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Abstract

This is a book for those who would like to learn something about special

and general relativity beyond the usual textbooks, about quantum field

theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, the

elegant description of geometry by means of Clifford algebra, about the

fascinating possibilities the latter algebra offers in reformulating the existing

physical theories, and quantizing them in a natural way. It is shown how

Clifford algebra provides much more: it provides room for new physics,

with the prospects of resolving certain long standing puzzles. The theory of

branes and the idea of how a 3-brane might represent our world is discussed

in detail. Much attention is paid to the elegant geometric theory of branes

which employs the infinite dimensional space of functions describing branes.

Clifford algebra is generalized to the infinite dimensional spaces. In short,

this is a book for anybody who would like to explore how the “theory of

everything” might possibly be formulated. The theory that would describe

all the known phenomena, could not be formulated without taking into

account “all” the theoretical tools which are available. Foundations of those

tools and their functional interrelations are described in the book.

Note: This book was published by Kluwer Academic Publishers in 2001.
The body of the posted version is identical to the published one, except for
corrections of misprints, and some minor revisions that I have found nec-
essary.
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Preface

Today many important directions of research are being pursued more or
less independently of each other. These are, for instance, strings and mem-
branes, induced gravity, embedding of spacetime into a higher-dimensional
space, the brane world scenario, the quantum theory in curved spaces, Fock–
Schwinger proper time formalism, parametrized relativistic quantum the-
ory, quantum gravity, wormholes and the problem of “time machines”, spin
and supersymmetry, geometric calculus based on Clifford algebra, various
interpretations of quantum mechanics including the Everett interpretation,
and the recent important approach known as “decoherence”.

A big problem, as I see it, is that various people thoroughly investigate
their narrow field without being aware of certain very close relations to
other fields of research. What we need now is not only to see the trees but
also the forest. In the present book I intend to do just that: to carry out
a first approximation to a synthesis of the related fundamental theories of
physics. I sincerely hope that such a book will be useful to physicists.

From a certain viewpoint the book could be considered as a course in the-
oretical physics in which the foundations of all those relevant fundamental
theories and concepts are attempted to be thoroughly reviewed. Unsolved
problems and paradoxes are pointed out. I show that most of those ap-
proaches have a common basis in the theory of unconstrained membranes.
The very interesting and important concept of membrane space, M, the
tensor calculus in M and functional transformations in M are discussed.
Next I present a theory in which spacetime is considered as a 4-dimensional
unconstrained membrane and discuss how the usual classical gravity, to-
gether with sources, emerges as an effective theory. Finally, I point out
that the Everett interpretation of quantum mechanics is the natural one
in that theory. Various interpretational issues will be discussed and the
relation to the modern “decoherence” will be pointed out.

ix
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If we look at the detailed structure of a landscape we are unable to see
the connections at a larger scale. We see mountains, but we do not see the
mountain range. A view from afar is as important as a view from nearby.
Every position illuminates reality from its own perspective. It is analogously
so, in my opinion, in theoretical physics also. Detailed investigations of a
certain fundamental theory are made at the expense of seeing at the same
time the connections with other theories. What we need today is some kind
of atlas of the many theoretical approaches currently under investigation.
During many years of effort I can claim that I do see a picture which has
escaped from attention of other researchers. They certainly might profit
if they could become aware of such a more global, though not as detailed,
view of fundamental theoretical physics.

MATEJ PAVŠIČ
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Introduction

The unification of various branches of theoretical physics is a joint project
of many researchers, and everyone contributes as much as he can. So far
we have accumulated a great deal of knowledge and insight encoded in such
marvelous theories as general relativity, quantum mechanics, quantum field
theory, the standard model of electroweak interaction, and chromodynam-
ics. In order to obtain a more unified view, various promising theories have
emerged, such as those of strings and “branes”, induced gravity, the em-
bedding models of gravity, and the “brane world” models, to mention just
a few. The very powerful Clifford algebra as a useful tool for geometry
and physics is becoming more and more popular. Fascinating are the ever
increasing successes in understanding the foundations of quantum mechan-
ics and their experimental verification, together with actual and potential
practical applications in cryptography, teleportation, and quantum com-
puting.

In this book I intend to discuss the conceptual and technical foundations
of those approaches which, in my opinion, are most relevant for unification
of general relativity and quantum mechanics on the one hand, and funda-
mental interactions on the other hand. After many years of active research
I have arrived at a certain level of insight into the possible interrelationship
between those theories. Emphases will be on the exposition and under-
standing of concepts and basic techniques, at the expense of detailed and
rigorous mathematical development. Theoretical physics is considered here
as a beautiful landscape. A global view of the landscape will be taken. This
will enable us to see forests and mountain ranges as a whole, at the cost of
seeing trees and rocks.

Physicists interested in the foundations of physics, conceptual issues,
and the unification program, as well as those working in a special field and
desiring to broaden their knowledge and see their speciality from a wider
perspective, are expected to profit the most from the present book. They

xv
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are assumed to possess a solid knowledge at least of quantum mechanics,
and special and general relativity.

As indicated in the subtitle, I will start from point particles. They move
along geodesics which are the lines of minimal, or, more generally, extremal
length, in spacetime. The corresponding action from which the equations
of motion are derived is invariant with respect to reparametrizations of an
arbitrary parameter denoting position on the worldline swept by the parti-
cle. There are several different, but equivalent, reparametrization invariant
point particle actions. A common feature of such an approach is that ac-
tually there is no dynamics in spacetime, but only in space. A particle’s
worldline is frozen in spacetime, but from the 3-dimensional point of view
we have a point particle moving in 3-space. This fact is at the roots of all
the difficulties we face when trying to quantize the theory: either we have a
covariant quantum theory but no evolution in spacetime, or we have evolu-
tion in 3-space at the expense of losing manifest covariance in spacetime. In
the case of a point particle this problem is not considered to be fatal, since
it is quite satisfactorily resolved in relativistic quantum field theory. But
when we attempt to quantize extended objects such as branes of arbitrary
dimension, or spacetime itself, the above problem emerges in its full power:
after so many decades of intensive research we have still not yet arrived at
a generally accepted consistent theory of quantum gravity.

There is an alternative to the usual relativistic point particle action pro-
posed by Fock [1] and subsequently investigated by Stueckelberg [2], Feyn-
man [3], Schwinger [4], Davidon [5], Horwitz [6, 7] and many others [8]–[20].
In such a theory a particle or “event” in spacetime obeys a law of motion
analogous to that of a nonrelativistic particle in 3-space. The difference
is in the dimensionality and signature of the space in which the particle
moves. None of the coordinates x0, x1, x2, x3 which parametrize spacetime
has the role of evolution parameter. The latter is separately postulated and
is Lorentz invariant. Usually it is denoted as τ and evolution goes along τ .
There are no constraints in the theory, which can therefore be called the
unconstrained theory. First and second quantizations of the unconstrained
theory are straightforward, very elegant, and manifestly Lorentz covariant.
Since τ can be made to be related to proper time such a theory is often
called a Fock–Schwinger proper time formalism. The value and elegance of
the latter formalism is widely recognized, and it is often used, especially
when considering quantum fields in curved spaces [21]. There are two main
interpretations of the formalism:

(i) According to the first interpretation, it is considered merely as a
useful calculational tool, without any physical significance. Evolution in τ
and the absence of any constraint is assumed to be fictitious and unphysical.
In order to make contact with physics one has to get rid of τ in all the
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expressions considered by integrating them over τ . By doing so one projects
unphysical expressions onto the physical ones, and in particular one projects
unphysical states onto physical states.

(ii) According to the second interpretation, evolution in τ is genuine and
physical. There is, indeed, dynamics in spacetime. Mass is a constant of
motion and not a fixed constant in the Lagrangian.

Personally, I am inclined to the interpretation (ii). In the history of
physics it has often happened that a good new formalism also contained
good new physics waiting to be discovered and identified in suitable exper-
iments. It is one of the purposes of this book to show a series of arguments
in favor of the interpretation (ii). The first has roots in geometric calculus
based on Clifford algebra [22]

Clifford numbers can be used to represent vectors, multivectors, and,
in general, polyvectors (which are Clifford aggregates). They form a very
useful tool for geometry. The well known equations of physics can be cast
into elegant compact forms by using the geometric calculus based on Clifford
algebra.

These compact forms suggest the generalization that every physical quan-
tity is a polyvector [23, 24]. For instance, the momentum polyvector in 4-
dimensional spacetime has not only a vector part, but also a scalar, bivector,
pseudovector and pseudoscalar part. Similarly for the velocity polyvector.
Now we can straightforwardly generalize the conventional constrained ac-
tion by rewriting it in terms of polyvectors. By doing so we obtain in the
action also a term which corresponds to the pseudoscalar part of the veloc-
ity polyvector. A consequence of this extra term is that, when confining
ourselves, for simplicity, to polyvectors with pseudoscalar and vector part
only, the variables corresponding to 4-vector components can all be taken as
independent. After a straightforward procedure in which we omit the extra
term in the action (since it turns out to be just the total derivative), we
obtain Stueckelberg’s unconstrained action! This is certainly a remarkable
result. The original, constrained action is equivalent to the unconstrained
action. Later in the book (Sec. 4.2) I show that the analogous procedure
can also be applied to extended objects such as strings, membranes, or
branes in general.

When studying the problem of how to identify points in a generic curved
spacetime, several authors [25], and, especially recently Rovelli [26], have
recognized that one must fill spacetime with a reference fluid. Rovelli con-
siders such a fluid as being composed of a bunch of particles, each particle
carrying a clock on it. Besides the variables denoting positions of particles
there is also a variable denoting the clock. This extra, clock, variable must
enter the action, and the expression Rovelli obtains is formally the same as
the expression we obtain from the polyvector action (in which we neglect
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the bivector, pseudovector, and scalar parts). We may therefore identify
the pseudoscalar part of the velocity polyvector with the speed of the clock
variable. Thus have a relation between the polyvector generalization of the
usual constrained relativistic point particle, the Stueckleberg particle, and
the DeWitt–Rovelli particle with clock.

A relativistic particle is known to posses spin, in general. We show how
spin arises from the polyvector generalization of the point particle and how
the quantized theory contains the Dirac spinors together with the Dirac
equation as a particular case. Namely, in the quantized theory a state
is naturally assumed to be represented as a polyvector wave function Φ,
which, in particular, can be a spinor. That spinors are just a special kind
of polyvectors (Clifford aggregates), namely the elements of the minimal
left or right ideals of the Clifford algebra, is an old observation [27]. Now,
scalars, vectors, spinors, etc., can be reshuffled by the elements of the Clif-
ford algebra. This means that scalars, vectors, etc., can be transformed
into spinors, and vice versa. Within Clifford algebra thus we have transfor-
mations which change bosons into fermions. In Secs. 2.5 and 2.7 I discuss
the possible relation between the Clifford algebra formulation of the spin-
ning particle and a more widely used formulation in terms of Grassmann
variables.

A very interesting feature of Clifford algebra concerns the signature of the
space defined by basis vectors which are generators of the Clifford algebra.
In principle we are not confined to choosing just a particular set of elements
as basis vectors; we may choose some other set. For instance, if e0, e1, e2,
e3 are the basis vectors of a space Me with signature (+ + + +), then we
may declare the set (e0, e0e1, e0e2, e0e3) as basis vectors γ0, γ1, γ2, γ3 of
some other space Mγ with signature (+−−−). That is, by suitable choice
of basis vectors we can obtain within the same Clifford algebra a space of
arbitrary signature. This has far reaching implications. For instance, in
the case of even-dimensional space we can always take a signature with an
equal number of pluses and minuses. A harmonic oscillator in such a space
has vanishing zero point energy, provided that we define the vacuum state
in a very natural way as proposed in refs. [28]. An immediate consequence
is that there are no central terms and anomalies in string theory living in
spacetime with signature (+ + +... − −−), even if the dimension of such
a space is not critical. In other words, spacetime with such a ‘symmetric’
signature need not have 26 dimensions [28].

The principle of such a harmonic oscillator in a pseudo-Euclidean space
is applied in Chapter 3 to a system of scalar fields. The metric in the space
of fields is assumed to have signature (+ + +... − −−) and it is shown
that the vacuum energy, and consequently the cosmological constant, are
then exactly zero. However, the theory contains some negative energy fields
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(“exotic matter”) which couple to the gravitational field in a different way
than the usual, positive energy, fields: the sign of coupling is reversed,
which implies a repulsive gravitational field around such a source. This is
the price to be paid if one wants to obtain a small cosmological constant in
a straightforward way. One can consider this as a prediction of the theory
to be tested by suitably designed experiments.

The problem of the cosmological constant is one of the toughest prob-
lems in theoretical physics. Its resolution would open the door to further
understanding of the relation between quantum theory and general rela-
tivity. Since all more conventional approaches seem to have been more or
less exploited without unambiguous success, the time is right for a more
drastic novel approach. Such is the one which relies on the properties of
the harmonic oscillator in a pseudo-Euclidean space.

In Part II I discuss the theory of extended objects, now known as
“branes” which are membranes of any dimension and are generalizations
of point particles and strings. As in the case of point particles I pay much
attention to the unconstrained theory of membranes. The latter theory is a
generalization of the Stueckelberg point particle theory. It turns out to be
very convenient to introduce the concept of the infinite-dimensional mem-
brane spaceM. Every point inM represents an unconstrained membrane.
InM we can define distance, metric, covariant derivative, etc., in an anal-
ogous way as in a finite-dimensional curved space. A membrane action,
the corresponding equations of motion, and other relevant expressions ac-
quire very simple forms, quite similar to those in the point particle theory.
We may say that a membrane is a point particle in an infinite dimensional
space!

Again we may proceed in two different interpretations of the theory:

(i) We may consider the formalism of the membrane space as a useful
calculational tool (a generalization of the Fock–Schwinger proper time for-
malism) without any genuine physical significance. Physical quantities are
obtained after performing a suitable projection.

(ii) The points inM-space are physically distinguishable, that is, a mem-
brane can be physically deformed in various ways and such a deformation
may change with evolution in τ .

If we take the interpretation (ii) then we have a marvelous connec-
tion (discussed in Sec. 2.8) with the Clifford algebra generalization of the
conventional constrained membrane on the one hand, and the concept of
DeWitt–Rovelli reference fluid with clocks on the other hand.

Clifford algebra in the infinite-dimensional membrane space M is de-
scribed in Sec. 6.1. When quantizing the theory of the unconstrained
membrane one may represent states by wave functionals which are polyvec-
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tors in M-space. A remarkable connection with quantum field theory is
shown in Sec. 7.2

When studying the M-space formulation of the membrane theory we
find that in such an approach one cannot postulate the existence of a back-
ground embedding space independent from a membrane configuration. By
“membrane configuration” I understand a system of (many) membranes,
and the membrane configuration is identified with the embedding space.
There is no embedding space without the membranes. This suggests that
our spacetime is nothing but a membrane configuration. In particular, our
spacetime could be just one 4-dimensional membrane (4-brane) amongst
many other membranes within the configuration. Such a model is dis-
cussed in Part III. The 4-dimensional gravity is due to the induced metric
on our 4-brane V4, whilst matter comes from the self-intersections of V4,
or the intersections of V4 with other branes. As the intersections there can
occur manifolds of various dimensionalities. In particular, the intersection
or the self-intersection can be a 1-dimensional worldline. It is shown that
such a worldline is a geodesic on V4. So we obtain in a natural way four-
dimensional gravity with sources. The quantized version of such a model is
also discussed, and it is argued that the kinetic term for the 4-dimensional
metric gµν is induced by quantum fluctuations of the 4-brane embedding
functions.

In the last part I discuss mainly the problems related to the foundations
and interpretation of quantum mechanics. I show how the brane world view
sheds new light on our understanding of quantum mechanics and the role
of the observer.
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POINT PARTICLES





Chapter 1

THE SPINLESS POINT PARTICLE

1.1. POINT PARTICLES VERSUS
WORLDLINES

The simplest objects treated by physics are point particles. Any object,
if viewed from a sufficiently large scale, is approximately a point particle.
The concept of an exact point particle is an idealization which holds in
the limit of infinitely large scale from which it is observed. Equivalently,
if observed from a finite scale its size is infinitely small. According to the
special and general theory of relativity the arena in which physics takes
place is not a 3-dimensional space but the 4-dimensional space with the
pseudo–Euclidean signature, say (+ - - -), called spacetime. In the latter
space the object of question is actually a worldline, a 1-dimensional object,
and it appears as a point particle only from the point of view of a space-like
3-surface which intersects the worldline.

Kinematically, any worldline (i.e., a curve in spacetime) is possible, but
not all of them can be realized in a dynamical situation. An obvious ques-
tion arises of which amongst all kinematically possible worldlines in space-
time are actually possible. The latter worldlines are solutions of certain
differential equations.

An action from which one can derive the equations of a worldline is
proportional to the length of the worldline:

I[Xµ] = m

∫
dτ(ẊµẊνgµν)

1/2. (1.1)

Here τ is an arbitrary parameter associated with a point on the worldline,
the variables Xµ denote the position of that point in spacetime, the fixed

3
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constant m is its mass, and gµν(x) is the metric tensor which depends on
the position x ≡ xµ in spacetime .

Variation of the action (1.1) with respect to Xµ gives the geodesic equa-
tion

Eµ ≡ 1√
Ẋ2

d

dτ

(
Ẋµ

√
Ẋ2

)
+ Γµαβ

ẊαẊβ

Ẋ2
= 0 (1.2)

where

Γµαβ ≡ 1
2g
µρ(gρα,β + gρβ,α − gαβ,ρ) (1.3)

is the affinity of spacetime. We often use the shorthand notation Ẋ2 ≡
ẊµẊµ, where indices are lowered by the metric tensor gµν .

The action (1.1) is invariant with respect to transformations of space-
time coordinates xµ → x′µ = fµ(x) (diffeomorphisms) and with respect to
reparametrizations τ → f(τ). A consequence of the latter invariance is that
the equations of motion (1.2) are not all independent, since they satisfy the
identity

EµẊµ = 0 (1.4)

Therefore the system is under-determined: there are more variables Xµ

than available equations of motion.
From (1.1) we have

pµẊ
µ −m(ẊµẊµ)

1/2 = 0 (1.5)

or

H ≡ pµpµ −m2 = 0, (1.6)

where

pµ =
∂L

∂Ẋµ
=

mẊµ

(ẊνẊν)1/2
. (1.7)

This demonstrates that the canonical momenta pµ are not all independent,
but are subjected to the constraint (1.6). A general theory of constrained
systems is developed by Dirac [29]. An alternative formulation is owed to
Rund [30].

We see that the Hamiltonian for our system —which is a worldline in
spacetime— is zero. This is often interpreted as there being no evolution in
spacetime: worldlines are frozen and they exist ‘unchanged’ in spacetime.

Since our system is under-determined we are free to choose a relation
between the Xµ. In particular, we may choose X0 = τ , then the action
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(1.1) becomes a functional of the reduced number of variables1

I[X i] = m

∫
dτ(g00 + 2Ẋig0i + ẊiẊigij)

1/2. (1.8)

All the variables X i, i = 1, 2, 3, are now independent and they represent
motion of a point particle in 3-space. From the 3-dimensional point of
view the action (1.1) describes a dynamical system, whereas from the 4-
dimensional point of view there is no dynamics.

Although the reduced action (1.8) is good as far as dynamics is concerned,
it is not good from the point of view of the theory of relativity: it is not
manifestly covariant with respect to the coordinate transformations of xµ,
and in particular, with respect to Lorentz transformations.

There are several well known classically equivalent forms of the point
particle action. One of them is the second order or Howe–Tucker action
[31]

I[Xµ, λ] =
1

2

∫
dτ

(
ẊµẊµ

λ
+ λm2

)
(1.9)

which is a functional not only of the variables Xµ(τ) but also of λ which is
the Lagrange multiplier giving the relation

ẊµẊµ = λ2m2. (1.10)

Inserting (1.10) back into the Howe–Tucker action (1.9) we obtain the min-
imal length action (1.1). The canonical momentum is pµ = Ẋµ/λ so that
(1.10) gives the constraint (1.6).

