F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

So, the Standard Model is incomplete (but correct)

Gravity...

Dark Matter...

SM aestetically incomplete?

Global symmetries, β , $\not\!\!\!\!/$?

Neutrino masses *are* new physics Dirac or Majorana Low scale?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Key questions: which theory? at which scale?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Theory?

A theory of neutrino masses. . .

In the SM:

• Lepton Number conserved. (also family L_e , L_{μ} , L_{τ} separately!)

• Only left neutrinos, there is no renormalizable mass term.

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Theory?

A theory of neutrino masses. . .

In the SM:

• Lepton Number conserved. (also family L_e , L_{μ} , L_{τ} separately!)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Only left neutrinos, there is no renormalizable mass term.

• Effective theory: a D = 5 nonrenormalizable operator?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Theory?

A theory of neutrino masses. . .

In the SM:

• Lepton Number conserved. (also family L_e , L_{μ} , L_{τ} separately!)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Only left neutrinos, there is no renormalizable mass term.

• Effective theory: a D = 5 nonrenormalizable operator?

BSM:

Or new states.

Question: is it low or high scale physics?

Physical consequences.

F. Nesti

Theory

Dirac vs Majorana Seesaws

Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Neutrino masses

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Dirac mass ($\Delta L = 0$) – need Right-Handed neutrino ν_R

 $M_D \overline{\nu_R} \nu_L + h.c. \equiv M_D \nu_R^{ct} C \nu_L \to M_D \nu_R^* {}_{\dot{\alpha}} \nu_{L\beta} \, \delta^{\dot{\alpha}\beta} + h.c. \,.$

 M_D generic complex.

Neutrino masses

Generated with familiar Yukawa term, $y_D H \bar{\ell}_L \nu_R$.

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatior

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Neutrino masses

Dirac mass ($\Delta L = 0$) – need Right-Handed neutrino ν_R

 $M_D \overline{\nu_R} \nu_L + h.c. \equiv M_D \nu_R^{ct} C \nu_L \to M_D \nu_{R\,\dot{\alpha}}^* \nu_{L\beta} \,\delta^{\dot{\alpha}\beta} + h.c..$

 M_D generic complex.

Generated with familiar Yukawa term, $y_D H \bar{\ell}_L \nu_R$.

• Majorana mass ($\Delta L = 2$)

 $M_{L}(\overline{\nu_{L}^{c}})\nu_{L} + h.c. \equiv M_{L}\nu_{L}^{t}C\nu_{L} \rightarrow M_{L}\nu_{L\,\alpha}\nu_{L\,\beta}\,\epsilon^{\alpha\beta} + h.c..$

M_L symmetric!

Breaks total lepton number L. (as *family* ones, L_e , L_{μ} , L_{τ} .) Generated only as effective operator, $\frac{\lambda}{M}(\ell H)(H\ell)$.

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatior

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Neutrino masses

Dirac mass ($\Delta L = 0$) – need Right-Handed neutrino ν_R

 $M_D \overline{\nu_R} \nu_L + h.c. \equiv M_D \nu_R^{ct} C \nu_L \to M_D \nu_R^* {}_{\dot{\alpha}} \nu_{L\beta} \, \delta^{\dot{\alpha}\beta} + h.c. \,.$

 M_D generic complex.

Generated with familiar Yukawa term, $y_D H \bar{\ell}_L \nu_R$.

• Majorana mass ($\Delta L = 2$)

 $M_{L}(\overline{\nu_{L}^{c}})\nu_{L} + h.c. \equiv M_{L}\nu_{L}^{t}C\nu_{L} \rightarrow M_{L}\nu_{L\alpha}\nu_{L\beta}\,\epsilon^{\alpha\beta} + h.c..$

M_L symmetric!

Breaks total lepton number *L*. (as *family* ones, L_e , L_{μ} , L_{τ} .) Generated only as effective operator, $\frac{\lambda}{M}(\ell H)(H\ell)$.

[Mohapatra, Pal, "Massive neutrinos in physics and astrophysics"] [Denner et al, "Compact Feynman rules for Majorana fermions", PLB291] [Dreiner, Haber, Martin, "Feynman Rules using two-component spinor notation"].

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I)

Once present, the singlet ν_{R} can have renormalizable Majorana mass. So,

$$\begin{pmatrix} \nu_L & \nu_R^c \end{pmatrix} \begin{pmatrix} 0 & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I)

Once present, the singlet ν_R can have renormalizable Majorana mass. So,

$$\begin{pmatrix} \nu_L & \nu_R^c \end{pmatrix} \begin{pmatrix} 0 & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \,.$$

• Seesaw: if $M_R \gg M_D$, the mass matrix is $\begin{pmatrix} M_\nu & 0\\ 0 & M_N \end{pmatrix}$,

$$M_
u \simeq -M_D^t M_R^{-1} M_D \,, \qquad M_N \simeq M_R \,,$$

 M_R large $\Rightarrow M_{\nu}$ small.

(eigenstates: light Majorana and heavy Majorana)

[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I)

Once present, the singlet ν_R can have renormalizable Majorana mass. So,

$$\begin{pmatrix} \nu_L & \nu_R^c \end{pmatrix} \begin{pmatrix} 0 & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \,.$$

• Seesaw: if $M_R \gg M_D$, the mass matrix is $\begin{pmatrix} M_\nu & 0\\ 0 & M_N \end{pmatrix}$,

$$M_
u \simeq -M_D^t M_R^{-1} M_D \,, \qquad M_N \simeq M_R \,,$$

 M_R large $\Rightarrow M_{\nu}$ small.

(eigenstates: light Majorana and heavy Majorana)

[Minkowski '77, Mohapatra Senjanović '79, GRS '79, Glashow '79; Yanagida '79]

But what can M_D and M_R be?

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I) - at which scale?

Scales m_D , m_R quite free... (yukawa perturbativity, $M_D < 500 \text{GeV}$)

Some scenarios using $m_
u = m_D^2/m_R \lesssim 1 \, eV$ ignoring mixings

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I) - at which scale?

Scales m_D , m_R quite free... (yukawa perturbativity, $M_D < 500$ GeV) Some scenarios using $m_{\nu} = m_D^2/m_R \lesssim 1 \text{ eV}$ ignoring mixings $m_D \sim 100 \text{ GeV} - (\text{like heavy quarks?})$ $m_D^2/m_{\nu} = m_R \gtrsim 10^{13+15} \text{ GeV}$, High scale physics

Fits with GUT scenario, releted to β ?, ...

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I) - at which scale?

Scales m_D , m_R quite free... (yukawa perturbativity, $M_D < 500$ GeV) Some scenarios using $m_{\nu} = m_D^2/m_R \lesssim 1 \text{ eV}$ ignoring mixings $m_D \sim 100 \text{ GeV} - (\text{like heavy quarks?})$ $m_D^2/m_{\nu} = m_R \gtrsim 10^{13 \div 15} \text{ GeV}$, High scale physics Fits with GUT scenario, releted to B?, ...

m_D \leq MeV – Now one can have much lower m_R :

$$m_D^2/m_
u = m_R \lesssim \text{TeV}\,,$$
 Collider scale

More interesting:

 m_R associated to physical states: observable (see later)

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Seesaw (type-I) - at which scale?

Scales m_D , m_R quite free... (yukawa perturbativity, $M_D < 500$ GeV) Some scenarios using $m_{\nu} = m_D^2/m_R \lesssim 1 \text{ eV}$ ignoring mixings $m_D \sim 100 \text{ GeV} - (\text{like heavy quarks?})$ $m_D^2/m_{\nu} = m_R \gtrsim 10^{13 \div 15} \text{ GeV}$, High scale physics Fits with GUT scenario, releted to \not{B} ?, ...

■ $m_D \leq \text{MeV} - \text{Now one can have much lower } m_R$:

$$m_D^2/m_
u = m_R \lesssim \text{TeV}\,,$$
 Collider scale

More interesting:

 m_R associated to physical states: observable (see later)

Seesaw-I not the only possibility...

