So, the Standard Model is incomplete (but correct)

Gravity. . .
Dark Matter. . .
SM aestetically incomplete?
Global symmetries, B, K ?

Neutrino masses are new physics
Dirac or Majorana
Low scale?

- Key questions: which theory? at which scale?

Theory?

A theory of neutrino masses...
In the SM:
■ Lepton Number conserved. (also family L_{e}, L_{μ}, L_{τ} separately!)

- Only left neutrinos, there is no renormalizable mass term.

Theory?

A theory of neutrino masses...
In the SM:
■ Lepton Number conserved. (also family L_{e}, L_{μ}, L_{τ} separately!)

- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a $D=5$ nonrenormalizable operator?

Theory?

A theory of neutrino masses. . .
In the SM:
■ Lepton Number conserved. (also family L_{e}, L_{μ}, L_{τ} separately!)
■ Only left neutrinos, there is no renormalizable mass term.
■ Effective theory: a $D=5$ nonrenormalizable operator?

BSM:

- Or new states.

■ Question: is it low or high scale physics?
■ Physical consequences.

Neutrino
 F. Nesti
 Neutrino masses

Theory

Dirac vs
Majorana
Seesaws
Diagonalization
Lepton Violation
$0 \nu \beta \beta$
Experiments
New Physics

Neutrino masses

- Dirac mass $(\Delta L=0)$ - need Right-Handed neutrino ν_{R}

$$
M_{D} \overline{\nu_{R}} \nu_{L}+\text { h.c. } \equiv M_{D} \nu_{R}^{c t} C \nu_{L} \rightarrow M_{D} \nu_{R \dot{\alpha}}^{*} \nu_{L \beta} \delta^{\dot{\alpha} \beta}+\text { h.c. }
$$

M_{D} generic complex.
Generated with familiar Yukawa term, $y_{D} H \bar{\ell}_{L} \nu_{R}$.

Neutrino masses

■ Dirac mass $(\Delta L=0)$ - need Right-Handed neutrino ν_{R}

$$
M_{D} \overline{\nu_{R}} \nu_{L}+\text { h.c. } \equiv M_{D} \nu_{R}^{c t} C \nu_{L} \rightarrow M_{D} \nu_{R \dot{\alpha}}^{*} \nu_{L \beta} \delta^{\dot{\alpha} \beta}+\text { h.c. }
$$

M_{D} generic complex.
Generated with familiar Yukawa term, $y_{D} H \bar{\ell}_{L} \nu_{R}$.

- Majorana mass ($\Delta L=2$)

$$
M_{L} \overline{\left(\nu_{L}^{c}\right)} \nu_{L}+\text { h.c. } \equiv M_{L} \nu_{L}^{t} C \nu_{L} \rightarrow M_{L} \nu_{L \alpha} \nu_{L \beta} \epsilon^{\alpha \beta}+\text { h.c.. }
$$

M_{L} symmetric!
Breaks total lepton number L. (as family ones, L_{e}, L_{μ}, L_{τ}.)
Generated only as effective operator, $\frac{\lambda}{M}(\ell H)(H \ell)$.

Neutrino masses

■ Dirac mass $(\Delta L=0)$ - need Right-Handed neutrino ν_{R}

$$
M_{D} \overline{\nu_{R}} \nu_{L}+\text { h.c. } \equiv M_{D} \nu_{R}^{c t} C \nu_{L} \rightarrow M_{D} \nu_{R \dot{\alpha}}^{*} \nu_{L \beta} \delta^{\dot{\alpha} \beta}+\text { h.c. }
$$

M_{D} generic complex.
Generated with familiar Yukawa term, $y_{D} H \bar{\ell}_{L} \nu_{R}$.

- Majorana mass ($\Delta L=2$)

$$
M_{L} \overline{\left(\nu_{L}^{c}\right)} \nu_{L}+\text { h.c. } \equiv M_{L} \nu_{L}^{t} C \nu_{L} \rightarrow M_{L} \nu_{L \alpha} \nu_{L \beta} \epsilon^{\alpha \beta}+\text { h.c.. }
$$

M_{L} symmetric!
Breaks total lepton number L. (as family ones, L_{e}, L_{μ}, L_{τ}.) Generated only as effective operator, $\frac{\lambda}{M}(\ell H)(H \ell)$.
[Mohapatra, Pal, "Massive neutrinos in physics and astrophysics"]
[Denner et al, "Compact Feynman rules for Majorana fermions", PLB291] [Dreiner, Haber, Martin, "Feynman Rules using two-component spinor notatation"]

Seesaw (type-I)

Once present, the singlet ν_{R} can have renormalizable Majorana mass. So,

$$
\left(\begin{array}{ll}
\nu_{L} & \nu_{R}^{c}
\end{array}\right)\left(\begin{array}{cc}
0 & M_{D}^{t} \\
M_{D} & M_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}} .
$$

Seesaw (type-I)

Once present, the singlet ν_{R} can have renormalizable Majorana mass. So,

$$
\left(\begin{array}{ll}
\nu_{L} & \nu_{R}^{c}
\end{array}\right)\left(\begin{array}{cc}
0 & M_{D}^{t} \\
M_{D} & M_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}} .
$$

- Seesaw: if $M_{R} \gg M_{D}$, the mass matrix is $\left(\begin{array}{cc}M_{\nu} & 0 \\ 0 & M_{N}\end{array}\right)$,

$$
\begin{gathered}
M_{\nu} \simeq-M_{D}^{t} M_{R}^{-1} M_{D}, \quad M_{N} \simeq M_{R} \\
M_{R} \text { large } \Rightarrow M_{\nu} \text { small. }
\end{gathered}
$$

(eigenstates: light Majorana and heavy Majorana)
[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]

Seesaw (type-I)

Once present, the singlet ν_{R} can have renormalizable Majorana mass. So,

$$
\left(\begin{array}{ll}
\nu_{L} & \nu_{R}^{c}
\end{array}\right)\left(\begin{array}{cc}
0 & M_{D}^{t} \\
M_{D} & M_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}} .
$$

- Seesaw: if $M_{R} \gg M_{D}$, the mass matrix is $\left(\begin{array}{cc}M_{\nu} & 0 \\ 0 & M_{N}\end{array}\right)$,

$$
\begin{gathered}
M_{\nu} \simeq-M_{D}^{t} M_{R}^{-1} M_{D}, \quad M_{N} \simeq M_{R} \\
M_{R} \text { large } \Rightarrow M_{\nu} \text { small. }
\end{gathered}
$$

(eigenstates: light Majorana and heavy Majorana)
[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]

But what can M_{D} and M_{R} be?

Seesaw (type-I) - at which scale?

Scales m_{D}, m_{R} quite free...
(yukawa perturbativity, $M_{D}<500 \mathrm{GeV}$)
Some scenarios using $m_{\nu}=m_{D}^{2} / m_{R} \lesssim 1 \mathrm{eV}$ ignoring mixings

Seesaw (type-I) - at which scale?

Scales m_{D}, m_{R} quite free...
(yukawa perturbativity, $M_{D}<500 \mathrm{GeV}$)
Some scenarios using $m_{\nu}=m_{D}^{2} / m_{R} \lesssim 1 \mathrm{eV}$ ignoring mixings

- $m_{D} \sim 100 \mathrm{GeV}$ - (like heavy quarks?)

$$
m_{D}^{2} / m_{\nu}=m_{R} \gtrsim 10^{13 \div 15} \mathrm{GeV}, \quad \text { High scale physics }
$$

Fits with GUT scenario, releted to B ?, ...

Seesaw (type-I) - at which scale?

Scales m_{D}, m_{R} quite free... (yukawa perturbativity, $M_{D}<500 \mathrm{GeV}$)

Some scenarios using $m_{\nu}=m_{D}^{2} / m_{R} \lesssim 1 \mathrm{eV} \quad$ ignoring mixings

- $m_{D} \sim 100 \mathrm{GeV}$ - (like heavy quarks?)

$$
m_{D}^{2} / m_{\nu}=m_{R} \gtrsim 10^{13 \div 15} \mathrm{GeV}, \quad \text { High scale physics }
$$

Fits with GUT scenario, releted to B ?,\ldots

- $m_{D} \lesssim \mathrm{MeV}$ - Now one can have much lower m_{R} :

$$
m_{D}^{2} / m_{\nu}=m_{R} \lesssim \mathrm{TeV}, \quad \text { Collider scale }
$$

More interesting: m_{R} associated to physical states: observable (see later)

Seesaw (type-I) - at which scale?

Scales m_{D}, m_{R} quite free... (yukawa perturbativity, $M_{D}<500 \mathrm{GeV}$)

Some scenarios using $m_{\nu}=m_{D}^{2} / m_{R} \lesssim 1 \mathrm{eV} \quad$ ignoring mixings

- $m_{D} \sim 100 \mathrm{GeV}$ - (like heavy quarks?)

$$
m_{D}^{2} / m_{\nu}=m_{R} \gtrsim 10^{13 \div 15} \mathrm{GeV}, \quad \text { High scale physics }
$$

Fits with GUT scenario, releted to B ?,\ldots

- $m_{D} \lesssim \mathrm{MeV}$ - Now one can have much lower m_{R} :

$$
m_{D}^{2} / m_{\nu}=m_{R} \lesssim \mathrm{TeV}, \quad \text { Collider scale }
$$

More interesting: m_{R} associated to physical states: observable (see later)

Seesaw-I not the only possibility...

