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Abstract

The collective excitations of matter in 2D can obey statistics which is neither fermionic
nor bosonic. When such quasi-particles are interchanged the many-body wavefunction rep-
resenting them is multiplied with a phase factor which can differ from ±1. With reference
to any statistics they are subjected to they are dubbed anyons. Anyons are crucial for the
understanding of the fractional quantum Hall effect (FQHE). We describe in simple terms
how anyonic behaviour can arise and what is its relevance to the explanation of the FQHE.
We also present the phenomenology of the FQHE to some extent.
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1 Introduction

In the solid-state physics significant simplification is often achieved by inventing new particles
describing the collective behaviour of the large number of electrons that occupy the energy
bands in solids. The most known example are probably holes in p-type semiconductors. The
missing electrons in a nearly full band dynamically behave like positively charged holes. This
is related to a reverse sign of the Hall voltage when the measurements are performed in a p-
type semiconductor. The Hall voltage is the transverse voltage that develops from sideways
acceleration of a moving particle by a magnetic field. It is classically proportional to the current
of particles. The ratio between the Hall current and voltage is termed Hall conductance.

In 1980 the measurements have revealed the quantization of the Hall conductance at low
temperatures [1]. The Hall current does not increase continuously with Hall voltage but in steps.
Later also plateaus at intermediate values of Hall voltages were measured [2]; the phenomenon is
known as the fractional quantum Hall effect (FQHE). The quasi-particles relevant to the physics
of the FQHE were predicted theoretically and confirmed experimentally to carry fractional
charge and obey unusual – anyonic – statistics [3, 4, 5].

The idea, that the excitations carry fractional quantum numbers is not limited to the FQHE.
In 1976 Jackiw and Rebbi explored the soliton excitations in the quantum field theory and
showed that they have a fermion number 1/2, ie. they correspond to half a particle [6]. In the
area of solid state physics Su, Schrieffer and Heeger explained the unexpected lack of magnetic
response of the charged excitations in experimental data for polyacetylene by using the same
ideas [7, 8, 9].

In this seminar we will, rather than analysing the variety of the circumstances that lead to
charge fractionalization (we refer to reviews [10, 11, 12]), concentrate on the FQHE. First, we will
show, where the usual reasoning leading solely to fermions and bosons goes wrong, second, we
will construct a model for anyon in terms of regular physics and deduce its statistic properties,
and third, introduce the phenomenology of the FQHE and show where the anyons come into
play in its explanation.

2 Spin and statistics

Usually the particles are either fermions or bosons [13]. Because the elementary particles are in-
distinguishable (identical) the exchange of particles results in the same physical state. Therefore
the many-particle wave-function can suffer at most a phase change

Ψ(2, 1, 3, 4, ...) = exp(iα)Ψ(1, 2, ...,N),

where the real phase α is defined as the statistics of the particles and the integers represent the
full sets of quantum numbers corresponding to each particle. Performing the exchange twice we
are led back to the initial state

Ψ(1, 2, ...,N) = exp(i2α)Ψ(1, 2, ...,N) (1)

which imposes a constraint exp(i2α) = 1. The immediate consequence of Eq. (1) is that there are
only two types of particles, fermions with α = π(2n+ 1) and bosons with α = 2nπ, represented
by totaly antisymmetric, and totaly symmetric wavefunctions, respectively. Furthermore, there
is a connection between spin s and statistics

α = 2πs (2)

which was proven by Pauli [14], and which states that for fermions s = (2n+1)/2 while for bosons
s = n with integer n. This all goes well in hand also with the known text-book derivation that the
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spin is quantized in half integers [15]. Although the text-book derivation looks general enough
1 it is, however, limited to 3D. In the argument the ladder operators which are constructed
from noncommuting generators of the angular momentum algebra are used. Such an argument
obviously fails in 2D because there is only one generator of the angular momentum algebra which
obviously commutes with itself. Therefore the quantum mechanics allows the particles living in
a 2D world to have a spin which is any real number. The question that appears immediately is
what is the statistics of such particles.