Another action is the first order, or phase space action,

I[Xµ, pµ, λ] =

∫
dτ

(
pµẊ

µ − λ

2
(pµp

µ −m2)

)
(1.11)

which is also a functional of the canonical momenta pµ. Varying (1.11) with

respect to pµ we have the relation between pµ, Ẋµ, and λ:

pµ =
Ẋµ

λ
(1.12)

which, because of (1.10), is equivalent to (1.7).
The actions (1.9) and (1.11) are invariant under reparametrizations τ ′ =

f(τ), provided λ is assumed to transform according to λ′ = (dτ/dτ ′)λ.

1In flat spacetime we may have g00 = 1, grs = −δrs, and the action (1.8) takes the usual special

relativistic form I = m
∫
dτ

√
1− Ẋ

2
, where Ẋ ≡ Ẋi.
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The Hamiltonian corresponding to the action (1.9),

H = pµẊ
µ − L, (1.13)

is identically zero, and therefore it does not generate any genuine evolution
in τ .

Quantization of the theory goes along several possible lines [32]. Here let
me mention the Gupta–Bleuler quantization. Coordinates and momenta
become operators satisfying the commutation relations

[Xµ, pν ] = iδµν , [Xµ, Xν ] = 0 , [pµ, pν ] = 0. (1.14)

The constraint (1.6) is imposed on state vectors

(pµpµ −m2)|ψ〉 = 0. (1.15)

Representation of the operators is quite straightforward if spacetime is
flat, so we can use a coordinate system in which the metric tensor is ev-
erywhere of the Minkowski type, gµν = ηµν with signature (+ - - -). A
useful representation is that in which the coordinates xµ are diagonal and
pµ = −i∂µ, where ∂µ ≡ ∂/∂xµ. Then the constraint relation (1.15) becomes
the Klein–Gordon equation

(∂µ∂
µ +m2)ψ = 0. (1.16)

Interpretation of the wave function ψ(x) ≡ 〈x|ψ〉, x ≡ xµ, is not straight-
forward. It cannot be interpreted as the one particle probability amplitude.
Namely, if ψ is complex valued then to (1.16) there corresponds the non-
vanishing current

jµ =
i

2m
(ψ∗∂µψ − ψ∂µψ∗). (1.17)

The components jµ can all be positive or negative, and there is the problem
of which quantity then serves as the probability density. Conventionally the
problem is resolved by switching directly into the second quantized theory
and considering jµ as the charge–current operator. I shall not review in
this book the conventional relativistic quantum field theory, since I am
searching for an alternative approach, much better in my opinion, which
has actually already been proposed and considered in the literature [1]–[20]
under various names such as the Stueckelberg theory, the unconstrained
theory, the parametrized theory, etc. . In the rest of this chapter I shall
discuss various aspects of the unconstrained point particle theory.
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1.2. CLASSICAL THEORY

It had been early realized that instead of the action (1.1) one can use
the action

I[Xµ] =
1

2

∫
dτ
ẊµẊµ

Λ
, (1.18)

where Λ(τ) is a fixed function of τ , and can be a constant. The latter
action, since being quadratic in velocities, is much more suitable to manage,
especially in the quantized version of the theory.

There are two principal ways of interpreting (1.18).
Interpretation (a) We may consider (1.18) as a gauge fixed action (i.e.,

an action in which reparametrization of τ is fixed), equivalent to the con-
strained action (1.1).

Interpretation (b) Alternatively, we may consider (1.18) as an uncon-
strained action.

The equations of motion obtained by varying (1.18) with respect to Xµ

are

1

Λ

d

dτ

(
Ẋµ

Λ

)
+ Γµαβ

ẊαẊβ

Λ2
= 0. (1.19)

This can be rewritten as
√
Ẋ2

Λ2

d

dτ

(
Ẋµ

√
Ẋ2

)
+ Γµαβ

ẊαẊβ

Λ2
+

Ẋµ

√
Ẋ2

d

dτ

(√
Ẋ2

Λ

)
= 0. (1.20)

Multiplying the latter equation by Ẋµ, summing over µ and assuming Ẋ2 6=
0 we have √

Ẋ2

Λ

d

dτ

(√
Ẋ2

Λ

)
=

1

2

d

dτ

(
Ẋ2

Λ2

)
= 0. (1.21)

Inserting (1.21) into (1.20) we obtain that (1.19) is equivalent to the geode-
tic equation (1.1).

According to Interpretation (a) the parameter τ in (1.19) is not arbitrary,
but it satisfies eq. (1.21). In other words, eq. (1.21) is a gauge fixing equation
telling us the Ẋ2 = constant×Λ2, which means that (dXµdXµ)

1/2 ≡ ds =

constant×Λdτ , or, when Λ̇ = 0 that s = constant× τ ; the parameter τ is
thus proportional to the proper time s.

According to Interpretation (b) eq. (1.21) tells us that mass is a constant
of motion. Namely, the canonical momentum belonging to the action (1.18)
is

pµ =
∂L

∂Ẋµ
=
Ẋµ

Λ
(1.22)
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and its square is

pµpµ ≡M2 =
ẊµẊµ

Λ2
. (1.23)

From now on I shall assume Interpretation (b) and consider (1.18) as the
unconstrained action. It is very convenient to take Λ as a constant. Then
τ is just proportional to the proper time s; if Λ = 1, then it is the proper
time. However, instead of τ , we may use another parameter τ ′ = f(τ). In
terms of the new parameter the action (1.18) reads

1

2

∫
dτ ′

dXµ

dτ ′
dXµ

dτ ′
1

Λ′
= I ′[Xµ], (1.24)

where

Λ′ =
dτ

dτ ′
Λ. (1.25)

The form of the transformed action is the same as that of the ‘original’ ac-
tion (1.18): our unconstrained action is covariant under reparametrizations.
But it is not invariant under reparametrizations, since the transformed ac-
tion is a different functional of the variables Xµ than the original action.
The difference comes from Λ′, which, according to the assumed eq. (1.25),
does not transform as a scalar, but as a 1-dimensional vector field. The
latter vector field Λ(τ) is taken to be a fixed, background, field; it is not a
dynamical field in the action (1.18).

At this point it is important to stress that in a given parametrization the
“background” field Λ(τ) can be arbitrary in principle. If the parametriza-
tions changes then Λ(τ) also changes according to (1.25). This is in contrast
with the constrained action (1.9) where λ is a ‘dynamical’ field (actually
the Lagrange multiplier) giving the constraint (1.10). In eq. (1.10) λ is arbi-
trary, it can be freely chosen. This is intimately connected with the choice
of parametrization (gauge): choice of λ means choice of gauge. Any change
of λ automatically means change of gauge. On the contrary, in the action
(1.18) and in eq. (1.23), since M 2 is not prescribed but it is a constant of
motion, Λ(τ) is not automatically connected to choice of parametrization.
It does change under a reparametrization, but in a given, fixed parametriza-
tion (gauge), Λ(τ) can still be different in principle. This reflects that Λ
is assumed here to be a physical field associated to the particle. Later we
shall find out (as announced already in Introduction) that physically Λ is
a result either of (i) the “clock variable” sitting on the particle, or (ii) of
the scalar part of the velocity polyvector occurring in the Clifford algebra
generalization of the theory.

I shall call (1.18) the Stueckelberg action, since Stueckelberg was one of
the first protagonists of its usefulness. The Stueckelberg action is not invari-
ant under reparametrizations, therefore it does not imply any constraint.
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All Xµ are independent dynamical variables. The situation is quite anal-
ogous to the one of a non-relativistic particle in 3-space. The difference
is only in the number of dimensions and in the signature, otherwise the
mathematical expressions are the same. Analogously to the evolution in
3-space, we have, in the unconstrained theory, evolution in 4-space, and
τ is the evolution parameter. Similarly to 3-space, where a particle’s tra-
jectory is “built up” point by point while time proceeds, so in 4-space a
worldline is built up point by point (or event by event) while τ proceeds.
The Stueckelberg theory thus implies genuine dynamics in spacetime: a
particle is a point-like object not only from the 3-dimensional but also from
the 4-dimensional point of view, and it moves in spacetime.2

A trajectory in V4 has a status analogous that of the usual trajectory in
E3. The latter trajectory is not an existing object in E3; it is a mathematical
line obtained after having collected all the points in E3 through which the
particle has passed during its motion. The same is true for a moving particle
in V4. The unconstrained relativity is thus just a theory of relativistic
dynamics. In the conventional, constrained, relativity there is no dynamics
in V4; events in V4 are considered as frozen.

Non-relativistic limit. We have seen that the unconstrained equation
of motion (1.19) is equivalent to the equation of geodesic. The trajectory
of a point particle or “event” [6] moving in spacetime is a geodesic. In
this respect the unconstrained theory gives the same predictions as the
constrained theory. Now let us assume that spacetime is flat and that the
particle “spatial” speed Ẋr, r = 1, 2, 3 is small in comparison to its “time”
speed Ẋ0, i.e.,

ẊrẊr ¿ (Ẋ0)2. (1.26)

Then the constant of motion M =
√
ẊµẊµ/Λ (eq. (1.23)) is approximately

equal to the time component of 4-momentum:

M =

√
(Ẋ0)2 + ẊrẊr

Λ
≈ Ẋ0

Λ
≡ p0. (1.27)

Using (1.25) the action (1.18) becomes

I =
1

2

∫
dτ

∫ 

(
Ẋ0

Λ

)2

+
ẊrẊr

Λ


 ≈ 1

2

∫
dτ

[
M2 +

M

Ẋ0
ẊrẊr

]
(1.28)

2Later, we shall see that realistic particles obeying the usual electromagnetic interactions should
actually be modeled by time-like strings evolving in spacetime. But at the moment, in order to
set the concepts and develop the theory we work with the idealized, point-like objects or events

moving in spacetime.
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Since M is a constant the first term in (1.28) has no influence on the
equations of motion and can be omitted. So we have

I ≈ M

2

∫
dτ

ẊrẊr

Ẋ0
. (1.29)

which can be written as

I ≈ M

2

∫
dt

dXr

dt

dXr

dt
, t ≡ X0 (1.30)

This is the usual non-relativistic free particle action.
We see that the non-relativistic theory examines changes of the particle

coordinates Xr, r = 1, 2, 3, with respect to t ≡ X0. The fact that t is yet
another coordinate of the particle (and not an “evolution parameter”), that
the space is actually not three- but four-dimensional, and that t itself can
change during evolution is obscured in the non relativistic theory.

The constrained theory within the unconstrained theory. Let
us assume that the basic theory is the unconstrained theory3. A particle’s
mass is a constant of motion given in (1.23). Instead of (1.18), it is often
more convenient to introduce an arbitrary fixed constant κ and use the
action

I[Xµ] =
1

2

∫
dτ

(
ẊµẊµ

Λ
+ Λκ2

)
, (1.31)

which is equivalent to (1.18) since Λ(τ) can be written as a total derivative
and thus the second term in (1.31) has no influence on the equations of
motion for the variables Xµ. We see that (1.31) is analogous to the uncon-
strained action (1.9) except for the fact that Λ in (1.31) is not the Lagrange
multiplier.

Let us now choose a constant M = κ and write

ΛM =
√
ẊµẊµ. (1.32)

Inserting the latter expression into (1.31) we have

I[Xµ] =M

∫
dτ (ẊµẊµ)

1/2. (1.33)

This is just the constrained action (1.1), proportional to the length of parti-
cle’s trajectory (worldline) in V4. In other words, fixing or choosing a value

3Later we shall see that there are more fundamental theories which contain the unconstrained
theory formulated in this section.
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for the constant of motion M yields the theory which looks like the con-
strained theory. The fact that massM is actually not a prescribed constant,
but results dynamically as a constant of motion in an unconstrained theory
is obscured within the formalism of the constrained theory. This can be
shown also by considering the expression for the 4-momentum pµ = Ẋµ/Λ
(eq. (1.22)). Using (1.32) we find

pµ =
MẊµ

(ẊνẊν)1/2
, (1.34)

which is the expression for 4-momentum of the usual, constrained relativity.
For a chosen M it appears as if pµ are constrained to a mass shell:

pµpµ =M2 (1.35)

and are thus not independent. This is shown here to be just an illusion:
within the unconstrained relativity all 4 components pµ are independent,
and M2 can be arbitrary; which particular value of M 2 a given particle
possesses depends on its initial 4-velocity Ẋµ(0).

Now a question arises. If all Xµ are considered as independent dynam-
ical variables which evolve in τ , what is then the meaning of the equation
x0 = X0(τ)? If it is not a gauge fixing equation as it is in the constrained
relativity, what is it then? In order to understand this, one has to abandon
certain deep rooted concepts learned when studying the constrained relativ-
ity and to consider spacetime V4 as a higher-dimensional analog of the usual
3-space E3. A particle moves in V4 in the analogous way as it moves in E3.
In E3 all its three coordinates are independent variables; in V4 all its four
coordinates are independent variables. Motion along x0 is assumed here as
a physical fact. Just think about the well known observation that today
we experience a different value of xo from yesterday and from what we will
tomorrow. The quantity x0 is just a coordinate (a suitable number) given
by our calendar and our clock. The value of x0 was different yesterday, is
different today, and will be different tomorrow. But wait a minute! What
is ‘yesterday’, ‘today’ and ‘tomorrow’? Does it mean that we need some
additional parameter which is related to those concepts. Yes, indeed! The
additional parameter is just τ which we use in the unconstrained theory.
After thinking hard enough for a while about the fact that we experience
yesterday, today and tomorrow, we become gradually accustomed to the
idea of motion along x0. Once we are prepared to accept this idea intu-
itively we are ready to put it into a more precise mathematical formulation
of the theory, and in return we shall then get an even better intuitive un-
derstanding of ‘motion along x0’. In this book we will return several times
to this idea and formulate it at subsequently higher levels of sophistication.
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Point particle in an electromagnetic field. We have seen that a free
particle dynamics in V4 is given by the action (1.18) or by (1.31). There is
yet another, often very suitable, form, namely the phase space or the first
order action which is the unconstrained version of (1.11):

I[Xµ, pµ] =

∫
dτ

(
pµẊ

µ − Λ

2
(pµp

µ − κ2)
)
. (1.36)

Variation of the latter action with respect to Xµ and pµ gives:

δXµ : ṗµ = 0, (1.37)

δpµ : pµ =
Ẋµ

Λ
. (1.38)

We may add a total derivative term to (1.36):

I[Xµ, pµ] =

∫
dτ

(
pµẊ

µ − Λ

2
(pµp

µ − κ2) + dφ

dτ

)
(1.39)

where φ = φ(τ, x) so that dφ/dτ = ∂φ/∂τ + ∂µφ Ẋ
µ. The equations of

motion derived from (1.39) remain the same, since

δXµ :
d

dτ

∂L′

∂Ẋµ
− ∂L′

∂Xµ
=

d

dτ
(pµ + ∂µφ)− ∂µ∂νφ Ẋν − ∂

∂τ
∂µφ

= ṗµ = 0, (1.40)

δpµ : pµ =
Ẋµ

Λ
. (1.41)

But the canonical momentum is now different:

p′µ =
∂L

∂Ẋµ
= pµ + ∂µφ. (1.42)

The action (1.36) is not covariant under such a transformation (i.e., under
addition of the term dφ/dτ).

In order to obtain a covariant action we introduce compensating vector
and scalar fields Aµ, V which transform according to

eA′µ = eAµ + ∂µφ, (1.43)

eV ′ = eV +
∂φ

∂τ
, (1.44)

and define

I[Xµ, pµ] =

∫
dτ

(
pµẊ

µ − Λ

2
(πµπ

µ − κ2) + eV

)
, (1.45)
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where πµ ≡ pµ − eAµ is the kinetic momentum. If we add the term

dφ/dτ = ∂φ/∂τ + ∂µφ Ẋ
µ to the latter action we obtain

I[Xµ, pµ] =

∫
dτ

(
p′µẊ

µ − Λ

2
(πµπ

µ − κ2) + eV ′
)
, (1.46)

where p′µ = pµ + ∂µφ. The transformation (1.43) is called gauge trans-
formation, Aµ is a gauge field, identified with the electromagnetic field
potential, and e the electric charge. In addition we have also a scalar gauge
field V .

In eq. (1.45) Λ is a fixed function and there is no constraint. Only vari-
ations of pµ and Xµ are allowed to be performed. The resulting equations
of motion in flat spacetime are

π̇µ = eF µν Ẋ
ν + e

(
∂µV −

∂Aµ
∂τ

)
, (1.47)

πµ =
Ẋµ

Λ
, πµπµ =

ẊµẊµ

Λ2
, (1.48)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor.
All components pµ and πµ are independent. Multiplying (1.47) by πµ

(and summing over µ) we find

π̇µπµ = 1
2

d

dτ
(πµπµ) = e

(
∂µV −

∂Aµ
∂τ

)
Ẋµ

Λ
, (1.49)

where we have used FµνẊ
µẊν = 0. In general, V and Aµ depend on τ .

In a special case when they do not depend on τ , the right hand side of
eq. (1.49) becomes e∂µV Ẋ

µ = edV/dτ . Then eq. (1.49) implies

πµπµ
2
− eV = constant. (1.50)

In the last equation V depends on the spacetime point xµ. In particular, it
can be independent of xµ. Then eqs.(1.47), (1.49) become

π̇µ = eF µν Ẋ
ν , (1.51)

π̇µπµ = 1
2

d

dτ
(πµπµ) = 0. (1.52)

The last result implies

πµπµ = constant =M2. (1.53)
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We see that in such a particular case when ∂µV = 0 and ∂Aµ/∂τ = 0,
the square of the kinetic momentum is a constant of motion. As before,
let this this constant of motion be denoted M 2. It can be positive, zero
or negative. We restrict ourselves in this section to the case of bradyons
(M2 > 0) and leave a discussion of tachyons (M 2 < 0) to Sec. 13.1. By
using (1.53) and (1.48) we can rewrite the equation of motion (1.51) in the
form

1√
Ẋ2

d

dτ

(
Ẋµ

√
Ẋ2

)
=

e

M
Fµν

Ẋν

√
Ẋ2

. (1.54)

In eq. (1.54) we recognize the familiar Lorentz force law of motion for a
point particle in an electromagnetic field. A worldline which is a solution
to the usual equations of motion for a charged particle is also a solution to
the unconstrained equations of motion (1.51).

From (1.54) and the expression for the kinetic momentum

πµ =
M Ẋµ

(ẊαẊα)1/2
(1.55)

it is clear that, since mass M is a constant of motion, a particle cannot be
accelerated by the electromagnetic field beyond the speed of light. The lat-
ter speed is a limiting speed, at which the particle’s energy and momentum
become infinite.

On the contrary, when ∂µV 6= 0 and ∂Aµ/∂τ 6= 0 the right hand side of
eq. (1.49) is not zero and consequently πµπµ is not a constant of motion.

Then each of the components of the kinetic momentum πµ = Ẋµ/Λ could
be independently accelerated to arbitrary value; there would be no speed
limit. A particle’s trajectory in V4 could even turn backwards in x0, as
shown in Fig. 1.1. In other words, a particle would first overcome the speed
of light, acquire infinite speed and finally start traveling “backwards” in the
coordinate time x0. However, such a scenario is classically not possible by
the familiar electromagnetic force alone.

To sum up, we have formulated a classical unconstrained theory of a
point particle in the presence of a gravitational and electromagnetic field.
This theory encompasses the main requirements of the usual constrained
relativity. It is covariant under general coordinate transformations, and
locally under the Lorentz transformations. Mass normally remains con-
stant during the motion and particles cannot be accelerated faster than the
speed of light. However, the unconstrained theory goes beyond the usual
theory of relativity. In principle, the particle is not constrained to a mass
shell. It only appears to be constrained, since normally its mass does not
change; this is true even if the particle moves in a gravitational and/or
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Figure 1.1. A possible trajectory of a particle accelerated by an exotic 4-force fµ which
does not satisfy fµẊµ = 0.

electromagnetic field. Release of the mass shell constraint has far reaching
consequences for the quantization.