Seesaw (type-II)

- In a $S U(2) \times U(1)_{Y}$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_{L} \in(3,1)$:

$$
\mathcal{L}_{y_{\Delta}}=Y_{\Delta} \ell_{L}^{t} \tau_{2} \Delta_{L} \ell_{L}
$$

with symmetric Y_{Δ}. In components

$$
\Delta_{L}=\left(\begin{array}{cc}
\delta^{+} / \sqrt{2} & \delta^{++} \\
\delta^{0} & -\delta^{+} / \sqrt{2}
\end{array}\right)
$$

Seesaw (type-II)

- In a $S U(2) \times U(1)_{Y}$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_{L} \in(3,1)$:

$$
\mathcal{L}_{y_{\Delta}}=Y_{\Delta} \ell_{L}^{t} \tau_{2} \Delta_{L} \ell_{L}
$$

with symmetric Y_{Δ}. In components

$$
\Delta_{L}=\left(\begin{array}{cc}
\delta^{+} / \sqrt{2} & \delta^{++} \\
\delta^{0} & -\delta^{+} / \sqrt{2}
\end{array}\right)
$$

■ If it has a (neutral!) $\operatorname{VEV}\left\langle\delta^{0}\right\rangle=v_{L}$, it generates a neutrino Majorana mass $M_{L} \nu_{L}^{t} \nu_{L}$, with

$$
M_{L}=Y_{\Delta} v_{L} .
$$

Seesaw (type-II)

- In a $S U(2) \times U(1)_{Y}$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_{L} \in(3,1)$:

$$
\mathcal{L}_{y_{\Delta}}=Y_{\Delta} \ell_{L}^{t} \tau_{2} \Delta_{L} \ell_{L}
$$

with symmetric Y_{Δ}. In components

$$
\Delta_{L}=\left(\begin{array}{cc}
\delta^{+} / \sqrt{2} & \delta^{++} \\
\delta^{0} & -\delta^{+} / \sqrt{2}
\end{array}\right)
$$

- If it has a (neutral!) $\operatorname{VEV}\left\langle\delta^{0}\right\rangle=v_{L}$, it generates a neutrino Majorana mass $M_{L} \nu_{L}^{t} \nu_{L}$, with

$$
M_{L}=Y_{\Delta} v_{L} .
$$

- The triplet couples to Higgs, $m_{\Delta}^{2} \Delta^{2}+m_{\Delta} H \Delta H$. ($m_{\Delta} \gg v$) So it has a naturally small VEV, $v_{L} \sim v^{2} / m_{\Delta}$.

$$
M_{\nu} \sim Y_{\Delta} v^{2} / m_{\Delta}
$$

Again, large $m_{\Delta} \rightarrow$ small M_{L}.

Masses, general
Seesaw type-I plus type-II lead to the general scenario:

$$
\left(\begin{array}{ll}
\nu_{L} & \nu_{R}^{c}
\end{array}\right)\left(\begin{array}{ll}
M_{L} & M_{D}^{t} \\
M_{D} & M_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}} .
$$

with $M_{L}, M_{D} \ll M_{R}$.

- Eliminating the M_{D} mixing, one gets $\left(\begin{array}{cc}M_{\nu} & 0 \\ 0 & M_{N}\end{array}\right)$, with

$$
M_{\nu} \simeq M_{L}-M_{D}^{t} \frac{1}{M_{R}} M_{D}, \quad M_{N} \simeq M_{R} .
$$

Masses, general

Seesaw type-I plus type-II lead to the general scenario:

$$
\left(\begin{array}{ll}
\nu_{L} & \nu_{R}^{c}
\end{array}\right)\left(\begin{array}{ll}
M_{L} & M_{D}^{t} \\
M_{D} & M_{R}
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}} .
$$

with $M_{L}, M_{D} \ll M_{R}$.

- Eliminating the M_{D} mixing, one gets $\left(\begin{array}{cc}M_{\nu} & 0 \\ 0 & M_{N}\end{array}\right)$, with

$$
M_{\nu} \simeq M_{L}-M_{D}^{t} \frac{1}{M_{R}} M_{D}, \quad M_{N} \simeq M_{R} .
$$

■ Note, now that there can be cancelations to get light M_{ν}.
And there can be cancelations also inside $M_{D}^{t} M_{R}^{-1} M_{D}$. (see Casas-Ibarra parametrization of M_{D})

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$
\begin{aligned}
& M_{e}=V_{e L} m_{e} V_{e R}^{\dagger} \quad, \quad U_{P M N S}=V_{e L}^{\dagger} V_{\nu L}=\left[\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]= \\
& M_{\nu}=V_{\nu L} m_{\nu} V_{\nu R}^{\dagger} \\
& =\left[\begin{array}{ccc}
e^{i \alpha_{e}} & 0 & 0 \\
0 & e^{i \alpha \mu} & 0 \\
0 & 0 & e^{i \alpha_{\tau}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{2}}
\end{array}\right]
\end{aligned}
$$

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$
\begin{aligned}
& M_{e}=V_{e L} m_{e} V_{e R}^{\dagger} \quad, \quad U_{P M N S}=V_{e L}^{\dagger} V_{\nu L}=\left[\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]= \\
& M_{\nu}=V_{\nu L} m_{\nu} V_{\nu R}^{\dagger} \\
& \quad=\left[\begin{array}{ccc}
e^{i \alpha_{e}} & 0 & 0 \\
0 & e^{i \alpha} \mu & 0 \\
0 & 0 & e^{i \alpha_{\tau}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{2}}
\end{array}\right]
\end{aligned}
$$

- Dirac mass, generic complex

$$
V_{\nu L} \neq V_{\nu R}
$$ so 5 external phases irrelevant.

(Kinetic, current and masses respect $U(1)_{L_{\chi}}$!) Only $\subset P$ from the 'Dirac' phase, as in CKM ($U_{e 3}$ suppressed).

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$
\begin{aligned}
& M_{e}=V_{e L} m_{e} V_{e R}^{\dagger} \quad, \quad U_{P M N S}=V_{e L}^{\dagger} V_{\nu L}=\left[\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]= \\
& \quad=\left[\begin{array}{ccc}
e^{i \alpha_{e}} & 0 & 0 \\
0 & e^{i \alpha_{\mu}} & 0 \\
0 & 0 & e^{i \alpha \tau}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 0 \\
-s_{13} e^{i \delta} & 0 & 0 \\
c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{2}}
\end{array}\right]
\end{aligned}
$$

- Dirac mass, generic complex

$$
V_{\nu L} \neq V_{\nu R}
$$ so 5 external phases irrelevant.

(Kinetic, current and masses respect $U(1)_{L_{x}}$!)
Only $Q P$ from the 'Dirac' phase, as in CKM ($U_{e 3}$ suppressed).

- Majorana mass, complex symmetric $\quad V_{\nu R} \equiv V_{\nu L}^{*}$ Now the two phases α_{1} and α_{2} can not be removed!
(i.e. Majorana mass breaks lepton numbers!) These phases however appear only in LNV processes.

Neutrino - up to now

What we saw:

- Neutrino have masses (Dirac or Majorana)
- Need extension of the SM.
- Add heavy $\nu_{R} \rightarrow$ seesaw-l.

■ Add heavy $\Delta_{L} \rightarrow$ seesaw-II.

- Majorana violates Lepton number by two units
- Two extra 'Majorana' CP phases in the mixing matrix $U_{P M N S}$.
let's look at consequences...

Lepton number violation, consequences

Theory
Dirac vs
Majorana
Seesaws
Diagonalization
Lepton Violation
$0 \nu \beta \beta$
Experiments
New Physics

Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:

$$
\begin{aligned}
{ }_{Z}^{A} X & \rightarrow{ }_{Z+2}^{A} X+2 e^{-} \\
\ldots \tau_{0 \nu \beta \beta} & \approx 10^{24} y, \text { but testable! }
\end{aligned}
$$

(and double electron nuclear capture, ${ }_{Z}^{A} X+2 e^{-} \rightarrow{ }_{Z-2}^{A} X$, etc.)

[Racah, Nuovo Cim. '37]

Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:

$$
\begin{aligned}
{ }_{Z}^{A} X & \rightarrow{ }_{Z+2}^{A} X+2 e^{-} \\
\ldots \tau_{0 \nu \beta \beta} & \gtrsim 10^{24} y, \text { but testable! }
\end{aligned}
$$

(and double electron nuclear capture, ${ }_{Z}^{A} X+2 e^{-} \rightarrow{ }_{z-2}^{A} X$, etc.)

[Racah, Nuovo Cim. '37]

- Collider: same sign dileptons:

Very small for standard $W \ldots$

[Keung Senjanović '83]

Lepton number violation, consequences

- Nuclear neutrinoless double beta decay:

$$
\begin{aligned}
{ }_{Z}^{A} X & \rightarrow{ }_{Z+2}^{A} X+2 e^{-} \\
\ldots \tau_{0 \nu \beta \beta} & \gtrsim 10^{24} y, \text { but testable! }
\end{aligned}
$$

(and double electron nuclear capture, ${ }_{z}^{A} X+2 e^{-} \rightarrow{ }_{z-2}^{A} X$, etc.)

[Racah, Nuovo Cim. '37]

- Collider: same sign dileptons:

Very small for standard W...