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizat

Lepton Violation $0\nu\beta\beta$ Experiments New Physics In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_L \in (\mathbf{3}, 1)$:

$$\mathcal{L}_{y_{\Delta}} = Y_{\Delta} \ell_L^t \tau_2 \Delta_L \ell_L$$

with symmetric Y_{Δ} . In components

Seesaw (type-II)

$$\Delta_L = \begin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizati

Lepton Violation $0\nu\beta\beta$ Experiments New Physics In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_L \in (\mathbf{3}, 1)$:

$$\mathcal{L}_{y_{\Delta}} = Y_{\Delta} \ell_L^t \tau_2 \Delta_L \ell_L$$

with symmetric Y_{Δ} . In components

Seesaw (type-II)

$$\Delta_L = egin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}$$

• If it has a (neutral!) VEV $\langle \delta^0 \rangle = v_L$, it generates a neutrino Majorana mass $M_L \nu_L^t \nu_L$, with

$$M_L = Y_\Delta v_L$$

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics In a $SU(2) \times U(1)_Y$ theory, the lepton doublet ℓ can couple also with a triplet scalar field $\Delta_L \in (\mathbf{3}, 1)$:

$$\mathcal{L}_{y_{\Delta}} = Y_{\Delta} \ell_L^t \tau_2 \Delta_L \ell_L$$

with symmetric Y_{Δ} . In components

Seesaw (type-II)

$$\Delta_L = egin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}$$

• If it has a (neutral!) VEV $\langle \delta^0 \rangle = v_L$, it generates a neutrino Majorana mass $M_L \nu_L^t \nu_L$, with

$$M_L = Y_\Delta v_L$$
.

• The triplet couples to Higgs, $m_{\Delta}^2 \Delta^2 + m_{\Delta} H \Delta H$. $(m_{\Delta} \gg v)$ So it has a naturally small VEV, $v_L \sim v^2/m_{\Delta}$.

$$M_{
u} \sim Y_{\Delta} v^2 / m_{\Delta}$$

Again, large $m_{\Delta} \rightarrow \text{small } M_L$.

[Magg, Wetterich, PLB '80]

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Masses, general

Seesaw type-I plus type-II lead to the general scenario:

$$egin{pmatrix} (
u_L &
u_R^c) \begin{pmatrix} M_L & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix}
u_L \\
u_R^c \end{pmatrix}.$$

with M_L , $M_D \ll M_R$.

Eliminating the M_D mixing, one gets $\begin{pmatrix} M_{\nu} & 0\\ 0 & M_N \end{pmatrix}$, with

$$M_{\nu} \simeq M_L - M_D^t \frac{1}{M_R} M_D , \qquad M_N \simeq M_R .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

F. Nesti

Theory

Dirac vs Majorana **Seesaws** Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Masses, general

Seesaw type-I plus type-II lead to the general scenario:

$$\begin{pmatrix}
u_L &
u_R^c
\end{pmatrix} \begin{pmatrix} M_L & M_D^t \\ M_D & M_R \end{pmatrix} \begin{pmatrix}
u_L \\
u_R^c \end{pmatrix}$$

with M_L , $M_D \ll M_R$.

Eliminating the M_D mixing, one gets $\begin{pmatrix} M_{\nu} & 0\\ 0 & M_N \end{pmatrix}$, with

$$M_{\nu} \simeq M_L - M_D^t \frac{1}{M_R} M_D , \qquad M_N \simeq M_R .$$

• Note, now that there can be cancelations to get light M_{ν} . And there can be cancelations also inside $M_D^t M_R^{-1} M_D$. (see Casas-Ibarra parametrization of M_D)

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$\begin{split} M_{e} &= V_{eL} \, m_{e} \, V_{eR}^{\dagger} \\ M_{\nu} &= V_{\nu L} \, m_{\nu} \, V_{\nu R}^{\dagger} \end{split}, \quad U_{PMNS} = V_{eL}^{\dagger} \, V_{\nu L} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} =$$

$$= \begin{bmatrix} e^{i\alpha_e} & 0 & 0\\ 0 & e^{i\alpha_\mu} & 0\\ 0 & 0 & e^{i\alpha_\tau} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & c_{23} & s_{23}\\ 0 - s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta}\\ 0 & 1 & 0\\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0\\ -s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & e^{i\alpha_1} & 0\\ 0 & 0 & e^{i\alpha_2} \end{bmatrix}$$

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$\begin{split} M_{e} &= V_{eL} \, m_{e} \, V_{eR}^{\dagger} \\ M_{\nu} &= V_{\nu L} \, m_{\nu} \, V_{\nu R}^{\dagger} \end{split}, \quad U_{PMNS} = V_{eL}^{\dagger} \, V_{\nu L} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \\ \begin{bmatrix} e^{i\alpha_{e}} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{13} & 0 \, s_{13} e^{-i\delta} \end{bmatrix} \begin{bmatrix} c_{12} \, s_{12} \, 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} c & c & c \\ 0 & e^{i\alpha_{\mu}} & 0 \\ 0 & 0 & e^{i\alpha_{\tau}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 - s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13} e \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} 0 \\ -s_{12} & c_{12} 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & c_{12} & s_{12} 0 \\ 0 & e^{i\alpha_{1}} & 0 \\ 0 & 0 & e^{i\alpha_{2}} \end{bmatrix}$$

■ Dirac mass, generic complex $V_{\nu L} \neq V_{\nu R}$ so 5 external phases irrelevant.

(Kinetic, current and masses respect $U(1)_{L_x}$!) Only $\mathcal{Q}P$ from the 'Dirac' phase, as in CKM (U_{e3} suppressed).

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Masses, diagonalization

Now, as for quarks, mass eigenstates are not flavour ones. Charged leptons-neutrino mismatch enters Left charged current.

$$M_{e} = V_{eL} m_{e} V_{eR}^{\dagger} , \quad U_{PMNS} = V_{eL}^{\dagger} V_{\nu L} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} =$$

$$= \begin{bmatrix} e^{i\alpha e} & 0 & 0\\ 0 & e^{i\alpha \mu} & 0\\ 0 & 0 & e^{i\alpha \tau} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & c_{23} & s_{23}\\ 0 - s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13} e^{-i\alpha}\\ 0 & 1 & 0\\ -s_{12} & e^{i\alpha} 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0\\ -s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & e^{i\alpha_1} & 0\\ 0 & 0 & e^{i\alpha_2} \end{bmatrix}$$

■ Dirac mass, generic complex $V_{\nu L} \neq V_{\nu R}$ so 5 external phases irrelevant.

(Kinetic, current and masses respect $U(1)_{L_x}$!) Only $\mathcal{Q}P$ from the 'Dirac' phase, as in CKM (U_{e3} suppressed).

■ Majorana mass, complex symmetric $V_{\nu R} \equiv V_{\nu L}^*$ Now the two phases α_1 and α_2 can not be removed! (i.e. Majorana mass breaks lepton numbers!) These phases however appear only in LNV processes.

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Neutrino - up to now

What we saw:

- Neutrino have masses (Dirac or Majorana)
- Need extension of the SM.
- Add heavy $\nu_R \rightarrow$ seesaw-I.
- Add heavy $\Delta_L \rightarrow$ seesaw-II.
- Majorana violates Lepton number by two units
- Two extra 'Majorana' CP phases in the mixing matrix U_{PMNS} .

let's look at consequences...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Lepton number violation, consequences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Lepton number violation, consequences

• Nuclear neutrinoless double beta decay: $A Z X \rightarrow A Z + 2 Z + 2e^{-}$

 $\ldots \tau_{0\nu\beta\beta} \gtrsim 10^{24} y$, but testable!

(and double electron nuclear capture, ${}^{A}_{Z}X + 2e^{-} \rightarrow {}^{A}_{Z-2}X$, etc.)

[Racah, Nuovo Cim. '37]

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics Lepton number violation, consequences

• Nuclear neutrinoless double beta decay: ${}^{A}_{7}X \rightarrow {}^{A}_{7+2}X + 2e^{-}$

 $\ldots \tau_{0\nu\beta\beta} \gtrsim 10^{24} y$, but testable!

(and double electron nuclear capture, ${}^{A}_{Z}X+2e^{-}
ightarrow {}^{A}_{Z-2}X$, etc.)

Collider: same sign dileptons:

Very small for standard W...

[Racah, Nuovo Cim. '37]

[Keung Senjanović '83]

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

Lepton number violation, consequences

• Nuclear neutrinoless double beta decay: ${}^{A}_{7}X \rightarrow {}^{A}_{7+2}X + 2e^{-}$

 $\ldots \tau_{0\nu\beta\beta} \gtrsim 10^{24} y$, but testable!

(and double electron nuclear capture, ${}^{A}_{Z}X + 2e^{-} \rightarrow {}^{A}_{Z-2}X$, etc.)

