Kvantni materiali : od pasovne teorije do koreliranih elektronov

Jernej Mravlje

Gradivo za predavanja pri specialističnem seminarju: "Izbrane teme iz teoretične fizike"

V Ljubljani, Feb 2018.

Redneck perspective on strong correlations

• a working-class white person from the southern US, especially a politically reactionary one.

Left-wing radicals vs. conservative

From : http://condensedconcepts.blogspot.si

• Left-wing:

emergence (Phil Anderson, Nobel '77)

Completely new conceptual structures and techniques are needed. We must go beyond Landau's mean-field theory and Fermi liquid theory: topological order, quasi-particles with fractional quantum numbers, AdS-CFT, quantum criticality, ...

To the barricades!

- Right-wing
 - atomistic details (Walter Kohn, Nobel prize 98)

... we have the conservatives who believe that the key ingredients are atomistic detail, good density functionals, perturbation theory, mean-field theory, and the random-phase approximation.

New concepts and methods are not really needed. They have a good system [just like capitalism].

In particular, we don't need a revolution, just bigger computers!

To balance Rok's part I will discuss more the redneck part

- Density functional theory
- Dynamical mean-field theory (a centrist thread - a bridge between left and right)
- The idea was also to bring the discussion in contact to recent research work ruthenates and on TaS₂ (next week)

Some (10?) facts about SCES

(Initially, I wanted to make 10 – like 10 commandments from the bible. Then it was 7, like 7 things one should absolutely avoid on the first date. I ended up at only a few (tend to forget ...)) Fact 1: there is a thing called a DFT and it describes the bandstructure of many compounds well Fact 1: there is a thing called DFT and it describes the *bandstructure* of many compounds *well*

Bandstructure

• k-resolved spectrum A(k,E)= $\Sigma_{kn}\delta[E-E_n(k)]$; DOS= $\Sigma_k\delta[E-E(k)]$. DOS determines many properties of solid state *Well*: Fact 2: Several experimental techniques exist that allow quantitative comparison with theory

Measuring spectra PES, ARPES

- Probes occupied one-electron states
 I(k,E)=f(E) A(k,E)
 - PES : k-integrated, probes DOS
- ARPES : k-resolved, probes A(k,E)

http://www.stanford.edu/group/photontheory/ARPES.html

ARPES

- Probes occupied part of spectral function
- Energy resolution
 10meV (sinhrotron)
 1meV(laser)

STS (measures ~DOS)

Optical conductivity

Also gives information about DOS (more precisely, joint DOS)

$$\sigma(\Omega) = \sum_{k} \int d\omega v_k^2 A_k(\omega) A_k(\omega + \Omega) \frac{f(\omega) - f(\omega + \Omega)}{\Omega}$$

• Schroedinger equation for $\Psi(\vec{r}_1, \ldots, \vec{r}_N)$

$$\hat{H}\Psi = \left[\hat{T} + \hat{V} + \hat{U}\right]\Psi = \left[\sum_{i}^{N}\left(-\frac{\hbar^2}{2m_i}\nabla_i^2\right) + \sum_{i}^{N}V(\vec{r}_i) + \sum_{i< j}^{N}U(\vec{r}_i,\vec{r}_j)\right]\Psi = E\Psi$$

$$n(ec{r}) = N \int \mathrm{d}^3 r_2 \cdots \int \mathrm{d}^3 r_N \Psi^*(ec{r}, ec{r}_2, \dots, ec{r}_N) \Psi(ec{r}, ec{r}_2, \dots, ec{r}_N).$$

there is a bijective relation between V(r), n(r). V(r) defines the ground state density. The relation can be inverted. There is a unique functional

$$\Psi_0=\Psi[n_0]$$

Fact 1: there is a thing called DFT and it describes the bandstructure of many compounds well

ARPES on Cu

This DFT looks quite neat. What is it? (blackboard)

• Comments: information about exact energy of homogeneous electron gas is built in

- LDA is ab-initio technique: you put in coordinate of atoms and you get E (can investigate which structures are stable)
- It describes state in terms of auxiliary Kohn-Sham states
- Energies of these eigenstates for some reason are close to the experiments for several cases (noone really knows why)

