below 1.5 K—characteristic of a Fermi
liquid. The link between the frequency-dependent and dc
transport measurements has not been established and a
model accounting for the optical conductivity is not known.
In this Letter we present density functional theory (DFT)

plus dynamical mean field theory (DMFT) calculations
which indicate that band structure effects associated with
octahedral rotations of the ideal perovskite crystal structure
produce optically active interband transitions that contrib-
ute to the conductivity on scales as low as 1 THz (∼meV)

and can mimic non-Fermi-liquid physics. As an application
we show that the observed terahertz conductivity of
CaRuO3 is consistent with Fermi-liquid-like quasiparticles
and quantify the departures from Fermi-liquid physics that
occur at higher scales.
The standard arguments relating optical conductivity

σðΩÞ and electron self-energy ΣðωÞ may conveniently be
framed in terms of an approximation, due to Allen [5–7]:

σðΩÞ ∝ i
Ω

Z
dω

fðωÞ − fðωþΩÞ
Ω − ΣðΩþ ωÞ þ Σ⋆ðωÞ : ð1Þ

Here f is the Fermi function and the ⋆ denotes complex
conjugation. Equation (1) is expected to be reasonable
when interband transitions are neglected.
In a simple Drude metal, Σ ¼ −i=ð2τÞ, with 2τ

representing the time between scatterings of electrons off
of impurities. Use of this self-energy in Eq. (1) yields
the familiar Drude conductivity σðΩÞ ∝ τ=ð1 − iΩτÞ.
Use of the Fermi-liquid form ΣðωÞ ∝ ð1 − Z−1Þω−
iΩ−1

0 ðω2 þ π2T2Þ yields a conductivity with a characteristic
scaling form [8] (see also Refs. [9,10]) that we will refer to
as the single-band Fermi-liquid (SBFL) conductivity. If the
self-energy takes the non-Fermi-liquid form ΣðωÞ ∼ ωx

with x < 1, one has jΣðωÞj > jωj at low frequency, so that
the term proportional to Ω in the denominator of the
argument of the integral in Eq. (1) may be neglected. A
scaling analysis of Eq. (1) then shows that for small Ω,
σ ∼Ω−x, with the divergence cut off by temperature.

PRL 115, 107003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

0031-9007=15=115(10)=107003(5) 107003-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.107003
http://dx.doi.org/10.1103/PhysRevLett.115.107003
http://dx.doi.org/10.1103/PhysRevLett.115.107003
http://dx.doi.org/10.1103/PhysRevLett.115.107003


We compare expectations based on Eq. (1) to realistic
calculations of the frequency-dependent conductivity of
CaRuO3. This material crystallizes in a GdFeO3-distorted
version of the ideal cubic perovskite structure. In the latter,
there are three near-Fermi-surface bands derived from the
three t2g states. The GdFeO3-distorted structure has four Ru
ions in the unit cell, leading to 12 t2g-derived near-Fermi-
surface bands. The t2g-derived bands are the eigenvalues of
a Hamiltonian matrixH0ðkÞ, with k being a wave vector in
the first Brillouin zone. H0ðkÞ is obtained by using
maximally localized Wannier function (MLWF) [11,12]
techniques to project the Kohn-Sham Hamiltonian found
from a spin-unpolarized DFT band calculation onto the
near-Fermi-surface states. The effects of electron-electron
interactions are encoded in the self-energy Σðk;ωÞ, also a
matrix, which we compute by applying single-site DMFT
to theH0ðkÞ corresponding to the experimental structure of
CaRuO3, with standard Slater-Kanamori interactions para-
metrized by U ¼ 2.3 eV and J ¼ 0.4 eV (see the
Supplementary Material [13] for details of the DFT and
DMFT calculations). Electron propagation in the t2g-
derived bands is thus described by the N × N matrix
Green function (N ¼ 3 for the cubic structure and 12 for
the experimental one)

Gðk;ωÞ ¼ ½ωþ μ −H0ðkÞ − ΣðωÞ�−1: ð2Þ
For the situations we consider, there are no vertex

corrections to the current operator in the single-site
dynamical mean field approximation, essentially because
no on-site optical transitions are allowed (see the
Supplementary Material [13] for a more detailed discussion
and also Ref. [27] for the single-band case), so the
conductivity becomes