It turns out that also the statistics α in 2D takes
the intermediate value between the fermion and
boson cases and that the relation (2) remains
valid. The wave functions describing such par-
ticles are not singly valued, so that the implica-
tions of Eq. (1) do not hold. For such particles
exp(2iα) 6= 1. To see how the fractional statis-
tics is possible we study the process of inter-
changing the positon of two particles. We define
the interchange of particles A and B by means
of a rotation of particle A around particle B fol-
lowed by a translation of both (Fig 1b)). The
net effect of performing the interchange of the
particles twice is that particle A is taken a full
loop around particle B. The phase (2) generated
by this process can depend on loop in general.
When the loop is moved continuously, the phase
remains unchanged if it is an intrinsic property
of the particles. In 3D we can shrink the loop
continuosly to a point by moving it out of the
plane (see Fig 1 b). Hence, the phase should
be trivial, exp(i2α) = 1. The situation is en-
tirely different in the 2-dimensional space since
the loop is constrained to a plane. It is impos-
sible to shrink the loop performed by particle A
without crossing the position of particle B. Con-
sequently, the parameter α is an arbitrary real
number intrinsic to particles.
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Figure 1: (a) The exchange of two particles
performed by a rotation of particle A around
particle B followed by a translation of both.
(b) Continous deformation of a loop to a point
in 3D. (c) Configurational space of two dis-
tinguishable particles X2 (left) and configura-
tional space (shadowed) of two identical parti-
cles X2/S2 (right) confined to move on a line.

The fractional statistics was also derived riguorously [16] . The derivation involves the iden-
tification of correct configurational space of identical particles. If the one-particle configuration
space is X, the configurational space for N particles is naively constructed as Cartesian product
Cwrong = XN . However, as the vectors x = (x1, x2, ...xN ) ∈ XN and x′ = (x2, x1, x3, ...xN ) ∈ XN

determine the same configuration (the particles are indistinguishable), they should correspond
to the same point in configurational space [17]. The correct configurational space is therefore
C = XN/SN where the action of a discrete group of permutations between N particles SN is
divided out. The quantization of the theory on C leads in a straightforward way to fermions and
bosons in 3D and anyons in 2D and 1D.

We illustrate the idea by performing the quantization of particles for two free particles
moving on line (in 1D). The configurational space is then the half-plane, (Fig 1 c). We write the

1Applying the lowering operator S− n times on a state with the total angular momentum l and maximum
projection m = l results in a state with minimum projection | −m >= (S−)n|m >. Counting −m = m− n then
implies quantization of spin in half integers l = m = n/2.
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Hamiltonian in terms of a centrum of mass coordinate x = (x1 +x2)/2 and a relative coordinate
z = x1 − x2

H = − ~
2

2m
(
∂2

x2
1

+
∂2

x2
2

) = − ~
2

4m

∂2

∂x2
− ~

2

m

∂2

∂z2
(3)

As the boundary of the configurational space is nontrivial the solution ψ(x, z) is obtained also by
noting the appropriate boundary conditions. Demanding that the probability of finding a particle
in the whole space is conserved, the probability current through the boundary x1 − x2 = z = 0
must vanish

ψ∗(x, 0)
∂ψ

∂z
(x, 0) − ∂ψ∗

∂z
(x, 0)ψ(x, 0) = 0 (4)

The conditition (4) is satisfied if the wave function at the boundary vanishes ψ(x, 0) = 0.
Such solutions correspond to fermions. Another possibility is to demand that instead of the
wavefunction the derivates of the wavefunction normal to the boundary vanish ∂ψ/∂z = 0 and
identify such solutions as bosonic. However, this does not exhaust all the possibilities. Eq. (4)
is satisfied whenever

∂ψ

∂z
(x, 0) = ηψ(x, 0),

with η as a real parameter. The general solution of the Hamiltonian (3) then is

ψκk(x, z) = N exp(iκx)(cos kz +
η

sin
kz),

with η = 0, η−1 = 0 and η ∈ R for bosons, fermions and anyons, respectively.