Collider: same sign dileptons:

Very small for standard W...

m w s p

[Racah, Nuovo Cim. '37]

[Keung Senjanović '83]

[Littenberg Schrok, '92]

• Meson neutrinoless double beta decay, e.g. $K^+ \rightarrow \pi^- \ell^+ \ell^+ BR < 10^{-20}$, much less than current limits, $BR \lesssim 10^{-10}$

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation

0
uetaetaExperiments New Physics

$0\nu\beta\beta$

(ロ)、

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Two-neutrino double beta decay $0 u\beta\beta$

Double β -decay, two e^-

Neutrino $p \sim 3 \,\mathrm{MeV}$

イロト 不得 トイヨト イヨト

э.

no LNV

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Neutrinoless double beta decay $0 u\beta\beta$

• Actually a loop process: Released $Q \sim 3$ MeV. Neutrino $p \sim 100$ MeV Decay width: $\Gamma_{0\nu} = G(Q) |\mathcal{M}|^2$ [phase space] [amplitude]

・ロト ・ 四ト ・ ヨト ・ ヨト

-

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

Neutrinoless double beta decay $0 u\beta\beta$

Actually a loop process: Released Q ~ 3 MeV. Neutrino p ~ 100 MeV Decay width: $\Gamma_{0\nu} = G(Q) |\mathcal{M}|^2$ [phase space] [amplitude] $\frac{4}{2}X$ The amplitude is $\mathcal{M} = 8G_F^2 \int d^4x d^4y J_{had}^{\mu}(x) J_{had}^{\nu}(y) L_{\mu\nu}(x, y)$ where the leptonic tensor is (in momentum space)

$$\mathcal{L}_{\mu\nu} = \bar{e} \gamma_{\mu} \mathcal{L} \left[\frac{\not{p} + M_{\nu}}{p^2 - M_{\nu}^2} \right]_{ee} \gamma_{\nu} \mathcal{R} e^{c}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

Neutrinoless double beta decay $0 u\beta\beta$

Actually a loop process: Released $Q \sim 3 \,\mathrm{MeV}$. m_{ee} Neutrino $p \sim 100 \, {
m MeV}$ Decay width: W $\Gamma_{0\nu} = G(Q) |\mathcal{M}|^2$ [phase space] [amplitude] $^{A}_{Z}X$ $A_{Z+2}X$ $A_{Z\perp 1}X$ • The amplitude is $\mathcal{M} = 8G_F^2 \int d^4x d^4y J^{\mu}_{had}(x) J^{\nu}_{had}(y) L_{\mu\nu}(x,y)$ where the leptonic tensor is (in momentum space) $I_{\mu\nu} = \bar{e} \gamma_{\mu} I \left[\frac{\not p + M_{\nu}}{\sqrt{2}} \right] \gamma_{\nu} R e^{c}$

Light neutrinos ($M_
u \ll p \sim 100\,{
m MeV})$ give

$$L_{\mu
u} \propto M_{
u}^{ee} rac{1}{p^2}$$

 $0\nu\beta\beta$ cont'd

F. Nesti

Theor

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Strenght of LNV in $0\nu\beta\beta$, from standard light neutrinos:

$$M_{\nu}^{ee} = \sum U_{ei}^2 m_i = m_1 |U_{e1}^2| + m_2 |U_{e2}^2| e^{i\alpha_1} + m_3 |U_{e3}^2| e^{i\alpha_2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation

0νββ Experiments New Physics

0 uetaeta cont'd

Strenght of LNV in $0\nu\beta\beta$, from standard light neutrinos:

$$M_{\nu}^{ee} = \sum U_{ei}^2 m_i = m_1 |U_{e1}^2| + m_2 |U_{e2}^2| e^{i\alpha_1} + m_3 |U_{e3}^2| e^{i\alpha_2}$$

So, from oscillations, $|U_{e1}^2| \sim 0.6$, $|U_{e2}^2| \sim 0.25$, $|U_{e3}^2| \sim 0.022$, ... Majorana phases important and there can be a cancelation!

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation

0νββ Experiments New Physics

0 uetaeta cont'd

Strenght of LNV in $0\nu\beta\beta$, from standard light neutrinos:

$$M_{\nu}^{ee} = \sum U_{ei}^2 m_i = m_1 |U_{e1}^2| + m_2 |U_{e2}^2| e^{i\alpha_1} + m_3 |U_{e3}^2| e^{i\alpha_2}$$

So, from oscillations, $|U_{e1}^2| \sim 0.6$, $|U_{e2}^2| \sim 0.25$, $|U_{e3}^2| \sim 0.022$, ... Majorana phases important and there can be a cancelation!

 Possible 0νββ, as a function of lightest neutrino mass:

Can distinguish the hierarchy. And the absolute mass.

[[]Vissani '02]

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

$0\nu\beta\beta$, matrix elements

Neutrino propagator, i.e. 1/r for light e^{-mr}/r for heavy neutrino.

 Well approximated by its typical momentum p ~ 100 ÷ 200 MeV. Both for light or heavy neutrino exchange (no core suppression)

$$\left\langle \frac{m_{\nu}}{p^2} \right\rangle_{nuc} \simeq \frac{m_{\nu}}{p^2}, \qquad \left\langle \frac{1}{m_N} \right\rangle_{nuc} \sim \frac{1}{m_N}$$

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

$0\nu\beta\beta$, matrix elements

Neutrino propagator, i.e. 1/r for light e^{-mr}/r for heavy neutrino.

• Well approximated by its typical momentum $p \sim 100 \div 200$ MeV. Both for light or heavy neutrino exchange (no core suppression)

$$\left\langle \frac{m_{\nu}}{p^2} \right\rangle_{nuc} \simeq \frac{m_{\nu}}{p^2}, \qquad \left\langle \frac{1}{m_N} \right\rangle_{nuc} \sim \frac{1}{m_N}$$

 Real calculation, w/ nuclear models, uncertain by a factor of 20–200–1000% (got worse)

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

Neutrinoless double beta decay, cont'd

Need to avoid the much more favored single beta decay. In some nuclei β -decay is forbidden! [Bethe-Weizsäcker formula] Mass A even 76 33As Z, N odd 76 32Ge ββ. 1.122 MeV 2.039MeV 0.599 MeV most stable isotope of the mass chain 15) (a)

(日)、

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

0νββ Experiments New Physics

Neutrinoless double beta decay, cont'd

Need to avoid the much more favored single beta decay. In some nuclei β -decay is forbidden! [Bethe-Weizsäcker formula] Mass A even 76 33As Z,N 76 32Ge BB. 1.122 Mel 2.039MeV 0.599 MeV most stable isotope of the mass chain 15) (a)

Now, $\beta\beta$ can proceed through both $2\nu\beta\beta$, or $0\nu\beta\beta$.

How to distinguish them? - We don't detect neutrinos.

・ロト ・ 雪 ト ・ ヨ ト

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation

 $0\nu\beta\beta$ Experiments New Physics

Neutrinoless double beta decay, cont'd

In real life, the line is not *so* definite...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

F. Nesti

Theory

Lepton Violation	
$0\nu\beta\beta$	
Experiments	

New Physics

Experiments, ongoing

Isotope	$T_{1/2}^{0\nu}$ (×10 ²⁵ y)	$\langle m_{\beta\beta} \rangle \ (eV)$	Experiment
^{48}Ca	$> 5.8 \times 10^{-3}$	< 3.5 - 22	ELEGANT-IV
$^{76}\mathrm{Ge}$	> 8.0	< 0.12 - 0.26	GERDA
	> 1.9	< 0.08-0.12	Majorana Demonstrator
82 Se	$> 3.6 \times 10^{-2}$	< 0.89 - 2.43	NEMO-3
$^{96}\mathrm{Zr}$	$> 9.2 \times 10^{-4}$	< 7.2 - 19.5	NEMO-3
$^{100}\mathrm{Mo}$	$> 1.1 \times 10^{-1}$	< 0.33 - 0.62	NEMO-3
$^{116}\mathrm{Cd}$	$> 1.0 \times 10^{-2}$	< 1.4 - 2.5	NEMO-3
$^{128}\mathrm{Te}$	$> 1.1 \times 10^{-2}$		
$^{130}\mathrm{Te}$	> 1.5	< 0.11 - 0.52	CUORE
136 Xe	> 10.7	< 0.09-0.11	KamLAND-Zen
	> 1.8	< 0.15 - 0.40	EXO-200
$^{150}\mathrm{Nd}$	$> 2.0 \times 10^{-3}$	< 1.6 - 5.3	NEMO-3

Notice the insanely large lifetime limit (age of universe is just 10^{10} y). Ton experiment (e.g. Legend 1000) are coming to probe 100 times larger lifetimes.

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizati

Lepton Violation $0\nu\beta\beta$

Experiments New Physics

Neutrinoless double beta decay, results

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$

Experiments New Physics

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Possible future clash with cosmology or Tritium

Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_i \lesssim 0.12 \,\text{eV}$ (Planck 95% C.L.)

F. Nesti

Theory

- Dirac vs Majorana Seesaws Diagonalizatio
- Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Possible future clash with cosmology or Tritium

Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_i \lesssim 0.12 \,\text{eV}$ (Planck 95% C.L.)

If a $0\nu\beta\beta$ signal is observed above the neutrino lines, the connection with neutrino masses will be excluded...

F. Nesti

Theory

- Dirac vs Majorana Seesaws Diagonalizatio
- Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Possible future clash with cosmology or Tritium

Shrinking limits the sum of neutrino masses, E.g. now from cosmology $\sum m_i \lesssim 0.12 \,\text{eV}$ (Planck 95% C.L.)