σðΩÞ ¼
Z

dω
π

fðωÞ − fðωþ ΩÞ
Ω

× Tr½JkImGðk;ωþΩÞJkImGðk;ωÞ�: ð3Þ

The matrix current operator Jk is derived in a standard way
from H0ðkÞ (note that in systems with more than one atom
per unit cell, care must be taken to use a basis in which each
atom acquires the Peierls phase appropriate to its physical
position within the unit cell [28,29]). The trace is over
momentum and band indices. In our calculations, the four-
dimensional integral (in frequency and momentum space)
is performed using a Gaussian quadrature with 60 points in
each direction. The Allen formula [Eq. (1)] may be derived
from Eq. (3) if the matrices are diagonal (no interband
transitions) and when the transport function (i.e., the
density of states weighted by current matrix elements)
depends weakly on energy.
The main panel of Fig. 1 presents the normalized

conductivity calculated using Eq. (3), with H0ðkÞ, Jk,
and Σ appropriate to the experimental structure of
CaRuO3. The conductivity in the midinfrared regime

(5 meV≲ Ω≲ 250 meV) appears to vary as a power
law ∼ω−x, with x being in the range 0.4–0.6, similar to
the power law reported experimentally [1]. The lower inset
compares the calculated conductivity to recent measure-
ments [4], which come from samples with significantly
lower impurity scattering than samples studied earlier [2].
The quantitative correspondence between calculation and
data is good.
Also shown in Fig. 1 are the conductivities obtained from

Eq. (3) using the H0ðkÞ and Jk corresponding to the ideal
cubic structure (while keeping the same self-energies as for
the real structure) and by using the Allen formula [Eq. (1)]
again for the same self-energies. (The Allen formula results
are obtained as an equally weighted sum over three terms,
one for each diagonal entry in the self-energy matrix.) In
the terahertz and subterahertz regime (ω ∼ 1–10 meV) the
cubic or Allen results exhibit a much more rapid roll-off
from the dc plateau than does the experimental structure
conductivity, while in the mid-IR (ω ∼ 100 meV) regime
the cubic or Allen results exhibit an approximate plateau if
the DMFT self-energy is used.

FIG. 1 (color online). (Main panel) Optical conductivity (nor-
malized to its zero frequency value). (Heavy solid blue line)
Conductivity computed from DFTþ DMFT at T ¼ 30 K for the
orthorhombic experimental structure. The dashed straight line is a
guide to the eye indicating the power-law behavior ∼ω−0.5,
corresponding to the experimentally reported mid-IR frequency
dependence [1]. Also displayed are the conductivities computed
for a hypothetical cubic structure (intermediate weight red line)
and from the Allen formula (light black line), using the same
DMFT self-energy as was used in the experimental structure
calculation. Finally, the dotted line presents the “SBFL” result
obtained by using a Fermi-liquid self-energy in the Allen
formula. [Inset (a)] Optical conductivity calculated using DMFT
self-energy for experimental structure and cubic structure com-
pared to a calculation (dashed lines) for the experimental
structure but with a Fermi-liquid self-energy [Eq. (4)]. [Inset
(b)] Experimental data of Ref. [4] in the terahertz range along
with the DMFT calculation for the realistic structure.
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As the self-energies used in the cubic and orthorhombic
calculations are exactly the same, the difference between
the results is not a self-energy effect and does not
correspond to non-Fermi-liquid physics. To probe the effect
of the self-energy, we also display in the main panel the
SBFL result (with parameters Z;Ω0 determined from a fit
to the DMFT self-energy in Fig. 3), and in the inset of
Fig. 3(a) the conductivity obtained when using a Fermi-
liquid self-energy and the realistic orthorhombic structure.
We see that the choice of self-energy hardly influences the
low frequency result; it is only at frequencies higher than
∼50 meV that the choice of self-energy significantly
influences the calculation.
The key approximation of both the Allen and SBFL

formulas is the neglect of interband transitions. The differ-
ence between these approximations and the calculation for
the experimental structure thus arises from optically active
interband transitions, which are seen to affect the conduc-
tivity down to scales as low as 1 THz. To explicate the
origin of these transitions, we present in Fig. 2 our
calculated band structures. The left panel shows the
near-Fermi-surface bands found for the ideal cubic struc-
ture. Direct interband transitions between the three bands
are possible in principle; however, the different orbital
symmetry of the different bands means that the matrix
elements are small, especially in the lower frequency
regime, so that the cubic and Allen results are similar.
At higher energies, interband transitions have some effect
in the cubic structure as well.
The middle panel shows the bands of the cubic structure,

folded into the Brillouin zone of the experimental structure.
The backfolding creates the possibility of many low-lying
interband transitions, but in the cubic structure these
transitions are not optically active, as they do not