Before going to the quantized theory let us briefly mention that the
Hamiltonian belonging to the unconstrained action (1.31)

H = pµẊ
µ − L =

Λ

2
(pµpµ − κ2) (1.56)

is different from zero and it is the generator of the genuine τ -evolution.
As in the non-relativistic mechanics one can straightforwardly derive the
Hamilton equations of motion, Poisson brackets, etc.. We shall not proceed
here with such a development.
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1.3. FIRST QUANTIZATION

Quantization of the unconstrained relativistic particle is straightforward.
Coordinates Xµ and momenta pµ become operators satisfying

[xµ, pν ] = iδµν , [xµ, xν ] = 0 , [pµ, pν ] = 0, (1.57)

which replace the corresponding Poisson brackets of the classical uncon-
strained theory.

FLAT SPACETIME
Let us first consider the situation in flat spacetime. The operators xµ,

pµ act on the state vectors which are vectors in Hilbert space. For the basis
vectors we can choose |x′〉 which are eigenvectors of the operators xµ:

xµ|x′〉 = x′µ|x′〉. (1.58)

They are normalized according to

〈x′|x′′〉 = δ(x′ − x′′), (1.59)

where
δ(x′ − x′′) ≡ δ4(x′ − x′′) ≡

∏

µ

δ(x′µ − x′′µ).

The eigenvalues of xµ are spacetime coordinates. A generic vector |ψ〉 can
be expanded in terms of |x〉:

|ψ〉 =
∫
|x〉d〈x|ψ〉, (1.60)

where 〈x|ψ〉 ≡ ψ(x) is the wave function.
The matrix elements of the operators xµ in the coordinate representation

are
〈x′|xµ|x′′〉 = x′µ δ(x′ − x′′) = x′′µ δ(x′ − x′′). (1.61)

The matrix elements 〈x′|pµ|x′′〉 of the momentum operator pµ can be cal-
culated from the commutation relations (1.57):

〈x′|[xµ, pν ]|x′′〉 = (x′µ − x′′µ)〈x′|pν |x′′〉 = i δµν δ(x
′ − x′′). (1.62)

Using
(x′µ − x′′µ)∂α δ(x′ − x′′) = −δµα δ(x′ − x′′)

(a 4-dimensional analog of f(x)dδ(x)/dx = −(df(x)/dx) δ(x)) we have

〈x′|pµ|x′′〉 = −i ∂′µδ(x′ − x′′). (1.63)
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Alternatively,

〈x′|pµ|x′′〉 =

∫
〈x′|p′〉dp′〈p′|p|p′′〉dp′′〈p′′|x′′〉

=

∫ (
1

2π

)D/2
eip

′
µx

′µ
dp′δ(p′ − p′′)p′′ dp′′

(
1

2π

)D/2
e−ip

′′
µx

′′µ

=

(
1

2π

)D
dp′ dp′ eip

′
µ(x

′µ−x′′µ)

= −i ∂

∂x′
δ(x′ − x′′) (1.64)

This enables us to calculate

〈x′|pµ|ψ〉 =

∫
〈x′|pµ|x′′〉dx′′〈x′′|ψ〉 =

∫
−i ∂′µδ(x′ − x′′)dx′′ ψ(x′′)

=

∫
i∂′′µδ(x

′ − x′′)dx′′ψ(x′′)

= −
∫
i δ(x′ − x′′)dx′′∂′′µψ(x′′)

= −i ∂′µψ(x′) (1.65)

where dx′′ ≡ d4x′′ ≡ ∏µ dx
′′µ. The last equation can be rewritten as

pµψ(x) = −i ∂µψ(x) (1.66)

which implies that pµ acts as the differential operator −i∂µ on the wave
function.

We work in the Schrödinger picture in which operators are independent
of the evolution parameter τ , while the actual evolution is described by
a τ -dependent state vector |ψ〉. A state can be represented by the wave
function ψ(τ, xµ) which depends on four spacetime coordinates and the
evolution parameter τ .

The quantity ψ∗ψ is the probability density in spacetime. The probability
of finding a particle within a spacetime region Ω is

∫
d4xψ∗(τ, x)ψ(τ, x)

where the integration is performed in spacetime (and not in space).
A wave function is assumed to satisfy the evolution equation

i
∂ψ

∂τ
= Hψ , H =

Λ

2
(−i)2(∂µ∂µ − κ2), (1.67)

which is just the Schrödinger equation in spacetime.
For a constant Λ a general solution is a superposition

ψ(τ, x) =

∫
d4p c(p) exp

[
ipµx

µ − iΛ
2
(p2 − κ2)τ

]
, (1.68)
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where pµ are now the eigenvalues of the momentum operator. In general
(1.68) represents a particle with indefinite p2, that is with indefinite mass.
A wave packet (1.68) is localized in spacetime (Fig. 1.2a) and it moves in
spacetime as the parameter τ increases (see Fig. 1.2b).
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Figure 1.2. (a) Illustration of a wave packet which is localized in spacetime. (b) As the
parameter τ increases, position of the wave packet in spacetime is moving so that its
centre describes a world line.

The continuity equation which is admitted by the Schrödinger equation
(1.67) is

∂ρ

∂τ
+ ∂µJ

µ = 0, (1.69)

ρ ≡ ψ∗ψ ; Jµ ≡ − i
2
(ψ∗∂µψ − ψ∂µψ). (1.70)

The probability density ρ is positive by definition, whilst components of
the probability current Jµ (including the time-like component J0) can be
positive or negative. On the contrary, during the development of the con-
strained theory (without the parameter τ) J 0 had been expected to have
the meaning of the probability density in 3-space. The occurrence of neg-
ative J0 had been a nuisance; it was concluded that J0 could not be the
probability density but a charge density, and Jµ a charge current. In the
unconstrained, or parametrized theory, the probability density is ρ ≡ ψ∗ψ
and there is no problem with Jµ being the probability current. A wave
function which has positive J0 evolves into the future (as τ increases, the
time coordinate t ≡ x0 of the center of the wave packet also increases),
whilst a wave function with negative J0 evolves into the past (as τ in-
creases, t decreases). The sign of J0 thus distinguishes a particle from its
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antiparticle, as in the usual theory. Since particles and antiparticles have
different charges —the electric or any other charge— it is obvious that J 0

is proportional to a charge, and Jµ to a charge current.
We normalized the wave function in spacetime so that for arbitrary τ we

have ∫
d4xψ∗ψ = 1. (1.71)

Such a normalization is consistent with the continuity equation (1.70) and
consequently the evolution operator U ≡ exp[iHτ ] which brings ψ(τ) →
ψ(τ ′) = U ψ(τ) is unitary. The generator H of the unitary transformation
τ → τ + δτ is the Hamiltonian (1.56).

Instead of a function ψ(τ, x), we can consider its Fourier transform4

φ(µ, x) =

∫ ∞

−∞
dτ eiµ

2Λτ ψ(τ, x) =

∫
d4 p c(p) eipµx

µ
δ(p2 − κ2 − µ2) (1.72)

which, for a chosen value of µ, has definite mass p2 = M2 = κ2 + µ2.
A general function ψ(µ, x) solves the Klein-Gordon equation with mass
square κ2 + µ2:

∂µ∂
µφ+ (κ2 + µ2)φ = 0. (1.73)

Here κ2 is arbitrary fixed constant, while µ is a variable in the Fourier
transformed function φ(µ, x). Keeping κ2 in our equations is only a matter
of notation. We could have set κ2 = 0 in the action (1.31) and the Hamil-
tonian (1.56). Then the Fourier transform (1.72) would simply tell us that
mass is given by p2 = µ2.

If the limits of integration over τ in (1.72) are from −∞ to∞, we obtain
a wave function with definite mass. But if we take the limits from zero to
infinity, then instead of (1.72) we obtain

∆(µ, x) =

∫ ∞

0
dτ eiµ

2Λτ ψ(τ, x) = i

∫
d4p c(p)

exp[ipµx
µ]

p2 − κ2 − µ2 . (1.74)

For the choice c(p) = 1 the above equation becomes the well known Feyn-
man propagator.

Quantization can be performed also in terms of the Feynman path inte-
gral. By using (1.31) with fixed Λ we can calculate the transition amplitude
or propagator

K(τ, x; τ ′, x′) = 〈x, τ |x′, τ ′〉 =
∫
DX(τ) eiI[X(τ)]

4We assume here that the coefficient c(p) is suitably redefined so that it absorbs the constant
resulting from the integration over τ .
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=

(
1

2πiΛ (τ ′ − τ)

)D/2
exp

[
i

2Λ

(x′ − x)2
τ ′ − τ

]
, (1.75)

where D is the dimension of spacetime (D = 4 in our case). In performing
the above functional integration there is no need for ghosts. The latter
are necessary in a constrained theory in order to cancel out the unphysical
states related to reparametrizations. There are no unphysical states of such
a kind in the unconstrained theory.

In eq. (1.75)K(τ, x; τ ′, x′) is the probability amplitude to find the particle
in a spacetime point xµ at a value of the evolution parameter τ when it was
previously found in the point x′µ at τ ′. The propagator has also the role of
the Green’s function satisfying the equation

(
i
∂

∂τ
−H

)
K(τ, x; τ ′, x′) = δ(τ − τ ′)δD(x− x′). (1.76)

Instead of K(τ, x; τ ′, x′) we can use its Fourier transform

∆(µ, x− x′) =
∫

dτ eiµ
2ΛτK(τ, x; τ ′, x′), (1.77)

which is just (1.74) with c(p) = 1, xµ and τ being replaced by xµ−x′µ and
τ − τ ′, respectively.

CURVED SPACETIME
In order to take into account the gravitational field one has to consider

curved spacetime. Dynamical theory in curved spaces has been developed
by DeWitt [33]. Dimension and signature of the space has not been spec-
ified; it was only assumed that the metric is symmetric and nonsingular.
Therefore DeWitt’s theory holds also for a 4-dimensional spacetime, and its
flat space limit is identical to the unconstrained theory discussed in Secs.
1.2 and 1.4.

Coordinates xµ and momenta pµ are Hermitian operators satisfying the
commutation relations which are the same as those in flat spacetime (see
eq. (1.57)). Eigenvectors |x′〉 satisfy

xµ|x′〉 = x′µ|x′〉 (1.78)

and they form a complete eigenbasis. A state vector |ψ〉 can be expanded
in terms of |x′〉 as follows:

|ψ〉 =
∫
|x′〉

√
|g(x′)| dx′ 〈x′|ψ〉. (1.79)

The quantity 〈x′|ψ〉 ≡ ψ(τ, x′) is the wave function and |ψ|2
√
|g| dx′, dx′ ≡

dnx, is the probability that the coordinates of the system will be found in
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the volume
√
|g|dx′ in the neighborhood of the point x′ at the evolution

time τ . The probability to find the particle anywhere in spacetime is 1,
hence5 ∫ √

|g|dxψ∗(τ, x)ψ(τ, x) = 1. (1.80)

Multiplying (1.79) by 〈x′′| (that is projecting the state |ψ〉 into an eigenstate
〈x′′|) we have

〈x′′|ψ〉 = ψ(τ, x′′) =
∫
〈x′′|x′〉

√
|g(x′)|dx 〈x′|ψ〉. (1.81)

This requires the following normalization condition for the eigenvectors

〈x′|x′′〉 = δ(x′ − x′′)√
|g(x′)| =

δ(x′ − x′′)√
|g(x′′)| ≡ δ(x

′, x′′). (1.82)

From (1.82) we derive

∂′µδ(x
′, x′′) = −∂′′µδ(x′, x′′)−

1√
|g(x′′)| ∂

′′
µ

√
|g(x′′)| δ(x′, x′′), (1.83)

(x′µ − x′′µ)∂′αδ(x′, x′′) = −δµαδ(x′, x′′). (1.84)

We can now calculate the matrix elements 〈x′|pµ|x′′〉 according to

〈x′|[xµ, pν ]|x′′〉 = (x′µ − x′′µ)〈x′|pν |x′′〉 = iδµνδ(x
′, x′′). (1.85)

Using the identities (1.83), (1.84) we find

〈x′|pµ|x′′〉 = (−i∂′µ + Fµ(x
′)) δ(x′, x′′) (1.86)

where Fµ(x
′) is an arbitrary function. If we take into account the commu-

tation relations [pµ, pν ] = 0 and the Hermitian condition

〈x′|pµ|x′′〉 = 〈x′′|pµ|x′〉∗ (1.87)

we find that Fµ is not entirely arbitrary, but can be of the form

Fµ(x) = −i|g|−1/4 ∂µ|g|1/4. (1.88)

Therefore

pµψ(x
′) ≡ 〈x′|pµ|ψ〉 =

∫
〈x′|pµ|x′′〉

√
|g(x′′)| dx′′ 〈x′′|ψ〉

= −i(∂µ + |g|−1/4∂µ|g|1/4)ψ(x′) (1.89)

5We shall often omit the prime when it is clear that a symbol without a prime denotes the
eigenvalues of the corresponding operator.
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or
pµ = −i(∂µ + |g|−1/4∂µ|g|1/4) (1.90)

pµψ = −i|g|−1/4∂µ(|g|1/4ψ). (1.91)

The expectation value of the momentum operator is

〈pµ〉 =
∫
ψ∗(x′)

√
|g(x′)|dx′ 〈x′|pµ|x′′〉

√
|g(x′′)| dx′′ ψ(x′′)

= −i
∫ √
|g|dxψ∗(∂µ + |g|−1/4 ∂µ|g|1/4)ψ. (1.92)

Because of the Hermitian condition (1.87) the expectation value of pµ is
real. This can be also directly verified from (1.92):

〈pµ〉∗ = i

∫ √
|g| dxψ(∂µ + |g|−1/4 ∂µ|g|1/4)ψ∗

= −i
∫ √
|g| dxψ∗(∂µ + |g|−1/4 ∂µ|g|1/4)ψ

+ i

∫
dx ∂µ(

√
|g|ψ∗ψ). (1.93)

The surface term in (1.93) can be omitted and we find 〈pµ〉∗ = 〈pµ〉.
Point transformations In classical mechanics we can transform the

generalized coordinates according to

x′µ = x′µ(x). (1.94)

The conjugate momenta then transform as covariant components of a vec-
tor:

p′µ =
∂xν

∂x′µ
pν . (1.95)

The transformations (1.94), (1.95) preserve the canonical nature of xµ and
pµ, and define what is called a point transformation.

According to DeWitt, point transformations may also be defined in
quantum mechanics in an unambiguous manner. The quantum analog of
eq. (1.94) retains the same form. But in eq. (1.95) the right hand side has
to be symmetrized so as to make it Hermitian:

p′µ = 1
2

(
∂xν

∂x′µ
pν + pν

∂xν

∂x′µ

)
. (1.96)

Using the definition (1.90) we obtain by explicit calculation

p′µ = −i
(
∂′µ + |g′|−1/4 ∂′µ|g′|1/4

)
. (1.97)
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Expression (1.90) is therefore covariant under point transformations.
Quantum dynamical theory is based on the following postulate:
The temporal behavior of the operators representing the observables of a

physical system is determined by the unfolding-in-time of a unitary trans-
formation.

‘Time’ in the above postulate stands for the evolution time (the evolution
parameter τ). As in flat spacetime, the unitary transformation is

U = eiHτ (1.98)

where the generator of evolution is the Hamiltonian

H =
Λ

2
(pµpµ − κ2). (1.99)

We shall consider the case when Λ and the metric gµν are independent of
τ .

Instead of using the Heisenberg picture in which operators evolve, we can
use the Schrödinger picture in which the states evolve:

|ψ(τ)〉 = e−iHτ |ψ(0)〉. (1.100)

From (1.98) and (1.100) we have

i
∂|ψ〉
∂τ

= H|ψ〉 , i
∂ψ

∂τ
= Hψ, (1.101)

which is the Schrödinger equation. It governs the state or the wave function
defined over the entire spacetime.

In the expression (1.99) for the Hamiltonian there is an ordering ambigu-
ity in the definition of pµpµ = gµνp

µpν . Since pµ is a differential operator,
it matters at which place one puts gµν(x); the expression gµνp

µpν is not the
same as pµgµνp

ν or pµpνgµν .
Let us use the identity

|g|1/4pµ|g|−1/4 = −i ∂µ (1.102)

which follows immediately from the definition (1.90), and define

pµpνψ = |g|−1/2
(
|g|1/4pµ|g|−1/4

)
|g|1/2 gµν

(
|g|1/4pν |g|−1/4

)
ψ

= −|g|−1/2∂µ(|g|1/2gµν ∂νψ)

= −DµD
µψ, (1.103)
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where Dµ is covariant derivative with respect to the metric gµν . Expression
(1.103) is nothing but an ordering prescription: if one could neglect that
pµ and gµν (or |g|) do not commute, then the factors |g|−1/2, |g|1/4, etc., in
eq. (1.103) altogether would give 1.

One possible definition of the square of the momentum operator is thus

p2ψ = |g|−1/4pµgµν |g|1/2pν |g|−1/4ψ = −DµD
µψ. (1.104)

Another well known definition is

p2ψ = 1
4(pµpνg

µν + 2pµg
µνpν + gµνpµpν)ψ

= (−DµD
µ + 1

4R+ gµνΓαβµΓ
β
αν)ψ. (1.105)

Definitions (1.104), (1.105) can be combined according to

p2ψ = 1
6(2|g|−1/4pµgµν |g|1/2pν |g|−1/4 + pµpνg

µν + 2pµg
µνpν + gµνpµpν)ψ

= (−DµD
µ + 1

6R+ 2
3g
µνΓαβµΓ

β
αν)ψ. (1.106)

One can verify that the above definitions all give the Hermitian operators p2.
Other, presumably infinitely many, Hermitian combinations are possible.
Because of such an ordering ambiguity the quantum Hamiltonian

H =
Λ

2
p2 (1.107)

is undetermined up to the terms like (h̄2κ/2)(R+4gµνΓαβµΓ
β
αν), (with κ = 0,

1
4 ,

1
6 , etc., which disappear in the classical approximation where h̄→ 0).
The Schrödinger equation (1.101) admits the following continuity equa-

tion
∂ρ

∂τ
+Dµj

µ = 0 (1.108)

where ρ = ψ∗ψ and

jµ =
Λ

2
[ψ∗pµψ + (ψ∗pµψ)∗] = −iΛ

2
(ψ∗∂µψ − ψ ∂µψ∗). (1.109)

The stationary Schrödinger equation. If we take the ansatz

ψ = e−iEτφ(x), (1.110)

where E is a constant, then we obtain the stationary Schrödinger equation

Λ

2
(−DµD

µ − κ2)φ = Eφ, (1.111)
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which has the form of the Klein–Gordon equation in curved spacetime with
squared mass M2 = κ2 + 2E/Λ.

Let us derive the classical limit of eqs. (1.91) and (1.101). For this
purpose we rewrite those equations by including the Planck constant h̄6:

p̂µψ = −ih̄ |g|−1/4 ∂µ(|g|1/4ψ), (1.112)

Ĥψ = i h̄
∂ψ

∂τ
. (1.113)

For the wave function we take the expression

ψ = A(τ, x)exp

[
i

h̄
S(τ, x)

]
(1.114)

with real A and S.
Assuming (1.114) and taking the limit h̄→ 0, eq. (1.112) becomes

p̂µψ = ∂µS ψ. (1.115)

Inserting (1.114) into eq. (1.113), taking the limit h̄ → 0 and writing
separately the real and imaginary part of the equation, we obtain

− ∂S
∂τ

=
Λ

2
(∂µS∂

µS − κ2), (1.116)

∂A2

∂τ
+Dµ(A

2∂µS) = 0. (1.117)

Equation (1.116) is just the Hamilton–Jacobi equation of the classical
point particle theory in curved spacetime, where E = −∂S/∂τ is ”energy”
(the spacetime analog of the non-relativistic energy) and pµ = ∂µS the
classical momentum.

Equation (1.117) is the continuity equation, where ψ∗ψ = A2 is the
probability density and

A2∂µS = jµ (1.118)

is the probability current.