If a $0\nu\beta\beta$ signal is observed above the neutrino lines, the connection with neutrino masses will be excluded...

...So 0uetaeta would probe new physics beyond light neutrinos!

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalization

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job? Try to guess at the level of effective operators...

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job? Try to guess at the level of effective operators...

The 'New Physics' operator is dimension 9

$$O_{NP} = \lambda \frac{nnppee}{\Lambda^5}$$

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job? Try to guess at the level of effective operators...

The 'New Physics' operator is dimension 9

$$O_{NP} = \lambda \frac{nnppee}{\Lambda^5}$$

Require new physics amplitude to saturate $m_{
u}^{ee} \sim eV$

$$A_{0\nu}^{NP} = rac{\lambda}{\Lambda^5} \qquad \leftrightarrow \qquad A_{0\nu}^{m_{\nu}} = G_F^2 \, rac{m_{
u}}{p^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

F. Nesti

Theory

Dirac vs Majorana Seesaws Diagonalizatio

Lepton Violation $0\nu\beta\beta$ Experiments New Physics

New Physics - where? when?

If m_{ν}^{ee} excluded by cosmology, can new Physics do the job? Try to guess at the level of effective operators...

The 'New Physics' operator is dimension 9

$$O_{NP} = \lambda \frac{nnppee}{\Lambda^5}$$

Require new physics amplitude to saturate $m_{
u}^{ee} \sim eV$

$$A^{NP}_{0
u} = rac{\lambda}{\Lambda^5} \qquad \leftrightarrow \qquad A^{m_
u}_{0
u} = G^2_F \, rac{m_
u}{p^2}$$

Result, the amplitudes are comparable for $(\text{say } \lambda \sim G_F^2 M_W^4)$

$\Lambda \sim TeV.$

... something would be expected at collider.

F. Nesti

Theory

- Dirac vs Majorana Seesaws Diagonalizatio
- Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Recap up to now

- Neutrino have mass
- Majorana? ($\not\!\!L$, and possible $0\nu\beta\beta$).
- Possibly an effective operator: (not telling us the origin)

$$\frac{\lambda}{M} (\ell H)^t (H\ell) , \qquad [Weinberg]$$

Realizations, e.g. type-I seesaw: (y and M quite free)

$$y\,\bar{\ell}H\nu_R + M\nu_R^t\nu_R$$

• $0\nu\beta\beta$ probes, may require new physics beyond neutrino, at TeV.

F. Nesti

Theory

- Dirac vs Majorana Seesaws Diagonalizatio
- Lepton Violation $0\nu\beta\beta$ Experiments New Physics

Recap up to now

- Neutrino have mass
- Majorana? ($\not L$, and possible $0\nu\beta\beta$).
- Possibly an effective operator: (not telling us the origin)

 $\frac{\lambda}{M} (\ell H)^{t} (H\ell), \qquad \text{[Weinberg '79]}$

Realizations, e.g. type-I seesaw: (y and M quite free) $y \bar{\ell} H \nu_R + M \nu_P^t \nu_R$

• $0\nu\beta\beta$ probes, may require new physics beyond neutrino, at TeV.

■ So...maybe TeV *M* hints to something? New interactions? ...e.g.: *M* breaks lepton number, *B* − *L*, ...

Maybe we can test a low M and new forces at LHC? (Yes, because of L at collider.)

F. Nesti

What about theory?

In the SM:

• Lepton Number conserved. (also family L_e, L_μ, L_τ separately!)

◆□▶ ◆□▶ ▲ 三▶ ▲ □▶ ▲ □ ▶

- Only left neutrinos, there is no renormalizable mass term.
- Effective theory: a D = 5 nonrenormalizable operator?

BSM:

- Or new states.
- Question: is it low or high scale physics?
- Physical consequences.

F. Nesti

Hints from quantum numbers

	Lorentz	Q	Y	SU(2) _L		<i>SU</i> (3)
		$(Y+T_{3L})$		<i>T</i> _{3L}		
uL	2	2/3	1/6	1/2		3
d_L	2	-1/3	1/6	-1/2		3
ν_L	2	0	-1/2	1/2		1
eL	2	-1	$-1/2 \\ -1/2$	-1/2		1
u _R	2	2/3	2/3	0		3
d_R	2	-1/3	-1/3	0		3
ν_R	2	0	0	0		1
e _R	2	-1	-1	0		1

F. Nesti

Hints from quantum numbers

	Lorentz	Q	Y	$SU(2)_L$	$SU(2)_R$	B-L	<i>SU</i> (3)
		$(Y + T_{3L})$	$(T_{3R}+\frac{(B-L)}{2})$	T_{3L}	T _{3R}		
uL	2	2/3	1/6	1/2	0	1/3	3
d_L	2	-1/3	1/6	-1/2	0	1/3	3
ν_L	2	0	- 1/2	1/2	0	-1	1
eL	2	-1	-1/2	-1/2	0	-1	1
u _R	2	2/3	2/3	0	1/2	1/3	3
d_R	2	-1/3	- 1/3	0	-1/2	1/3	3
ν_R	2	0	0	0	1/2	-1	1
e _R	2	-1	-1	0	-1/2	-1	1

F. Nesti

Hints from quantum numbers

	Lorentz	Q	Y	SU(2) _L	$SU(2)_R$	B-L	<i>SU</i> (3)
		$(Y + T_{3L})$	$(T_{3R}+\frac{(B-L)}{2})$	T _{3L}	T _{3R}		
uL	2	2/3	1/6	1/2	0	1/3	3
d_L	2	-1/3	1/6	-1/2	0	1/3	3
$ u_L $	2	0	-1/2	1/2	0	-1	1
eL	2	-1	- 1/2	-1/2	0	-1	1
u _R	2	2/3	2/3	0	1/2	1/3	3
d_R	2	-1/3	- 1/3	0	-1/2	1/3	3
ν_R	2	0	0	0	1/2	-1	1
e _R	2	-1	-1	0	-1/2	-1	1

...new RH neutrino and RH gauge bosons.

 $SO(3,1) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$

- RH neutrino singlet of SM, but doublet of $SU(2)_R$
- Note, $Y = T_{3R} + (B L)/2 \rightarrow Q = T_{3L} + T_{3R} + (B L)/2$!
- B L clearly anomaly free.

Neutrino

F. Nesti

Looking into fermion quantum numbers opens the view on unification setups

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

$$egin{aligned} q_L \in (\mathbf{2},\mathbf{1},1/3,\mathbf{3}) & q_R \in (\mathbf{1},\mathbf{2},1/3,\mathbf{3}) \ \ell_L \in (\mathbf{2},\mathbf{1},-1,\mathbf{1}) & \ell_R \in (\mathbf{1},\mathbf{2},-1,\mathbf{1}) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□▶

Neutrino

F. Nesti

Looking into fermion quantum numbers opens the view on unification setups

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

$q_L \in ({f 2},{f 1},1/3,{f 3})$	$q_R \in (1,2,1/3,3)$
$\ell_L \in (2, 1, -1, 1)$	$\ell_R \in (1,2,-1,1)$

... one naturally tries to unify different factors:

Pati-Salam: $SU(2)_L \times SU(2)_R \times SU(4)$ [Pati Salam '74; Georgi '75] $(q_L + \ell_L) = \psi_L \in (\mathbf{2}, \mathbf{1}, \mathbf{4}) \quad (q_R + \ell_R) = \psi_R \in (\mathbf{1}, \mathbf{2}, \mathbf{4}).$

Looking into fermion quantum numbers opens the view on unification setups

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

$$egin{aligned} q_L \in (\mathbf{2},\mathbf{1},1/3,\mathbf{3}) & q_R \in (\mathbf{1},\mathbf{2},1/3,\mathbf{3}) \ \ell_L \in (\mathbf{2},\mathbf{1},-1,\mathbf{1}) & \ell_R \in (\mathbf{1},\mathbf{2},-1,\mathbf{1}) \end{aligned}$$

... one naturally tries to unify different factors:

Pati-Salam: $SU(2)_L \times SU(2)_R \times SU(4)$ [Pati Salam '74; Georgi '75] $(q_L + \ell_L) = \psi_L \in (\mathbf{2}, \mathbf{1}, \mathbf{4}) \quad (q_R + \ell_R) = \psi_R \in (\mathbf{1}, \mathbf{2}, \mathbf{4}).$

GUT: *SO*(10) [Georgi, '75, Fritzsch Minkowski '75]

 $\psi_L + \psi_R^c \in (\mathbf{2}, \mathbf{1}, \mathbf{4}) + (\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}}) = \mathbf{16}.$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Neutrino

F. Nesti

Neutrino

F. Nesti

Looking into fermion quantum numbers opens the view on unification setups

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

$$egin{aligned} q_L \in (\mathbf{2},\mathbf{1},1/3,\mathbf{3}) & q_R \in (\mathbf{1},\mathbf{2},1/3,\mathbf{3}) \ \ell_L \in (\mathbf{2},\mathbf{1},-1,\mathbf{1}) & \ell_R \in (\mathbf{1},\mathbf{2},-1,\mathbf{1}) \end{aligned}$$

... one naturally tries to unify different factors:

Pati-Salam: $SU(2)_L \times SU(2)_R \times SU(4)$ [Pati Salam '74; Georgi '75] $(q_L + \ell_L) = \psi_L \in (\mathbf{2}, \mathbf{1}, \mathbf{4}) \quad (q_R + \ell_R) = \psi_R \in (\mathbf{1}, \mathbf{2}, \mathbf{4}).$

GUT: *SO*(10) [Georgi, '75, Fritzsch Minkowski '75]

$$\psi_L + \psi_R^c \in (2, 1, 4) + (1, 2, \overline{4}) = 16.$$

• GraviGUT: SO(3, 11) [FN '07, FN Percacci '09] $(\mathbf{2}_{Lorentz}, \mathbf{16}_{SO(10)}) = \mathbf{64}_{MW}$.