correspond to zero-momentum transfer. The right panel
shows the band structure obtained for the experimental
structure. The octahedral rotations reduce the overlap
between states on different sites, causing a band narrowing
from 3.6 to 2.6 eV visible, for example, in the energies near
the Γ point and flattening the dispersion in the near-Fermi-
surface region. The zero frequency conductivity of the
orthorhombic case is thus smaller (by a factor of ∼3) than
the cubic result (see the inset in Fig. 1). The rotations also
allow matrix elements between nearby states, opening
additional minigaps where the cubic bands cross, further
flattening the bands at the Fermi level and, crucially,
activating optical matrix elements between the backfolded
bands. Starting at ω ∼ 1 meV, these become important,
changing the functional form of the conductivity. At high
frequencies the experimental and cubic structure conduc-
tivities become very similar, as the small gaps are
unimportant.
To study the nature of the non-Fermi-liquid effects in the

conductivity of CaRuO3 we present in Fig. 3 a plot of the
real and imaginary parts of the self-energy calculated for
one of the three t2g orbitals (the self-energies associated
with the other two are similar). Also shown is a fit of the
self-energy to the functional form

ΣFLðω; TÞ ¼ ð1 − Z−1Þω − iΩ−1
0 ½ω2 þ bðπTÞ2�: ð4Þ

Here Z is a dimensionless constant giving the mass
renormalization m⋆=m≡ Z−1, T is the temperature, and
the characteristic energy Ω0 sets the scale of the scattering
rate. The parameter b ¼ 1 (Fermi liquid) for the plotted
orbital but about 2 to 3 for the other two, perhaps because
the coherence temperature is not quite reached. From Fig. 3
we see that at very low frequencies jωj≲ 20 meV, the self-
energy approximately takes the Fermi-liquid form, but for
larger frequencies ω≳ 40 meV, pronounced (≳50%)

FIG. 2. Band structure computed for (a) the ideal cubic
perovskite form of CaRuO3 plotted along high symmetry
directions in the cubic perovskite Brillouin zone; (b) the ideal
cubic structure folded back into the Brillouin zone of the
experimental orthorhombic structure; and (c) the experimental
orthorhombic structure, along high symmetry directions of the
orthorhombic Brillouin zone. All three panels show the frontier
t2g-antibonding bands produced by a MLWF fitting of the DFT
(generalized gradient approximation) band structure. (Inset)
Optical transitions across minigaps which are forbidden in the
cubic structure are activated in the distorted structure.

FIG. 3 (color online). (a) Real part of the self-energy for one of
the three orbitals (solid line). (Dash-dotted line) Linear low
frequency fit to the real part of Eq. (4) with slope
1 − Z−1 ≡ dΣ=dω ¼ −5.3. (b) Imaginary part of self-energy of
the same orbital (solid line). (Dash-dotted line) Low-energy
Fermi-liquid fit to the imaginary part of Eq. (4) with Ω0 ≃
14 meV and temperature T ¼ 0.0025 meV ≈ 30 K. (Vertical
lines) Boundary of the Fermi-liquid region (ω ¼ 0.09 eV).
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deviations occur. On the positive frequency (electron
addition) side the imaginary part of the self-energy satu-
rates for ω≳ 0.1 eV and the real part loses most of its
frequency dependence. On the negative frequency (electron
removal) side the imaginary part of the self-energy
increases (although not as rapidly as the Fermi liquid
ω2) and exhibits a large peak (not shown) at ω ∼ −1 eV.
The low frequency at which deviations from Fermi-liquid
behavior occur is characteristic of multiorbital systems with
a sizable Hund’s coupling [30].
At very low frequencies (≲7.5 meV), the frequency ω is

less than πT so the scattering rate is in effect constant. The
cubic and Allen-formula conductivities in Fig. 1 are indeed
well described by a Drude form with frequency indepen-
dent scattering rate ΓDrude ¼ 2ZðπTÞ2=Ω0 ≈ 1.4 meV.
However, in the orthorhombic structure, interband transi-
tions cause the conductivity to decay much less rapidly than
expected from the Drude formula at frequencies ≳1 meV.
Suppose now that the self-energy was well described by

the Fermi-liquid form even at frequencies higher than
∼20 meV. Inspection of the upper inset of Fig. 1 shows
that for Ω≳ 100 meV, the corresponding conductivity
becomes much smaller than either the cubic or the
experimental system conductivity. [One sees this from
the behavior of the SBFL curve in the main panel of
Fig. 1, but it can also be derived directly (see the
Supplementary Material [13]) by inserting Eq. (4) into
Eq. (1), setting temperature T ¼ 0 and scaling the internal
integration variable by the external frequency Ω to yield
σFLðΩÞ ∝ Z