• The energies also have meaning: take SrVO₃

Transition metal oxides; structure and band-structure

An observation

 Bands quite narrow (2eV) in contrast to Cu (~10eV)

Part 2

When LDA breaks down:

electronic correlations

Redneck perspective on strong correlations (part 2)

From past week

Fact 1. there is a thing called DFT(LDA) and it describes the bandstructure of many compounds well

Fact 2. Several experimental techniques exist that allow quantitative comparison with theory

- LDA breaks down when interactions get strong
- Electronic correlations and Mott transition
- DMFT
- Sr₂RuO₄: Correlated metal with low coherence scale due to Hund's rule coupling
- Spin-liquid behavior in TaS₂

Resistivity, magnetic susceptibility, and specific heat : band-insulators vs. metals

Resistivity, magnetic susceptibility, and specific heat : band-insulators vs. metals

Note: band insulator needs even # of els. / band.

Breakdown of band picture: correlated metals and Mott insulators

Fact 3: strong Coulomb repulsion leads to a breakdown of band theory and occurrence of Mott insulator

• Partial breakdown: quasiparticles with large renormalizations compared to band-theory

• Complete breakdown: Mott insulator

Partial breakdown (Sr₂RuO₄)

- Completely different picture.
- Coherent excitat
 - only up to a 0.1e
- Heavy quasiparti
 - $(E=k^2/2m, dE/dk)$

Red: band-theory Strong renormaliza tions

Transition metal oxides; structure and band-structure

TMOs: structure and el. structure

- PES: satellites (not present in LDA)
- ARPES: coherent excitations

only up to a 0.5eV

Renormalization of slope (mass) by 2

Yoshida, ..., ZX Shen (2008)

TMOs: photoemission

- PES:atomic satellites (not preser
- QP peak (narrowed by 2 from LD
- ARPES: coherent excitations only up to a 0.5eV
La₂CuO₄

• 9 els in Cu 3d orbitals: 1 hole in x²-y²

Mott transition: La₂CuO₄ is (Mott) insulator

PES shows a 2eV gap instead of a metal

Binding Energy (eV)

Optical conductivity also shows gap

Notice overall LDA describes result well, only low energy spectral weight is missing

On doping, metallicity is restored; filling controlled Mott transition

• (Actually, more than that : doped LSCO is a high Tc superconductor!)

Ando'04

Band-width controlled driven Mott transition

Fact 4: orbitals matter! Why 3d special?

- 3d orbitals don't have nodes, reach further into core
- -> charge is screened less
- -> kinetic energy smaller

Values of interaction can also be calculated

- Atomic U_{at}(3d orbitals) ~ $e^2/4\pi\epsilon_0 r \sim 15 \text{ eV}$
- In oxides screened to U~5eV
- 4d orbitals ~2.5eV ; 5d orbitals 1.5eV

- One has an insulating state in a half-filled band
- Mott insulator
- Hubbard model: take band of x²-y² orbitals and supplement it by Hubbard repulsion U
- LDA bands as a starting point for many body calculations

Hubbard model

$$H = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + \sum_{i} U n_{i\uparrow} n_{j\downarrow}$$

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{i} U n_{i\uparrow} n_{j\downarrow}$$

Mott picture of the Mott transition

• (atomic : blackboard)

Fact 5 : Mott insulators are magnets

- localized electrons/site = spin
- Spins are coupled by exchange interaction -> Heisenberg model and magnetism
- Magnetic susceptibility rises as one cools down and magnetism arises

- Mott picture: adiabatic continuity with an insulator, but not with a metal:
- Does not described correctly doped Mott insulator

 $Sr_{1-x}La_{x}TiO_{3}$

 $\rho - \rho_0 (10^{-4} \Omega \text{ cm})$

Brinkman-Rice picture

 Solving Hubbard model with a variational ansatz

 $|\Psi_G\rangle = g^{\hat{D}} |\text{FG}\rangle$ = $\prod_{R_i} [1 - (1 - g)\hat{D}_i] |\text{FG}\rangle,$

Doping driven: $Z \sim \delta$

Fact 6: DOS of correlated metal consists of quasiparticle peak and Hubbard bands

• Mott transition: on metallic side adiabatic continuity with a noninteracting gas (with reduced bandwidth by Z), on insulating with an atom.