▲□▶▲□▶▲□▶▲□▶ ▲□▼ かへで

F. Nesti

A word about parity

Take the Weyl basis
$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

- As we know, Parity is represented as $\gamma_0 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} = \mathbf{1} \otimes \sigma_1$
- It does not commute with all Lorentz, namely boosts $K_i = \sigma_i \otimes \sigma_3$, and also reverses spatial x^i .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Thus parity alone can not be restored, once the spectrum has chiral SU(2)_L interactions.

F. Nesti

A word about parity

Take the Weyl basis
$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

- As we know, Parity is represented as $\gamma_0 = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} = \mathbf{1} \otimes \sigma_1$
- It does not commute with all Lorentz, namely boosts $K_i = \sigma_i \otimes \sigma_3$, and also reverses spatial x^i .
- Thus parity alone can not be restored, once the spectrum has chiral SU(2)_L interactions.

Only possibility is to restore a generalized \mathscr{P} by introducing a new interaction $SU(2)_R$ and have a $L \leftrightarrow R$ symmetric theory

(Somewhat automatic in GraviGUTs: SO(3,11), SO(13,1)...)

3

F. Nesti

Parity restoration

So: the SM with minimal extension can restore parity!

By this we mean a generalized P: Swap $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_{R,R}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi' c Mohapatra '75] [Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

F. Nesti

Parity restoration

So: the SM with minimal extension can restore parity!

By this we mean a generalized P: Swap $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_{R,R}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75] [Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Need the extension $U(1)_Y \rightarrow SU(2)_R \times U(1)_{B-L}$

F. Nesti

Parity restoration

So: the SM with minimal extension can restore parity!

By this we mean a generalized P: Swap $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_{R,R}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75] [Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

- Need the extension $U(1)_Y \rightarrow SU(2)_R \times U(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.

F. Nesti

Parity restoration

So: the SM with minimal extension can restore parity!

By this we mean a generalized P: Swap $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_{R,R}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75] [Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

- Need the extension $U(1)_Y \rightarrow SU(2)_R \times U(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.
- Need of course some extended Higgs sector, for the breaking.

F. Nesti

Parity restoration

So: the SM with minimal extension can restore parity!

By this we mean a generalized P: Swap $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_{R,R}$

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanovi'c Mohapatra '75] [Note: Lee-Yang in '56 suggesting P violation, also hoped for riti estoration]

- Need the extension $U(1)_Y \rightarrow SU(2)_R \times U(1)_{B-L}$
- Need a RH neutrino, leading to neutrino masses.
- Need of course some extended Higgs sector, for the breaking.

Let's see the model for its predictions...

F. Nesti

(Minimal) Left-Right Symmetric Model

Theory of Neutrino Mass and Parity Breaking

The gauge group:

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

Fermions:

```
Quarks q_{L,R}, Leptons \ell_{L,R}.
```

Gauge bosons

 $W_{L\mu}^{i} \quad W_{R\mu}^{i} \quad B_{\mu} \quad G_{\mu}^{a}$ (with respective coupling constants g_{L} , g_{R} , g_{B-L} , g_{s})

• Assume $L \leftrightarrow R$ symmetry exact at TeV scale.

so
$$g_L = g_R$$

Higgs:

complex bidoublet: ϕ triplets: Δ_L , Δ_R [Pa

▲□▶▲□▶▲≡▶▲≡▶ ≡ りへの

F. Nesti

(Minimal) Left-Right Symmetric Model

• *W*'s and leptons:

$$W_L \quad L_L = \begin{pmatrix} \nu \\ \ell_L \end{pmatrix} \quad L_R = \begin{pmatrix} N \\ \ell_R \end{pmatrix} \quad W_R$$

• Spontaneous parity breaking $\begin{aligned}
v_R \gg v = \sqrt{v_1^2 + v_2^2} \\
\Phi = \begin{pmatrix} v_1 + \phi_1^0 & \phi_2^+ \\ \phi_1^- & v_2 e^{i\alpha} + \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ v_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix} \quad \Delta_L = \cdots
\end{aligned}$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

F. Nesti

(Minimal) Left-Right Symmetric Model

• *W*'s and leptons:

$$W_L \quad L_L = \begin{pmatrix} \nu \\ \ell_L \end{pmatrix} \quad L_R = \begin{pmatrix} N \\ \ell_R \end{pmatrix} \quad W_R$$

• Spontaneous parity breaking $v_R \gg v = \sqrt{v_1^2 + v_2^2}$ $\Phi = \begin{pmatrix} v_1 + \phi_1^0 & \phi_2^+ \\ \phi_1^- & v_2 e^{i\alpha} + \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ v_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix} \quad \Delta_L = \cdots$ • Heavy RH gauge boson, $M_{W_R} = g v_R$, mixes with W_L : $\zeta = \frac{M_{W_L}^2}{M_{W_L}^2} \sin 2\beta e^{i\alpha} < IO^{-4} \qquad \tan \beta = v_2/v_1$

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<~

F. Nesti

(Minimal) Left-Right Symmetric Model

• *W*'s and leptons:

$$W_L \quad L_L = \begin{pmatrix} \nu \\ \ell_L \end{pmatrix} \quad L_R = \begin{pmatrix} N \\ \ell_R \end{pmatrix} \quad W_R$$

• Spontaneous parity breaking $v_R \gg v = \sqrt{v_1^2 + v_2^2}$ $\Phi = \begin{pmatrix} v_1 + \phi_1^0 & \phi_2^+ \\ \phi_1^- & v_2 e^{i\alpha} + \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ v_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix} \quad \Delta_L = \cdots$ • Heavy RH gauge boson, $M_{W_R} = g v_R$, mixes with W_L : $\zeta = \frac{M_{W_L}^2}{M_{W_L}^2} \sin 2\beta e^{i\alpha} < IO^{-4} \qquad \tan \beta = v_2/v_1$

• Neutrino get massive via seesaws:

 $M_D = y_{\Phi}v$ $M_N = y_{\Delta}v_R$ $M_{\nu} = M_L - M_D^T \frac{1}{M_N} M_D$...structural LNV, a number of consequences.

F. Nesti

LR - Lagrangian

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{fermion} + \mathcal{L}_{Yuk} + \mathcal{L}_{Maj}$$

$$\begin{split} \mathcal{L}_{Higgs} &= \mathrm{Tr}[(D_{\mu}\Delta_{L})^{\dagger}(D^{\mu}\Delta_{L})] + \mathrm{Tr}[(D_{\mu}\Delta_{R})^{\dagger}(D^{\mu}\Delta_{R})] \\ &+ \mathrm{Tr}[(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)] + V(\phi,\Delta_{L},\Delta_{R}) \end{split}$$

$$\begin{split} \mathcal{L}_{Fermion} &= \overline{q}_{Li} i \not D q_{Li} + \overline{\ell}_{Li} i \not D \ell_{Li} + (L \leftrightarrow R) \\ \mathcal{L}_{Yukawa q} &= \overline{q}_{Li} (Y_{ij} \phi + \widetilde{Y}_{ij} \widetilde{\phi}) q_{Rj} + h.c. \\ \mathcal{L}_{Yukawa \ell} &= \overline{\ell}_{Li} (h_{ij} \phi + \widetilde{h}_{ij} \widetilde{\phi}) \ell_{Rj} + h.c. \\ \mathcal{L}_{Majorana} &= Y^{ij} [\overline{\ell}_{Li}^{t} C \tau_{2} \Delta_{L} \ell_{Lj} + (L \leftrightarrow R)] + h.c. \end{split}$$