3 Simple model of anyon
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Figure 2: (a) A simple model of anyon is a a charged boson orbiting around a thin solenoid. (b)
The exchange of anyons is equal to θ → θ + π in terms of relative coordinates.

A model for anyon (see Fig 2a) is a spinless particle orbiting around a thin solenoid pointed
in the direction of the z-axis [18]. The charge of the particle q is taken to be proportional to the
applied flux Φ

q = CΦ

for some real constant C. Before the magnetic flux is applied the angular momentum of the
particle is quantized in integers lz = n~. Increasing the magnetic field results in a circular
electrical field as a consequence of the Maxwell equation ~∇ × ~E = −∂ ~B/∂t. The circular
electrical field produces a torque on a particle, therefore its angular momentum is changed. To
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calculate the change in the angular momentum due to the change of magnetic flux we first apply
the Stokes theorem

∫

∇× ~E · d~S =

∫

~E · d~s = E2πr = −
∫

~B · ~S = −Φ̇,

where d~S and d~s are the infinitesimal elements of the surface and the curve limiting it, respec-
tively. Considering just the z component of the angular momentum lz we calculate further

l̇z = Mz = qEr = −qΦ̇
2π

= −CΦΦ̇

2π

The application of the magnetic flux then results in the boost in the angular momentum,

∆lz = −CΦ2

4π
= −qΦ

4π
. (5)

Taking the particles’s bare angular momentum to be zero and limiting the dimensions of the
solenoid and the radius of the orbite of the particle toward zero, the system can be considered
as a single composite object with the spin determined by the flux passing through the solenoid.
Observing Eq.(5) one also notes that for objects with charge e0 the addition of one quantum
of magnetic flux Φ0 = h/e0 transforms the bosons to fermions (with regard to the spins of the
particles) and vice-versa.

To determine the statistic properties of our model for anyon we construct a two-anyon system.
The Hamiltonian of such system reads

H =
(~p1 − q ~A1)

2

2m
+

(~p2 − q ~A2)
2

2m

where pi are the momenta of both objects, and

~A1,2 = ± Φ

2π
ẑ × ~r

r2

are the vector potentials due to the presence of another object (~r = ~r1 − ~r2). Writing the
Hamiltonian in terms of the centrum of mass coordinate ~P = ~p1 + ~p2 and relative coordinate
~p = (~p1 − ~p2)/2

H =
P 2

4m
+

(~p− q ~Arel)
2

m

results in a decoupled motion of the centrum of mass (as expected due to the absence of an ex-
ternal potential), while the rest of the Hamiltonian has reduced to the system of a single charged
particle of mass m/2 orbiting around a flux Φ. As the composite particles were constructed from
the bosonic particles orbiting around a bosonic flux, the appropriate boundary conditions for
the solution of the Hamiltonian proposed above are given by

ψ(r, θ + π) = ψ(r, θ), (6)

meaning simply that the wavefunction is invariant on particle interchange (2b). Now we perform
a (singular!) gauge transformation

~A′ = ~A−∇Λ

where Λ = φθ/2π, which is not singly valued. In the primed gauge where ~A′ = 0, the Hamiltonian
is transformed to

H =
P 2

4m
+
p2

m
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which is a Hamiltonian of two free particles. During the transformation, however, the boundary
conditions on the wavefunction have also changed because the wavefunction acquired the phase

ψ′(r, θ) = exp(−iqΛ)ψ(r, θ) = exp(− iqΦθ
2π

)ψ(r, θ)

what imposes nontrivial boundary condition. If we calculate ψ(−~r) we get

ψ′(r, θ + π) = exp(−iqΦ/2)ψ′(r, θ),

taking into account Eq.(6). The wavefunction describing two anyons is multiplied by a non-
trivial phase factor upon particle interchange. The phase factor leads to the statistics

α =
qΦ

2
(7)

As the flux is an independent parameter it the statistics is arbitrary . We have a physicaly
relevant model for an anyon!