DMFT

Kondo effect

Resistivity minimum: associated to presence of magnetic impurities

RG picture of Kondo: infrared slavery (like quarks)

Anderson model -> Kondo model -> Kondo effect

$$H = \sum_{k} \epsilon_{k} n_{k} + \sum_{k\sigma} \left(V_{k} c_{k\sigma}^{\dagger} d_{\sigma} + h.c. \right) + \epsilon n + U n_{\uparrow} n_{\downarrow}$$

$$H_{\rm Kondo} = \sum_k \epsilon_k n_k + J \mathbf{S} \cdot \mathbf{s}$$

$$J(D') = \frac{J}{1/2 + J\rho \log(D'/D)}$$

$$T_K \sim D e^{-\frac{1}{2J\rho}}$$

NRG results

$$H = \sum_{k} \epsilon_{k} n_{k} + \sum_{k\sigma} \left(V_{k} c_{k\sigma}^{\dagger} d_{\sigma} + h.c. \right) + \epsilon n + U n_{\uparrow} n_{\downarrow}$$

$$H = \sum_{k} \epsilon_{k} n_{k} + \sum_{k\sigma} \left(V_{k} c_{k\sigma}^{\dagger} d_{\sigma} + h.c. \right) + \epsilon n + U n_{\uparrow} n_{\downarrow}$$

$$H_{\text{Kondo}} = \sum_{k} \epsilon_{k} n_{k} + J \mathbf{S} \cdot \mathbf{s}$$

$$J(D') = \frac{J}{1/2 + J\rho \log(D'/D)}$$

$$T_{K} \sim De^{-\frac{1}{2J\rho}}$$

$$I/4$$

Spectral function of Anderson model

• Good numerics to calculate, tests in quantum dots and transmission through molecules

Back to bulk

Dynamical mean-field theory (DMFT)

In limit of large d, self energy becomes local (independent of k)

$$G_{\boldsymbol{k}\,\sigma}(i\omega_n) = \frac{1}{i\omega_n - \epsilon_{\boldsymbol{k}} + \mu - \Sigma_{\sigma}(i\omega_n)}.$$

Georges et al. RMP'96

DMFT results

ARPES

LDA+DMFT

- Take LDA bands
- Describe interactions with DMFT (substracting mean-free part included in LDA).

Sr₂RuO₄ properties

p-wave supercond.

T_~2K

Maeno et al., Nature'94

Rice and Sigrist , J.Phys.CM'95 Correlated metal: Fermi liquid, (m*/m~4)

4 el. in Ru t_{2g} orbitals

Fermi liquid behavior below 20K Fact 7: In Fermi liquids ρ ~T²

Fermi surfaces

 $Sr_{2}RuO_{4}$: el. structure

LDA and experiments give very similar Fermi surfaces. Shape can be understood (blackboard)

Strong renormalization. ~ 4

Band-width 3eV, U~2.5eV.

(SrVO₃ had renormalization 2, but U~5eV)

Going multi-orbital: new ingredient:Hund's rule coupling

• "Bus seat rule"

• Maximize 1st spin, 2nd orbital momentum, 3rd

• $H=H_{band}+H_{aton}$ • $H=H_{band}+H_{aton}$ • $H=H_{band}$ • $H=H_{band}$

• Large and filling-dependent effects of J! Quasiparticle weight $Z \sim (m_{LDA}/m)$:

- 1. shift of U_c 2.additional effect on correlations
- At N=2, correlated state (a "Hund's metal") far
Why? : Two effects of J 1st modified atomic charge gap

• Effective interaction

 $U_{eff} = E(N+1) + E(N-1) - 2 E(N)$

- U-3J away from half-filling (U_{eff} diminished by J)
- U+(M-1)J at half filling $(U_{eff} increased by J)$
- Slater all d-states Hamiltonian (# of orbs. M=5)