6Occasionally we use the hat sign over the symbol in order to distinguish operators from their
eigenvalues.
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The expectation value. If we calculate the expectation value of the
momentum operator pµ we face a problem, since the quantity 〈pµ〉 obtained
from (1.92) is not, in general, a vector in spacetime. Namely, if we insert
the expression (1.114) into eq. (1.92) we obtain

∫ √
|g|dxψ∗pµψ =

∫ √
|g|dxA2∂µS − i h̄

∫ √
|g|dx (A∂µA

+A2|g|−1/4∂µ|g|1/4

=

∫ √
|g|dxA2∂µS −

ih̄

2

∫
dx ∂µ(

√
|g|A2)

=

∫ √
|g|dxA2∂µS, (1.119)

where in the last step we have omitted the surface term.
If, in particular, we choose a wave packet localized around a classical

trajectory xµ = Xµ
c (τ), then for a certain period of τ (until the wave packet

spreads too much), the amplitude is approximately

A2 =
δ(x−Xc)√

|g| . (1.120)

Inserting (1.120) into (1.119) we have

〈pµ〉 = ∂µS|Xc
= pµ(τ) (1.121)

That is, the expectation value is equal to the classical momentum 4-vector
of the center of the wave packet.

But in general there is a problem. In the expression

〈pµ〉 =
∫ √
|g|dxA2∂µS (1.122)

we integrate a vector field over spacetime. Since one cannot covariantly
sum vectors at different points of spacetime, 〈pµ〉 is not a geometric object:
it does not transform as a 4-vector. The result of integration depends on
which coordinate system (parametrization) one chooses. It is true that
the expression (1.119) is covariant under the point transformations (1.94),
(1.96), but the expectation value is not a classical geometric object: it is
neither a vector nor a scalar.

One way to resolve the problem is in considering 〈pµ〉 as a generalized geo-
metric object which is a functional of parametrization. If the parametriza-
tion changes, then also 〈pµ〉 changes in a well defined manner. For the
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ansatz (1.114) we have

〈p′µ〉 =
∫ √
|g′| dx′A′2(x′) ∂′µS =

∫ √
|g| dxA2(x)

∂xν

∂x′µ
∂νS. (1.123)

The expectation value is thus a parametrization dependent generalized ge-
ometric object. The usual classical geometric object pµ is also parametriza-
tion dependent, since it transforms according to (1.95).

Product of operators.. Let us calculate the product of two operators.
We have

〈x|pµpν |ψ〉 =

∫
〈x|pµ|x′〉

√
|g(x′)|dx′〈x′|pν |ψ〉

=

∫
(−i)(∂µ + 1

2Γ
α
µα)

δ(x− x′)√
|g(x′)| (−i)∂

′
νψ
√
|g(x′)| dx′

= −∂µ∂νψ − 1
2Γ

α
µα∂νψ, (1.124)

where we have used the relation

1

|g|1/4 ∂µ|g|
1/4 =

1

2
√
|g| ∂µ

√
|g| = 1

2Γ
α
µα. (1.125)

Expression (1.124) is covariant with respect to point transformations, but
it is not a geometric object in the usual sense. If we contract (1.124)
by gµν we obtain gµν(−∂µ∂νψ − 1

2Γ
α
µα∂νψ) which is not a scalar under

reparametrizations (1.94). Moreover, as already mentioned, there is an
ordering ambiguity where to insert gµν .

FORMULATION IN TERMS OF A LOCAL LORENTZ
FRAME

Components pµ are projections of the vector p into basis vectors γµ of
a coordinate frame. A vector can be expanded as p = pνγ

ν and the
components are given by pµ = p · γµ (where the dot means the scalar
product7). Instead of a coordinate frame in which

γµ · γν = gµν (1.126)

we can use a local Lorentz frame γa(x) in which

γa · γb = ηab (1.127)

where ηab is the Minkowski tensor. The scalar product

γµ · γa = ea
µ (1.128)

7For a more complete treatment see the section on Clifford algebra.
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is the tetrad, or vierbein, field.
With the aid of the vierbein we may define the operators

pa =
1
2(ea

µpµ + pµea
µ) (1.129)

with matrix elements

〈x|pa|x′〉 = −i
(
ea
µ∂µ +

1

2
√
|g| ∂µ(

√
|g| eaµ)

)
δ(x, x′) (1.130)

and

〈x|pa|ψ〉 = −i
(
ea
µ∂µ +

1

2
√
|g| ∂µ(

√
|g| eaµ)

)
.ψ (1.131)

In the coordinate representation we thus have

pa = −i(eaµ∂µ + Γa), (1.132)

where

Γa ≡
1

2
√
|g| ∂µ(

√
|g| eaµ). (1.133)

One can easily verify that the operator pa is invariant under the point
transformations (1.95).

The expectation value

〈pa〉 =
∫

dx
√
|g|ψ∗paψ (1.134)

has some desirable properties. First of all, it is real, 〈pa〉∗ = 〈pa〉, which
reflects that pa is a Hermitian operator. Secondly, it is invariant under
coordinate transformations (i.e., it transforms as a scalar).

On the other hand, since pa depends on a chosen local Lorentz frame,
the integral 〈pa〉 is a functional of the frame field ea

µ(x). In other words,
the expectation value is an object which is defined with respect to a chosen
local Lorentz frame field.

In flat spacetime we can choose a constant frame field γa, and the com-
ponents ea

µ(x) are then the transformation coefficients into a curved coor-
dinate system. Eq. (1.134) then means that after having started from the
momentum pµ in arbitrary coordinates, we have calculated its expectation
value in a Lorentz frame. Instead of a constant frame field γa, we can choose
an x-dependent frame field γa(x); the expectation value of momentum will
then be different from the one calculated with respect to the constant frame
field. In curved spacetime there is no constant frame field. First one has
to choose a frame field γa(x), then define components pa(x) in this frame
field, and finally calculate the expectation value 〈pa〉.
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Let us now again consider the ansatz (1.114) for the wave function. For
the latter ansatz we have

〈pa〉 =
∫

dx
√
|g|A2 ea

µ∂µS, (1.135)

where the term with total divergence has been omitted. If the wave packet
is localized around a classical world lineXc(τ), so that for a certain τ -period
A2 = δ(x−Xc)/

√
|g| is a sufficiently good approximation, eq. (1.135) gives

〈p̂a〉 = ea
µ ∂µS|Xc(τ)

= pa(τ), (1.136)

where pa(τ) is the classical momentum along the world line Xµ
c in a local

Lorentz frame.
Now we may contract (1.136) by eaµ and we obtain pµ(τ) ≡ eaµpa(τ),

which are components of momentum along Xµ
c in a coordinate frame.

Product of operators. The product of operators in a local Lorentz
frame is given by

〈x|papb|ψ〉 =

∫
〈x|pa|x′〉

√
|g(x′)|dx′〈x′|pb|ψ〉

=

∫
(−i) (eaµ(x)∂µ + Γa(x))

δ(x− x′)√
|g(x′)|

√
|g(x′)|dx′

×(−i) (ebν(x′)∂′ν + Γa(x
′)
)
ψ(x′)

= −(eaµ∂µ + Γa)(eb
ν∂ν + Γb)ψ = papbψ. (1.137)

This can then be mapped into the coordinate frame:

eaαe
b
βpapbψ = −eqαebβ(eµa∂µ + Γa)(e

ν
b∂ν + Γb)ψ. (1.138)

At this point let us use

∂µe
a
ν − Γλµνe

a
λ + ωabµe

b
ν = 0, (1.139)

from which we have
ωabµ = eaνebν;µ (1.140)

and

Γa ≡ 1
2

1√
|g| ∂µ(

√
|g| eaµ) = 1

2ea
µ
;µ = 1

2ωca
µecµ. (1.141)

Here
eaν;µ ≡ ∂µeaν − Γλµνe

a
λ (1.142)
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is the covariant derivative of the vierbein with respect to the metric.
The relation (1.139) is a consequence of the relation which tells us how

the frame field γa(x) changes with position:

∂µγa = ωabµγ
b. (1.143)

It is illustrative to calculate the product (1.138) first in flat spacetime.
Then one can always choose a constant frame field, so that ωabµ = 0. Then
eq. (1.138) becomes

eaαe
b
βpapbψ = −ebβ∂α(ebν∂νψ) = −∂α∂βψ+Γναβ∂νψ = −DαDβψ, (1.144)

where we have used

ebβeb
ν = δb

ν , ebβ,αeb
ν = −ebβebν,α, (1.145)

and the expression for the affinity

Γµαβ = eaµeaα,β (1.146)

which holds in flat spacetime where

eaµ,ν − eaν,µ = 0. (1.147)

We see that the product of operators is just the product of the covariant
derivatives.

Let us now return to curved spacetime and consider the expression (1.138).
After expansion we obtain

−eaαebβpapbψ = DαDβψ + ωabαeaβeb
ν∂νψ + 1

2e
c
µωca

µ(eaα∂βψ + eaβ∂αψ)

+1
2e
a
βe
c
µωca

µ
;αψ − 1

2e
a
βe
b
µωca

µωcbαψ

+1
4e
a
αe
b
βe
c
µe
d
νωca

µωdb
ν ψ. (1.148)

This is not a Hermitian operator. In order to obtain a Hermitian operator
one has to take a suitable symmetrized combination.

The expression (1.148) simplifies significantly if we contract it by gαβ

and use the relation (see Sec. 6.1) for more details)

R = ea
µeb

ν(ωabν;µ − ωabµ;ν + ωacµωc
b
ν − ωacνωcbµ). (1.149)

We obtain
−gαβeaαebβpapbψ = −ηabpapbψ = −papaψ
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=
(
DαD

α − 1
4R− 1

4e
aµebνωca

νωcbµ
)

(1.150)

which is a Hermitian operator. If one tries another possible Hermitian
combination,

1
4

(
eaµpae

bµpb + ebµpae
a
µpb + pae

a
µpbe

bµ + pae
bµpbe

a
µ

)
, (1.151)

one finds, using [pa, e
bµ] = −ieaν∂νebµ, that it is equal to ηabpapb since the

extra terms cancel out.

1.4. SECOND QUANTIZATION

In the first quantized theory we arrived at the Lorentz invariant Schrödin-
ger equation. Now, following refs. [8]–[17], [19, 20] we shall treat the wave
function ψ(τ, xµ) as a field and the Schrödinger equation as a field equation
which can be derived from an action. First, we shall consider the classical
field theory, and then the quantized field theory of ψ(τ, xµ). We shall
construct a Hamiltonian and find out that the equation of motion is just
the Heisenberg equation. Commutation relations for our field ψ and its
conjugate canonical momentum iψ† are defined in a straightforward way
and are not quite the same as in the conventional relativistic field theory.
The norm of our states is thus preserved, although the states are localized
in spacetime. Finally, we point out that for the states with definite masses
the expectation value of the energy–momentum and the charge operator
coincide with the corresponding expectation values of the conventional field
theory. We then compare the new theory with the conventional one.

CLASSICAL FIELD THEORY WITH INVARIANT
EVOLUTION PARAMETER

The wave function ψ in the Schrödinger equation (1.67) can be consid-
ered as a field derived from the following action

I[ψ] =

∫
dτ dDx

(
iψ∗

∂ψ

∂τ
− Λ

2
(∂µψ

∗∂µψ − κ2ψ∗ψ)
)
, (1.152)

where the Lagrangian density L depends also on the τ -derivatives. By
using the standard techniques of field theory (see, e.g., [34]) we may vary
the action (1.152) and the boundaries of the region of integration R:

δI =

∫

R
dτ dDx δL+

∫

R−R′
dτ dDxL

=

∫

R
dτ dDx δL+

∫

B
dτdΣµ Lδxµ +

∫
dDxLδτ

∣∣∣∣∣

τ2

τ1

. (1.153)
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Here dΣµ is an element of a (D − 1)-dimensional closed hypersurface B in
spacetime. If we assume that the equations of motion are satisfied then the
change of the action is

δI =

∫
dτ dDx

[
∂µ

(
∂L
∂∂µψ

δψ +
∂L

∂∂µψ∗
δψ∗ + Lδxµ

)

+
∂

∂τ

(
∂L

∂∂ψ/∂τ
δψ +

∂L
∂∂ψ∗/∂τ

δψ∗ + Lδτ
)]
, (1.154)

where δψ ≡ ψ′(τ, x)−ψ(τ, x) is the variation of the field at fixed τ and xµ.
By introducing the total variation

δ̄ψ ≡ ψ′(τ ′, x′)− ψ(τ, x) = δψ + ∂µψδx
µ +

∂ψ

∂τ
δτ (1.155)

eq. (1.154) becomes8 [16]

δI =

∫
dτ dDx

[
∂µ

(
∂L
∂∂µψ

δ̄ψ +
∂L

∂∂µψ∗
δ̄ψ∗ + Tµνδx

ν + Tµτδτ

)

+
∂

∂τ

(
∂L

∂∂ψ/∂τ
δ̄ψ +

∂L
∂∂ψ∗/∂τ

δ̄ψ∗ +Θµδx
µ +Θδτ

)]
,

(1.156)

where

Θ ≡ L− ∂L
∂∂ψ/τ

∂ψ

∂τ
− ∂L
∂∂ψ∗/τ

∂ψ∗

∂τ
=

Λ

2
(∂µψ

∗∂µψ − κ2ψ∗ψ), (1.157)

Θµ ≡ − ∂L
∂∂ψ/∂τ

∂µψ −
∂L

∂∂ψ∗/∂τ
∂µψ

∗ = −iψ∗∂µψ, (1.158)

Tµτ ≡ − ∂L
∂∂µψ

∂ψ

∂τ
− ∂L
∂∂µψ∗

∂ψ∗

∂τ
=

Λ

2

(
∂µψ∗

∂ψ

∂τ
+ ∂µψ

∂ψ∗

∂τ

)
, (1.159)

Tµν ≡ Lδµν −
∂L
∂∂µψ

∂νψ −
∂L

∂∂µψ∗
∂νψ

∗

=

[
iψ∗

∂ψ

∂τ
− Λ

2
(∂αψ

∗∂αψ − κ2ψ∗ψ)
]
δµν

+
Λ

2
(∂µψ∗ ∂νψ + ∂µψ ∂νψ

∗). (1.160)

8J. R. Fanchi [10] considered only the terms Tµν and Tµτ , but he omitted the terms Θ and Θµ.
R. Kubo [13] considered also Θ, but he ommitted Θµ.
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Besides the usual stress–energy tensor T µν we obtain the additional terms
due to the presence of the τ -term in the action (1.152). The quantities Θ,
Θµ, T

µ
τ are generalizations of T µν .

A very important aspect of this parametrized field theory is that the
generator of τ evolution, or the Hamiltonian, is

H =

∫
dDxΘ = −Λ

2

∫
dDx(∂µψ

∗∂µψ − κ2ψ∗ψ) (1.161)

and the generator of spacetime translations is

Hµ =

∫
dDxΘµ = −i

∫
dDxψ∗∂µψ. (1.162)

This can be straightforwardly verified. Let us take into account that the
canonically conjugate variables are

ψ , Π =
∂L

∂∂ψ/∂τ
= iψ∗, (1.163)

and they satisfy the following equal τ Poisson bracket relations

{ψ(τ, x),Π(τ ′, x′)}|τ ′=τ = δ(x− x′), (1.164)

or
{ψ(τ, x), ψ∗}|τ ′=τ = −i δ(x− x′), (1.165)

and
{ψ(τ, x), ψ}|τ ′=τ = 0 , {ψ∗(τ, x), ψ∗}|τ ′=τ = 0. (1.166)

Let us consider the case δ̄ψ = δ̄ψ∗ = 0 and assume that the action does
not change under variations δxν and δτ . Then from (1.156) we obtain the
following conservation law:

∮
dΣµ(T

µ
νδx

ν + Tµτδτ) +
∂

∂τ

∫
dDx (Θµδx

µ +Θδτ) = 0. (1.167)

In general ψ(τ, x) has indefinite mass and is localized in spacetime.
Therefore the boundary term in eq. (1.167) vanishes and we find that the
generator

G(τ) =

∫
dDx(Θµδx

µ +Θδτ) (1.168)

is conserved at all values of τ (see Fig. 1.3a).
In particular ψ(τ, x) may have definite mass M , and then from (1.157–

1.159) we have

∂Θ/∂τ = 0, iψ∗∂ψ/∂τ + κ2ψ∗ψ =M2ψ∗ψ, Tµτ = 0, ∂Θµ/∂τ = 0
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and the conservation law (1.167) becomes in this particular case

∮
dΣµ T

µ
ν δx

ν = 0, (1.169)

which means that the generator

G(Σ) =

∫
dΣµ T

µ
νδx

ν (1.170)

is conserved at all space-like hypersurfaces Σ (Fig. 1.3b). The latter case
just corresponds to the conventional field theory.

-
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Figure 1.3. A field ψ(τ, x) is localized within a spacetime region Ω. The field at the
boundaries Σ1 and Σ2 (which may be at infinity) is zero (a). A field ψ which has definite
mass can be localized only in space but not in time (b).

Variation of an arbitrary functional A[ψ(x),Π(x)] is given by G(τ) and
can be expressed in terms of the Poisson bracket

δA = {A,G(τ)}. (1.171)

The Poisson bracket is defined according to

{A[ψ(x′),Π(x′)], B[ψ(x),Π(x)]}

=

∫
dDx′′

(
δA

δψ(x′′)
δB

δΠ(x′′)
− δB

δψ(x′′)
δA

δΠ(x′′)

)
, (1.172)



The spinless point particle 35

where δ/δψ(x′′), δ/δΠ(x′′) are functional derivatives.
If in eq. (1.171) we put A = ψ and take into account eq. (1.155) with

δ̄ψ = 0, we obtain
∂ψ

∂τ
= −{ψ,H}, (1.173)

∂µψ = −{ψ,Hµ}. (1.174)

Eq.(1.173) is equivalent to the Schrödinger equation (1.67).
A generic field ψ which satisfies the Schrödinger equation (1.67) can be

written as a superposition of the states with definite pµ:

ψ(τ, x) =

∫
dDp c(p) exp [ipµx

µ] exp

[
−iΛ

2
(p2 − κ2)τ

]
. (1.175)

Using (1.175) we have

H = − Λ

2

∫
dDp (p2 − κ2)c∗(p)c(p), (1.176)

Hµ =

∫
dDp pµ c

∗(p)c(p). (1.177)

On the other hand, from the spacetime stress–energy tensor (1.160) we
find the total energy–momentum

Pµ =

∫
dΣνT

µν . (1.178)

It is not the generator of spacetime translations. Use of P µ as generator
of spacetime translations results in all conceptual and technical complica-
tions (including the lack of manifest Lorentz covariance) of the conventional
relativistic field theory.

THE CANONICAL QUANTIZATION
Quantization of the parametrized field theory is straightforward. The

field ψ(τ, x) and its canonically conjugate momentum Π = iψ†(τ, x) become
operators satisfying the following equal τ commutation relations9 :

[ψ(τ, x),Π(τ ′, x′)]|τ ′=τ = iδ(x− x′), (1.179)

9Enatsu [8] has found that the commutation relation (1.180) is equivalent to that of the con-
ventional, on shell, quantum field theory, provided that ε(x − x′)ε(τ − τ ′) = 1. However, since
xµ and τ are independent, the latter relation is not satisfied in general, and the commutation
relation (1.180) is not equivalent to the usual on shell commutation relation. And yet, as far
as the expectation values of certain operators are concerned, such as the energy–momentum are
concerned, the predictions of both theories are the same; and this is all that matters.



36 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

or

[ψ(τ, x), ψ†(τ ′, x′)]|τ ′=τ = δ(x− x′), (1.180)

and

[ψ(τ, x), ψ(τ ′, x′]|τ ′=τ = [ψ†(τ, x), ψ†(τ ′, x′)]|τ ′=τ = 0. (1.181)

In momentum space the above commutation relations read

[c(p), c†(p′)] = δ(p− p′), (1.182)

[c(p), c(p′)] = [c†(p), c†(p′)] = 0. (1.183)

The general commutator (for τ ′ 6= τ) is:

[ψ(τ, x), ψ†(τ ′, x′)] =
∫

dDp eipµ(x
µ−x′µ) e−

Λ
2
(p2−κ2)(τ−τ ′). (1.184)

The operators ψ†(τ, x) and ψ(τ, x) are creation and annihilation opera-
tors, respectively. The vacuum is defined as a state which satisfies

ψ(τ, x)|0〉 = 0. (1.185)

If we act on the vacuum by ψ†(τ, x) we obtain a single particle state with
definite position:

ψ†(τ, x)|0〉 = |x, τ〉. (1.186)

An arbitrary 1-particle state is a superposition

|Ψ(1)〉 =
∫

dx f(τ, x)ψ†(τ, x)|0〉, (1.187)

where f(τ, x) is the wave function.
A 2-particle state with one particle at x1 and another at x2 is obtained

by applying the creation operator twice:

ψ†(τ, x1)ψ
†(τ, x2)|0〉 = |x1, x2, τ〉. (1.188)

In general

ψ†(τ, x1)...ψ
†(τ, xn)|0〉 = |x1, ..., xn, τ〉, (1.189)

and an arbitrary n-particle state is the superposition

|Ψ(n)〉 =
∫

dx1...dxn f(τ, x1, ..., xn)ψ
†(τ, x1)...ψ

†(τ, xn)|0〉, (1.190)
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where f(τ, x1, ..., xn) is the wave function the n particles are spread with.
In momentum space the corresponding equations are

c(p)|0〉 = 0, (1.191)

c†(p)|0〉 = |p〉, (1.192)

c†(p1)...c
†(pn)|0〉 = |p1, ..., pn〉, (1.193)

|Ψ(n)〉 =
∫

dp1...dpn g(τ, p1, ..., pn) c
†(p1)...c

†(pn)|0〉 (1.194)

The most general state is a superposition of the states |Ψ(n)〉 with definite
numbers of particles.

