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Appendix A
The dilatationally invariant system of units

That an electron here has the same mass as an electron there is also a triviality
or a miracle. It is a triviality in quantum electrodynamics because it is assumed
rather than derived. However, it is a miracle on any view that regards the universe
as being from time to time “reprocessed”.

—Charles W. Misner, Kip S. Thorne and John Archibald Wheeler1

We shall show how all the equations of physics can be cast in the system
of units in which h̄ = c = G = 4πε0 = 1. In spite of its usefulness for all
sorts of calculations such a sytem of units is completely unknown.

Many authors of modern theoretical works use the system of units in
which either h̄ = c = 1 or c = G = 1, etc. . This significantly simplifies
equations and calculations, since various inessential h̄3, c2, etc., are no
longer present in formal expressions. But I have never seen the use of the
next step, namely the units in which “all” fundamental constant are 1, that
is h̄ = c = G = 4πε0 = 1. Let us call such a system the dilatationally
invariant system of units, briefly, the system D. It is introduced with the
aid of the fine structure constant α, the Planck mass MP, the Planck time
TP and the Planck length LP by setting h̄ = c = G = 4πε0 = 1 in the
usual MKSA expression for these quantities (Table A.1). That is, in the
system D all quantities are expressed relative to the Planck units, which
are dimensionless; the unit is 1. For practical reasons sometimes we will
formally add the symbol D: so there holds 1 = 1D. With the aid of the
formulas in Table A.1 we obtain the relation between the units MKSA and
the units D (Table A.2).

1See ref. [136]
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Table A.1. Physical constants in two systems of units

Description Symbol MKSA D

Planck’s constant/2π h̄ 1.0545887× 10−34 Js 1
Speed of light c 2.99792458× 108ms−1 1
Gravitational constant G 6.6720× 10−11kg−1m3s−2 1
Dielectric constant of vacuum ε0 8.8541876× 10−12kg−1A2s4m−3 1

4π

Induction constant of vacuum µ0 1.2566371× 10−6kgm s−2A−2 4π

Electron’s charge e 1.6021892×As α1/2

Electron’s mass me 9.109534× 10−31 kg κ0α
1/2

Boltzman constant kB 1.380622× 10−23 J/oK 1

Fine structure constant α = 1/137.03604
‘Fundamental scale’ κ0 = 0.489800× 10−21

e = α1/2(4πε0h̄c)
1/2 MP = (h̄c/G)1/2 TP = (h̄G/c5)1/2 LP = (h̄G/c3)1/2

Let us now investigate more closely the system D. The Planck length is
just the Compton wavelength of a particle with the Planck mass MP

LP =
h̄

MPc
(system MKSA), LP =

1

MP
=MP = 1 (system D) (A.1)

In addition to MP and LP we can introduce

M = α1/2MP , L = α1/2LP. (A.2)

In the system D it is
e =M = L = α1/2. (A.3)

The length L is the classical radius that a particle with massM and charge
e would have:

L =
e2

4πε0Mc2
(system MKSA), L =

e2

M
(system D). (A.4)

The classical radius of electron (a particle with the mass me and the charge
e) is

rc =
e2

4πε0mec2
(system MKSA), rc =

e2

me
(system D). (A.5)

From (A.4) and (A.5) we have in consequence of (A.1) and Table A.1

rc
L

=
M

me
=

e

me
(4πε0G)

−1/2 ≡ κ−10 (A.6)

Therefore
me = κ0M = κ0α

1/2 = κ0e (system D). (A.7)



APPENDIX A: The dilatationally invariant system of units 349

The ratio L/rc represents the scale of the electron’s classical radius relative
to the length L. As a consequence of (A.4)–(A.7) we have rc = κ−10 e.

Table A.2. Translation between units D and units MKSA

1D = (h̄c/G)1/2 = 2.1768269× 10−8 kg

1D = (h̄G/c5)1/2 = 5.3903605× 10−44 s

1D = (h̄G/c3)1/2 = 1.6159894× 10−35 m

1D = (4πε0h̄c)
1/2 = α−1/2e = 1.8755619× 10−18 As

1D = c3(4πε0/G)
1/2 = 3.4794723× 1025 A

1D = c2(4πε0G)
−1/2 = 1.0431195× 1027 V

1D = c2(h̄c/G)1/2 = 1.9564344× 109 J
1D = 1.41702× 1032 0K

At this point let us observe that the fundamental constants h̄, c, G and
ε as well as the quantities LP, MP, TP, L, M , e, are by definition invariant
under dilatations. The effect of a dilatation on various physical quantities,
such as the spacetime coordinates xµ, mass m, 4-momentum pµ, 4-force f

µ,
and 4-acceleration aµ is [137]–[139]:

xµ → x′µ = ρxµ,

pµ → p′µ = ρ−1pµ,

m → m′ = ρ−1m,

fµ → f ′µ = ρ−2fµ,

aµ → a′µ = ρ−1aµ. (A.8)

Instead of the inhomogeneous coordinates xµ one can introduce [137]–
[139] the homogeneous coordinates x̃µ = κxµ which are invariant under
dilatations provided that the quantity κ transforms as

κ→ κ′ = ρ−1κ. (A.9)

For instance, if initially x0 = 1 sec, then after applying a dilatation, say
by the factor ρ = 3, we have x′0 = 3 sec, κ = 1

3 , x̃
′0 = x̃0 = 1 sec. The

quantity κ is the scale of the quantity xµ relative to the corresponding
invariant quantity x̃µ.