[Keung Senjanović '83]

- Meson neutrinoless double beta decay, e.g. $K^{+} \rightarrow \pi^{-} \ell^{+} \ell^{+}$ $B R<10^{-20}$, much less than current limits, $B R \lesssim 10^{-10}$
F. Nesti

Theory

Dirac vs
Majorana
Seesaws
Diagonalization
Lepton Violation
$0 \nu \beta \beta$
Experiments
New Physics

$0 \nu \beta \beta$

Two-neutrino double beta decay $0 \nu \beta \beta$

- Double β-decay, two e^{-}

Neutrino $p \sim 3 \mathrm{MeV}$

■ no LNV

Neutrinoless double beta decay $0 \nu \beta \beta$

- Actually a loop process: Released $Q \sim 3 \mathrm{MeV}$. Neutrino $p \sim 100 \mathrm{MeV}$
Decay width:
$\Gamma_{0 \nu}=G(Q)|\mathcal{M}|^{2}$
[phase space] [amplitude]

Neutrinoless double beta decay $0 \nu \beta \beta$

- Actually a loop process: Released $Q \sim 3 \mathrm{MeV}$. Neutrino $p \sim 100 \mathrm{MeV}$ Decay width: $\Gamma_{0 \nu}=G(Q)|\mathcal{M}|^{2}$
[phase space] [amplitude]

- The amplitude is $\mathcal{M}=8 G_{F}^{2} \int d^{4} x d^{4} y J_{\text {had }}^{\mu}(x) J_{h a d}^{\nu}(y) L_{\mu \nu}(x, y)$ where the leptonic tensor is (in momentum space)

$$
L_{\mu \nu}=\bar{e} \gamma_{\mu} L\left[\frac{p p+M_{\nu}}{p^{2}-M_{\nu}^{2}}\right]_{e e} \gamma_{\nu} R e^{c}
$$

Neutrinoless double beta decay $0 \nu \beta \beta$

- Actually a loop process: Released $Q \sim 3 \mathrm{MeV}$. Neutrino $p \sim 100 \mathrm{MeV}$ Decay width:
$\Gamma_{0 \nu}=G(Q)|\mathcal{M}|^{2}$
[phase space] [amplitude]

- The amplitude is $\mathcal{M}=8 G_{F}^{2} \int d^{4} x d^{4} y J_{h a d}^{\mu}(x) J_{h a d}^{\nu}(y) L_{\mu \nu}(x, y)$ where the leptonic tensor is (in momentum space)

$$
L_{\mu \nu}=\bar{e} \gamma_{\mu} L\left[\frac{p+M_{\nu}}{p^{2}-M_{\nu}^{2}}\right]_{e e} \gamma_{\nu} R e^{c}
$$

- LNV explicitly related to Majorana neutrino masses.

Light neutrinos ($M_{\nu} \ll p \sim 100 \mathrm{MeV}$) give

$$
L_{\mu \nu} \propto M_{\nu}^{e e} \frac{1}{p^{2}}
$$

$0 \nu \beta \beta$ cont'd

Strenght of LNV in $0 \nu \beta \beta$, from standard light neutrinos:

$$
M_{\nu}^{e e}=\sum U_{e i}^{2} m_{i}=m_{1}\left|U_{e 1}^{2}\right|+m_{2}\left|U_{e 2}^{2}\right| e^{i \alpha_{1}}+m_{3}\left|U_{e 3}^{2}\right| e^{i \alpha_{2}}
$$

$0 \nu \beta \beta$ cont'd

Strenght of LNV in $0 \nu \beta \beta$, from standard light neutrinos:

$$
M_{\nu}^{e e}=\sum U_{e i}^{2} m_{i}=m_{1}\left|U_{e 1}^{2}\right|+m_{2}\left|U_{e 2}^{2}\right| e^{i \alpha_{1}}+m_{3}\left|U_{e 3}^{2}\right| e^{i \alpha_{2}}
$$

■ So, from oscillations, $\left|U_{e 1}^{2}\right| \sim 0.6,\left|U_{e 2}^{2}\right| \sim 0.25,\left|U_{e 3}^{2}\right| \sim 0.022$,
... Majorana phases important and there can be a cancelation!

$0 \nu \beta \beta$ cont'd

Strenght of LNV in $0 \nu \beta \beta$, from standard light neutrinos:

$$
M_{\nu}^{e e}=\sum U_{e i}^{2} m_{i}=m_{1}\left|U_{e 1}^{2}\right|+m_{2}\left|U_{e 2}^{2}\right| e^{i \alpha_{1}}+m_{3}\left|U_{e 3}^{2}\right| e^{i \alpha_{2}}
$$

- So, from oscillations, $\left|U_{e 1}^{2}\right| \sim 0.6,\left|U_{e 2}^{2}\right| \sim 0.25,\left|U_{e 3}^{2}\right| \sim 0.022$,
... Majorana phases important and there can be a cancelation!

- Possible $0 \nu \beta \beta$, as a function of lightest neutrino mass:
[Vissani '02]
Can distinguish the hierarchy. And the absolute mass.

$0 \nu \beta \beta$, matrix elements

Neutrino propagator, i.e. $1 / r$ for light $e^{-m r} / r$ for heavy neutrino.
■ Well approximated by its typical momentum $p \sim 100 \div 200 \mathrm{MeV}$. Both for light or heavy neutrino exchange (no core suppression)

$$
\left\langle\frac{m_{\nu}}{p^{2}}\right\rangle_{n u c} \simeq \frac{m_{\nu}}{p^{2}}, \quad\left\langle\frac{1}{m_{N}}\right\rangle_{n u c} \sim \frac{1}{m_{N}}
$$

$0 \nu \beta \beta$, matrix elements

Neutrino propagator, i.e. $1 / r$ for light $e^{-m r} / r$ for heavy neutrino.
■ Well approximated by its typical momentum $p \sim 100 \div 200 \mathrm{MeV}$. Both for light or heavy neutrino exchange (no core suppression)

$$
\left\langle\frac{m_{\nu}}{p^{2}}\right\rangle_{n u c} \simeq \frac{m_{\nu}}{p^{2}}, \quad\left\langle\frac{1}{m_{N}}\right\rangle_{n u c} \sim \frac{1}{m_{N}}
$$

■ Real calculation, w/ nuclear models, uncertain by a factor of 20-200-1000\% (got worse)

Engel-Menendez 1610.06548

Neutrinoless double beta decay, cont'd

Need to avoid the much more favored single beta decay.

- In some nuclei β-decay is forbidden!
[Bethe-Weizsäcker formula]

Neutrinoless double beta decay, cont'd

Need to avoid the much more favored single beta decay.
■ In some nuclei β-decay is forbidden!
[Bethe-Weizsäcker formula]

■ Now, $\beta \beta$ can proceed through both $2 \nu \beta \beta$, or $0 \nu \beta \beta$..
How to distinguish them? - We don't detect neutrinos.

Neutrinoless double beta decay, cont'd

- Recognized by the spectrum of electrons (once again!)

- In real life, the line is not so definite...

Experiments, ongoing

Isotope	$\mathrm{T}_{1 / 2}^{0 \nu}\left(\times 10^{25} \mathrm{y}\right)$	$\left\langle m_{\beta \beta}\right\rangle(\mathrm{eV})$	Experiment
${ }^{48} \mathrm{Ca}$	$>5.8 \times 10^{-3}$	$<3.5-22$	ELEGANT-IV
${ }^{76} \mathrm{Ge}$	>8.0	$<0.12-0.26$	GERDA
	>1.9	$<0.08-0.12$	MAJORANA DEMONSTRATOR
${ }^{82} \mathrm{Se}$	$>3.6 \times 10^{-2}$	$<0.89-2.43$	NEMO-3
${ }^{96} \mathrm{Zr}$	$>9.2 \times 10^{-4}$	$<7.2-19.5$	NEMO-3
${ }^{100} \mathrm{Mo}$	$>1.1 \times 10^{-1}$	$<0.33-0.62$	NEMO-3
${ }^{116} \mathrm{Cd}$	$>1.0 \times 10^{-2}$	$<1.4-2.5$	NEMO-3
${ }^{128} \mathrm{Te}$	$>1.1 \times 10^{-2}$	-	-
${ }^{130} \mathrm{Te}$	>1.5	$<0.11-0.52$	CUORE
${ }^{136} \mathrm{Xe}$	>10.7	$<0.09-0.11$	KamLAND-Zen
	>1.8	$<0.15-0.40$	EXO-200
${ }^{150} \mathrm{Nd}$	$>2.0 \times 10^{-3}$	$<1.6-5.3$	NEMO-3

Notice the insanely large lifetime limit (age of universe is just $10^{10} \mathrm{y}$). Ton experiment (e.g. Legend 1000) are coming to probe 100 times larger lifetimes.

Neutrino
F. Nesti

Theory

Dirac vs
Majorana
Seesaws
Diagonalization
Lepton Violation
$0 \nu \beta \beta$
Experiments New Physics

Neutrinoless double beta decay, results

Theory

Dirac vs
Majorana
Seesaws
Diagonalization
Lepton Violation
$0 \nu \beta \beta$
Experiments New Physics

Neutrinoless double beta decay, results

Possible future clash with cosmology or Tritium

- Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_{i} \lesssim 0.12 \mathrm{eV}$ (Planck 95\% C.L.)

Possible future clash with cosmology or Tritium

- Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_{i} \lesssim 0.12 \mathrm{eV}$ (Planck 95\% C.L.)

- If a $0 \nu \beta \beta$ signal is observed above the neutrino lines, the connection with neutrino masses will be excluded...

Possible future clash with cosmology or Tritium

- Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_{i} \lesssim 0.12 \mathrm{eV}$ (Planck 95\% C.L.)

- If a $0 \nu \beta \beta$ signal is observed above the neutrino lines, the connection with neutrino masses will be excluded...
... So $0 \nu \beta \beta$ would probe new physics beyond light neutrinos!

New Physics - where? when?

If $m_{\nu}^{e e}$ excluded by cosmology, can new Physics do the job?
Try to guess at the level of effective operators. . .

New Physics - where? when?

If $m_{\nu}^{e e}$ excluded by cosmology, can new Physics do the job?
Try to guess at the level of effective operators. . .

- The 'New Physics' operator is dimension 9

$$
O_{N P}=\lambda \frac{\text { nnppee }}{\Lambda^{5}}
$$

New Physics - where? when?

If $m_{\nu}^{e e}$ excluded by cosmology, can new Physics do the job?
Try to guess at the level of effective operators...

- The 'New Physics' operator is dimension 9

$$
O_{N P}=\lambda \frac{\text { nnppee }}{\Lambda^{5}}
$$

- Require new physics amplitude to saturate $m_{\nu}^{e e} \sim e V$

$$
A_{0 \nu}^{N P}=\frac{\lambda}{\Lambda^{5}} \quad \leftrightarrow \quad A_{0 \nu}^{m_{\nu}}=G_{F}^{2} \frac{m_{\nu}}{p^{2}}
$$

New Physics - where? when?

If $m_{\nu}^{e e}$ excluded by cosmology, can new Physics do the job?
Try to guess at the level of effective operators...