R
0
−1 dxð−iΩ þ ZΩ−1

0 Ω2ð1 þ 2x þ 2x2ÞÞ−1�.
The real part of this expression has an approximately
Lorentzian Drude-like decay with decay constant
Ω0=Z ≈ 80 meV, which describes well the high-frequency
behavior of the Fermi-liquid results.) The slower decay of
the actual conductivity is a signature of deviations from
Fermi-liquid physics. It results in particular from the
saturation of the scattering rate and the strong deviation
of ReΣðωÞ [21] from the low frequency linear behavior
apparent in Fig. 3. In this non-Fermi-liquid higher-
frequency regime, the similarity of the conductivities for
the cubic and experimental structure conductivities shows
that band structure effects are of less importance here,
implying that information about the self-energy may be
extracted from the conductivity.
Formally inverting Eqs. (1) or (3) to obtain self-energies

from measured conductivities is an ill-posed and essentially
unsolvable inversion problem. However, the widely used
“memory function” method [31] provides considerable
insight. The typical procedure is to express the complex
conductivity ~σ in terms of an optical mass enhancement λopt
and scattering rate Γopt defined as

~σ ¼ K
−iωð1þ λoptðωÞÞ þ ΓoptðωÞ

: ð5Þ

The objects λopt and Γopt are often interpreted as mass
enhancement and scattering rate, respectively, and are
assumed to provide information about the electron self-
energy. Their frequency dependence is determined by the
frequency dependence of the complex conductivity, while
the overall magnitude is determined by the constant
K ¼ 2=π

R∞
0 Re ~σðωÞdω. In the two panels of Fig. 4, we

present the λopt and Γopt determined from our calculations,
using the directly computed sum rule values Kcubic ¼
0.165 eV and Kortho ¼ 0.153 eV (computed for the ortho-
rhombic b direction).
For the cubic and Allen-formula cases, where interband

transitions are not important, the scattering rate found from
the memory function is in reasonable agreement with a
particle-hole average of an imaginary part of the self-
energy. The scattering rate magnitude is correctly estimated
and the low frequency ω2 behavior is clear. The low
frequency limit of the mass corresponds precisely to the
quasiparticle mass enhancement and the decrease of mass
at higher frequency reflects the flattening of the ReΣ
curve [9].
For calculations performed with the experimental struc-

ture, the situation is different: at low frequencies the
inferred scattering rate is too large by a factor ≳2–4 and
has the wrong concavity. In fact, the inferred scattering rate
is roughly consistent with an ω1=2 behavior and, similarly,
over a limited low frequency range the optical mass can be
fit as ω−1=2. This suggests that caution is warranted in
performing a memory function analysis of the low
frequency data on GdFeO3-distorted materials. However,
the reasonable correspondence at higher frequencies
(ω≳ 100 meV) between the optical scattering rate and
the imaginary part of the self-energy (averaged over
positive and negative frequencies) again confirms that in
this range the conductivity does give a reasonable estimate
of the magnitude and the saturation frequency of the self-
energy, and in this sense reveals non-Fermi-liquid behavior
of the Hund’s metal kind.

FIG. 4 (color online). Optical mass (a) and scattering rate (b)
obtained via Eq. (5) for different cases considered in this Letter
and compared to quasiparticle mass [∼6.7, as calculated from the
slope of ImΣðiωnÞ] and the imaginary part of the single particle
self-energy (dashed green curve). Dotted magenta curves indicate
ω�0.5 behavior.

PRL 115, 107003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

107003-4



In summary, using CaRuO3 as an example, we have
shown that real materials effects, in particular a multiplicity
of optically allowed low-lying transitions arising from band
folding due to rotational and tilt distortions, can produce a
low frequency conductivity of the form previously asso-
ciated with non-Fermi-liquid physics. A direct diagnosis of
universal Fermi-liquid behavior from the optical conduc-
tivity, along the lines of Ref. [8], only applies when such
effects are not important. Our results call for a re-
examination of other reports of unusual optical response,
for instance in SrRuO3, which has a ferromagnetic ground
state and a smaller orthorhombic distortion, and for which
ARPES spectra consistent with Fermi-liquid behavior are
observed [32]. It is also important to examine whether low-
lying interband transitions complicate the analysis [33–37]
of the ratio of the T2 and ω2 terms in the optical scattering
rate, which has been argued to be inconsistent with Fermi-
liquid theory.
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