4 The Landau levels

Let us briefly review the quantum mechanics of electrons confined to the plane x-y in the
presence of a uniform magnetic field in the z-direction [19]. We choose the symmetric gauge 2

~A = (−y, x)/2 = ~eφr/2. The Hamiltonian of the system3

H =
1

2m
(~p− e ~A)2

is cylindrically symmetric, therefore the eigenstates

ψnj(r, φ) = N (r/lB)jeijφLj
n(r/lB) exp(−(r/lB)2

2
),

where Lj
n is a generalized Laguerre polynomial and lB =

√

~/mωc the magnetic length (a solution
of ~ωc = mωcl

2
B), are also the eigenfunctions of the angular momentum J , so the following holds:

Hψnj = ~ωc(n+ 1/2)ψnj

Jψnj = ~jψnj .

It is convenient to introduce the dimensionless complex coordinates z = (x+ iy)/lB .

ψnj(z) = N zjLj
n(|z|) exp(−|z|2

2
) (8)

For j >> n the probability density |ψnj |2 has the form of n+ 1 sharp concentric rings centered
around the origin. The outermost ring has the radius rmax ∼ lB

√
j, therefore the largest value

of j that can occur on a disc with radius R (and area S = πR2) is

jmax = R2/l2B = BS/Φ0

2The reader might be more familiar with the calculation performed in the Landau gauge ~A(~r) = xBŷ, leading
to eigenfunctions ψk(x, y) = exp(iky)χk(x), where χk is a solution to the displaced harmonic oscillator equation

Hk =
1

2m
p2

x +
1

2
mω2

c(x+Xk).

The central position Xk = −kl2 is determined by the y momentum quantum number and magnetic length
lB =

p

~/mωc and leads to the same degeneracy of the eigenstates as the calculation in a symmetric gauge [20].
3Here we do not include the spin term ~µ · ~B. In high magnetic fields the system is fully spin polarized. In our

discussion we therefore neglect the spin degree of freedom.
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As the energy of the system is not dependent on j we have a jmax fold degeneracy of each Landau
level. In high magnetic fields it is sufficent to limit the discussion to the lowest Landau level,
for which one-particle wave functions (all with energy ~ωc/2) can be put into form

φm = N zm exp(−|z|2
4

)

which are the eigenstates of the angular momentum with a eigenvalue m. Because all the φm

are degenerate any linear combination of them is also an acceptable eigenstate. This are all the
solutions of the form f(z) exp(−|z|2/4, where f(z) is analytical.

An important concept is also the filling ratio ν. It is equal to the number of filled Landau
levels

ν = N/Z, (9)

where N is the number of electrons and Z = jmax the degeneracy of the Landau levels.

5 The fractional quantum Hall effect

The Hall effect was discovered in 1879 by Edwin Hall. The classical physics of the Hall effect
can be understood in terms of the Lorentz force. As the current is flowing through the sample,
which is penetrated by a magnetic field, the carriers are deflected towards its edge due to the
action of the Lorentz force. The accumulated charge (Fig 3) is the source of electrical field. In
the equilibrium the Lorentz and the electrical force exactly cancel

e ~E = −e~v × ~B.

Introducing a coordinate system ~v = vx̂, ~E = Eŷ, ~B = Bẑ and multiplying by the carrier
density we derive the relation between the current density and the electrical field

neE = jB. (10)

Experimentaly, the voltage V = Ed and the current I = jd are measured, so we multiply Eq.(10)
by the width of the sample. The ratio between the two is known as the Hall resistance

RH =
B

ne
.