- The 'New Physics' operator is dimension 9

$$
O_{N P}=\lambda \frac{\text { nnppee }}{\Lambda^{5}}
$$

- Require new physics amplitude to saturate $m_{\nu}^{e e} \sim e V$

$$
A_{0 \nu}^{N P}=\frac{\lambda}{\Lambda^{5}} \quad \leftrightarrow \quad A_{0 \nu}^{m_{\nu}}=G_{F}^{2} \frac{m_{\nu}}{p^{2}}
$$

Result, the amplitudes are comparable for

$$
\Lambda \sim \mathrm{TeV} .
$$

...something would be expected at collider.

Recap up to now

- Neutrino have mass
- Majorana? (K, and possible $0 \nu \beta \beta$).

■ Possibly an effective operator: (not telling us the origin)

$$
\frac{\lambda}{M}(\ell H)^{t}(H \ell)
$$

- Realizations, e.g. type-I seesaw:

$$
y \bar{\ell} H \nu_{R}+M \nu_{R}^{t} \nu_{R}
$$

$■ 0 \nu \beta \beta$ probes, may require new physics beyond neutrino, at TeV .

Recap up to now

- Neutrino have mass
- Majorana? (\nless, and possible $0 \nu \beta \beta$).

■ Possibly an effective operator: (not telling us the origin)

$$
\frac{\lambda}{M}(\ell H)^{t}(H \ell)
$$

- Realizations, e.g. type-I seesaw:

$$
y \bar{\ell} H \nu_{R}+M \nu_{R}^{t} \nu_{R}
$$

■ $0 \nu \beta \beta$ probes, may require new physics beyond neutrino, at TeV .
■ So... maybe TeV M hints to something? New interactions? ...e.g.: M breaks lepton number, $B-L, \ldots$

- Maybe we can test a low M and new forces at LHC?
(Yes, because of \angle at collider.)

What about theory?

In the SM:

- Lepton Number conserved. (also family L_{e}, L_{μ}, L_{τ} separately!)
- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a $\mathrm{D}=5$ nonrenormalizable operator? BSM:
- Or new states.
- Question: is it low or high scale physics?
- Physical consequences.

Neutrino F. Nesti

Hints from quantum numbers

	Lorentz	Q $\left(Y+T_{3 L}\right)$	Y	$\operatorname{SU}(2)_{L}$ $T_{3 L}$			$S U(3)$
u_{L}	$\mathbf{2}$	$2 / 3$	$1 / 6$	$1 / 2$			$\mathbf{3}$
d_{L}	$\mathbf{2}$	$-1 / 3$	$1 / 6$	$-1 / 2$			$\mathbf{3}$
ν_{L}	$\mathbf{2}$	0	$-1 / 2$	$1 / 2$			$\mathbf{1}$
e_{L}	$\mathbf{2}$	-1	$-1 / 2$	$-1 / 2$			$\mathbf{1}$
u_{R}	$\overline{\mathbf{2}}$	$2 / 3$	$2 / 3$	0			$\mathbf{3}$
d_{R}	$\mathbf{2}$	$-1 / 3$	$-1 / 3$	0			$\mathbf{3}$
ν_{R}	$\overline{2}$	0	0	0			$\mathbf{1}$
e_{R}	$\mathbf{2}$	-1	-1	0			$\mathbf{1}$

Hints from quantum numbers

	Lorentz	Q $\left(Y+T_{3 L}\right)$	Y $\left(T_{3 R}+\frac{(B-L)}{2}\right)$	$\mathrm{SU}(2)_{L}$ $T_{3 L}$	$\mathrm{SU}(2)_{R}$ $T_{3 R}$	$B-L$	$S U(3)$
u_{L}	$\mathbf{2}$	$2 / 3$	$1 / 6$	$1 / 2$	0	$1 / 3$	$\mathbf{3}$
d_{L}	$\mathbf{2}$	$-1 / 3$	$1 / 6$	$-1 / 2$	0	$1 / 3$	$\mathbf{3}$
ν_{L}	$\mathbf{2}$	0	$-1 / 2$	$1 / 2$	0	-1	$\mathbf{1}$
e_{L}	$\mathbf{2}$	-1	$-1 / 2$	$-1 / 2$	0	-1	$\mathbf{1}$
u_{R}	$\overline{\mathbf{2}}$	$2 / 3$	$2 / 3$	0	$1 / 2$	$1 / 3$	$\mathbf{3}$
d_{R}	$\overline{\mathbf{2}}$	$-1 / 3$	$-1 / 3$	0	$-1 / 2$	$1 / 3$	$\mathbf{3}$
ν_{R}	$\overline{\mathbf{2}}$	0	0	0	$1 / 2$	-1	$\mathbf{1}$
e_{R}	$\overline{\mathbf{2}}$	-1	-1	0	$-1 / 2$	-1	$\mathbf{1}$

Hints from quantum numbers

	Lorentz	Q $\left(Y+T_{3 L}\right)$	Y $\left(T_{3 R}+\frac{(B-L)}{2}\right)$	$\mathrm{SU}(2)_{L}$ $T_{3 L}$	$\mathrm{SU}(2)_{R}$ $T_{3 R}$	$B-L$	$S U(3)$
u_{L}	$\mathbf{2}$	$2 / 3$	$1 / 6$	$1 / 2$	0	$1 / 3$	$\mathbf{3}$
d_{L}	$\mathbf{2}$	$-1 / 3$	$1 / 6$	$-1 / 2$	0	$1 / 3$	$\mathbf{3}$
ν_{L}	$\mathbf{2}$	0	$-1 / 2$	$1 / 2$	0	-1	$\mathbf{1}$
e_{L}	$\mathbf{2}$	-1	$-1 / 2$	$-1 / 2$	0	-1	$\mathbf{1}$
u_{R}	$\overline{\mathbf{2}}$	$2 / 3$	$2 / 3$	0	$1 / 2$	$1 / 3$	$\mathbf{3}$
d_{R}	$\mathbf{2}$	$-1 / 3$	$-1 / 3$	0	$-1 / 2$	$1 / 3$	$\mathbf{3}$
ν_{R}	$\overline{\mathbf{2}}$	0	0	0	$1 / 2$	-1	$\mathbf{1}$
e_{R}	$\mathbf{2}$	-1	-1	0	$-1 / 2$	-1	$\mathbf{1}$

...new RH neutrino and RH gauge bosons.

$$
\mathrm{SO}(3,1) \times \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-L} \times \mathrm{SU}(3)_{c}
$$

- RH neutrino singlet of SM, but doublet of $\operatorname{SU}(2)_{R}$
- Note, $Y=T_{3 R}+(B-L) / 2 \rightarrow Q=T_{3 L}+T_{3 R}+(B-L) / 2!$
- $B-L$ clearly anomaly free.

Path to further unifications

Looking into fermion quantum numbers opens the view on unification setups

$$
\begin{gathered}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L \times S U(3)_{c}} \\
q_{L} \in(\mathbf{2}, \mathbf{1}, 1 / 3, \mathbf{3}) \\
\ell_{L} \in(\mathbf{2}, \mathbf{1},-1, \mathbf{1}) \\
q_{R} \in(\mathbf{1}, \mathbf{2}, 1 / 3, \mathbf{3}) \\
\ell_{R} \in(\mathbf{1}, \mathbf{2},-1, \mathbf{1})
\end{gathered}
$$

Path to further unifications

Looking into fermion quantum numbers opens the view on unification setups

$$
\begin{gathered}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times S U(3)_{c} \\
q_{L} \in(\mathbf{2}, \mathbf{1}, 1 / 3, \mathbf{3}) \\
\ell_{L} \in(\mathbf{2}, \mathbf{1},-1, \mathbf{1}) \\
q_{R} \in(\mathbf{1}, \mathbf{2}, 1 / 3, \mathbf{3}) \\
\ell_{R} \in(\mathbf{1}, \mathbf{2},-1, \mathbf{1})
\end{gathered}
$$

... one naturally tries to unify different factors:

- Pati-Salam: $S U(2)_{L} \times S U(2)_{R} \times S U(4)$

$$
\left(q_{L}+\ell_{L}\right)=\psi_{L} \in(\mathbf{2}, \mathbf{1}, \mathbf{4}) \quad\left(q_{R}+\ell_{R}\right)=\psi_{R} \in(\mathbf{1}, \mathbf{2}, \mathbf{4}) .
$$

Path to further unifications

Looking into fermion quantum numbers opens the view on unification setups

$$
\begin{gathered}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times S U(3)_{c} \\
q_{L} \in(\mathbf{2}, \mathbf{1}, 1 / 3, \mathbf{3}) \\
\ell_{L} \in(\mathbf{2}, \mathbf{1},-1, \mathbf{1}) \\
q_{R} \in(\mathbf{1}, \mathbf{2}, 1 / 3, \mathbf{3}) \\
\ell_{R} \in(\mathbf{1}, \mathbf{2},-1, \mathbf{1})
\end{gathered}
$$

... one naturally tries to unify different factors:

- Pati-Salam: $S U(2)_{L} \times S U(2)_{R} \times S U(4)$

$$
\left(q_{L}+\ell_{L}\right)=\psi_{L} \in(\mathbf{2}, \mathbf{1}, 4) \quad\left(q_{R}+\ell_{R}\right)=\psi_{R} \in(\mathbf{1}, \mathbf{2}, 4) .
$$

- GUT: $S O(10)$

$$
\psi_{L}+\psi_{R}^{c} \in(\mathbf{2}, \mathbf{1}, \mathbf{4})+(\mathbf{1}, \mathbf{2}, \overline{4})=\mathbf{1 6} .
$$

Path to further unifications

Looking into fermion quantum numbers opens the view on unification setups

$$
\begin{gathered}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times S U(3)_{c} \\
q_{L} \in(\mathbf{2}, \mathbf{1}, 1 / 3, \mathbf{3}) \\
\ell_{L} \in(\mathbf{2}, \mathbf{1},-1, \mathbf{1}) \\
q_{R} \in(\mathbf{1}, \mathbf{2}, 1 / 3, \mathbf{3}) \\
\ell_{R} \in(\mathbf{1}, \mathbf{2},-1, \mathbf{1})
\end{gathered}
$$

... one naturally tries to unify different factors:

- Pati-Salam: $S U(2)_{L} \times S U(2)_{R} \times S U(4)$

$$
\left(q_{L}+\ell_{L}\right)=\psi_{L} \in(\mathbf{2}, \mathbf{1}, \mathbf{4}) \quad\left(q_{R}+\ell_{R}\right)=\psi_{R} \in(\mathbf{1}, \mathbf{2}, \mathbf{4}) .
$$

- GUT: $S O(10)$

$$
\psi_{L}+\psi_{R}^{c} \in(\mathbf{2}, \mathbf{1}, \mathbf{4})+(\mathbf{1}, \mathbf{2}, \overline{4})=\mathbf{1 6} .
$$

- GraviGUT: $S O(3,11)$
$\left(2_{\text {Lorentz }}, \mathbf{1 6}_{\text {SO(10) }}\right)=\mathbf{6 4}_{M W}$.