$$\mathcal{L}_{M_{W}} = \begin{pmatrix} W_{L\mu}^{-} W_{R\mu}^{-} \end{pmatrix} \begin{pmatrix} \frac{1}{2}g^{2}(v^{2} + v'^{2} + 2v_{L}^{2}) - g^{2}vv'e^{-i\alpha} \\ -g^{2}vv'e^{i\alpha} & g^{2}v_{R}^{2} \end{pmatrix} \begin{pmatrix} W_{L}^{+\mu} \\ W_{R}^{+\mu} \end{pmatrix}$$

$$\begin{array}{cccc} W_{3L} & W_{3R} & B \\ \begin{pmatrix} g^2/2(\kappa^2 + \kappa'^2 + 4v_L^2) & -g^2/2(\kappa^2 + \kappa'^2) & -2gg'v_R^2 \\ -g^2/2(\kappa^2 + \kappa'^2) & g^2/2(\kappa^2 + \kappa'^2 + 4v_R^2) & -2gg'v_R^2 \\ -2gg'v_L^2 & -2gg'^2v_R^2 & 2g'^2(v_L^2 + v_R^2) \end{pmatrix} \end{array}$$

$$D_{\mu}\phi = \partial_{\mu}\phi + ig_{L}W_{L\mu}\phi - ig_{R}\phi W_{R\mu}$$

$$D_{\mu}\psi = \partial_{\mu}\phi + ig_{L}W_{L,R\mu}\psi_{L,R} + ig'(B-L)/2B_{\mu}\psi_{L,R}$$

$$D_{\mu}\Delta_{(L,R)} = \partial_{\mu}\Delta_{(L,R)} + ig_{(L,R)}\left[W_{(L,R)\mu}, \ \Delta_{(L,R)}\right] + ig'B_{\mu}\Delta_{(L,R)}$$

F. Nesti

LR - Scalar potential

$$\begin{split} V(\phi, \Delta_L, \Delta_R) &= \\ -\mu_1^2 \mathrm{Tr}(\phi^{\dagger}\phi) - \mu_2^2 \left[\mathrm{Tr}(\tilde{\phi}\phi^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger}\phi) \right] - \mu_3^2 \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] \\ &+ \lambda_1 \left[\mathrm{Tr}(\phi^{\dagger}\phi) \right]^2 + \lambda_2 \left\{ \left[\mathrm{Tr}(\tilde{\phi}\phi^{\dagger}) \right]^2 + \left[\mathrm{Tr}(\tilde{\phi}^{\dagger}\phi) \right]^2 \right\} \\ &+ \lambda_3 \mathrm{Tr}(\tilde{\phi}\phi^{\dagger}) \mathrm{Tr}(\tilde{\phi}^{\dagger}\phi) + \lambda_4 \mathrm{Tr}(\phi^{\dagger}\phi) \left[\mathrm{Tr}(\tilde{\phi}\phi^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger}\phi) \right] \\ &+ \rho_1 \left\{ \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) \right]^2 + \left[\mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right]^2 \right\} \\ &+ \rho_2 \left[\mathrm{Tr}(\Delta_L \Delta_L) \mathrm{Tr}(\Delta_L^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R) \mathrm{Tr}(\Delta_R^{\dagger} \Delta_R^{\dagger}) \right] \\ &+ \rho_3 \mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) + \rho_4 \left[\mathrm{Tr}(\Delta_L \Delta_L) \mathrm{Tr}(\Delta_R^{\dagger} \Delta_R^{\dagger}) + \mathrm{Tr}(\Delta_L^{\dagger} \Delta_L^{\dagger}) \mathrm{Tr}(\Delta_R \Delta_R) \right] \\ &+ \alpha_1 \mathrm{Tr}(\phi^{\dagger}\phi) \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] \\ &+ \left\{ \alpha_2 e^{i\delta_2} \left[\mathrm{Tr}(\tilde{\phi}\phi^{\dagger}) \mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger}\phi) \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] + h.c. \right\} \\ &+ \alpha_3 \left[\mathrm{Tr}(\phi\phi^{\dagger} \Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\phi^{\dagger} \phi \Delta_R \Delta_R^{\dagger}) \right] \\ &+ \beta_2 \left[\mathrm{Tr}(\tilde{\phi} \Delta_R \phi^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger} \Delta_L \phi \Delta_R^{\dagger}) \right] + \beta_3 \left[\mathrm{Tr}(\phi \Delta_R \tilde{\phi}^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\phi^{\dagger} \Delta_L \tilde{\phi} \Delta_R^{\dagger}) \right] \end{split}$$

LR - Higgs spectrum

Higgs state	<i>m</i> ²
$h^{0} = \sqrt{2} \operatorname{Re} \left(\phi_{1}^{0*} + x e^{-i\alpha} \phi_{2}^{0} \right)$	$\left(4\lambda_1-rac{lpha_1^2}{ ho_1} ight)v^2$
$H_1^0 = \sqrt{2} \operatorname{Re} \left(-x e^{i\alpha} \phi_1^{0*} + \phi_2^0 \right)$	$\alpha_3 v_R^2$
$A_1^0 = \sqrt{2} \operatorname{Im} \left(-x e^{i\alpha} \phi_1^{0*} + \phi_2^0 \right)$	$\alpha_3 v_R^2$
$H_2^0 = \sqrt{2} \operatorname{Re} \delta_R^0$	$4 ho_1 v_R^2$
$H_{2}^{+} = \phi_{2}^{+} + xe^{i\alpha}\phi_{1}^{+} + \frac{1}{\sqrt{2}}\epsilon\delta_{R}^{+}$	$\alpha_3 \left(v_R^2 + \frac{1}{2} v^2 \right)$
δ_R^{++}	$4\rho_2 v_R^2 + \alpha_3 v^2$
$H_3^0 = \sqrt{2} \operatorname{Re} \delta_L^0$	$(ho_3 - 2 ho_1)v_R^2$
$A_2^0 = \sqrt{2} \operatorname{Im} \delta_L^0$	$(ho_3 - 2 ho_1)v_R^2$
$H_1^+ = \delta_L^+$	$(\rho_3 - 2\rho_1)v_R^2 + \frac{1}{2}\alpha_3v^2$
δ_L^{++}	$(ho_3 - 2 ho_1)v_R^2 + \bar{lpha}_3v^2$

Leading order in $\epsilon = v/v_R$ and x = v'/v, and assuming $v_L = 0$. The SM Higgs is identified with h^0 .

F. Nesti

W_L - W_R mixing

In the minimal model, the tree level W_L - W_R mixing angle is

$$\tan 2\zeta = \frac{2vv'}{v_r^2 + v^2} \simeq \frac{v'}{v} \frac{M_{W_L}^2}{M_{W_R}^2}$$

This is bound by 'Left' weak decays, $\zeta < 10^{-2}$ (310⁻³).

Thus, this translates into a limit on the W_R mass:

$$M_{W_R} > 1.5 \,\mathrm{TeV} \sqrt{rac{2x}{1+x^2}} \,,$$

(Harmless bound, as nowadays W_R is constrained to be heavier.)

Interesting phenomenology is given by $\boldsymbol{\zeta}$

◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶

F. Nesti

Two LR Discrete symmetries

and requirements on Yukawa matrices

$$\mathcal{P}: \left\{ \begin{array}{ll} Q_L \leftrightarrow Q_R \\ \Phi \to \Phi^{\dagger} \end{array} \right., \qquad \mathcal{C}: \left\{ \begin{array}{ll} Q_L \leftrightarrow (Q_R)^c \\ \Phi \to \Phi^T \end{array} \right.$$

$$Y = Y^{\dagger} \qquad \qquad Y = Y^T$$

A lot is then predicted for masses.

$$M_u = v_1 Y + v_2 e^{-i\alpha} \tilde{Y}$$
$$M_d = v_2 e^{i\alpha} Y + v_1 \tilde{Y}$$

• e.g. Dirac mass matrix predicted, unlike standard seesaw:

$$M_D = M_N \sqrt{\frac{v_L}{v_R} - \frac{1}{M_N}} M_\nu,$$

F. Nesti

RH quark mixing ~ CKM

[Maiezza, Nemevsek, Senjanovic, FN, PRD '10]

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Phases or Signs

F. Nesti

RH quark mixing ~ CKM

[Maiezza, Nemevsek, Senjanovic, FN, PRD '10]

▲□▶▲□▶▲■▶▲■▶ ■ のへで

Phases or Signs

• Case of *C* has $V_R=V_L^*$ plus 5 free phases

 $V_R = K_u V^* K_d, \qquad \qquad K_d = \text{diag}\{e^{i\theta_d}, e^{i\theta_s}, e^{i\theta_b}\}$ $K_u = \text{diag}\{e^{i\theta_u}, e^{i\theta_c}, e^{i\theta_t}\}$