It is dependent solely on the magnetic field and the density of the carriers. The result is not
sensitive to the type, dimensions and the shape of the sample4. The Hall effect is routinely used
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Figure 3: The experimental setup. The Hall resistance is the ratio between the voltage V and
the current I. Forces on a particle in the classical picture are also sketched.

by solid state experimental phyisicists to determine the density of the carriers of the current.
However, a surprise came in 1980 when Von Klitzing et al. [1] discovered that at high magnetic

4In 3D the relation between the current and the current density is I = jdh, where h is the height of the sample,
so the Hall resistance is RH = B/(neh). Because this depends on the height, which can never be constructed
very accurately, the apperance of Hall plateaus where the conductance is constant to the accuracy 10−10 in 3D is
not possible.
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Figure 4: Plots of Hall (red) and longitudinal (green) resistivities as a function of magnetic
field. The classical result is also plotted (dashed). The intersections of the classical result with
plateaus correspond to integer fillings. After Ref. [1].

fields the Hall resistivity increases in steps (Fig 4) instead of being proportional to it as the
classical equation suggests. This phenomenon became known as the integer quantum Hall effect
(IQHE). The simplest way to understand it is by first examining the values where the classical
result and the measurements agree. This happens to be exactly at integer fillings ν = n.
Each completely filled Landau level contributes a e2/h to the Hall conductance GH = 1/RH

of the sample. When the filling is changed slightly the extra states do not contribute to the
current because they are localized by the impurities and defects present in real samples [21].
Further insight can be obtained by studying the edge currents [22, 23]. The crucial issues in the
understanding of the IQHE are therefore the gap between the Landau levels and the disorder
which localizes the extra states.

The difference between Hall resistivities for different number of filled Landau levels which is
exactly equal to nh2/e0 makes the IQHE useful as the standard of the resistivity. Von Klitzing
constant equals RK = h/e2 = 25812.807449(86)Ω. The same constant is also directly related to
the fine structure constant α = e2/(4πǫ~c), so the IQHE is used as a from the particle physics
independent measurement of α.

In 1982 the fractional quantum Hall effect [24, 25] was discovered [2]. With cleaner samples
and at lower temperatures the plateaous occured not only at integer but also at fractional
ν = p/q (p, q ∈ I) fillings (Fig 5). FQHE at fillings of a type 1/(2j+1), j an integer occured
was theoretically explained by Laughlin, who considered condensation of electrons into a special
ground state, which he described by a trial wave function [26]. Its excitations were shown to
carry fractional charge and obey fractional statistics [3]. The emergence of fractionally charged
excitations was also confirmed experimentaly in Aharonov-Bohm type of experiments [28, 4, 5]
and independly by shot-noise experiments [30, 31, 32]. Recently also the fractional statistics of
quasi-particles of the FQHE was directly confirmed experimentally [29].

For fillings other than 1/(2n+ 1) various hierarchy schemes were proposed where the FQHE
at some filling was explained as the FQHE of quasi-particles at another filling. Another ap-
proach was proposed by Jain [27] in which the FQHE as the IQHE of composite particles - the
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electrons with flux-tubes attached. This approach turned out to be very succesful at predicting
the fractions at which the plateau appear, aswell as their stability to disorder or increase of
temperature.

Figure 5: Plots of Hall and longitudinal resistivities as a function of magnetic field. Plateaus in
Hall resistivity at several fillings are visible. After Ref. [28]

6 The Laughlin ground state and fractionally charged excita-

tions

Many body wave function for fillings ν ≤ 1 can be written as the Slater determinant of one
particle states Eq.(8), which we explicitely write for the case of two particles in the states of
lowest angular momenta

ψ(z1, z2) = N [(z1)
0(z2)

1 − (z2)
0(z1)

1] exp[−|z1|2 + |z2|2
4

] = N (z1 − z2) exp[−|z1|2 + |z2|2
4

]

The Slater determinant of N particles in the states of lowest angular momenta can be simplified
similary to give

ψ(z1, z2, ..., zN ) = N
N
∏

i<j

(zi − zj) exp(−1

4

∑

j

|zj |2).