Take the Weyl basis $\Psi=\binom{\psi_{L}}{\psi_{R}}$

- As we know, Parity is represented as $\gamma_{0}=\left(\begin{array}{ll}\mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0}\end{array}\right)=\mathbf{1} \otimes \sigma_{1}$
- It does not commute with all Lorentz, namely boosts $K_{i}=\sigma_{i} \otimes \sigma_{3}$, and also reverses spatial x^{i}.
- Thus parity alone can not be restored, once the spectrum has chiral $\mathrm{SU}(2)_{L}$ interactions.

A word about parity
Take the Weyl basis $\Psi=\binom{\psi_{L}}{\psi_{R}}$

- As we know, Parity is represented as $\gamma_{0}=\left(\begin{array}{ll}\mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0}\end{array}\right)=\mathbf{1} \otimes \sigma_{1}$
- It does not commute with all Lorentz, namely boosts $K_{i}=\sigma_{i} \otimes \sigma_{3}$, and also reverses spatial x^{i}.
- Thus parity alone can not be restored, once the spectrum has chiral $\mathrm{SU}(2)_{L}$ interactions.

Only possibility is to restore a generalized \mathscr{P} by introducing a new interaction $\operatorname{SU}(2)_{\mathrm{R}}$ and have a $\mathrm{L} \leftrightarrow \mathrm{R}$ symmetric theory
(Somewhat automatic in GraviGUTs: $\mathrm{SO}(3, \mathrm{II}), \mathrm{SO}(\mathrm{I} 3, \mathrm{I}) \ldots$)

So: the $S M$ with minimal extension can restore parity!
By this we mean a generalized P : Swap $\psi_{L} \leftrightarrow \psi_{R}$ and also gauge groups $\operatorname{SU}(2)_{L} \leftrightarrow \mathrm{SU}(2)_{R,}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75]
[Note: Lee-Yang in ' 56 suggesting P violation, also hoped for riti estoration]

So: the SM with minimal extension can restore parity!
By this we mean a generalized P :
Swap $\psi_{L} \leftrightarrow \psi_{R}$ and also gauge groups $\mathrm{SU}(2)_{L} \leftrightarrow \mathrm{SU}(2)_{R}$,

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati ' 75 , Senjanovi'c Mohapatra '75]
[Note: Lee-Yang in ' 56 suggesting P violation, also hoped for riti estoration]

- Need the extension $\mathrm{U}(1)_{Y} \rightarrow \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-L}$

Parity restoration

So: the SM with minimal extension can restore parity!
By this we mean a generalized P :
Swap $\psi_{L} \leftrightarrow \psi_{R}$ and also gauge groups $\operatorname{SU}(2)_{L} \leftrightarrow \mathrm{SU}(2)_{R,}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75]
[Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

- Need the extension $\mathrm{U}(1)_{Y} \rightarrow \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.

Parity restoration

So: the SM with minimal extension can restore parity!
By this we mean a generalized P :
Swap $\psi_{L} \leftrightarrow \psi_{R}$ and also gauge groups $\mathrm{SU}(2)_{L} \leftrightarrow \mathrm{SU}(2)_{R}$,

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati ' 75 , Senjanovi'c Mohapatra '75]
[Note: Lee-Yang in ' 56 suggesting P violation, also hoped for riti estoration]

- Need the extension $\mathrm{U}(1)_{Y} \rightarrow \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.
- Need of course some extended Higgs sector, for the breaking.

Parity restoration

So: the SM with minimal extension can restore parity!
By this we mean a generalized P :
Swap $\psi_{L} \leftrightarrow \psi_{R}$ and also gauge groups $\mathrm{SU}(2)_{L} \leftrightarrow \mathrm{SU}(2)_{R}$,

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati ' 75 , Senjanovi'c Mohapatra '75]
[Note: Lee-Yang in ' 56 suggesting P violation, also hoped for riti estoration]

- Need the extension $\mathrm{U}(1)_{Y} \rightarrow \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.
- Need of course some extended Higgs sector, for the breaking.

Let's see the model for its predictions...

(Minimal) Left-Right Symmetric Model

Theory of Neutrino Mass and Parity Breaking

- The gauge group:

$$
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times S U(3)_{C}
$$

- Fermions:

$$
\text { Quarks } q_{L, R}, \text { Leptons } \ell_{L, R} .
$$

- Gauge bosons

$$
W_{L \mu}^{i} \quad W_{R \mu}^{i} \quad B_{\mu} \quad G_{\mu}^{a}
$$

(with respective coupling constants $g_{L}, g_{R}, g_{B-L}, g_{s}$)
■ Assume $L \leftrightarrow R$ symmetry exact at TeV scale.

$$
\text { so } g_{L}=g_{R}
$$

- Higgs:
complex bidoublet: ϕ triplets: Δ_{L}, Δ_{R}

(Minimal) Left-Right Symmetric Model

- W's and leptons:

$$
W_{L} \quad L_{L}=\binom{\nu}{\ell_{L}} \quad L_{R}=\binom{N}{\ell_{R}} \quad W_{R}
$$

- Spontaneous parity breaking

$$
v_{R} \gg v=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$$
\Phi=\left(\begin{array}{cc}
v_{1}+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & v_{2} \mathrm{e}^{\alpha \alpha}+\phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right) \quad \Delta_{L}=\cdots
$$

(Minimal) Left-Right Symmetric Model

- W's and leptons:

$$
W_{L} \quad L_{L}=\binom{\nu}{\ell_{L}} \quad L_{R}=\binom{N}{\ell_{R}} \quad W_{R}
$$

- Spontaneous parity breaking

$$
v_{R} \gg v=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$$
\Phi=\left(\begin{array}{cc}
v_{1}+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & v_{2} \mathrm{e}^{i \alpha}+\phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right) \quad \Delta_{L}=\cdots
$$

- Heavy RH gauge boson, $M_{W_{R}}=g v_{R}$, mixes with W_{L} :

$$
\zeta=\frac{M_{W_{L}}^{2}}{M_{W_{R}}^{2}} \sin 2 \beta \mathrm{e}^{\mathrm{i} \alpha} \quad<\mathrm{IO}^{-} 4 \quad \tan \beta=v_{2} / v_{1}
$$

(Minimal) Left-Right Symmetric Model

- W's and leptons:

$$
W_{L} \quad L_{L}=\binom{\nu}{\ell_{L}} \quad L_{R}=\binom{N}{\ell_{R}} \quad W_{R}
$$

- Spontaneous parity breaking

$$
v_{R} \gg v=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$$
\Phi=\left(\begin{array}{cc}
v_{1}+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & v_{2} \mathrm{e}^{i \alpha}+\phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right) \quad \Delta_{L}=\cdots
$$

- Heavy RH gauge boson, $M_{W_{R}}=g v_{R}$, mixes with W_{L} :

$$
\zeta=\frac{M_{W_{L}}^{2}}{M_{W_{R}}^{2}} \sin 2 \beta \mathrm{e}^{\mathrm{i} \alpha} \quad<\mathrm{IO}^{-} 4 \quad \tan \beta=v_{2} / v_{1}
$$

- Neutrino get massive via seesaws:

$$
M_{D}=y_{\Phi} v \quad M_{N}=y_{\Delta} v_{R} \quad M_{\nu}=M_{L}-M_{D}^{T} \frac{1}{M_{N}} M_{D}
$$

...structural LNV, a number of consequences.