	Effective Coulomb interaction U_{eff} for Hund's rule ground-state				
	Full Hamiltonian		Simple	Kanamori	Kanamori
					mean field
d^1	$F^{0}-\frac{8}{49}F^{2}-\frac{9}{441}F^{4}$	U ₀ - J _H -C	U_0-J_H	U'- J	U'- J
d^2	$F^0 + \frac{1}{49}F^2 - \frac{54}{441}F^4$	U_0 - J_H +C	U_0-J_H	U'- J	U'- J
d^3	$F^0 + \frac{1}{49}F^2 - \frac{54}{441}F^4$	U_0 - J_H +C	U_0-J_H	U'- J	U'- J
d^4	$F^{0} - \frac{8}{49}F^{2} - \frac{9}{441}F^{4}$	U_0-J_H-C	U ₀ - J _{H}	U'- J	U'- J
d^5	$F^0 + \frac{14}{49}F^2 + \frac{126}{441}F^4$	$U_0 + 4 U_H$	$U_0 + 4J_H$	JJ+4J	U+4J
d^6	$F^{0}-\frac{8}{49}F^{2}-\frac{9}{441}F^{4}$	U ₀ - J _{<i>H</i>} -C	U_0 - J_H	U'- J	U'- J
d^7	$F^0 + \frac{1}{49}F^2 - \frac{54}{441}F^4$	U_0-J_H+C	U_0-J_H	U'- J	U'- J
d^8	$F^0 + \frac{1}{49}F^2 - \frac{54}{441}F^4$	U_0 - J_H +C	U_0 - J_H	U'- J	U'- J
d^9	$F^{0} - \frac{8}{49}F^{2} - \frac{9}{441}F^{4}$	Uc			

D.Van der Marel and G.Sawatzky PRB 37 (1988) 10674 [VdMS]

2nd effect: J suppresses tunneling

- J lowers atomic degeneracy, blocks orbital fluctuations, hence prohibits some of the hopping
- Example: Create a charge excitation in half-filled two orbital problem. J allows it to move only in one of two possible ways.

(Schrieffer 1967, Okada, Yosida 1973, Jayaprakash et al, 1981, Nevidomskiy-Coleman 2009).

A localized perspective

Correlated state, far from Mott, ruthenates and pnictides.

Coherence-incoherence crossover in Sr₂RuO₄

ARPES

Ingle et al., PRB'05

Wang et al., PRL'04

Shen et al., PRL'07

Magnetic response

Pauli susceptibilty $1/T_1 \sim T$

Fact 8: Many correlated electron systems are well described by LDA+DMFT

TaS₂

- TaS_2 one electron in Ta d-bands (local t_{2g} env.)
- Layers of triangular lattices
- 5-d electrons (small U)

Mott transition

- STS shows insulating behavior (also optics)
- Small gap (0.1eV)

• Actually, a set of structural transitions. Mott state is realized in CDW at low-T.

Narrow band close to FL following structural transition

• 1 band per cluster of 13 Ta atoms relevant at low energies

• If it is a Mott insulator, what do spins do ?

Mott insulator, but Pauli susceptibility?

Pauli magnetic susceptibility

• Finite linear in T specific heat. Like in metals.

Collaboration with F5/F7

- Klanjsek et al, Nphys'17
- No magnetic order (muon spectroscopy)
- $1/T_1$ shows unusual T² dependence
- Spin liquid!

Summary

- Atomistic/ band-structure point of view on correlated electron systems
- LDA describes band-structure of many compounds well, but breaks down when U is strong
- Mott transition ; DMFT
- Sr₂RuO₄: low coherence scale & Hund's coupling
- TaS₂ Mott insulator at small U; spin-liquid behavior

Fact 1: there is a thing called DFT and it describes the bandstructure of many compounds well

Fact 2: Several experimental techniques exist that allow quantitative comparison with theory

Fact 3: strong Coulomb repulsion leads to a breakdown of band theory and occurrence of Mott insulator

Fact 4: orbitals matter!

Fact 5: Mott insulators are magnets

Fact 6: DOS of correlated metals consists of quasiparticle peak and Hubbard bands

Fact 7: in Fermi liquids $\rho \sim T^2$

Fact 8: Many correlated electron systems are well described by DMFT (LDA+DMFT)

Thank you!