Laughlin’s suggestion was that the ground state wavefunction appropriate for the FQHE at
filling ν = 1/m is

ψm =

N
∏

i<j

(zi − zj)
m exp(−1

4

∑

j

|zj |2).
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a) b) c)

Figure 6: (a) The Laughlin ground state at ν = 1/3. (b) If the density of electrons is slightly
reduced there is a surplus of flux lines in multiples of 3. (c) The excitations of the Laughlin
ground state develop around the flux tubes and are fractionally charged (in this case +e0/3).

Figure 7: The determination of the charge of the excitations by the Schrieffer counting argument
at filling ν = N/Z. If we insert Z quantums of magnetic field flux (here Z = 6) all the electrons
(black circles) will be removed from the sample. In reality the electrons are uniformly spread
through the sample, therefore the addition of one quantum of magnetic flux results in the e0/m
charged quasi-hole.

He arrived at this wavefunction from certain general principles, a) the wavefunction should
be formed of one particle states b) because the one particle states are polynomial in z the
manyparticle state should also be such c) the wavefunction should be an eigenstate of the total
angular momentum. Because the wavefunction should be antisymmetric the m is restricted to
odd integers what is also consistent with the absence of plateaus at fillings ν = p/m, m even.5

Laughlin further calculated numerically the ground-state of a few-particle system and deter-
mined that his trial-wavefunction exhibits excellent overlap with the numerical results.

The excitations correspond to slight deviation of the magnetic field from the value of precise
integer filling. We penetrate the ground-state with a flux tube containg one quantum of magnetic
flux. As the result of the addition of Φ0 is the increase in angular momentum according to Eq.(5)
for ~ its effect on single particle wavefunctions is

φm → φm+1. (11)

Laughlin accordingly proposed also the ansatz for the excitations from the ground state located
at z0

ψ′(z0) =
∏

i

(zi − z0)ψm.

Also in this case the overlap with numerically calculated few-body excited states turned out to
be good.

We now determine the charge of these excitations at some filling factor ν = 1/m. Inserting
N quantums of magnetic flux (see Eq.(11) and Fig. 7) expells all the electrons, which carry
total charge of (N/m)(−e0) from the system. As the excitation results from the insertion of

5There is a plateau at ν = 5/2. For explanation of it one has to consider also the spin degree of freedom.[19]
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one quantum of magnetic flux, its charge is equal to (N/m)(e0)/N = e0/m. Such excitation is
readily identified as a fractionaly charged quasi-hole. The statistics of these quasiholes can be
explicitly found by a Berry phase calculation [3], however, we avoid the lengthy calculation and
recognize that we are dealing with objects with charge e0/m connected to a flux equal to Φ0.
The statistics of these excitations is then determined according to Eq.(7) as

α =
(e/m)2π/e

2
=
π

m

7 The explanation of the FQHE

The explanation of FQHE in view of Laughlin’s ideas is that there exist fillings (or, equivalently,
magnetic field densities) at which the electron gas is particulary stable and condenses into a
special ground state with high correlation. The slight deviations from these fillings result in
quasi-particle excitations which carry fractional charge. As these excitations get pinned by the
impurities and disorder present in the real samples, they do not contribute to the current. The
conductance therefore does not change with the filling until the value of the filling for next
stabile ground state is reached.

8 Conclusion

We have shown that the possibilities for the symmetry character of the particles are related
to the dimensionality of the configurational space. As some physical systems are effectively
two dimensional the low-energy excitations of such systems are anyonic. Since the discovery of
the FQHE in 1982 the physical community pays a constant interest to the subject of anyons.
Furthermore, the interest in anyons has grown recently once again, as the anyons were proposed
as a means to perform a fault-tolerant quantum computation [35, 36]. The phase, which the
anyonic wave-function develops as the anyons are transfered around each other is of topological
nature. It is therefore expected to be more rigid against decoherence, which is one of the major
obstacles in constructing an efficent quantum computer.
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