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● Bad metals (intro)
● (i) DMFT picture of a bad-metal: low T FL, high 

T bad-metal
● (ii) high-T regime for doped U=infinity Hubbard 

model (from DMFT and high-temperature 
expansion techniques)  

● lattice theories vs. continuum theories
● (iii) beyond DMFT



  

What happens at T above the 
strange metal 

?

● Question of transport related also to DOS. How 
does the DOS for a Hubbard model look like at 
infinite-T?



  

Bad metal

● 1990s: “Bad metals”, ?=? no quasiparticles 
Emery & Kivelson, PRL (1995)



  

Other bad metals

● Ruthenates, cuprates, organics (el-el driven)

● Alkali doped fullerides (el-ph driven)

Tyler et al, Phys. Rev. B (1998)
Cao et al. Solid State Comm (2004)
Gunnarsson, Calandra & Han, Rev. Mod. Phys. (2003)
Hussey, Takenaka & Takagi, Phil. Mag. (2004) 



  

Bad metals turn good at low T

● Many (all?) “bad metals”, however do show crossover and 
are at low T Fermi liquids

Sr
2
RuO

4

Hussey et al, Phys. Rev. B (1998)



  

Questions 

● Does a MIR criterion have a meaning for 
strongly correlated 'bad' metals?

● Are there quasiparticles and at what 
temperature do they disappear (close to T

FL
, or 

close to much larger T
MIR

)?



  

Case study and tools

● Single band Hubbard model, semicircular DOS

● U=4 in units of D. To compare with a typical material, think 
of D=1eV=11600K.

● DMFT equations solved with accurate impurity solvers: 
● continuous-time Monte Carlo (TRIQS : O. Parcollet & M. Ferrero: 
ipht.cea.fr/triqs)+Pade analytical continuation

● NRG (NRG Ljubljana : Rok Zitko, nrgljubljana.ijs.si) 

● Converged & compatible results using both techniques



  



  

Transport in DMFT 

● Vertex correction vanish, from Kubo formula one has

● For semicircular DOS:

● Velocity distribution function (units [x]2-d  [ω])



  

DMFT results: resistivity

● Several regimes
● FL : ρ~T2 ; T<T

FL
 

● ρ~T with ρ
0
<0; T

FL
<T<T

*

● ρ~T with ρ
0
<0;  T

*
<T 

● Bad metal T>T
MIR 

BAD METAL 

ρ0<0

ρ0>0



  

Calculated photoemission

● δ=0.2



  

Calculated photoemission (ii)
resillient quasiparticles

Quasiparticle excitations persist up to temperature δD ~T
Their width Γ>T, yet smaller than D, so they are well discernible.



  

● quasiparticles in spectroscopy disappear (only) 
on approaching ρ

MIR



  

Drude-like formula 

Peaked spectral functions enable rewriting of transport eqs. to Drude 
(Boltzmann) form

compare with el.-ph. coupling analysis
of Prange, Kadanoff Phys Rev '64



  

Generalized Drude

● Works remarkably well at all T. 



  

About resistivity saturation & 
generalized Drude

● Scattering rate saturates, 

resistivity not



  

Carrier number 

● Within Drude description, at high temperature τ saturates, 
plasma frequency (effective carrier number) keeps 
dropping

● Bad metal regime is like doped semiconductor, controlled 
by T-dependence of carrier # not their scattering



  

●

● Tau = 1/Im Sigma(omega) = T independent 
● Is this the asymptotic high-T regime?/ What 

happens at higher temperature still?



  

● Take hole doped case, U-> Infinity 
● How does the DOS look like? 



  



  

Preliminary results from 2013 
support scenario 1 (wrong!)