If we write a given equation we can check its consistency by comparing
the dimension of its left hand and right hand side. In the MKSA system the
dimensional control is in checking the powers of meters, kilograms, seconds
and ampères on both sides of the equation. In the system D one has to
verify that both sides transform under dilatations as the same power of
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Table A.3. Some basic equations in the two systems of units

Description Symbol MKSA D

Electric force between two electrons Fe e2

4πε0r2
e2

r2

Electric force between two electrons
at the distance rc

Fe e2

4πε0r2c
κ20

Gravitational force between two
electrons at the distance rc

FG κ−2Gm2
e

r2c
κ−2κ40

Ratio between electric and gravita-
tional force

Fe
FG

e2

4πε0Gm2
e

κ2κ−20

Bohr radius a0 4πε0h̄
2

mee2
κ−10 e−3

Potential energy of electron at the
distance a0 from the centre

Ec e2

4πε0a0
κ0e

5

Rydberg constant Ry mee
4

2(4πε0h̄)2
1

2
κ0e

5

ρ. For instance, eq. (A.7) is consistent, since [me] = ρ−1, [κ0] = ρ−1 and
[e] = 1, where [A] denotes the dimension of a generic quantity A.

In Table A.3 some well known equations are written in both systems
of units. They are all covariant under dilatations. Taking G invariant,
the equation F = Gm2/r2 is not dilatationally covariant, as one can di-
rectly check from (A.8). The same is true for the Einstein equations
Gµν = −8πGT µν with T µν = (ρ + p)uµuν − p gµν , from which the New-
tonian gravitation equation is derivable. Usually this non-covariance is
interpreted as the fact that the gravitational coupling constant G is not
dimensionless. One can avoid this difficulty by using the homogeneous co-
ordinates x̃µ and express the Einstein tensor Gµν , the rest mass density ρ
and all other relevant quantities in terms of these homogeneous coordinates
[139, 140]. Then the Einstein equations become G̃µν = −8πGT̃µν with

T̃µν = (ρ̃ + p̃)ũµũν − p̃ g̃µν , where the quantities with tildes are invariant
under dilatations. If the homogeneous Einstein equations are written back
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in terms of the inhomogeneous quantities, we have Gµν = −8πGκ−2Tµν ,
which is covariant with respect to dilatations. If we choose κ = 1 then the
equations for this particular choice correspond to the usual Einstein equa-
tions, and we may use either the MKSA system or the D system. Further
discussion of this interesting and important subject would go beyond the
scope of this book. More about the dilatationally and conformally covariant
theories the reader will find in refs. [137]–[141].

Using the relations of Table A.2 all equations in the D system can be
transformed back into the MKSA system. Suppose we have an equation in
the D system:

a0 =
1

mee2
= κ−10 e−3 = κ−10 α−3/2 = κ−10 α−3/2D. (A.10)

We wish to know what form the latter equation assumes in the MKSA sys-
tem. Using the expression for the fine structure constant α = e2(4πε0h̄c)

−1

and eq. (A.6) we have

a0 =
e

me(4πε0G)1/2

(
e2

4πε0h̄c

)−3/2
D. (A.11)

If we put 1D = 1 then the right hand side of the latter equation is a
dimensionless quantity. If we wish to obtain a quantity of the dimension
of length we have to insert 1D = (h̄G/c3)1/2, which represents translation
from meters to the D units. So we obtain

a0 =
4πε0h̄

2

mee2
, (A.12)

which is the expression for Bohr’s radius.
Instead of rewriting equations from the D system in the MKSA system,

we can retain equations in the D system and perform all the algebraic and
numerical calculations in the D units. If we wish to know the numerical
results in terms of the MKSA units, we can use the numbers of Table A.2.
For example,

a0 = κ−10 e−3 = 2.04136× 1021 × 137.036043/2D. (A.13)

How much is this in meters? From Table A.2 we read 1 D = 1.615989−35 m.
Inserting this into (A.13) we have a0 = 0.529177× 10−10m which is indeed
the value of Bohr’s radius.

Equations in the D system are very simple in comparison with those in
the MKSA system. Algebraic calculations are much easier, since there are
no inessential factors like h̄2, c3, etc., which obsure legibility and clarity
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of equations. The transformation into the familiar MKSA units is quick
with the aid of Table A.2 (and modern pocket calculators, unknown in the
older times from which we inherit the major part of present day physics).
However, I do not propose to replace the international MKSA system with
the D system. I only wish to recall that most modern theoretical works do
not use the MKSA system and that it is often very tedious to obtain the
results in meters, seconds, kilograms and ampères. What I wish to point
out here is that even when the authors are using the units in which, for
example, h̄ = c = 1, or similar, we can easily transform their equations into
the units in which h̄ = c = G = 4πε0 = 1 and use Table A.2 to obtain the
numerical results in the MKSA system.

To sum up, besides the Planck length, Planck time and Planck mass,
which are composed of the fundamental constants h̄, c and G, we have
also introduced (see Table A.2) the corresponding electromagnetic quantity,
namely the charge EP = (4πε0h̄c)

1/2 (or, equivalently, the current and
the potential difference), by bringing into play the fundamental constant
ε0. We have then extended the Planck system of units [136] in which
c = h̄ = G = 1 to the system of units in which c = h̄ = G = 4πε0 = 1, in
order to incorporate all known sorts of physical quantities.

Finally, let me quote the beautiful paper by Levy-Leblond [142] in which
it is clearly stated that our progress in understanding the unity of nature
follows the direction of eliminating from theories various (inessential) nu-
merical constants with the improper name of “fundamental” constants. In
fact, those constants are merely the constants which result from our unnat-
ural choice of units, the choice due to our incomplete understanding of the
unified theory behind.