F. Nesti

RH quark mixing ~ CKM

[Maiezza, Nemevsek, Senjanovic, FN, PRD '10]

Phases or Signs

• Case of *C* has $V_R=V_L^*$ plus 5 free phases

$$V_R = K_u V^* K_d, \qquad \qquad K_d = \text{diag}\{e^{i\theta_d}, e^{i\theta_s}, e^{i\theta_b}\}$$
$$K_u = \text{diag}\{e^{i\theta_u}, e^{i\theta_c}, e^{i\theta_t}\}$$

• Case of P has $V_R \approx V_L$ plus 5 free signs $V_{R,ij} = V_{ij} - is_{\alpha}t_{2\beta} \left(V_{ij}t_{\beta} + \sum_{k=1}^{3} \frac{(V m_d V^{\dagger})_{ik}V_{kj}}{m_{u \, ii} + m_{u \, kk}} + \frac{V_{ik}(V^{\dagger} m_u V)_{kj}}{m_{d \, jj} + m_{d \, kk}} \right) + \mathcal{O}(s_{\alpha}t_{2\beta})^2$ $V \rightarrow \text{diag}\{s_u, s_c, s_t\} V \text{diag}\{s_d, s_s, s_b\}$ $m_{ii} \rightarrow s_i m_{ii}$ [Senjanović Tello PRL '15]

...mixings and phases predicted in terms of $s_{\alpha}t_{2\beta}$. Phases θ_i are $-s_{\alpha}t_{2\beta} < 0.05$

・ ロ ト ・ 白 ト ・ 山 ト ・ 山 ト ・ 白 ト

Low energy connection

Finally back to Neutrinoless double beta decay

$0\nu 2\beta$

$0\nu 2\beta$

LHC connection

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □▶

Direct search

LNV @ LHC

F. Nesti

- \bullet Invariant masses reconstruct W and v masses
 - $M_{\nu_R} \simeq m_{\ell j j}$

[Keung Senjanović '83]

 W_R

 ν_R

- Probe of lepton flavour mixings
- LNV: 50% same sign leptons
- Almost backgroundless
- Searches ongoing...

 W_R

 ℓ^{-}

 $M_{W_R} \simeq m_{\ell\ell jj}$

KS LHC search

F. Nesti

[CMS '18]

[ATLAS '19]

▲□▶▲□▶▲三▶▲三▶ ● のへで

LHC reach

F. Nesti

[Nemevsek, FN, Popara PRD '18]

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

100 TeV collider reach

 $M_{W_R} \sim 30-40 \text{ TeV}$

F. Nesti

Can we recognize that W_R is right?

• LHC is a *pp* symmetric machine, so it is not possible to use the simple A_{FB} asymmetry of W_R , to look for chirality of its interactions.

◆□▶ ◆□▶ ▲ 三▶ ▲ □▶ ▲ □ ▶

Can we recognize that W_R is right?

- LHC is a *pp* symmetric machine, so it is not possible to use the simple A_{FB} asymmetry of W_R , to look for chirality of its interactions.
- One has to use the first decay $W_R \rightarrow e N$.
 - Determine the W_R direction (from the full event!)
 - Identify the first lepton. (the more energetic)
 - Its asymmetry wrt the W_R direction gives the 'Right' chirality.
- It is necessary to efficiently distinguish the two leptons. (More difficult for $M_N = 0.6 \div 0.8 M_{WR}$ [Ferrari '00])
- Also the subsequent decay $N \rightarrow ljj$ may be used. Polarization seems to be visible in a wide range of masses M_{vR} , M_{WR} .

Limits

Flavour changing & CP Perturbativity

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

The classic limit from $\Delta S=2 - \Delta M_K$

F. Nesti

• Early limit $M_{W_R} > 1.6 \text{TeV}$

[Beall Bander Soni '82]

• Flavour Changing Higgs M_H > TeV

[Senjanović Senjanović '91]

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ クへ (?)

(Predictive: RH mixing angles - fixed... $V_R \simeq V_L$)

F. Nesti

Modern assessment, K-K, ϵ , ϵ ', B-B

▲□▶▲□▶▲≡▶▲≡▶ ● ● ● ●

Kaon sector revisited

 $\begin{array}{ll} \epsilon: \mbox{ enhanced in correct box calculation} \\ \epsilon': \mbox{ Effect of new LR current-current operators $K \to \pi\pi$ \\ LR matrix elements for $K \to \pi\pi$ \\ Chromomagnetic operator & [Bertolini Maiezza, FN '12,'13,'14] \\ \Delta M_{K}: \mbox{ Short Distance now almost enough. (NNLO [Brod '12])} \\ & \mbox{ but Long Distance still unknown} \end{array}$

 $\pm 10 \text{ to } + 30\%$ [Buras+'14] -10% [Bertolini+'99] -5 to 15% [Soni+'13]

Kaon sector revisited

 ϵ : enhanced in correct box calculation ϵ ': Effect of new LR current-current operators K $\rightarrow \pi\pi$ LR matrix elements for K $\rightarrow \pi\pi$ Chromomagnetic operator [Bertolini Maiezza, FN '12,'13,'14] AM_K: Short Distance now almost enough (NNI O [Brod '12])

 $\Delta M_{\rm K}: \ {\rm Short\ Distance\ now\ almost\ enough.} \qquad ({\rm NNLO\ [Brod\ '12]}) \\ {\rm but\ Long\ Distance\ still\ unknown} \\ \pm 10\ {\rm to\ +30\%\ [Buras+\ '14]\ -10\%\ [Bertolini+\ '99]\ -5\ to\ 15\%\ [Soni+\ '13]} }$

• B⁰ mesons revisited

Enhanced in correct calculation Useful free phase

F. Nesti

K, B meson mixing

...correlated bound $M_{W_R}M_H$:

[Bertolini Maiezza, FN,'14]

FIG. 9. Correlated bounds on M_R and M_{W_R} (region above the curves) for $|\Delta M_K^{LR}| / \Delta M_K^{exp} < 1.0, ..., 0.1$ and for $\theta_c - \theta_t = \pi/2$ in the case of \mathcal{P} parity.

FIG. 10. Combined constraints on M_R and M_{W_R} from ε , ε' B_d and B_s mixings obtained in the \mathcal{P} parity case from the numerical fit of the Yukawa sector of the model.

...indirect limit now 3-4 TeV - still room at LHC.

 ΔM_K plagued by Long Distance uncertainty B-mesons competitive now, dominant in the future

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 $\mathcal{O}Q(\mathcal{P})$

Perturbativity in LRSM

FIG. 3. Perturbativity assessment of \mathcal{V}_{eff} (dashed) and treelevel unitarity (solid) of α_3 , together with the bound on M_{W_R} vs. m_H from $B_{d,s}^0 - \overline{B}_{d,s}^0$ (see [19] for details).

[Maiezza Nemevšek, FN 1603.00360] (all rele

(all relevant scalars one loop/tree level ratio)

back to origin of neutrino masses?

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Higgs

F. Nesti

Can we probe the neutrino mass generation?

F. Nesti

• From the two group breakings

$$\Phi = \begin{pmatrix} \mathbf{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \mathbf{v}_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

 ϕ gives Dirac mass, Δ_R gives Majorana mass:

$$\mathcal{L}_{yuk} \supset \bar{L}_L(y_l \Phi + \tilde{y}_l \tilde{\Phi}) L_R + y_\Delta L_R L_R \Delta_R$$

◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶

and then
$$M_{\nu} = M_L - M_D^T \frac{1}{M_N} M_D$$
,

F. Nesti

• From the two group breakings

$$\Phi = \begin{pmatrix} \mathbf{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \mathbf{v}_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

 ϕ gives Dirac mass, Δ_R gives Majorana mass:

$$\mathcal{L}_{yuk} \supset \bar{L}_L(y_l \Phi + \tilde{y}_l \tilde{\Phi}) L_R + y_\Delta L_R L_R \Delta_R$$

and then
$$M_{\nu} = M_L - M_D^T \frac{1}{M_N} M_D,$$

• Ideally one would like to see the higgs rates...

Probe Dirac Mass?

- Recall M_D is predicted $M_D = M_N \sqrt{\frac{v_L}{v_R} \frac{1}{M_N}} M_{\nu}$,
- Too small to see $h \rightarrow lv$, but N decays also through

FIG. 1. Branching ratio for the decay of heavy N to the Higgs-Weinberg and SM gauge bosons, proceeding via Dirac couplings, exemplified $v_L = 0$ and $V_R = V_L^*$. The solid (dashed) line corresponds to $M_{W_R} = 6(3)$ TeV.

F. Nesti

Higgs sector in more detail

$$\Phi = \begin{pmatrix} \boldsymbol{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \boldsymbol{v_R} + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

• δ_R^0 responsible for the RH neutrino masses.