According to the commutation relations (1.180)–(1.183) the states
|x1, ..., xn〉 and |p1, ..., pn〉 satisfy

〈x1, ..., xn|x′1, ..., x′n〉 = δ(x1 − x′1)...δ(xn − x′n), (1.195)

〈p1, ..., pn|p′1, ..., p′n〉 = δ(p1 − p′1)...δ(pn − p′n), (1.196)

which assures that the norm of an arbitrary state |Ψ〉 is always positive.
We see that the formulation of the unconstrained relativistic quantum

field theory goes along the same lines as the well known second quantization
of a non-relativistic particle. Instead of the 3-dimensional space we have
now a D-dimensional space whose signature is arbitrary. In particular, we
may take a 4-dimensional space with Minkowski signature and identify it
with spacetime.

THE HAMILTONIAN AND THE GENERATOR OF
SPACETIME TRANSLATIONS

The generator G(τ) defined in (1.168) is now an operator. An infinites-
imal change of an arbitrary operator A is given by the commutator

δA = − i[A,G(τ)], (1.197)

which is the quantum analog of eq. (1.171). If we take A = ψ, then
eq. (1.197) becomes

∂ψ

∂τ
= i[ψ,H], (1.198)
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∂ψ

∂xµ
= i[ψ,Hµ], (1.199)

where

H =

∫
dDxΘ = −Λ

2

∫
dDx(∂µψ

†∂µψ − κ2ψ†ψ), (1.200)

Hµ =

∫
dDxΘµ = −i

∫
dDxψ†∂µψ. (1.201)

Using the commutation relations (1.179)–(1.181) we find that eq. (1.198)
is equivalent to the field equation (1.67) (the Schrödinger equation). Eq.
(1.198) is thus the Heisenberg equation for the field operator ψ. We also
find that eq. (1.199) gives just the identity ∂µψ = ∂µψ.

In momentum representation the field operators are expressed in terms
of the operators c(p), c†(p) according to eq. (1.175) and we have

H = − Λ

2

∫
dDp (p2 − κ2)c†(p)c(p), (1.202)

Hµ =

∫
dDp pµc

†(p)c(p). (1.203)

The operator H is the Hamiltonian and it generates the τ -evolution,
whereas Hµ is the generator of spacetime translations. In particular, H0

generates translations along the axis x0 and can be either positive or neg-
ative definite.

ENERGY–MOMENTUM OPERATOR

Let us now consider the generator G(Σ) defined in eq. (1.170) with T µν
given in eq. (1.160) in which the classical fields ψ, ψ∗ are now replaced by
the operators ψ, ψ†. The total energy–momentum Pν of the field is given
by the integration of T µν over a space-like hypersurface:

Pν =

∫
dΣµ T

µ
ν . (1.204)

Instead of Pν defined in (1.204) it is convenient to introduce

P̃ν =

∫
ds Pν , (1.205)

where ds is a distance element along the direction nµ which is orthogonal
to the hypersurface element dΣµ. The latter can be written as dΣµ =

nµdΣ. Using dsdΣ = dDx and integrating out xµ in (1.205) we find that
τ -dependence disappears and we obtain (see Box 1.1)

P̃ν =

∫
dDp

Λ

2
(nµp

µ) pν(c
†(p)c(p) + c(p)c†(p)). (1.206)



The spinless point particle 39

Box 1.1
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G(Σ) =
∫
dΣµ dτ T

µ
ν δx

ν

δxµ = ξµδs , ξµ a vector along δxµ-direction

dΣµ = nµdΣ , nµ a vector along dΣµ-direction

P (n, ξ) =
∫
dΣdτ Tµν nµξ

ν

integrate over ds and divide by s2 − s1

P (n, ξ) = lim
s1,2→−∞,∞

1

s2 − s1

∫ s2

s1
dΣds dτ T µν nµξ

ν

dΣds = dDx

P (n, ξ) = lim
s1,2→−∞,∞

τ1−τ2
s1−s2

∫ s2

s1
dDp

Λ

2
(nµp

µ) pνξ
ν
(
c†(p)c(p) + c(p)c†(p)

)

Λ = ∆s
∆τ

1√
p2

when mass is definite

P (n, ξ) = 1
2

∫
dDp ε(np) pνξ

ν
(
c†(p)c(p) + c(p)c†(p)

)

When ξν is time-like P (n, ξ) is projection of energy, when
ξν is space-like P (n, ξ) is projection of momentum on ξν
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From (1.206) we have that the projection of P̃ν on a time-like vector nν

is always positive, while the projection on a space-like vector N ν can be
positive or negative, depending on signs of pµn

µ and pµN
µ. In a special

reference frame in which nν = (1, 0, 0, ..., 0) this means that P0 is always
positive, whereas Pr, r = 1, 2, ..., D−1, can be positive or negative definite.

What is the effect of the generator P̃νδx
ν on a field ψ(τ, x). From

(1.197), (1.206) we have

δψ = −i[ψ, P̃ν ]δxν (1.207)

= −i
∫

dDpΛ(nµp
µ)c(p)exp [ipµx

µ] exp

[
− iΛ

2
(p2 − κ2)τ

]
pνδx

ν

Acting on a Fourier component of ψ with definite pµp
µ = M2 the gene-

rator P̃νδx
ν gives

δφ = −i[φ, P̃ν ]δxν = −i
∫

dDpΛMε(np)c(p)eipµx
µ
δ(p2 −M2)pνδx

ν

= − ∂νφ(+)δxν + ∂νφ
(−)δxν , (1.208)

ε(np) ≡ nµpµ√
|p2| =

{
+1 , nµpµ > 0
−1 , nµpµ < 0

(1.209)

where

φ(x) =

∫ ∞

−∞
dτ eiµτ ψ(τ, x)

=

∫ ∞

p0=−∞
dDp δ(p2 −M2)c(p)eipµx

µ

=

∫ ∞

p0=0
dDp δ(p2 −M2)c(p)eipµx

µ

+

∫ 0

p0=−∞
dDp δ(p2 −M2)c(p)eipµx

µ

= φ(+) + φ(−) (1.210)

As in Sec. 1.3. we identify µ2 + κ2 ≡M2.
We see that the action of P̃νδx

ν on φ differs from the action of Hνδx
ν .

The difference is in the step function ε(np). When acting on φ(+) the

generator P̃νδx
ν gives the same result as Hνδx

ν . On the contrary, when
acting on φ(−) it gives the opposite sign. This demonstrates that P̃νδx

ν
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does not generate translations and Lorentz transformations in Minkowski
space MD. This is a consequence of the fact that P0 is always positive
definite.

PHASE TRANSFORMATIONS AND THE CHARGE
OPERATOR

Let us now consider the case when the field is varied at the boundary,
while δxµ and δτ are kept zero. Let the field transform according to

ψ′ = eiαψ , δψ = iαψ , δψ† = −iαψ†. (1.211)

Eq. (1.156) then reads

δI =

∮
dτ dΣµ

(
− iΛα

2

)
(∂µψ†ψ − ∂µψ ψ†) +

∫
dDx (−α)ψ†ψ

∣∣∣∣∣

τ2

τ1

(1.212)

Introducing the charge density

ρc = −αψ†ψ (1.213)

and the charge current density

jµc = − iΛα
2

(∂µψ†ψ − ∂µψ ψ†), (1.214)

and assuming that the action is invariant under the phase transformations
(1.211) we obtain from (1.212) the following conservation law:

∮
dΣµ j

µ
c +

d

dτ

∫
dDx ρc = 0, (1.215)

or

∂µj
µ
c +

∂ρc
∂τ

= 0. (1.216)

In general, when the field has indefinite mass it is localized in spacetime
and the surface term in (1.215) vanishes. So we have that the generator

C = −
∫

dDx ρc (1.217)

is conserved at all τ -values.
In particular, when ψ has definite mass, then ψ†ψ is independent of

τ and the conservation of C is trivial. Since ψ is not localized along a
time-like direction the current density jµc does not vanish at the space-
like hypersurface even if taken at infinity. It does vanish, however, at a
sufficiently far away time-like hypersurface. Therefore the generator

Q =

∫
dΣµj

µ
c (1.218)
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is conserved at all space-like hypersufaces. The quantity Q corresponds to
the charge operator of the usual field theory. However, it is not generator
of the phase transformations (1.211).

By using the field expansion (1.175) we find

C = −α
∫

dDp c†(p)c(p). (1.219)

From
δψ = −i[ψ,C] (1.220)

and the commutation relations (1.179)–(1.183) we have

δψ = iαψ , δψ† = −iαψ†, (1.221)

δc(p) = iαc(p) , δc†(p) = −iαc†(p), (1.222)

which are indeed the phase transformations (1.211). Therefore C is the
generator of phase transformations.

On the other hand, from δψ = −i[ψ,Q] we do not obtain the phase
transformations. But we obtain from Q something which is very close
to the phase transformations, if we proceed as follows. Instead of Q we
introduce

Q̃ =

∫
dsQ, (1.223)

where ds is an infinitesimal interval along a time-like direction nµ orthogo-
nal to dΣµ = nµdΣ. Using dsdΣ = dDx and integrating out xµ eq. (1.223)
becomes

Q̃ =

∫ (
−αΛ

2

)
dp (pµnµ)(c

†(p)c(p) + c(p)c†(p)). (1.224)

The generator Q̃ then gives

δψ = −i[ψ, Q̃] =

∫
iαΛdDp (pνnν)c(p)exp [ipµx

µ] exp

[
− iΛ

2
(p2 − κ2)τ

]
.

(1.225)
For a Fourier component with definite pµp

µ we have

δφ = −i[φ, Q̃] =

∫
dDp iαΛmε(np)c(p) eipµx

µ
δ(p2 −M2)

= iαφ(+) − iαφ(−) (1.226)

where ε(np) and φ(+), φ(−) are defined in (1.209) and (1.210), respectively.



The spinless point particle 43

Action of operators on states. From the commutation relations (1.180)–
(1.180) one finds that when the operators c†(p) and c(p) act on the eigen-

states of the operators H, Hµ, P̃µ, C, Q̃ they increase and decrease, re-
spectively, the corresponding eigenvalues. For instance, if Hµ|Ψ〉 = pµ|Ψ〉
then

Hµc
†(p′)|Ψ〉 = (pµ + p′µ)|Ψ〉, (1.227)

Hµc(p
′)|Ψ〉 = (pµ − p′µ)|Ψ〉, (1.228)

and similarly for other operators.

THE EXPECTATION VALUES OF THE OPERATORS

Our parametrized field theory is just a straightforward generalization
of the non-relativistic field theory in E3. Instead of the 3-dimensional Eu-
clidean space E3 we have now the 4-dimensional Minkowski spaceM4 (or its
D-dimensional generalization). Mathematically the theories are equivalent
(apart from the dimensions and signatures of the corresponding spaces). A
good exposition of the unconstrained field theory is given in ref. [35]

A state |Ψn〉 of n identical free particles can be given in terms of the
generalized wave packet profiles g(n)(p1, ..., pn) and the generalized state
vectors |p1, ..., pn〉:

|Ψn〉 =
∫

dp1...dpn g
(n)(p1, ..., pn)|p1, ..., pn〉. (1.229)

The action of the operators c(p), c†(p) on the state vector is the following:

c(p)|p1, ..., pn〉 =
1√
n

n∑

i=1

δ(p− pi)|p1, .., p̌i, .., pn〉, (1.230)

c†(p)|p1, ..., pn〉 =
√
n+ 1|p, p1, ..., pn〉. (1.231)

The symbol p̌i means that the quantity pi is not present in the expression.
Obviously

|p1, ..., pn〉 =
1√
n!
c†(pn)...c

†(p1)|0〉. (1.232)

For the product of operators we have

c†(p)c(p)|p1, ..., pn〉 =
n∑

i=1

δ(p− pi)|p1, ..., pn〉 (1.233)

The latter operator obviously counts how many there are particles with
momentum p. Integrating over p we obtain

∫
dDp c†(p)c(p)|p1, ..., pn〉 = n|p1, ..., pn〉. (1.234)
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The expectation value of the operator P̃µ (see eq. (1.206)) in the state
|Ψn〉 is

〈|Ψn|P̃µ|Ψ〉 = 〈Ψn|
∫

dDp
Λ

2
(nνp

ν)pµ(2c†(p)c(p) + δ(0))|Ψn〉

= Λ
n∑

i=1

〈(nνpνi )pµi 〉+
Λ

2
δ(0)

∫
dDp (nνp

ν)pµ, (1.235)

where

〈(nνpνi )pµi 〉 =
∫

dp1...dpng
∗(n)(p1, ..., pn)g

(n)(p1, ..., pn)(p
ν
i nν)p

µ
i .

In particular, the wave packet profile g(n)(p1, ..., pn) can be such that
|Ψn〉 = |p1, ..., pn〉. Then the expectation value (1.235) becomes

〈p1, ..., pn|P̃µ|p1, ..., pn〉 = Λ
n∑

i=1

(nνp
ν
i )p

µ
i +

Λ

2
δ(0)

∫
dDp (nνp

ν)pµ. (1.236)

The extra term Λ
2 δ(0)

∫
dDp (nνp

ν)pµ vanishes for a space-like component
of pµ, but it does not vanish for a time-like component.

So far the momenta p1, ..., pn of n identical particles have not been con-
strained to a mass shell. Let us now consider the case where all the momenta
p1, ..., pn are constrained to the mass shell, so that pµi piµ = p2i = p2 = M2,
i = 1, 2, ..., n. From the classical equation of motion pµi = ẋµi /Λ we have

Λ =
dsi
dτ

1√
p2i

, (1.237)

where dsi =
√
dxµi dxiµ. Now, Λ and τ being the same for all particles we see

that if p2i is the same for all particles also the 4-dimensional speed dsi/dτ is
the same. Inserting (1.237) into (1.236) and chosing parametrization such

that dsi/dτ = 1 we obtain the following expectation value of P̃µ in a state
on the mass shell:

〈P̃µ〉m = 〈p1, ..., pn|P̃µ|p1, ..., pn〉m =
n∑

i=1

ε(npi)p
µ
i +

δ(0)

2

∫
dDp ε(np)pµ.

(1.238)
Taking nν = (1, 0, 0, ...., 0) we have

〈P̃ 0〉m =
n∑

i=1

ε(p0i )p
0
i +

δ(0)

2

∫
dDp ε(p0)p0, (1.239)
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〈P̃ r〉m =
n∑

i=1

ε(p0i )p
r
i , r = 1, 2, ..., D − 1. (1.240)

So far we have considered momenta as continuous. However, if we imag-
ine a large box and fix the boundary conditions, then the momenta are
discrete. Then in eqs. (1.239), (1.240) particles i = 1, 2, ..., n do not neces-
sarily all have different momenta pµi . There can be np particles with a given
discrete value of momentum p. Eqs. (1.239), (1.240) can then be written in
the form

〈P̃ 0〉m =
∑

p

(n+p + n−p +
1

2
)ωp, (1.241)

〈P̃〉m =
∑

p

(n+p + n−p )p (1.242)

Here

ωp ≡ |
√
p2 +M2| = ε(p0)p0,

whereas n+p = nωp,p is the number of particles with positive p0 at a given

value of momentum and n−p = n−ωp,−p . In eq. (1.242) we have used

−
∞∑

p=−∞
n−ωp,pp =

∞∑

p=−∞
n−ωp,−pp.

Instead of δ(0) in eq. (82) we have written 1, since in the case of discrete
momenta δ(p− p′) is replaced by δpp′ , and δpp = 1.

Equations (1.241), (1.242) are just the same expressions as obtained in
the conventional, on shell quantized field theory of a non-Hermitian scalar
field. In an analogous way we also find that the expectation value of the
electric charge operator Q̃, when taken on the mass shell, is identical to
that of the conventional field theory.

COMPARISON WITH THE CONVENTIONAL
RELATIVISTIC QUANTUM FIELD THEORY

In the unconstrained relativistic quantum field theory mass is indefinite,
in general. But in particular it can be definite. The field is then given by
the expression (1.72) for a fixed value of µ, say µ = 0, in which momentum
is constrained to a mass shell. If we calculate the commutator [φ(x), φ†(x′)]
using the commutation relations (1.182), (1.183) we obtain

[φ(x), φ(x′)] =
∫

dDp eipµ(x
µ−x′µ)δ(p2 −M2), (1.243)
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which differs from zero both for time-like and for space-like separations
between xµ and x′µ. In this respect the new theory differs significantly
from the conventional theory in which the commutator is zero for space-
like separations and which assures that the process

〈0|φ(x)φ†(x′)|0〉

has vanishing amplitude. No faster–than–light propagation is possible in
the conventional relativistic field theory.

The commutation relations leading to the conventional field theory are

[c(p), c†(p′)] = ε(p0)δD(p− p′), (1.244)

where ε(p0) = +1 for p0 > 0 and ε(p0) = −1.
By a direct calculation we then find

[φ(x), φ†(x′)] =
∫

dDp eip(x−x
′)ε(p0)δ(p2 −M2) ≡ D(x− x′), (1.245)

which is indeed different from zero when (x − x′)2 > 0 and zero when
(x− x′)2 < 0.

The commutation relations (1.244), (1.245) also assure that the Heisen-
berg equation

∂φ

∂x0
= i[ψ, P 0] (1.246)

is equivalent to the field equation

(∂µ∂
µ +M2)φ = 0. (1.247)

Here P 0, which now serves as Hamiltonian, is the 0-th component of the
momentum operator defined in terms of the definite mass fields φ(x), φ†(x)
(see Box 1.2).