LR - Lagrangian

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\text {Gauge }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {fermion }}+\mathcal{L}_{\text {Yuk }}+\mathcal{L}_{\text {Maj }} \\
\mathcal{L}_{\text {Higgs }}=\operatorname{Tr}\left[\left(D_{\mu} \Delta_{L}\right)^{\dagger}\left(D^{\mu} \Delta_{L}\right)\right]+\operatorname{Tr}\left[\left(D_{\mu} \Delta_{R}\right)^{\dagger}\left(D^{\mu} \Delta_{R}\right)\right] \\
+\operatorname{Tr}\left[\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)\right]+V\left(\phi, \Delta_{L}, \Delta_{R}\right) \\
\mathcal{L}_{\text {Fermion }}=\bar{q}_{L i} i D_{q_{L i}}+\bar{\ell}_{L i} i D \ell_{L i}+(L \leftrightarrow R) \\
\mathcal{L}_{\text {Yukawa } q}=\bar{q}_{L i}\left(Y_{i j} \phi+\tilde{Y}_{i j} \tilde{\phi}\right) q_{R j}+\text { h.c. } \\
\mathcal{L}_{\text {Yukawa } \ell}=\bar{\ell}_{L i}\left(h_{i j} \phi+\tilde{h}_{i j} \tilde{\phi}\right) \ell_{R j}+\text { h.c. } \\
\mathcal{L}_{\text {Majorana }}=Y^{i j}\left[\bar{\ell}_{L i}^{t} C \tau_{2} \Delta_{L} \ell_{L j}+(L \leftrightarrow R)\right]+h . c . \\
\mathcal{L}_{M_{W}}=\left(\begin{array}{cc}
\left.W_{L \mu}^{-} W_{R \mu}^{-}\right)\left(\begin{array}{cc}
\frac{1}{2} g^{2}\left(v^{2}+v^{\prime 2}+2 v_{L}^{2}\right)-g^{2} v v^{\prime} e^{-i \alpha} \\
-g^{2} v v^{\prime} e^{i \alpha} & g^{2} v_{R}^{2}
\end{array}\right)\binom{W_{L}^{+\mu}}{W_{R}^{+\mu}} \\
W_{3 R} & B \\
W_{3 L} & -2 g g^{\prime} v_{R}^{2} \\
\left(\begin{array}{cc}
g^{2} / 2\left(\kappa^{2}+\kappa^{\prime 2}+4 v_{L}^{2}\right) & -g^{2} / 2\left(\kappa^{2}+\kappa^{\prime 2}\right) \\
-g^{2} / 2\left(\kappa^{2}+\kappa^{\prime 2}\right) & g^{2} / 2\left(\kappa^{2}+\kappa^{\prime 2}+4 v_{R}^{2}\right) \\
-2 g g^{\prime} v_{L}^{2} & -2 g g^{\prime 2} v_{R}^{2} \\
2 g^{\prime 2}\left(v_{L}^{2} v_{R}^{2}+v_{R}^{2}\right)
\end{array}\right) \\
D_{\mu} \phi=\partial_{\mu} \phi+i g_{L} W_{L \mu} \phi-i g_{R} \phi W_{R \mu} & \\
D_{\mu} \psi=\partial_{\mu} \phi+i g_{L} W_{L, R \mu} \psi_{L, R}+i g^{\prime}(B-L) / 2 B_{\mu} \psi_{L, R} \\
D_{\mu} \Delta_{(L, R)}=\partial_{\mu} \Delta_{(L, R)}+i g_{(L, R)}\left[W_{(L, R) \mu}, \Delta_{(L, R)]}\right]+i g^{\prime} B_{\mu} \Delta_{(L, R)}
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
V & \left(\phi, \Delta_{L}, \Delta_{R}\right)= \\
& -\mu_{1}^{2} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)-\mu_{2}^{2}\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right]-\mu_{3}^{2}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right] \\
& +\lambda_{1}\left[\operatorname{Tr}\left(\phi^{\dagger} \phi\right)\right]^{2}+\lambda_{2}\left\{\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)\right]^{2}+\left[\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right]^{2}\right\} \\
& +\lambda_{3} \operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right) \operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)+\lambda_{4} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right] \\
& +\rho_{1}\left\{\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)\right]^{2}+\left[\operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]^{2}\right\} \\
& +\rho_{2}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}\right) \operatorname{Tr}\left(\Delta_{L}^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{R} \Delta_{R}\right) \operatorname{Tr}\left(\Delta_{R}^{\dagger} \Delta_{R}^{\dagger}\right)\right] \\
& +\rho_{3} \operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)+\rho_{4}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}\right) \operatorname{Tr}\left(\Delta_{R}^{\dagger} \Delta_{R}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{L}^{\dagger} \Delta_{L}^{\dagger}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}\right)\right] \\
& +\alpha_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right] \\
& +\left\{\alpha_{2} e^{i \delta_{2}}\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right) \operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\text { h.c. }\right\} \\
& +\alpha_{3}\left[\operatorname{Tr}\left(\phi \phi^{\dagger} \Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\phi^{\dagger} \phi \Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\beta_{1}\left[\operatorname{Tr}\left(\phi \Delta_{R} \phi^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\phi^{\dagger} \Delta_{L} \phi \Delta_{R}^{\dagger}\right)\right] \\
& +\beta_{2}\left[\operatorname{Tr}\left(\tilde{\phi} \Delta_{R} \phi^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \Delta_{L} \phi \Delta_{R}^{\dagger}\right)\right]+\beta_{3}\left[\operatorname{Tr}\left(\phi \Delta_{R} \tilde{\phi}^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\phi^{\dagger} \Delta_{L} \tilde{\phi} \Delta_{R}^{\dagger}\right)\right]
\end{aligned}
$$

LR - Higgs spectrum

Higgs state	m^{2}
$h^{0}=\sqrt{2} \operatorname{Re}\left(\phi_{1}^{0 *}+x e^{-i \alpha} \phi_{2}^{0}\right)$	$\left(4 \lambda_{1}-\frac{\alpha_{1}^{2}}{\rho_{1}}\right) v^{2}$
$H_{1}^{0}=\sqrt{2} \operatorname{Re}\left(-x e^{i \alpha} \phi_{1}^{0 *}+\phi_{2}^{0}\right)$	$\alpha_{3} v_{R}^{2}$
$A_{1}^{0}=\sqrt{2} \operatorname{Im}\left(-x e^{i \alpha} \phi_{1}^{0 *}+\phi_{2}^{0}\right)$	$\alpha_{3} v_{R}^{2}$
$H_{2}^{0}=\sqrt{2} \operatorname{Re} \delta_{R}^{0}$	$4 \rho_{1} v_{R}^{2}$
$H_{2}^{+}=\phi_{2}^{+}+x e^{R \alpha} \phi_{1}^{+}+\frac{1}{\sqrt{2}} \epsilon \delta_{R}^{+}$	$\alpha_{3}\left(v_{R}^{2}+\frac{1}{2} v^{2}\right)$
δ_{R}^{++}	$4 \rho_{2} v_{R}^{2}+\alpha_{3} v^{2}$
$H_{3}^{0}=\sqrt{2} \operatorname{Re} \delta_{L}^{0}$	$\left(\rho_{3}-2 \rho_{1}\right) v_{R}^{2}$
$A_{2}^{0}=\sqrt{2} \operatorname{Im} \delta_{L}^{0}$	$\left(\rho_{3}-2 \rho_{1}\right) v_{R}^{2}$
$H_{1}^{+}=\delta_{L}^{+}$	$\left(\rho_{3}-2 \rho_{1}\right) v_{R}^{2}+\frac{1}{2} \alpha_{3} v^{2}$
δ_{L}^{++}	$\left(\rho_{3}-2 \rho_{1}\right) v_{R}^{2}+\alpha_{3} v^{2}$

Leading order in $\epsilon=v / v_{R}$ and $x=v^{\prime} / v$, and assuming $v_{L}=0$. The SM Higgs is identified with h^{0}.

In the minimal model, the tree level $W_{L}-W_{R}$ mixing angle is

$$
\tan 2 \zeta=\frac{2 v v^{\prime}}{v_{r}^{2}+v^{2}} \simeq \frac{v^{\prime}}{v} \frac{M_{W_{L}}^{2}}{M_{W_{R}}^{2}}
$$

This is bound by 'Left' weak decays, $\zeta<10^{-2}\left(310^{-3}\right)$.
Thus, this translates into a limit on the W_{R} mass:

$$
M_{W_{R}}>1.5 \mathrm{TeV} \sqrt{\frac{2 x}{1+x^{2}}},
$$

(Harmless bound, as nowadays W_{R} is constrained to be heavier.)

Interesting phenomenology is given by ζ

Two LR Discrete symmetries

and requirements on Yukawa matrices

$$
\mathcal{P}:\left\{\begin{array}{l}
Q_{L} \leftrightarrow Q_{R} \\
\Phi \rightarrow \Phi^{\dagger}
\end{array}, \quad \mathcal{C}:\left\{\begin{array}{l}
Q_{L} \leftrightarrow\left(Q_{R}\right)^{c} \\
\Phi \rightarrow \Phi^{T}
\end{array}\right.\right.
$$

$$
Y=Y^{\dagger} \quad Y=Y^{T}
$$

A lot is then predicted for masses.

$$
\begin{aligned}
& M_{u}=v_{1} Y+v_{2} \mathrm{e}^{-i \alpha} \tilde{Y} \\
& M_{d}=v_{2} \mathrm{e}^{i \alpha} Y+v_{1} \tilde{Y}
\end{aligned}
$$

- e.g. Dirac mass matrix predicted, unlike standard seesaw:

$$
M_{D}=M_{N} \sqrt{\frac{v_{L}}{v_{R}}-\frac{1}{M_{N}} M_{\nu}}
$$

[Nemevšek Senjanović Tello PRL’ъ〕

Phases or Signs

Phases or Signs

- Case of C has $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}}$ * plus 5 free phases

$$
V_{R}=K_{u} V^{*} K_{d},
$$

$$
\begin{aligned}
& K_{d}=\operatorname{diag}\left\{\mathrm{e}^{i \theta_{d}}, \mathrm{e}^{i \theta_{s}}, \mathrm{e}^{i \theta_{b}}\right\} \\
& K_{u}=\operatorname{diag}\left\{\mathrm{e}^{i \theta_{u}}, \mathrm{e}^{i \theta_{c}}, \mathrm{e}^{i \theta_{t}}\right\}
\end{aligned}
$$

RH quark mixing ~ CKM

Phases or Signs

- Case of C has $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}}{ }^{*}$ plus 5 free phases

$$
V_{R}=K_{u} V^{*} K_{d},
$$

$$
\begin{aligned}
& K_{d}=\operatorname{diag}\left\{\mathrm{e}^{i \theta_{d}}, \mathrm{e}^{i \theta_{s}}, \mathrm{e}^{i \theta_{b}}\right\} \\
& K_{u}=\operatorname{diag}\left\{\mathrm{e}^{i \theta_{u}}, \mathrm{e}^{i \theta_{c}}, \mathrm{e}^{i \theta_{t}}\right\}
\end{aligned}
$$

- Case of P has $\mathrm{V}_{\mathrm{R}} \simeq \mathrm{V}_{\mathrm{L}}$ plus 5 free signs

$$
\begin{aligned}
V_{R, i j}=V_{i j}-i s_{\alpha} t_{2 \beta} & \left(V_{i j} t_{\beta}+\sum_{k=1}^{3} \frac{\left(V m_{d} V^{\dagger}\right)_{i k} V_{k j}}{m_{u i i}+m_{u k k}}+\frac{V_{i k}\left(V^{\dagger} m_{u} V\right)_{k j}}{m_{d j j}+m_{d k k}}\right)+\mathcal{O}\left(s_{\alpha} t_{2 \beta}\right)^{2} \\
V & \rightarrow \operatorname{diag}\left\{s_{u}, s_{c}, s_{t}\right\} V \operatorname{diag}\left\{s_{d}, s_{s}, s_{b}\right\} \\
m_{i i} & \rightarrow s_{i} m_{i i}
\end{aligned}
$$

...mixings and phases predicted in terms of $s_{\alpha} t_{2 \beta}$.
Phases θ_{i} are $\sim s_{\alpha} t_{2 \beta}<0.05$

Low energy connection

Finally back to Neutrinoless double beta decay

Neutrino
 F. Nesti
 $0 v 2 \beta$

Wherng give

[Tello FN Senjanović PRL’ıo] (type-II limit)

Neutrino
 F. Nesti
 $0 \vee 2 \beta$

[Tello FN Senjanović PRL’ıo] (type-II limit)

LHC connection

Direct search

LV @ LC

〔Keung Senjanović '83〕

- On shell W_{R} and v_{R}.