● Technically difficult



  

A tiny bit on the high-T expansion



  



  

DMFT vs high-T expansion: Self energy

● high-T expansion predicts saturated self

● more careful NRG (better broadening kernel) consistent with 
that 

High-T Asymptotics



  

Interaction expansion QMC results



  

DMFT vs. high-T expansion 

● dominant term agrees with DMFT at large T
● T^3 correction explains describes quantitatively 

 DMFT down to ρ
MIR 

(fails to describe RQP reg)



  

Einstein relation    

Drude formula

See also, Calandra, Gunnarsson, EPL 61 88 (2003)

● kinetic energy and charge compressibility drop 
as 1/T



  

Saturation of diffusion constant

Note also direction of the effect: charge susceptibility deviates 
more strongly from 1/T behavior than diffusion constant from a 
constant, hence upturn with respect to T-linear!

For more on the charge sucs. see 
J. Kokalj, PRB 95 041110R (2017)   



  

Distinct from continuum theories



  

Two key differences between 
continuum theory and lattice models 
● In lattice, the kinetic energy (charge 

compressibility drops as 1/T 
● In continuum, this is not the case. 
● In lattice, there is a minimal diff. constant

D=a^2 /time =a^2* t. There is no such thing in 
continuum.

● These two work in opposite direction



  

Summary so far

● In a single band situation, at high-T 
● DOS, Σ become T-independent (up to a shift)  
● Resistivity ~ T
● Kinetic energy, charge compressibility ~ 1/T
● Diffusion constant , scattering rate saturate

● In materials, all this somewhat academic, at 
high T one has multiple bands, but perhaps 
cold atoms could realize this high-T regime. 

● I was mostly discussing
DMFT, but turns that DMFT in high-T 
representative of the true behavior

Mazurenko et al., Nature 545 462(2017), 
down to T=0.25t  



  

square lattice in 2d solved by 
Lanczos vs. DMFT 

Ana Vranic, Jure Kokalj, et al. in 
preparation
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From good old days – to the present

1: Good (nonsaturating) metals



  

Prior to 1960s: Bloch-Grueneisen 
describes it all

● Resistivity due to el-ph interaction

● At high T, ρ~T 

Ziman,1960



  

2.Metals with saturated resistivity at high T



  

Saturating metals



  

Saturating metals, MIR

In 1970s: Omnipresent saturation, Mott-Ioffe-Regel 

● Minimal metalic conductivity corresponding to k
F
l=1 or l~a

PB Allen, “Superconductivity in d- and f-band metals” (1980); N. Mott (Nobel Lecture 1977)
Gunnarsson, Calandra & Han, Rev. Mod. Phys. (2003)
Hussey, Takenaka & Takagi, Phil. Mag. (2004) 

Gurvitch, PRB'81



  

3. Metals with unsaturated ρ>ρ
MIR

=
“Bad metals”



  



  

Transport in DMFT (ii)

● At low T, only ω~0, k~kF 
 states contribute.

a natural unit for conductivity, 
used henceforth

● If evaluated for a 2d electron gas, one gets 

kFl times the conductivity quantum, thus this choice 
corresponds to ρMIR for criterion kFl=1

● Velocity distribution function (units [x]2-d  [ω])



  

MIR for a 2d electron gas

● In 2d, n~k
F

2, sheet conductivity is G
0 
k

F
l

● Taking k
F
l=2π, c=0.3nm one gets

130 μΩcm

● 2d→ 3d;  2π/c → 4/3 kF; taking further kF=π/a, one 
gets 200 μΩcm

● Several criterions: most to least restrictive 

● l=2π/ kF , a, 1/kF



  

● Asymptotic high-T Hubbard model has T-lin 
resistivity and saturated scattering rate

● Saturated diffusion constant, scattering rate
● “carrier density”, kinetic energy ~ 1/T
● (in distictinction with continuum)



  

Optical conductivity

● Integrates to kinetic energy,

● Size of kinetic energy diminishes with T (hence plasma 
frequency, hence conductivity)

● At MIR isosbestic point is lost

Calandra, Gunnarsson, EPL'03



  

Self energies &particle-hole 
asymmetry

● -imag part of self energy



  

Parallel resistor formula



  
Jaklic Prelovsek, Adv. Phys.’00
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