If vacuum is defined according to

c(p)|0〉 = 0, (1.248)

then because of the commutation relation (1.244) the scalar product is

〈p|p′〉 = 〈0|c(p)c†|0〉ε(p0)δD(p− p′), (1.249)

from which it follows that states with negative p0 have negative norms.
The usual remedy is in the redefinition of vacuum. Writing

pµ ≡ p = (p, ωp) , ωp = |
√
M2 + p2|, (1.250)
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Box 1.2: Momentum on mass shell
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Pµ =
∫
TµνdΣν

Tµν =
Λ

2
(∂µΦ†∂νΦ+ ∂µΦ∂νΦ†)− Λ

2
(∂αΦ

†∂αΦ−M2Φ†Φ)δµν

Φ =
∫
dp δ(p2 −M2)eipxc(p)

∂µΦ =
∫
dp δ(p2 −M2)eipxc(p)ipµ

dΣν = nνdΣ

Pµ =
Λ

2

∫
dp dp′ δ(p2 −M2)δ(p′2 −M2)p′µpνnν

×
(
c†(p′)c(p) + c(p′)c†(p)

)
ei(p−p

′)xdΣ

δ(p2 −M2) =
∫
ds ei(p

2−M2)s , ds dΣ = dDx

Λ =
1√
p2

ds

dτ
= 1

Pµ = 1
2

∫
dp δ(p2 −M2)ε(pn)pµ

(
c†(p)c(p) + c(p)c†(p)

)

dp = dω dp p = (ω,p)

ωp =
√
p2 +M2

Pµ =
1

2

∫
dp

(
ωp

p

)
1

2ωp

(
c†(ωp,p)c(ωp,p) + c(ωp,p)c

†(ωp,p)

+ c†(−ωp,−p)c(−ωp,−p) + c(−ωp,−p)c†(−ωp,−p)
)

I. [c(p), c†(p′)] = δD(p− p′) c(p)|0〉 = 0

1
2ωp

c†(ωp,p) = a†(p) , 1
2ωp

c†(−ωp,−p) = b†(−p)
1

2ωp
c(ωp,p) = a(p) , 1

2ωp
c(−ωp,−p) = b(−p)

a(p)|0〉 = 0 , b(−p)|0〉 = 0
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or

II. [c(p), c†(p′)] = ε(p0)δD(p− p′)
1

2ωp
c†(ωp,p) = a†(p) , 1

2ωp
c†(−ωp,−p) = b(p)

1
2ωp

c(ωp,p) = a(p) , 1
2ωp

c(−ωp,−p) = b†(p)

a(p)|0〉 = 0 , b(p)|0〉 = 0

Pµ =
1

2

∫
dp

(
ωp

p

) (
a†(p)a(p) + a(p)a†(p) + b†(p)b(p) + b(p)b†(p)

)

For both definitions I and II the expression for Pµ is
the same, but the relations of b(p), b†(p) to c(p) are
different.

and denoting

1√
2ωp

c(p, ωp) ≡ a(p) ,
1√
2ωp

c†(p, ωp) ≡ a†(p), (1.251)

1√
2ωp

c†(−p,−ωp) ,
1√
2ωp

c(−p,−ωp) = b†(p), (1.252)

let us define the vacuum according to

a(p)|0〉 = 0 , b(p)|0〉 = 0. (1.253)

If we rewrite the commutation relations (1.244) in terms of the operators
a(p), b(p), we find (see Box 1.3)

[a(p), a†(p′)] = δ(p− p′), (1.254)

[b(p), b†(p′)] = δ(p− p′), (1.255)

[a(p), b(p′)] = [a†(p), b†(p′)] = [a(p), b†(p′)] = [a†(p), b(p′)] = 0. (1.256)
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Box 1.3: Commutation relations
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...................[c(p), c†(p′)] = αδD(p− p′) α =
1 Case I of Box 1.2

ε(p0) Case II of Box 1.2

on mass shell we must insert the δ-function

[c(p), c†(p′)]δ(p2 −M2) = αδD(p− p′)

∫
[c(p), c†(p′)]δ(p2 −M2)dp′0 = αδ(p− p′)

1
2ωp

[c(p0,p), c†(ωp,p
′)] + 1

2ωp
[c(p0,p), c†(−ωp,p

′)] = αδD(p− p′)

[c(p0,p), c†(−ωp,p
′)] = 0 , when p0 > 0

1
2ωp

[c(ωp,p), c
†(ωp,p

′)] = δ(p− p′)

[c(p0,p), c†(ωp,p
′)] = 0 , when p0 < 0

1
2ωp

[c(−ωp,p), c
†(−ωp,p

′)] = αδ(p− p′)

⇒ [a(p), a†(p′] = δ(p− p′)

[b(p), b†(p′] = δ(p− p′)

True either for Case I
or Case II with corre-
sponding definitions of
b(p), b†(p)
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Using the operators (1.251), (1.252) and the vacuum definition (1.253)
we obtain that the scalar products between the states |p〉+ = a†(p)|0〉,
|p〉− = b†(p)|0〉 are non-negative:

〈p|+|p′〉+ = 〈p|−|p′〉− = δ(p− p′),
〈p|+|p′〉− = 〈p|−|p′〉+ = 0 (1.257)

If we now calculate, in the presence of the commutation relations (1.244)
and the vacuum definition (1.253), the eigenvalues of the operator P 0 we
find that they are all positive. Had we used the vacuum definition (1.248)
we would have found that P 0 can have negative eigenvalues.

On the other hand, in the unconstrained theory the commutation relations
(1.182), (1.183) and the vacuum definition (1.248) are valid. Within such
a framework the eigenvalues of P 0 are also all positive, if the space-like
hypersurface Σ is oriented along a positive time-like direction, otherwise
they are all negative. The creation operators are c†(p) = c†(p0,p), and they
create states |p〉 = |p0,p〉 where p0 can be positive or negative. Not only
the states with positive, but also the states with negative 0-th component
of momentum (equal to frequency if units are such that h̄ = 1) have positive
energy P 0, regardless of the sign of p0. One has to be careful not to confuse
p0 with the energy.

That energy is always positive is clear from the following classical ex-
ample. If we have a matter continuum (fluid or dust) then the energy–
momentum is defined as the integral over a hypersurface Σ of the stress–
energy tensor:

Pµ =

∫
TµνdΣν . (1.258)

For dust we have T µν = ρ uµuν , where uµ = dxµ/ds and s is the proper
time. The dust energy is then P 0 =

∫
ρ u0uνnν dΣ, where the hypersurface

element has been written as dΣν = nνdΣ. Here nν is a time-like vector
field orthogonal to the hypersurface, pointing along a positive time-like
direction (into the “future”), such that there exists a coordinate system
in which nν = (1, 0, 0, 0, ...). Then P 0 =

∫
dΣ ρ u0u0 is obviously positive,

even if u0 is negative. If the dust consists of only one massive particle, then
the density is singular on the particle worldline:

ρ(x) = m

∫
ds δ(x−X(s)), (1.259)

and

P 0 =

∫
dΣdsmu0uµnµ δ(x−X(s)) = mu0 (uµnν).

We see that the point particle energy, defined by means of T µν , differs
from p0 = mu0. The difference is in the factor uµnµ, which in the chosen
coordinate system may be plus or minus one.
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Conclusion. Relativistic quantum field theory is one of the most suc-
cessful physical theories. And yet it is not free from serious conceptual and
technical difficulties. This was especially clear to Dirac, who expressed his
opinion that quantum field theory, because it gives infinite results, should
be taken only as a provisional theory waiting to be replaced by a better
theory.

In this section I have challenged some of the cherished basic assumptions
which, in my opinion, were among the main stumbling blocks preventing
a further real progress in quantum field theory and its relation to gravity.
These assumptions are:

1) Identification of negative frequency with negative energy. When a field
is expanded both positive and negative p0 = h̄ω = ω, h̄ = 1, occur. It
is then taken for granted that, by the correspondence principle, negative
frequencies mean negative energies. A tacit assumption is that the quantity
p0 is energy, while actually it is not energy, as it is shown here.

2) Identification of causality violation with propagation along space-like
separations. It is widely believed that faster–than–light propagation vi-
olates causality. A series of thought experiments with faster–than–light
particles has been described [18] and concluded that they all lead to causal
loops which are paradoxical. All those experiments are classical and tell us
nothing about how the situation would change if quantum mechanics were
taken into account10. In Sec. 13.1 I show that quantum mechanics, prop-
erly interpreted, eliminates the causality paradoxes of tachyons (and also
of worm holes, as already stated by Deutsch). In this section, therefore,
I have assumed that amplitudes do not need to vanish at space-like sepa-
rations. What I gain is a very elegant, manifestly covariant quantum field
theory based on the straightforward commutation relations (1.181)–(1.183)
in which fields depend not only on spacetime coordinates xµ, but also on
the Poincaré invariant parameter τ (see Sec. 1.2). Evolution and causality
are related to τ . The coordinate x0 has nothing to do with evolution and
causality considerations.

To sum up, we have here a consistent classical and quantum uncon-
strained (or “parametrized”) field theory which is manifestly Lorentz co-
variant and in which the fields depend on an invariant parameter τ . Al-
though the quantum states are localized in spacetime there is no problem
with negative norm states and unitarity. This is a result of the fact that
the commutation relations between the field operators are not quite the

10Usually it is argued that tachyons are even worse in quantum field theory, because their negative
energies would have caused vacuum instability. Such an argument is valid in the conventional
quantum field theory, but not in its generalization based on the invariant evolution parameter τ .



52 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

same as in the conventional relativistic quantum field theory. While in the
conventional theory evolution of a state goes along the coordinate x0, and
is governed by the components P 0 of the momentum operator, in the un-
constrained theory evolutions goes along τ and is governed by the covariant
Hamiltonian H (eq. (1.161). The commutation relations between the field
operators are such that the Heisenberg equation of motion determined by
H is equivalent to the field equation which is just the Lorentz covariant
Schrödinger equation (1.67). Comparison of the parametrized quantum
field theory with the conventional relativistic quantum field theory reveals
that the expectation values of energy–momentum and charge operator in
the states with definite masses are the same for both theories. Only the free
field case has been considered here. I expect that inclusion of interactions
will be straightforward (as in the non-relativistic quantum field theory),
very instructive and will lead to new, experimentally testable predictions.
Such a development waits to be fully worked out, but many partial results
have been reported in the literature [19, 20]. Although very interesting, it
is beyond the scope of this book.

We have seen that the conventional field theory is obtained from the
unconstrained theory if in the latter we take the definite mass fields φ(x) and
treat negative frequencies differently from positive one. Therefore, strictly
speaking, the conventional theory is not a special case of the unconstrained
theory. When the latter theory is taken on mass shell then the commutator
[φ(x), φ(x′)] assumes the form (1.243) and thus differs from the conventional
commutator (1.245) which has the function ε(p0) = (1/2)(θ(p0) − θ(−p0))
under the integral.

Later we shall argue that the conventional relativistic quantum field the-
ory is a special case, not of the unconstrained point particle, but of the
unconstrained string theory, where the considered objects are the time-like
strings (i.e. worldlines) moving in spacetime.



Chapter 2

POINT PARTICLES

AND CLIFFORD ALGEBRA

Until 1992 I considered the tensor calculus of general relativity to be the
most useful language by which to express physical theories. Although I
was aware that differential forms were widely considered to be superior to
tensor calculus I had the impression that they did not provide a sufficiently
general tool for all the cases. Moreover, whenever an actual calculation
had to be performed, one was often somehow forced to turn back to tensor
calculus. A turning point in my endeavors to understand better physics
and its mathematical formalization was in May 1992 when I met professor
Waldyr Rodrigues, Jr.1, who introduced me into the subject of Clifford
algebra. After the one or two week discussion I became a real enthusiast of
the geometric calculus based on Clifford algebra. This was the tool I always
missed and that enabled me to grasp geometry from a wider perspective.

In this chapter I would like to forward my enthusiasm to those readers
who are not yet enthusiasts themselves. I will describe the subject from
a physicist’s point of view and concentrate on the usefulness of Clifford
algebra as a language for doing physics and geometry. I am more and more
inclined towards the view that Clifford algebra is not only a language but
but the language of a “unified theory” which will encompass all our current
knowledge in fundamental theoretical physics.

I will attempt to introduce the ideas and the concepts in such a way as to
satisfy one’s intuition and facilitate an easy understanding. For more rig-
orous mathematical treatments the reader is advised to look at the existing
literature [22, 23, 36].

1We were both guests of Erasmo Recami at The Institute of Theoretical Physics, Catania, Italia.
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2.1. INTRODUCTION TO GEOMETRIC
CALCULUS BASED ON CLIFFORD
ALGEBRA

We have seen that point particles move in some kind of space. In non
relativistic physics the space is 3-dimensional and Euclidean, while in the
theory of relativity space has 4-dimensions and pseudo-Euclidean signa-
ture, and is called spacetime. Moreover, in general relativity spacetime is
curved, which provides gravitation. If spacetime has even more dimensions
—as in Kaluza–Klein theories— then such a higher-dimensional gravitation
contains 4-dimensional gravity and Yang–Mills fields (including the fields
associated with electromagnetic, weak, and strong forces). Since physics
happens to take place in a certain space which has the role of a stage or
arena, it is desirable to understand its geometric properties as deeply as
possible.

Let Vn be a continuous space of arbitrary dimension n. To every point
of Vn we can ascribe n parameters xµ, µ = 1, 2, ..., n, which are also called
coordinates. Like house numbers they can be freely chosen, and once being
fixed they specify points of the space2.

When considering points of a space we ask ourselves what are the dis-
tances between the points. The distance between two infinitesimally sepa-
rated points is given by

ds2 = gµν dx
µ dxν . (2.1)

Actually, this is the square of the distance, and gµν(x) is the metric tensor.
The quantity ds2 is invariant with respect to general coordinate transfor-
mations xµ → x′µ = fµ(x).

Let us now consider the square root of the distance. Obviously it is√
gµνdxµ dxν . But the latter expression is not linear in dxµ. We would like

to define an object which is linear in dxµ and whose square is eq. (2.1). Let
such object be given by the expression

dx = dxµ eµ (2.2)

It must satisfy

dx2 = eµeν dx
µdxν = 1

2(eµeν + eνeµ) dx
µdxν = gµν dx

µ dxν = ds2, (2.3)

from which it follows that

1
2(eµeν + eνeµ) = gµν (2.4)

2See Sec. 6.2, in which the subtleties related to specification of spacetime points are discussed.
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The quantities eµ so introduced are a new kind of number, called Clifford
numbers. They do not commute, but satisfy eq. (2.4) which is a charac-
teristic of Clifford algebra.

In order to understand what is the meaning of the object dx introduced
in (2.2) let us study some of its properties. For the sake of avoiding use of
differentials let us write (2.2) in the form

dx

dτ
=

dxµ

dτ
eµ , (2.5)

where τ is an arbitrary parameter invariant under general coordinate trans-
formations. Denoting dx/dτ ≡ a, dxµ/dτ = aµ, eq. (2.5) becomes

a = aµeµ . (2.6)

Suppose we have two such objects a and b. Then

(a+ b)2 = a2 + ab+ ba+ b2 (2.7)

and
1
2(ab+ ba) = 1

2(eµeν + eνeµ)a
µbν = gµνa

µbν . (2.8)

The last equation algebraically corresponds to the inner product of two
vectors with components aµ and bν . Therefore we denote

a · b ≡ 1
2(ab+ ba). (2.9)

From (2.7)–(2.8) we have that the sum a + b is an object whose square
is also a scalar.

What about the antisymmetric combinations? We have

1

2
(ab− ba) = 1

2(a
µbν − aνbµ)eµeν (2.10)

This is nothing but the outer product of the vectors. Therefore we denote
it as

a ∧ b ≡ 1
2(ab− ba) (2.11)

In 3-space this is related to the familiar vector product a × b which is the
dual of a ∧ b.

The object a = aµeµ is thus nothing but a vector : aµ are its components
and eµ are n linearly independent basis vectors of Vn. Obviously, if one
changes parametrization, a or dx remains the same. Since under a general
coordinate transformation the components aµ and dxµ do change, eµ should
also change in such a way that the vectors a and dx remain invariant.

An important lesson we have learnt so far is that
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the “square root” of the distance is a vector;

vectors are Clifford numbers;

vectors are objects which, like distance, are invariant under general co-
ordinate transformations.

Box 2.1: Can we add apples and oranges?

When I asked my daughter Katja, then ten years old, how much
is 3 apples and 2 oranges plus 1 apple and 1 orange, she immedi-
ately replied “4 apples and 3 oranges”. If a child has no problems
with adding apples and oranges, it might indicate that contrary to
the common wisdom, often taught at school, such an addition has
mathematical sense after all. The best example that this is indeed
the case is complex numbers. Here instead of ‘apples’ we have real
and, instead of ‘oranges’, imaginary numbers. The sum of a real and
imaginary number is a complex number, and summation of complex
numbers is a mathematically well defined operation. Analogously, in
Clifford algebra we can sum Clifford numbers of different degrees. In
other words, summation of scalar, vectors, bivectors, etc., is a well
defined operation.

The basic operation in Clifford algebra is the Clifford product ab. It
can be decomposed into the symmetric part a · b (defined in (2.9) and the
antisymmetric part a ∧ b (defined in (2.11)):

ab = a · b+ a ∧ b (2.12)

We have seen that a · b is a scalar. On the contrary, eq. (2.10) shows that
a ∧ b is not a scalar. Decomposing the product eµeν according to (2.12),

eµeν = eµ · eν + eµ ∧ eν = gµν + eµ ∧ eν ,

we can rewrite (2.10) as

a ∧ b = 1

2
(aµbν − aνbµ) eµ ∧ eν , (2.13)

which shows that a ∧ b is a new type of geometric object, called bivector,
which is neither a scalar nor a vector.
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The geometric product (2.12) is thus the sum of a scalar and a bivector.
The reader who has problems with such a sum is advised to read Box 2.1.

A vector is an algebraic representation of direction in a space Vn; it is
associated with an oriented line.

A bivector is an algebraic representation of an oriented plane.
This suggests a generalization to trivectors, quadrivectors, etc. It is

convenient to introduce the name r-vector and call r its degree or grade:

0-vector
1-vector
2-vector
3-vector

.

.

.
r-vector

s
a

a ∧ b
a ∧ b ∧ c

.

.

.
Ar = a1 ∧ a2 ∧ ... ∧ ar

scalar
vector
bivector
trivector

.

.

.
multivector

In a space of finite dimension this cannot continue indefinitely: an n-
vector is the highest r-vector in Vn and an (n+1)-vector is identically zero.
An r-vector Ar represents an oriented r-volume (or r-direction) in Vn.

Multivectors Ar are elements of the Clifford algebra Cn of Vn. An element
of Cn will be called a Clifford number. Clifford numbers can be multiplied
amongst themselves and the results are Clifford numbers of mixed degrees,
as indicated in the basic equation (2.12). The theory of multivectors, based
on Clifford algebra, was developed by Hestenes [22]. In Box 2.2 some
useful formulas are displayed without proofs.

Let e1, e2, ..., en be linearly independent vectors, and α, αi, αi1i2 , ...
scalar coefficients. A generic Clifford number can then be written as

A = α+ αiei +
1

2!
αi1i2 ei1 ∧ ei2 + ...

1

n!
αi1...inei1 ∧ ... ∧ ein . (2.14)

Since it is a superposition of multivectors of all possible grades it will
be called polyvector.3 Another name, also often used in the literature, is
Clifford aggregate.These mathematical objects have far reaching geometrical
and physical implications which will be discussed and explored to some
extent in the rest of the book.

3Following a suggestion by Pezzaglia [23] I call a generic Clifford number polyvector and re-
serve the name multivector for an r-vector, since the latter name is already widely used for the
corresponding object in the calculus of differential forms.
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Box 2.2: Some useful basic equations

For a vector a and an r-vector Ar the inner and the outer product
are defined according to

a ·Ar ≡ 1
2 (aAr − (−1)rAra) = −(−1)rAr · a, (2.15)

a ∧Ar = 1
2 (aAr + (−1)rAra) = (−1)rAr ∧ a. (2.16)

The inner product has symmetry opposite to that of the outer pro-
duct, therefore the signs in front of the second terms in the above
equations are different.
Combining (2.15) and (2.16) we find

aAr = a ·Ar + a ∧Ar. (2.17)

For Ar = a1∧a2∧ ...∧ar eq. (2.15) can be evaluated to give the useful
expansion

a · (a1∧ ...∧ar) =
r∑

k=1

(−1)k+1(a ·ak)a1∧ ...ak−1∧ak+1∧ ...ar. (2.18)

In particular,
a · (b ∧ c) = (a · b)c− (a · c)b. (2.19)

It is very convenient to introduce, besides the basis vectors eµ, an-
other set of basis vectors eν by the condition

eµ · eν = δµ
ν . (2.20)

Each eµ is a linear combination of eν :

eµ = gµνeν , (2.21)

from which we have
gµαgαν = δµ

ν (2.22)

and
gµν = eµ · eν = 1

2(e
µeν + eνeµ). (2.23)
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2.2. ALGEBRA OF SPACETIME

In spacetime we have 4 linearly independent vectors eµ, µ = 0, 1, 2, 3.
Let us consider flat spacetime. It is then convenient to take orthonormal
basis vectors γµ

γµ · γν = ηµν , (2.24)

where ηµν is the diagonal metric tensor with signature (+ - - -).

The Clifford algebra in V4 is called the Dirac algebra. Writing γµν ≡
γµ ∧ γν for a basis bivector, γµνρ ≡ γµ ∧ γν ∧ γρ for a basis trivector, and
γµνρσ ≡ γµ∧γν∧γρ∧γσ for a basis quadrivector we can express an arbitrary
number of the Dirac algebra as

D =
∑

r

Dr = d+ dµγµ +
1

2!
dµνγµν +

1

3!
dµνργµνρ +

1

4!
dµνρσγµνρσ , (2.25)

where d, dµ, dµν , ... are scalar coefficients.