- Invariant masses reconstruct W and v masses

$$
\begin{aligned}
M_{W_{R}} & \simeq m_{\ell \ell j} \\
M_{\nu_{R}} & \simeq m_{\ell j j}
\end{aligned}
$$

- Probe of lepton flavour mixing
- LNV: 50\% same sign leptons
- Almost backgroundless
- Searches ongoing...

W_{R} - N plane

[CMS'ı8]

Nemtrino LHC reach
 F. Nesti

FIG. 9. Summary plot collecting all searches involving the KS process at LHC, in the electron channel. The green shaded areas represent the LH sensitivity to the KS process at $300 / \mathrm{fb}$, according to the present work. The rightmost reaching contour represents the enhancement obtained by considering jet displacement.
[Nemevsek, FN, Popara PRD 'ı8]

100 TeV collider reach

$M_{W_{R}} \sim 30-40 \mathrm{TeV}$

$\ell+$ MET

[Nemevsek, FN, Popara PRD 'ı8]

KS: $\ell^{ \pm} \ell^{ \pm} \mathrm{jj}$

[Ruiz EPJC ‘‘${ }_{17}$]

- LHC is a $p p$ symmetric machine, so it is not possible to use the simple $A_{F B}$ asymmetry of W_{R}, to look for chirality of its interactions.

Can we recognize that W_{R} is right?

- LHC is a $p p$ symmetric machine, so it is not possible to use the simple $A_{F B}$ asymmetry of W_{R}, to look for chirality of its interactions.
- One has to use the first decay $W_{R} \rightarrow e N$.
- Determine the W_{R} direction (from the full event!)
- Identify the first lepton. (the more energetic)
- Its asymmetry wrt the W_{R} direction gives the 'Right' chirality.
- It is necessary to efficiently distinguish the two leptons. (More difficult for $M_{N}=0.6 \div 0.8 M_{W_{R}}$ [Ferrari 'oo])
- Also the subsequent decay $N \rightarrow l j j$ may be used. Polarization seems to be visible in a wide range of masses $M_{v R}$, $M_{W R}$.

Limits

Flavour changing \& CP
Perturbativity

- Early limit $M_{W_{k}}>1.6 \mathrm{TeV}$

[Beall Bander Soni ' ${ }^{2}$ 2]
- Flavour Changing Higgs $M_{H}>\mathrm{TeV}$
[Senjanović Senjanović '9r]
(Predictive: $R H$ mixing angles \sim fixed... $V_{R} \simeq V_{L}$)

Modern assessment, K-K, $\epsilon, \epsilon^{\prime}, \mathrm{B}-\mathrm{B}$

- Kaon sector revisited
ϵ : enhanced in correct box calculation
ϵ ': Effect of new LR current-current operators $\mathrm{K} \rightarrow \pi \pi$
LR matrix elements for $\mathrm{K} \rightarrow \pi \pi$
Chromomagnetic operator
[Bertolini Maiezza, FN 'ı2,' ${ }^{\prime} 3$,' $\left.{ }^{\prime} 4\right]$
$\Delta \mathrm{M}_{\mathrm{K}}$: Short Distance now almost enough. (NNLO [Brod 'ı2 $\}$)
but Long Distance still unknown
\pm 10 to $+30 \%$ [Buras+ ' 14$]-10 \%$ [Bertolini+ ' ${ }_{99}$] -5 to 15% [Soni+ ' ${ }_{3}$]
- Kaon sector revisited
ϵ : enhanced in correct box calculation
ϵ ': Effect of new LR current-current operators $\mathrm{K} \rightarrow \pi \pi$
LR matrix elements for $\mathrm{K} \rightarrow \pi \pi$
Chromomagnetic operator
[Bertolini Maiezza, FN'ı2,'ı3,'ı4]
$\Delta \mathrm{M}_{\mathrm{K}}$: Short Distance now almost enough.
(NNLO [Brod 'r2])
but Long Distance still unknown
± 10 to $+30 \%$ [Buras + ' $\left.{ }^{4} 4\right]-10 \%$ [Bertolinit ' $\left.{ }^{9} 9\right]-5$ to 15% [Soni+ ' ${ }^{2}$] $]$
- B^{0} mesons revisited

Enhanced in correct calculation Useful free phase

...correlated bound $M_{W_{R}} M_{H}$:

FIG. 9. Correlated bounds on M_{R} and $M_{W_{R}}$ (region above the curves) for $\left|\Delta M_{K}^{L R}\right| / \Delta M_{K}^{e x p}<1.0, \ldots, 0.1$ and for $\theta_{c}-$ $\theta_{t}=\pi / 2$ in the case of \mathcal{P} parity.

FIG. 10. Combined constraints on M_{R} and $M_{W_{R}}$ from $\varepsilon, \varepsilon^{\prime}$ B_{d} and B_{s} mixings obtained in the \mathcal{P} parity case from the numerical fit of the Yukawa sector of the model.
...indirect limit now 3-4 TeV - still room at LHC.
$\Delta \mathrm{M}_{\mathrm{K}}$ plagued by Long Distance uncertainty B-mesons competitive now, dominant in the future
F. Nesti
...Correlat FUTURE FLAVOUR BOUND: B_{d} \& B

FIG. 9. Correlated bound the curves) for $\left|\Delta M_{K}^{L R}\right| / L$ $\theta_{t}=\pi / 2$ in the case of $\mathcal{P} \mathrm{p}$
...indirec jected cone I corresponds to a forle 7) by the end of the decade. Stage mulation by LHCb - $\mathrm{fb}^{-1}\left(50 \mathrm{ab}^{-1}\right)$ data by C . II assumes 50 fb 2020's.
$\Delta \mathrm{M}_{\mathrm{K}} \mathrm{p} . \stackrel{\text { achievable by mid }}{11}$ mong Distance uncertainty B-mesons competitive now, dominant in the future

Heavy FCH generates tension...

FIG. 3. Perturbativity assessment of $\mathcal{V}_{\text {eff }}$ (dashed) and treelevel unitarity (solid) of α_{3}, together with the bound on $M_{W_{R}}$ vs. m_{H} from $B_{d, s}^{0}-\bar{B}_{d, s}^{0}$ (see [19] for details).

back to
 origin of neutrino masses?

Higgs

Can we probe the neutrino mass generation?

Can we probe the neutrino mass generation?

- From the two group breakings

$$
\Phi=\left(\begin{array}{cc}
v+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right)
$$

Φ gives Dirac mass, Δ_{R} gives Majorana mass:

$$
\mathcal{L}_{y u k} \supset \bar{L}_{L}\left(y_{l} \Phi+\tilde{y}_{l} \tilde{\Phi}\right) L_{R}+y_{\Delta} L_{R} L_{R} \Delta_{R}
$$

and then $\quad M_{\nu}=M_{L}-M_{D}^{T} \frac{1}{M_{N}} M_{D}$,

Can we probe the neutrino mass generation?

- From the two group breakings

$$
\Phi=\left(\begin{array}{cc}
v+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right)
$$

Φ gives Dirac mass, Δ_{R} gives Majorana mass:

$$
\mathcal{L}_{y u k} \supset \bar{L}_{L}\left(y_{l} \Phi+\tilde{y}_{l} \tilde{\Phi}\right) L_{R}+y_{\Delta} L_{R} L_{R} \Delta_{R}
$$

and then $\quad M_{\nu}=M_{L}-M_{D}^{T} \frac{1}{M_{N}} M_{D}$,

- Ideally one would like to see the higgs rates...
- Recall M_{D} is predicted $\quad M_{D}=M_{N} \sqrt{\frac{v_{L}}{v_{R}}-\frac{1}{M_{N}} M_{\nu}}$,
- Too small to see $\mathrm{h} \rightarrow 1 v$, but N decays also through M_{D} :

[Nemevšek Senjanović Tello PRL'ı3]
FIG. 1. Branching ratio for the decay of heavy N to the HiggsWeinberg and SM gauge bosons, proceeding via Dirac couplings, exemplified $v_{L}=0$ and $V_{R}=V_{L}^{*}$. The solid (dashed) line corresponds to $M_{W_{R}}=6(3) \mathrm{TeV}$.

$$
\frac{\Gamma_{N \rightarrow \ell_{L} j j}}{\Gamma_{N \rightarrow \ell_{R} j j}} \simeq 10^{3} \frac{M_{W_{R}}^{4}}{M_{W_{L}}^{2} m_{N}^{2}}\left|\frac{v_{L}}{v_{R}}-\frac{m_{\nu}}{m_{N}}\right|
$$

Becomes more relevant for heavier W_{R}

$$
\Phi=\left(\begin{array}{cc}
v+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right)
$$

- δ_{R}^{0} responsible for the RH neutrino masses.