Higgs sector in more detail

$$\Phi = \begin{pmatrix} \mathbf{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \mathbf{v}_R + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

- δ_R^0 responsible for the RH neutrino masses.
- But Neutral higgses mix:

$$\mathcal{V} = -\mu_1^2 (\Phi^{\dagger} \Phi) - \mu_2^2 (\widetilde{\Phi} \Phi^{\dagger} + \widetilde{\Phi}^{\dagger} \Phi) - \mu_3^2 (\Delta_R^{\dagger} \Delta_R) + \lambda (\Phi^{\dagger} \Phi)^2 + \rho (\Delta_R^{\dagger} \Delta_R)^2 + \alpha (\Phi^{\dagger} \Phi) (\Delta_R^{\dagger} \Delta_R)$$

$$h = \phi_1^0 \cos \theta - \delta_R^0 \sin \theta$$
$$\Delta = \phi_1^0 \sin \theta + \delta_R^0 \cos \theta$$

$$m_h^2 = 4\lambda v^2 - \alpha^2 v^2 / \rho \qquad m_\Delta^2 = 4\rho v_R^2$$
$$\theta \simeq \left(\frac{\alpha}{2\rho}\right) \left(\frac{v}{v_R}\right)$$

SM Higgs couplings are reduced... but 40% mixing allowed (!) [Pruna+ PRD '13; Profumo+ PRD '15; Chen+ PRD '15; Robens+ EPJC '15 Martin-Lozano+ 1501.03799; Falkowski Gross Lebedev 1502.01361; Godunov+ 1503.01618]

$$\mathcal{L}_{yuk} = y_{\Delta} L_R L_R \Delta_R$$

- gives Majorana neutrino mass, to check by Δ decay

$$M_N = y_\Delta v_R$$
 $\Gamma(\Delta \to NN) \propto y_\Delta^2$

• with Δ -*h* mixing, now also Higgs can decay to NN

a new SM Higgs decay, checks RH neutrino mass

LNV Higgs decay

N is Majorana, thus LNV Higgs decays:

- 50% same sign dileptons
- In LR, N decay W_R-mediated
- heavy W_R, light N~30GeV,
 i.e. long lifetime

E

• Nlifetime submillimeter to meters: *displaced vertices*

LNVH complementary to KS

F. Nesti

$H \rightarrow NN$ Sensitivity

F. Nesti

$H \rightarrow NN$ Sensitivity

F. Nesti

Similar $\Delta \rightarrow NN$

Figure 8. Contours of estimated combined sensitivities of the $h \to NN, \Delta \to NN$ and $\Delta \Delta \to 4N$ channels at 3 and 5 σ with solid (dashed) contours corresponding to $s_{\theta} = 0.05$ (0.1). The left panel

[Nemevsek, FN, Vasquez JHEP '17]

E.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

F. Nesti

Search for $h \rightarrow NN$:

- Find N, check vs its yukawa and Dirac (mass generation)
- So we see θ mixing. Perturbativity says:

• Look for
$$\Delta$$
 and its NN decays
Look for W_R ($\frac{0.4}{\theta}$)
(confirm mass generation)
(parity restoration)

 $\begin{pmatrix} 0 & 1 \end{pmatrix}$

▲□▶▲□▶▲■▶▲■▶ ■ のへで

• ... if necessary, at a future collider :)

Kaon CP versus Strong CP

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

F. Nesti

 $\varepsilon, \varepsilon'$

(measure of New Physics, h=LR/Exp < 100%, < 10%...)

• $b_{\varepsilon} < 10\%$ correlates θ_d with θ_{s} , for low scale W_R:

$$C) |\sin(\theta_s - \theta_d)| < \left(\frac{M_{W_R}}{71 \text{ TeV}}\right)^2 \longrightarrow \theta_s - \theta_d \sim 0$$

$$P) |\sin(\theta_s - \theta_d - 0.16)|_{s_c s_t = 1} < \left(\frac{M_{W_R}}{71 \text{ TeV}}\right)^2 \longrightarrow \theta_s - \theta_d \sim 0.16$$

• ε' mediated by LR mixing $\zeta \dots$ $h_{\varepsilon'} \simeq 0.92 \times 10^6 |\zeta| \left[\sin (\alpha - \theta_u - \theta_d) + \sin (\alpha - \theta_u - \theta_s) \right]$ $u \to d(s)$

So, a single combination is relevant, e.g. $(\alpha - \theta_u - \theta_d)$. Let's see strong CP...

F. Nesti θ_{QCD} and $arg \det M$ in LRSM

- Case of *C*: both are free no prediction.
- Case of *P*: θ_{QCD} zero at high scale, but due to the spontaneous P breaking, arg det M calculable:

$$\bar{\theta} \simeq \frac{1}{2} s_{\alpha} t_{2\beta} \operatorname{Re} \operatorname{tr} \left(m_u^{-1} V m_d V^{\dagger} - m_d^{-1} V^{\dagger} m_u V \right)$$

Then \rightarrow EDM limit requires vanishing $s_{\alpha}t_{2\beta}$ Then \rightarrow all phases vanish Then $\rightarrow \varepsilon$ constraint can only be satisfied if $M_{WR} \gtrsim 30 \text{TeV}$ [Maiezza Nemevsek PRD '14]

Situation changes if some mechanism like PQ cancels $\bar{\theta}$...

▲□▶▲□▶▲□▶▲□▶ ▲□▼

F. Nesti

• W_L - W_R exchange brings CP violation in effective operators, as $Q_{ud} = (\bar{u}d)_L (\bar{d}u)_R$

- At low scale give meson tadpoles, i.e. shift chiral vacuum $\langle \pi^0 \rangle \simeq \frac{G_F}{\sqrt{2}} (\mathcal{C}_{1ud} - \mathcal{C}_{1du}) \frac{4 c_3}{B_0 F_\pi (m_d + m_u)}$
- which induce new CP violating couplings,

$$\bar{g}_{np\pi} \simeq \frac{2\sqrt{2}B_0}{F_\pi^2} (b_D + b_F)(m_d - m_u) \langle \pi^0 \rangle$$

• which give EDM at loop, e.g. :

$$d_n \simeq -\frac{e}{8\pi^2 F_\pi} \, \frac{\bar{g}_{np\pi}}{\sqrt{2}} (D+F) \left(\log \frac{m_\pi^2}{m_N^2} - \frac{\pi m_\pi}{2m_N}\right)$$

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

F. Nesti

• The operator coefficient has V_R phases and W mixing:

$$C_{1,ud} = \frac{G_F}{\sqrt{2}} \operatorname{Im}(\zeta^* V_{L,ud} V_{R,ud}^*) \sim |\zeta| \sin(\alpha - \theta_u - \theta_d)$$

So it's the same phase combination as ε' .

$$h_{d_n}^{\text{noPQ}} \simeq 10^6 |\zeta| \times 1.65 \sin(\alpha - \theta_u - \theta_d)$$

 $h_{d_n}^{\text{PQ}} \simeq 10^6 |\zeta| \times 0.21 \sin(\alpha - \theta_u - \theta_d)$

(The chiral vacuum shift differs with axion or not. In PQ the axion gets an induced $\bar{\theta}$, and it turns out that this cancels the dominant d_n !)

$$(d_{Hg} and others...)$$

```
Neutrino
```

F. Nesti

"Direct" CP Violation in K decay is tight

• SM saturates ε'

$$\langle (2\pi)_I | (-i) H_{\Delta S=1} | K^0 \rangle = A_I e^{i\delta_I}$$
$$\epsilon' = \frac{i}{\sqrt{2}} \omega \left(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2} - \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0} \right) \frac{q}{p} e^{i(\delta_2 - \delta_0)}$$

[Bertolini, Maiezza, FN, 1911.09472]

F. Nesti

Results, $\varepsilon' = SM$ scenario

Case of C: no bounds, the free phases can be taken zero to cancel all CP violation.

Limit still given by K and B oscillations, M_{WR}≥7TeV

FIG. 4. Case of \mathcal{P} : The shaded regions in the $M_{W_R}-t_\beta$ plane are excluded in order to have at most 15% new physics contribution to ε'/ε and d_n below the present experimental bound.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ < □ > □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ > □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ <

 \mathcal{A}

[Bertolini, Maiezza, FN, 1911.09472]

STOP

Resume - Outlook F. Nesti

Neutrino masses exist... led us quite far:

- Left-Right restoring parity is a predictive theory
- Lepton Number Violation in low and high energy
- Flavor constraining, but still not ruled out (B mixing the future)
- $\varepsilon, \varepsilon', d_n$ correlation predictive for P: $\varepsilon' = SM \qquad M_{WR} > 10 TeV$
- Borderline @ LHC next collider :)
- SM Higgs and Δ Higgs gateway to neutrino mass mechanism - probe to -20 TeV