Let us introduce

γ5 ≡ γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ0γ1γ2γ3 , γ25 = −1, (2.26)

which is the unit element of 4-dimensional volume and is called a pseu-
doscalar. Using the relations

γµνρσ = γ5εµνρσ , (2.27)

γµνρ = γµνρσγ
ρ , (2.28)

where εµνρσ is the totally antisymmetric tensor and introducing the new
coefficients

S ≡ d , V µ ≡ dµ , Tµν ≡ 1
2d

µν ,

Cσ ≡
1

3!
dµνρεµνρσ , P ≡ 1

4!
dµνρσεµνρσ , (2.29)

we can rewrite D of eq. (2.25) as the sum of scalar, vector, bivector, pseu-
dovector and pseudoscalar parts:

D = S + V µγµ + Tµνγµν + Cµγ5γµ + Pγ5. (2.30)
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POLYVECTOR FIELDS

A polyvector may depend on spacetime points. Let A = A(x) be an
r-vector field. Then one can define the gradient operator according to

∂ = γµ∂µ , (2.31)

where ∂µ is the usual partial derivative. The gradient operator ∂ can act
on any r-vector field. Using (2.17) we have

∂A = ∂ ·A+ ∂ ∧A. (2.32)

Example. Let A = a = aνγ
ν be a 1-vector field. Then

∂a = γµ∂µ(aνγ
ν) = γµ · γν ∂µaν + γµ ∧ γν∂µaν

= ∂µa
µ + 1

2(∂µaν − ∂νaµ)γµ ∧ γν . (2.33)

The simple expression ∂a thus contains a scalar and a bivector part, the
former being the usual divergence and the latter the usual curl of a vector
field.

Maxwell equations. We shall now demonstrate by a concrete physical
example the usefulness of Clifford algebra. Let us consider the electromag-
netic field which, in the language of Clifford algebra, is a bivector field F .
The source of the field is the electromagnetic current j which is a 1-vector
field. Maxwell’s equations read

∂F = −4πj. (2.34)

The grade of the gradient operator ∂ is 1. Therefore we can use the relation
(2.32) and we find that eq. (2.34) becomes

∂ · F + ∂ ∧ F = −4πj, (2.35)

which is equivalent to

∂ · F = −4πj, (2.36)

∂ ∧ F = 0, (2.37)

since the first term on the left of eq. (2.35) is a vector and the second term
is a bivector. This results from the general relation (2.35 ). It can also be
explicitly demonstrated. Expanding

F = 1
2F

µν γµ ∧ γν , (2.38)
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j = jµγµ , (2.39)

we have

∂ · F = γα∂α · (12Fµνγµ ∧ γν) = 1
2γ

α · (γµ ∧ γν)∂αFµν

= 1
2 ((γ

α · γµ)γν − (γα · γν)γµ) ∂αFµν = ∂µF
µν γν , (2.40)

∂ ∧ F = 1
2γ

α ∧ γµ ∧ γν ∂αFµν = 1
2ε
α
µνρ ∂αF

µνγ5γ
ρ , (2.41)

where we have used (2.19) and eqs.(2.27), (2.28). From the above consider-
ations it then follows that the compact equation (2.34) is equivalent to the
usual tensor form of Maxwell equations

∂νF
µν = −4πjµ , (2.42)

εαµνρ ∂αF
µν = 0. (2.43)

Applying the gradient operator ∂ to the left and to the right side of
eq. (2.34) we have

∂2F = −4π ∂j. (2.44)

Since ∂2 = ∂ · ∂ + ∂ ∧ ∂ = ∂ · ∂ is a scalar operator, ∂2F is a bivector. The
right hand side of eq. (2.44) gives

∂j = ∂ · j + ∂ ∧ j. (2.45)

Equating the terms of the same grade on the left and the right hand side
of eq. (2.44) we obtain

∂2F = −4π ∂ ∧ j, (2.46)

∂ · j = 0. (2.47)

The last equation expresses the conservation of the electromagnetic current.

Motion of a charged particle. In this example we wish to go a step
forward. Our aim is not only to describe how a charged particle moves
in an electromagnetic field, but also include a particle’ s(classical) spin.
Therefore, following Pezzaglia [23], we define the momentum polyvector P
as the vector momentum p plus the bivector spin angular momentum S,

P = p+ S, (2.48)
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or in components
P = pµγµ +

1
2S

µν γµ ∧ γν . (2.49)

We also assume that the condition pµS
µν = 0 is satisfied. The latter con-

dition ensures the spin to be a simple bivector, which is purely space-like
in the rest frame of the particle. The polyvector equation of motion is

Ṗ ≡ dP

dτ
=

e

2m
[P, F ], (2.50)

where [P, F ] ≡ PF − FP . The vector and bivector parts of eq. (2.50) are

ṗµ =
e

m
Fµνp

ν , (2.51)

Ṡµν =
e

2m
(FµαS

αν − F ναSαµ). (2.52)

These are just the equations of motion for linear momentum and spin,
respectively.

2.3. PHYSICAL QUANTITIES AS
POLYVECTORS

The compact equations at the end of the last section suggest a general-
ization that every physical quantity is a polyvector. We shall explore such
an assumption and see how far we can come.

In 4-dimensional spacetime the momentum polyvector is

P = µ+ pµeµ + Sµνeµeν + πµe5eµ +me5 , (2.53)

and the velocity polyvector is

Ẋ = σ̇ + ẋµeµ + α̇µνeµeν + ξ̇µe5eµ + ṡe5 , (2.54)

where eµ are four basis vectors satisfying

eµ · eν = ηµν , (2.55)

and e5 ≡ e0e1e2e3 is the pseudoscalar. For the purposes which will become
clear later we now use the symbols eµ, e5 instead of γµ and γ5.

We associate with each particle the velocity polyvector Ẋ and its con-
jugate momentum polyvector P . These quantities are generalizations of
the point particle 4-velocity ẋ and its conjugate momentum p. Besides a
vector part we now include the scalar part σ̇, the bivector part α̇µνeµeν , the

pseudovector part ξ̇µe5eµ and the pseudoscalar part ṡe5 into the definition
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of the particle’s velocity, and analogously for the particle’s momentum. We
would now like to derive the equations of motion which will tell us how
those quantities depend on the evolution parameter τ . For simplicity we
consider a free particle.

Let the action be a straightforward generalization of the first order or
phase space action (1.11) of the usual constrained point particle relativistic
theory:

I[X,P, λ] =
1

2

∫
dτ
(
PẊ + ẊP − λ(P 2 −K2)

)
, (2.56)

where λ is a scalar Lagrange multiplier and K a polyvector constant4:

K2 = κ2 + kµeµ +Kµνeµeν +Kµe5eµ + k2e5. (2.57)

It is a generalization of particle’s mass squared. In the usual, unconstrained,
theory, mass squared was a scalar constant, but here we admit that, in
principle, mass squared is a polyvector. Let us now insert the explicit
expressions (2.53),(2.54) and (2.57) into the Lagrangian

L = 1
2

(
PẊ + ẊP − λ(P 2 −K2)

)
=

4∑

r=0

〈L〉r , (2.58)

and evaluate the corresponding multivector parts 〈L〉r. Using

eµ ∧ eν ∧ eρ ∧ eσ = e5 εµνρσ , (2.59)

eµ ∧ eν ∧ eρ = (eµ ∧ eν ∧ eρ ∧ eσ)eσ = e5 εµνρσe
σ , (2.60)

eµ ∧ eν = −1
2(eµ ∧ eν ∧ eρ ∧ eσ)(eρ ∧ eσ) = −1

2e5 εµνρσe
ρ ∧ eσ , (2.61)

we obtain

〈L〉0 = µσ̇−mṡ+pµẋµ+πµξ̇µ+Sµνα̇ρσηµσηνρ

− λ
2
(µ2 + pµpµ + πµπµ −m2 − 2SµνSµν − κ2) , (2.62)

〈L〉1 =
[
σ̇pσ + µẋσ − (ξ̇ρSµν + πρα̇µν)εµνρσ

]
eσ

−λ(µpσ − Sµνπρεµνρσ − 1
2kσ)e

σ , (2.63)

4The scalar part is not restricted to positive values, but for later convenience we write it as κ2,
on the understanding that κ2 can be positive, negative or zero.
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〈L〉2 =[
1
2(π

µẋν − pµξ̇ν + ṡSµν +mα̇µν)εµνρσ + σ̇Sρσ + µα̇ρσ + 2Sρνα̇
ν
σ

]
eρ ∧ eσ

−λ
2
[(πµpν +mSµν)εµνρσ + 2µSρσ −Kρσ] e

ρ ∧ eσ , (2.64)

〈L〉3 =
[
σ̇πσ+µξ̇σ+(Sµν ẋρ+α̇µνpρ)εµνρ

σ−λ(µπσ+Sµνpρεµνρσ− 1
2κσ)

]
e5e

σ ,

(2.65)

〈L〉4 =
[
mσ̇ + µṡ− 1

2 S
µν α̇ρσεµνρσ −

λ

2
(2µm+ SµνSρσεµνρσ − k2)

]
e5.

(2.66)

The equations of motion are obtained for each pure grade multivector
〈L〉r separately. That is, when varying the polyvector action I, we vary
each of its r-vector parts separately. From the scalar part 〈L〉0 we obtain

δµ : σ̇ − λµ = 0, (2.67)

δm : −ṡ+ λm = 0, (2.68)

δs : ṁ = 0 (2.69)

δσ : µ̇ = 0, (2.70)

δpµ : ẋµ − λpµ = 0, (2.71)

δπµ : ξ̇µ − λπµ = 0, (2.72)

δxµ : ṗµ = 0 (2.73)

δξµ : π̇µ = 0, (2.74)

δαµν : Ṡµν = 0, (2.75)

δSµν : α̇µν − λSµν = 0. (2.76)

From the r-vector parts 〈L〉r for r = 1, 2, 3, 4 we obtain the same set
of equations (2.67)–(2.76). Each individual equation results from varying a
different variable in 〈L〉0, 〈L〉1, etc.. Thus, for instance, the µ-equation of
motion (2.67) from 〈L〉0 is the same as the pµ equation from 〈L〉1 and the
same as the m-equation from 〈L〉4, and similarly for all the other equations
(2.67)–(2.76). Thus, as far as the variables µ, m, s, σ, pµ, πµ, Sµν , ξ

µν and
αµν are considered, the higher grade parts 〈L〉r of the Lagrangian L contains
the same information about the equations of motion. The difference occurs
if we consider the Lagrange multiplier λ. Then every r-vector part of L
gives a different equation of motion:

∂〈L〉0
∂λ

= 0 : µ2 + pµpµ + πµπµ −m2 − 2SµνSµν − κ2 = 0,(2.77)
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∂〈L〉1
∂λ

= 0 : µπσ − Sµνπρεµνρσ − 1
2kσ = 0, (2.78)

∂〈L〉2
∂λ

= 0 : (πµπν +mSµν)εµνρσ + 2µSρσ −Kρσ = 0, (2.79)

∂〈L〉3
∂λ

= 0 : µπσ + Sµνpρεµνρσ +
1
2κσ = 0, (2.80)

∂〈L〉4
∂λ

= 0 : 2µm+ SµνSρσεµνρσ − k2 = 0. (2.81)

The above equations represent constraints among the dynamical variables.
Since our Lagrangian is not a scalar but a polyvector, we obtain more than
one constraint.

Let us rewrite eqs.(2.80),(2.78) in the forms

πσ −
κσ
2µ

= − 1

µ
Sµνpρεµνρσ , (2.82)

pσ −
kσ
2µ

=
1

µ
Sµνπρεµνρσ. (2.83)

We see from (2.82) that the vector momentum pµ and its pseudovector
partner πµ are related in such a way that πµ − κµ/2µ behaves as the well
known Pauli-Lubanski spin pseudo vector. A similar relation (2.83) holds
if we interchange pµ and πµ.

Squaring relations (2.82), (2.83) we find

(πσ −
κσ
2µ

)(πσ − κσ

2µ
) = − 2

µ2
pσp

σ SµνS
µν +

4

µ2
pµp

νSµσSνσ , (2.84)

(pσ −
kσ
2µ

)(pσ − kσ

2µ
) = − 2

µ2
πσπ

σ SµνS
µν +

4

µ2
πµπ

νSµσSνσ. (2.85)

From (2.82), (2.83) we also have

(
πσ −

κσ
2µ

)
pσ = 0 ,

(
pσ −

kσ
2µ

)
πσ = 0. (2.86)

Additional interesting equations which follow from (2.82), (2.83) are

pρpρ

(
1 +

2

µ2
SµνS

µν
)
− 4

µ2
pµp

νSµσSνσ = − κρκ
ρ

4µ2
+

1

2µ
(pρk

ρ + πρκ
ρ),

(2.87)

πρπρ

(
1 +

2

µ2
SµνS

µν
)
− 4

µ2
πµπ

νSµσSνσ = − kρk
ρ

4µ2
+

1

2µ
(pρk

ρ + πρκ
ρ).

(2.88)
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Contracting (2.82), (2.83) by εα1α2α3σ we can express Sµν in terms of pρ

and πσ

Sµν =
µ

2pαpα
εµνρσpρ

(
πσ −

κσ
2µ

)
= − µ

2παπα
εµνρσπρ

(
pσ −

kσ
2µ

)
, (2.89)

provided that we assume the following extra condition:

Sµνpν = 0 , Sµνπν = 0. (2.90)

Then for positive pσpσ it follows from (2.84) that (πσ−κσ/2µ)2 is negative,
i.e., πσ − κσ/2µ are components of a space-like (pseudo-) vector. Similarly,
it follows from (2.85) that when πσπσ is negative, (pσ−kσ/2µ)2 is positive,
so that pσ−kσ/2µ is a time-like vector. Altogether we thus have that pσ, kσ
are time-like and πσ, κσ are space-like. Inserting (2.89) into the remaining
constraint (2.81) and taking into account the condition (2.90) we obtain

2mµ− k2 = 0. (2.91)

The polyvector action (2.56) is thus shown to represent a very interesting
classical dynamical system with spin. The interactions could be included
by generalizing the minimal coupling prescription. Gravitational interaction
is included by generalizing (2.55) to

eµ · eν = gµν , (2.92)

where gµν(x) is the spacetime metric tensor. A gauge interaction is included
by introducing a polyvector gauge field A, a polyvector coupling constant
G, and assume an action of the kind

I[X,P, λ] = 1
2

∫
dτ
[
PẊ + ẊP − λ

(
(P −G ? A)2 −K2

)]
, (2.93)

where ‘?’ means the scalar product between Clifford numbers, so that
G ? A ≡ 〈GA〉0. The polyvector equations of motion can be elegantly
obtained by using the Hestenes formalism for multivector derivatives. We
shall not go into details here, but merely sketch a plausible result,

Π̇ = λ[G ? ∂XA,P ] , Π ≡ P −G ? A , (2.94)

which is a generalized Lorentz force equation of motion, a more particular
case of which is given in (2.50).

After this short digression let us return to our free particle case. One
question immediately arises, namely, what is the physical meaning of the
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polyvector mass squared K2. Literally this means that a particle is char-
acterized not only by a scalar and/or a pseudoscalar mass squared, but
also by a vector, bivector and pseudovector mass squared. To a particle
are thus associated a constant vector, 2-vector, and 3-vector which point
into fixed directions in spacetime, regardless of the direction of particle’s
motion. For a given particle the Lorentz symmetry is thus broken, since
there exists a preferred direction in spacetime. This cannot be true at the
fundamental level. Therefore the occurrence of the polyvector K2 in the
action must be a result of a more fundamental dynamical principle, pre-
sumably an action in a higher-dimensional spacetime without such a fixed
term K2. It is well known that the scalar mass term in 4-dimensions can be
considered as coming from a massless action in 5 or more dimensions. Sim-
ilarly, also the 1-vector, 2-vector, and 3-vector terms of K2 can come from
a higher-dimensional action without a K2-term. Thus in 5-dimensions:

(i) the scalar constraint will contain the term pApA = pµpµ+p
5p5, and

the constant −p5p5 takes the role of the scalar mass term in 4-dimensions;
(ii) the vector constraint will contain a term like PABCS

ABeC , A,B =
0, 1, 2, 3, 5, containing the term PµναS

µνeα (which, since Pµνα = εµναβπ
β ,

corresponds to the term Sµνπρεµνρσe
σ) plus an extra term P5ναS

5αeα which
corresponds to the term kαeα.

In a similar manner we can generate the 2-vector term Kµν and the
3-vector term κσ from 5-dimensions.

The polyvector mass term K2 in our 4-dimensional action (2.93) is arbi-
trary in principle. Let us find out what happens if we set K2 = 0. Then,
in the presence of the condition (2.90), eqs. (2.87) or (2.88) imply

SµνS
µν = −µ

2

2
, (2.95)

that is SµνS
µν < 0. On the other hand SµνS

µν in the presence of the
condition (2.90) can only be positive (or zero), as can be straightforwardly
verified. In 4-dimensional spacetime SµνS

µν were to be negative only if in
the particle’s rest frame the spin components S0r were different from zero
which would be the case if (2.90) would not hold.

Let us assume that K2 = 0 and that condition (2.90) does hold. Then
the constraints (2.78)–(2.81) have a solution5

Sµν = 0 , πµ = 0 , µ = 0. (2.96)

5This holds even if we keep κ2 different from zero, but take vanishing values for k2, κµ, kµ and
Kµν .
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The only remaining constraint is thus

pµpµ −m2 = 0, (2.97)

and the polyvector action (2.56) is simply

I[X,P, λ] = I[s,m, xµ, pµ, λ]

=

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2)

]
, (2.98)

in which the mass m is a dynamical variable conjugate to s. In the action
(2.98) mass is thus just a pseudoscalar component of the polymomentum

P = pµeµ +me5 , (2.99)

and ṡ is a pseudoscalar component of the velocity polyvector

Ẋ = ẋµeµ + ṡe5. (2.100)

Other components of the polyvectors Ẋ and P (such as Sµν , πµ, µ), when
K2 = 0 (or more weakly, when K2 = κ2), are automatically eliminated by
the constraints (2.77)–(2.81).

From a certain point of view this is very good, since our analysis of
the polyvector action (2.56) has driven us close to the conventional point
particle theory, with the exception that mass is now a dynamical variable.
This reminds us of the Stueckelberg point particle theory [2]–[15] in which
mass is a constant of motion. This will be discussed in the next section. We
have here demonstrated in a very elegant and natural way that the Clifford
algebra generalization of the classical point particle in four dimensions tells
us that a fixed mass term in the action cannot be considered as fundamental.
This is not so obvious for the scalar (or pseudoscalar) part of the polyvector
mass squared term K2, but becomes dramatically obvious for the 1-vector,
2-vector and 4-vector parts, because they imply a preferred direction in
spacetime, and such a preferred direction cannot be fundamental if the
theory is to be Lorentz covariant.

This is a very important point and I would like to rephrase it. We start
with the well known relativistic constrained action

I[xµ, pµ, λ] =

∫
dτ

(
pµẋ

µ − λ

2
(p2 − κ2)

)
. (2.101)

Faced with the existence of the geometric calculus based on Clifford algebra,
it is natural to generalize this action to polyvectors. Concerning the fixed
mass constant κ2 it is natural to replace it by a fixed polyvector or to
discard it. If we discard it we find that mass is nevertheless present, because
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now momentum is a polyvector and as such it contains a pseudoscalar part
me5. If we keep the fixed mass term then we must also keep, in principle, its
higher grade parts, but this is in conflict with Lorentz covariance. Therefore
the fixed mass term in the action is not fundamental but comes, for instance,
from higher dimensions. Since, without the K2 term, in the presence of
the condition Sµνpν = 0 we cannot have classical spin in four dimensions
(eq. (2.95) is inconsistent), this points to the existence of higher dimensions.
Spacetime must have more than four dimensions, where we expect that the
constraint P 2 = 0 (without a fixed polyvector mass squared term K) allows
for nonvanishing classical spin.