Higgs sector in more detail

$$
\Phi=\left(\begin{array}{cc}
v+\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right) \quad \Delta_{R}=\left(\begin{array}{cc}
\delta_{R}^{+} / \sqrt{2} & \delta_{R}^{++} \\
v_{R}+\delta_{R}^{0} & -\delta_{R}^{+} / \sqrt{2}
\end{array}\right)
$$

- δ_{R}^{0} responsible for the RH neutrino masses.
- But Neutral higgses mix:

$$
h=\phi_{1}^{0} \cos \theta-\delta_{R}^{0} \sin \theta
$$

$$
\Delta=\phi_{1}^{0} \sin \theta+\delta_{R}^{0} \cos \theta
$$

$$
\begin{aligned}
\mathcal{V}= & -\mu_{1}^{2}\left(\Phi^{\dagger} \Phi\right)-\mu_{2}^{2}\left(\widetilde{\Phi} \Phi^{\dagger}+\widetilde{\Phi}^{\dagger} \Phi\right)-\mu_{3}^{2}\left(\Delta_{R}^{\dagger} \Delta_{R}\right) \\
& +\lambda\left(\Phi^{\dagger} \Phi\right)^{2}+\rho\left(\Delta_{R}^{\dagger} \Delta_{R}\right)^{2}+\alpha\left(\Phi^{\dagger} \Phi\right)\left(\Delta_{R}^{\dagger} \Delta_{R}\right) \\
m_{h}^{2}= & 4 \lambda v^{2}-\alpha^{2} v^{2} / \rho \quad m_{\Delta}^{2}=4 \rho v_{R}^{2} \\
\theta & \simeq\left(\frac{\alpha}{2 \rho}\right)\left(\frac{v}{v_{R}}\right)
\end{aligned}
$$

SM Higgs couplings are reduced... but 40% mixing allowed (!)

$$
\mathcal{L}_{y u k}=y_{\Delta} L_{R} L_{R} \Delta_{R}
$$

- gives Majorana neutrino mass, to check by Δ decay

$$
M_{N}=y_{\Delta} v_{R} \quad \Gamma(\Delta \rightarrow N N) \propto y_{\Delta}^{2}
$$

- with Δ - h mixing, now also Higgs can decay to $N N$

a nerw SM Higgs decay, checks RH neutrino mass
N is Majorana, thus LNV Higgs decays:
- 50% same sign dileptons
- In LR, N decay W_{R}-mediated
- heavy W_{R}, light $\mathrm{N} \sim 30 \mathrm{GeV}$, i.e. long lifetime

- Nlifetime submillimeter to meters: displaced vertices

LNVH complementary to $K S$

Similar $\Delta \rightarrow$ NN

F. Nesti

Figure 8. Contours of estimated combined sensitivities of the $h \rightarrow N N, \Delta \rightarrow N N$ and $\Delta \Delta \rightarrow 4 N$ channels at 3 and 5σ with solid (dashed) contours corresponding to $s_{\theta}=0.05$ (0.1). The left panel

Search for $h \rightarrow N N$:

- Find N, check vs its yukawa and Dirac (mass generation)
- So we see θ mixing. Perturbativity says:

$$
m_{\Delta} \lesssim 5 \mathrm{TeV}\left(\frac{0.4}{\theta}\right)
$$

- Look for Δ and its NN decays (confirm mass generation) Look for W_{R}
(parity restoration)
- ...if necessary, at a future collider :)

Kaon CP versus Strong CP

$\varepsilon, \varepsilon^{\prime}$

(measure of New Physics, $h=$ LR $/ \operatorname{Exp}<100 \%,<10 \% \ldots$.)

- $h_{\varepsilon}<10 \%$ correlates θ_{d} with $\theta_{s,}$, for low scale W_{R} :

$$
\begin{aligned}
& \text { C) }\left|\sin \left(\theta_{s}-\theta_{d}\right)\right|<\left(\frac{M_{W_{A}}}{71 \mathrm{TeV}}\right)^{2} \quad \rightarrow \theta_{s}-\theta_{d} \sim 0 \\
& \text { P) } \left\lvert\, \sin \left(\theta_{s}-\theta_{d}-0.16\right)_{\left.\right|_{s, t}=1}<\left(\frac{M_{W_{R}}}{71 \mathrm{TeV}}\right)^{2} \rightarrow \theta_{s}-\theta_{d} \sim 0.16\right.
\end{aligned}
$$

u

- ε^{\prime} mediated by LR mixing ζ....

$$
h_{\varepsilon^{\prime}} \simeq 0.92 \times 10^{6}|\zeta|\left[\sin \left(\alpha-\theta_{u}-\theta_{d}\right)+\sin \left(\alpha-\theta_{u}-\theta_{s}\right)\right]
$$

So, a single combination is relevant, e.g. $\left(\alpha-\theta_{u}-\theta_{d}\right)$.
Let's see strong CP...

$\theta_{\text {QCD }}$ and $\arg \operatorname{det} M$ in LRSM

- Case of C : both are free - no prediction.
- Case of $P: \theta_{\mathrm{QCD}}$ zero at high scale, but due to the spontaneous P breaking, arg det M calculable:

$$
\bar{\theta} \simeq \frac{1}{2} s_{\alpha} t_{2 \beta} \operatorname{Re} \operatorname{tr}\left(m_{u}^{-1} V m_{d} V^{\dagger}-m_{d}^{-1} V^{\dagger} m_{u} V\right)
$$

Then \rightarrow EDM limit requires vanishing $s_{\alpha} t_{2 \beta}$
Then \rightarrow all phases vanish
Then $\rightarrow \varepsilon$ constraint can only be satisfied if

$$
M_{W R} \approx 30 \mathrm{TeV}
$$

Situation changes if some mechanism like $P Q$ cancels $\bar{\theta}$...

- $W_{L}-W_{R}$ exchange brings CP violation in effective operators, as $Q_{u d}=(\bar{u} d)_{L}(\bar{d} u)_{R}$

- At low scale give meson tadpoles, i.e. shift chiral vacuum

$$
\left\langle\pi^{0}\right\rangle \simeq \frac{G_{F}}{\sqrt{2}}\left(\mathcal{C}_{1 u d}-\mathcal{C}_{1 d u}\right) \frac{4 c_{3}}{B_{0} F_{\pi}\left(m_{d}+m_{u}\right)}
$$

- which induce new CP violating couplings,

$$
\bar{g}_{n p \pi} \simeq \frac{2 \sqrt{2} B_{0}}{F_{\pi}^{2}}\left(b_{D}+b_{F}\right)\left(m_{d}-m_{u}\right)\left\langle\pi^{0}\right\rangle
$$

- which give EDM at loop, e.g. :

$$
d_{n} \simeq-\frac{e}{8 \pi^{2} F_{\pi}} \frac{\bar{g}_{n p \pi}}{\sqrt{2}}(D+F)\left(\log \frac{m_{\pi}^{2}}{m_{N}^{2}}-\frac{\pi m_{\pi}}{2 m_{N}}\right)
$$

- The operator coefficient has V_{R} phases and W mixing:

$$
C_{1, u d}=\frac{G_{F}}{\sqrt{2}} \operatorname{Im}\left(\zeta^{*} V_{L, u d} V_{R, u d}^{*}\right) \sim|\zeta| \sin \left(\alpha-\theta_{u}-\theta_{d}\right)
$$

So it's the same phase combination as ε^{\prime}.

$$
\begin{aligned}
h_{d_{n}}^{\mathrm{noPQ}} & \simeq 10^{6}|\zeta| \times 1.65 \sin \left(\alpha-\theta_{u}-\theta_{d}\right) \\
h_{d_{n}}^{\mathrm{PQ}} & \simeq 10^{6}|\zeta| \times 0.21 \sin \left(\alpha-\theta_{u}-\theta_{d}\right)
\end{aligned}
$$

(The chiral vacuum shift differs with axion or not. In PQ the axion gets an induced $\bar{\theta}$, and it turns out that this cancels the dominant $d_{n}!$)

$$
\text { (} \left.d_{H g} \text { and others... *. }\right)
$$

$$
\begin{gathered}
\left\langle(2 \pi)_{I}\right|(-i) H_{\Delta S=1}\left|K^{0}\right\rangle=A_{I} e^{i \delta_{I}} \\
\epsilon^{\prime}=\frac{i}{\sqrt{2}} \omega\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right) \frac{q}{p} e^{i\left(\delta_{2}-\delta_{0}\right)}
\end{gathered}
$$

$$
h_{d_{n}}<1 . \text { and }\left|h_{\varepsilon^{\prime}}\right|<0.15
$$

[Bertolini, Maiezza, FN, 19II.09472]

Case of C: no bounds, the free phases can be taken zero to cancel all CP violation.

Limit still given by K and B oscillations, $M_{W_{R}} \approx 7 \mathrm{TeV}$

FIG. 4. Case of \mathcal{P} : The shaded regions in the $M_{W_{R}}-t_{\beta}$ plane are excluded in order to have at most 15% new physics contribution to $\varepsilon^{\prime} / \varepsilon$ and d_{n} below the present experimental bound.
[Bertolini, Maiezza, FN, 19II.09472]

STOP

Resume - Outlook

Neutrino masses exist... led us quite far:

- Left-Right restoring parity is a predictive theory
- Lepton Number Violation in low and high energy
- Flavor constraining, but still not ruled out
(B mixing the future)
- $\varepsilon, \varepsilon^{\prime}, d_{n}$ correlation predictive for P :

$$
\varepsilon^{\prime}=\mathrm{SM} \quad M_{W R}>10 \mathrm{TeV}
$$

- Borderline @ LHC - next collider :)
- SM Higgs and Δ Higgs gateway to neutrino mass mechanism - probe to -20 TeV