The “fundamental” classical action is thus a polyvector action in higher
dimensions without a fixed mass term. Interactions are associated with the
metric of VN . Reduction to four dimensions gives us gravity plus gauge
interactions, such as the electromagnetic and Yang–Mills interactions, and
also the classical spin which is associated with the bivector dynamical de-
grees of freedom sitting on the particle, for instance the particle’s finite
extension, magnetic moment, and similar.

There is a very well known problem with Kaluza–Klein theory, since in
four dimensions a charged particle’s mass cannot be smaller that the Planck
mass. Namely, when reducing from five to four dimensions mass is given
by pµpµ = m̂2 + p̂25, where m̂ is the 5-dimensional mass. Since p̂5 has the
role of electric charge e, the latter relation is problematic for the electron:
in the units in which h̄ = c = G = 1 the charge e is of the order of the
Planck mass, so pµpµ is also of the same order of magnitude. There is no
generally accepted mechanism for solving such a problem. In the polyvector
generalization of the theory, the scalar constraint is (2.77) and in five or
more dimensions it assumes an even more complicated form. The terms
in the constraint have different signs, and the 4-dimensional mass pµpµ is
not necessarily of the order of the Planck mass: there is a lot of room to
“make” it small.

All those considerations clearly illustrate why the polyvector generaliza-
tion of the point particle theory is of great physical interest.

2.4. THE UNCONSTRAINED ACTION
FROM THE POLYVECTOR ACTION

FREE PARTICLE

In the previous section we have found that when the polyvector fixed
mass squared K2 is zero then a possible solution of the equations of motion
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satisfies (2.96) and the generic action (2.56) simplifies to

I[s,m, xµ, pµ, λ] =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2)

]
. (2.102)

At this point let us observe that a similar action, with a scalar variable
s, has been considered by DeWitt [25] and Rovelli [26]. They associate the
variable s with the clock carried by the particle. We shall say more about
that in Sec. 6.2.

We are now going to show that the latter action is equivalent to the
Stueckelberg action discussed in Chapter 1.

The equations of motion resulting from (2.102) are

δs : ṁ = 0, (2.103)

δm : ṡ− λm = 0, (2.104)

δxµ : ṗµ = 0, (2.105)

δpµ : ẋµ − λpµ =, 0 (2.106)

δλ : pµpµ −m2 = 0. (2.107)

(2.108)

We see that in this dynamical system mass m is one of the dynamical
variables; it is canonically conjugate to the variable s. From the equations
of motion we easily read out that s is the proper time. Namely, from (2.104),
(2.106) and (2.107) we have

pµ =
ẋµ

λ
= m

dxµ

ds
, (2.109)

ṡ2 = λ2m2 = ẋ2 , i.e ds2 = dxµdxµ. (2.110)

Using eq. (2.104) we find that

−mṡ+ λ

2
κ2 = −mṡ

2
= − 1

2

d(ms)

dτ
. (2.111)

The action (2.102) then becomes

I =

∫
dτ

(
1

2

d(ms)

dτ
+ pµẋ

µ − λ

2
pµpµ

)
, (2.112)

where λ should be no more considered as a quantity to be varied, but it is
now fixed: λ = Λ(τ). The total derivative in (2.112) can be omitted, and
the action is simply

I[xµ, pµ] =

∫
dτ(pµẋ

µ − Λ

2
pµpµ). (2.113)
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This is just the Stueckelberg action (1.36) with κ2 = 0. The equations of
motion derived from (2.113) are

ẋµ − Λpµ = 0, (2.114)

ṗµ = 0. (2.115)

From (2.115) it follows that pµp
µ is a constant of motion. Denoting the

latter constant of motion as m and using (2.114) we obtain that momentum
can be written as

pµ = m
ẋµ√
ẋν ẋν

= m
dxµ

ds
, ds = dxµdxµ , (2.116)

which is the same as in eq. (2.109). The equations of motion for xµ and pµ
derived from the Stueckelberg action (2.99) are the same as the equations
of motion derived from the action (2.102). A generic Clifford algebra action
(2.56) thus leads directly to the Stueckleberg action.

The above analysis can be easily repeated for a more general case where
the scalar constant κ2 is different from zero, so that instead of (2.98) or
(2.102) we have

I[s,m, xµ, pµ, λ] =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2 − κ2)

]
. (2.117)

Then instead of (2.113) we obtain

I[xµ, pµ] =

∫
dτ

(
pµẋ

µ − Λ

2
(pµpµ − κ2)

)
. (2.118)

The corresponding Hamiltonian is

H =
Λ

2
(pµpµ − κ2), (2.119)

and in the quantized theory the Schrödinger equation reads

i
∂ψ

∂τ
=

Λ

2
(pµpµ − κ2)ψ. (2.120)

Alternatively, in the action (2.102) or (2.117) we can first eliminate λ by
the equation of motion (2.104). So we obtain

I[s,m, xµ, pµ] =

∫
dτ

[
−mṡ

2
+ pµẋ

µ − ṡ

2m
(pµpµ − κ2)

]
. (2.121)
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The equations of motion are

δs : −ṁ
2
− d

dτ

(
pµpµ − κ2

2m

)
= 0 ⇒ ṁ = 0, (2.122)

δm : −1

2
+

1

2m2
(pµpµ − κ2) = 0 ⇒ pµpµ −m2 − κ2 = 0, (2.123)

δxµ : ṗµ = 0, (2.124)

δpµ : ẋµ − ṡ

m
pµ = 0 ⇒ pµ =

mẋµ

ṡ
= m

dxµ

ds
. (2.125)

Then we can choose a “solution” for s(τ), write ṡ/m = Λ, and omit the first
term, since in view of (2.122) it is a total derivative. So again we obtain
the Stueckelberg action (2.118).

The action that we started from, e.g., (2.121) or (2.102) has a constraint
on the variables xµ, s or on the pµ, m, but the action (2.118) which we
arrived at contains only the variables xµ, pµ and has no constraint.

In the action (2.121) we can use the relation ṡ = ds/dτ and write it as

I[m, pµ, x
µ] =

∫
ds

[
−m

2
+ pµ

dxµ

ds
− 1

2m
(pµpµ − κ2)

]
. (2.126)

The evolution parameter is now s, and again variation with respect to m
gives the constraint pµpµ −m2 − κ2 = 0. Eliminating m from the action
(2.126) by the the latter constraint, written in the form

m =
√
pµpµ − κ2 (2.127)

we obtain the unconstrained action

I[xµ, pµ] =

∫
ds

(
pµ

dxµ

ds
−
√
pµpµ − κ2

)
, (2.128)

which is also equivalent to the original action (2.117). The Hamiltonian
corresponding to (2.128) is

H = pµ
dxµ

ds
− L =

√
pµpµ − κ2 . (2.129)

Such a Hamiltonian is not very practical for quantization, since the Schrödin-
ger equation contains the square root of operators

i
∂ψ

∂s
=
√
pµpµ − κ2 ψ. (2.130)
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In order to perform the quantization properly one has to start directly from
the original polyvector action (2.56). This will be discussed in Sec. 2.5.

However, in the approximation6 pµp
µ ¿ −κ2 eq. (2.128) becomes

I[xµ, pµ] ≈
∫

ds

(
pµ

dxµ

ds
− 1

2
√
−κ2

pµpµ −
√
−κ2

)
(2.131)

which is again the Stueckelberg action, but with 1/
√
−κ2 = Λ. It is very

interesting that on the one hand the Stueckelberg action arises exactly from
the polyvector action, and on the other hand it arises as an approximation.

PARTICLE IN A FIXED BACKGROUND FIELD
Let us now consider the action (2.117) and modify it so that it will remain

covariant under the transformation

L→ L′ = L+
dφ

dτ
, (2.132)

where
φ = φ(s, xµ) (2.133)

For this purpose we have to introduce the gauge fields Aµ and V which
transform according to

eA′µ = eAµ + ∂µφ, (2.134)

eV ′ = eV +
∂φ

∂s
. (2.135)

The covariant action is then

I =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(πµπ

µ − µ2 − κ2)
]
, (2.136)

where we have introduced the kinetic momentum

πµ = pµ − eAµ (2.137)

and its pseudoscalar counterpart

µ = m+ eV. (2.138)

The symbol ‘µ’ here should not be confused with the same symbol used in
Sec. 2.3 for a completely different quantity.

6Remember that κ2 comes from the scalar part of the polyvector mass squared term (2.57) and
that it was a matter of our convention of writing it in the form κ2. We could have used another
symbol without square, e.g., α, and then it would be manifestly clear that α can be negative.
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From (2.136) we derive the following equations of motion:

δxµ : π̇µ = eFµν ẋ
ν − ṡe

(
∂Aµ
∂s
− ∂µV

)
, (2.139)

δs : µ̇ = −ẋνe
(
∂Aν
∂s
− ∂νV

)
, (2.140)

δpµ : λπµ = ẋµ , (2.141)

(2.142)

δm : ṡ = λµ. (2.143)

These equations of motion are the same as those from the Stueckelberg
action (2.147).

From (2.140) and (2.143) we have

−mṡ+ λ

2
µ2 = −1

2

d

dτ
(µs) + eṡV − 1

2
eẋν

(
∂Aν
∂s
− ∂νV

)
s. (2.144)

Inserting the latter expression into the action (2.136) we obtain

I =

∫
dτ

[
−1

2

d(µs)

dτ
+ pµẋ

µ − λ

2
(πµπµ − κ2) + eṡV

−1

2
eẋν

(
∂Aν
∂s
− ∂νV

)
s

]
, (2.145)

which is analogous to eq. (2.112). However, in general µ̇ is now not zero,
and as a result we cannot separate the variables m, s into a total derivative
term as we did in (2.117).

Let us consider a particular case when the background fields Aµ, V satisfy

∂Aµ
∂s

= 0 , ∂µV = 0 . (2.146)

Then the last term in (2.145) vanishes; in addition we may set V = 0.
Omitting the total derivative term, eq. (2.145) becomes

I[xµ, pµ] =

∫
ds

[
pµ

dxµ

ds
− Λ

2
(πµπµ − κ2)

]
, (2.147)

where Λ = λ/ṡ is now fixed. This is precisely the Stueckelberg action
in the presence of a fixed electromagnetic field, and s corresponds to the
Stueckelberg Lorentz invariant parameter τ .

However, when we gauged the free particle Stueckelberg action we ob-
tained in general a τ -dependent gauge field Aµ and also a scalar field V .
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We shall now see that such a general gauged Stueckelberg action is an ap-
proximation to the action (2.136). For this purpose we shall repeat the
procedure of eqs. (2.121)–(2.128). Eliminating λ from the action (2.136) by
using the equation of motion (2.143) we obtain an equivalent action

I[xµ, pµ, s,m] =

∫
dτ

[
−mṡ+ pµẋ

µ − ṡ

2µ
(πµπµ − µ2 − κ2)

]
(2.148)

whose variation with respect to m again gives the constraint πµπµ − µ2 −
κ2 = 0. From (2.148), using (2.138) we have

I =

∫
dτ

[
pµẋ

µ − ṡ

2µ
(πµπµ − κ2) + eṡV − µṡ

2

]

=

∫
dτ
[
pµẋ

µ − ṡ(πµπµ − κ2)1/2 + eṡV
]

≈
∫

dτ

[
pµẋ

µ − ṡ

2
√
−κ2

πµπµ − ṡ
√
−κ2 + eṡV

]
. (2.149)

Thus

I[xµ, pµ] =

∫
ds

[
pµ

dxµ

ds
− 1

2
√
−κ2

πµπµ −
√
−κ2 + eV

]
. (2.150)

The last step in eq. (2.149) is valid under the approximation πµπµ ¿ −κ2,
where we assume −κ2 > 0. In (2.150) we indeed obtain an action which is
equivalent to the gauged Stueckelberg action (2.147) if we make the corre-
spondence 1

√
−κ2 → Λ. The constant terms −

√
−κ2 in (2.150) and Λκ2/2

in eq. (2.147) have no influence on the equations of motion.
We have thus found a very interesting relation between the Clifford al-

gebra polyvector action and the Stueckelberg action in the presence of an
electromagnetic and pseudoscalar field. If the electromagnetic field Aµ does
not depend on the pseudoscalar parameter s and if there is no force owed to
the pseudoscalar field V , then the kinetic momentum squared πµπµ is a con-
stant of motion, and the gauged Clifford algebra action (2.136) is exactly
equivalent to the Stueckelberg action. In the presence of a pseudoscalar
force, i.e., when ∂µV 6= 0 and/or when ∂Aµ/∂s 6= 0, the action (2.136)
is approximately equivalent to the gauged Stueckelberg action (2.147) if
the kinetic momentum squared πµπµ is much smaller than the scalar mass
constant squared −κ2.

2.5. QUANTIZATION OF THE
POLYVECTOR ACTION

We have assumed that a point particle’s classical motion is governed by
the polyvector action (2.56). Variation of this action with respect to λ gives
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the polyvector constraint
P 2 −K2 = 0. (2.151)

In the quantized theory the position and momentum polyvectors X =
XJeJ and P = P JeJ , where eJ = (1, eµ, eµeν , e5eµ, e5) , µ < ν, become the
operators

X̂ = X̂JeJ , P̂ = P̂ JeJ ; , (2.152)

satisfying
[X̂J , P̂K ] = iδJK . (2.153)

Using the explicit expressions like (2.53),(2.54) the above equations imply

[σ̂, µ̂] = i , [x̂µ, p̂ν ] = iδµν , [α̂µν , Ŝα,β ] = iδµναβ , (2.154)

[ξ̂µ, π̂ν ] = iδµν , [ŝ, m̂] = i. (2.155)

In a particular representation in which X̂J are diagonal, the momentum
polyvector operator is represented by the multivector derivative (see Sec.
6.1).

P̂J = −i ∂

∂XJ
(2.156)

Explicitly, the later relation means

µ̂ = −i ∂
∂σ

, p̂µ = −i ∂

∂xµ
, Ŝµν = −i ∂

∂αµν
, π̂µ = −i ∂

∂ξµ
, m̂ = −i ∂

∂s
.

(2.157)

Let us assume that a quantum state can be represented by a polyvector-
valued wave function Φ(X) of the position polyvector X. A possible phys-
ical state is a solution to the equation

(P̂ 2 −K2)Φ = 0, (2.158)

which replaces the classical constraint (2.151).
When K2 = κ2 = 0 eq. (2.158) becomes

P̂ 2Φ = 0. (2.159)

Amongst the set of functions Φ(X) there are some such that satisfy

P̂Φ = 0. (2.160)
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Let us now consider a special case where Φ has definite values of the
operators µ̂, Ŝµν , π̂µ:

µ̂Φ = 0 , ŜµνΦ = 0 , π̂µΦ = 0 (2.161)

Then

P̂Φ = (p̂µeµ + m̂e5)Φ = 0. (2.162)

or

(p̂µγµ − m̂)Φ = 0, (2.163)

where

γµ ≡ e5eµ , γ5 = γ0γ1γ2γ3 = e0e1e2e3 = e5. (2.164)

When Φ is an eigenstate of m̂ with definite value m, i.e., when m̂φ = mΦ,
then eq. (2.163) becomes the familiar Dirac equation

(p̂µγ
µ −m)Φ = 0. (2.165)

A polyvector wave function which satisfies eq. (2.165) is a spinor. We
have arrived at the very interesting result that spinors can be represented
by particular polyvector wave functions.

3-dimensional case

To illustrate this let us consider the 3-dimensional space V3. Basis vectors
are σ1, σ2, σ3 and they satisfy the Pauli algebra

σi · σj ≡ 1
2(σiσj + σjσi) = δij , i, j = 1, 2, 3. (2.166)

The unit pseudoscalar

σ1σ2σ3 ≡ I (2.167)

commutes with all elements of the Pauli algebra and its square is I2 = −1.
It behaves as the ordinary imaginary unit i. Therefore, in 3-space, we may
identify the imaginary unit i with the unit pseudoscalar I.

An arbitrary polyvector in V3 can be written in the form

Φ = α0 + αiσi + iβiσi + iβ = Φ0 +Φiσi , (2.168)

where Φ0, Φi are formally complex numbers.
We can decompose [22]:

Φ = Φ1
2(1 + σ3) + Φ1

2(1− σ3) = Φ+ +Φ− , (2.169)
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where Φ+ ∈ I+ and Φ− ∈ I− are independent minimal left ideals (see Box
3.2).

Box 3.2: Definition of ideal

A left ideal IL in an algebra C is a set of elements such that if a ∈ IL
and c ∈ C, then ca ∈ IL. If a ∈ IL, b ∈ IL, then (a + b) ∈ IL. A
right ideal IR is defined similarly except that ac ∈ IR. A left (right)
minimal ideal is a left (right) ideal which contains no other ideals but
itself and the null ideal.

A basis in I+ is given by two polyvectors

u1 =
1
2(1 + σ3) , u2 = (1− σ3)σ1 , (2.170)

which satisfy

σ3u1 = u1 , σ1u1 = u2 , σ2u1 = iu2 ,

σ3u2 = −u2 , σ1u2 = u1 , σ2u2 = −iu1. (2.171)

These are precisely the well known relations for basis spinors. Thus we
have arrived at the very profound result that the polyvectors u1, u2 behave
as basis spinors.

Similarly, a basis in I− is given by

v1 =
1
2(1 + σ3)σ1 , v2 =

1
2(1− σ3) (2.172)

and satisfies

σ3v1 = v1 , σ1v1 = v2 , σ2v1 = iv2 ,

σ3v2 = −v2 , σ1v2 = v1 , σ2v2 = −iv1. (2.173)

A polyvector Φ can be written in spinor basis as

Φ = Φ1
+u1 +Φ2

+u2 +Φ1
−v1 +Φ2

−v2 , (2.174)

where

Φ1
+ = Φ0 + Φ3 , Φ1

− = Φ1 − iΦ2

Φ2
+ = Φ1 + iΦ2 , Φ2

− = Φ0 − Φ3 (2.175)
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Eq. (2.174) is an alternative expansion of a polyvector. We can expand the
same polyvector Φ either according to (2.168) or according to (2.174).

Introducing the matrices

ξab =

(
u1 v1
u2 v2

)
, Φab =

(
Φ1
+ Φ1

−
Φ2
+ Φ2

−

)
(2.176)

we can write (2.174) as

Φ = Φabξab. (2.177)

Thus a polyvector can be represented as amatrix Φab. The decomposition
(2.169) then reads

Φ = Φ+ +Φ− = (Φab+ +Φab− )ξab , (2.178)

where

Φab+ =

(
Φ1
+ 0

Φ2
+ 0

)
, (2.179)

Φab− =

(
0 Φ1

−
0 Φ2

−

)
. (2.180)

From (2.177) we can directly calculate the matrix elements Φab. We only
need to introduce the new elements ξ†ab which satisfy

(ξ†
ab
ξcd)S = δacδ

b
d. (2.181)

The superscript † means Hermitian conjugation [22]. If

A = AS +AV +AB +AP (2.182)

is a Pauli number, then

A† = AS +AV −AB −AP . (2.183)

This means that the order of basis vectors σi in the expansion of A† is

reversed. Thus u†1 = u1, but u†2 = 1
2(1 + σ3)σ1. Since (u†1u1)S = 1

2 ,

(u†2u2)S = 1
2 , it is convenient to introduce u†

1
= 2u1 and u†

2
= 2u2 so that

(u†
1
u1)S = 1, (u†

2
u2)S = 1. If we define similar relations for v1, v2 then we

obtain (2.181).
From (2.177) and (2.181) we have

Φab = (ξ†
ab
Φ)I . (2.184)
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Here the subscript I means invariant part, i.e., scalar plus pseudoscalar
part (remember that pseudoscalar unit has here the role of imaginary unit
and that Φab are thus complex numbers).

The relation (2.184) tells us how from an arbitrary polyvector Φ (i.e., a
Clifford number) can we obtain its matrix representation Φab.

Φ in (2.184) is an arbitrary Clifford number. In particular, Φ may be
any of the basis vectors σi.

Example Φ = σ1:

Φ11 = (ξ†
11
σ1)I = (u†

1
σ1)I = ((1 + σ3)σ1)I = 0,

Φ12 = (ξ†
12
σ1)I = (v†

1
σ1)I = ((1− σ3)σ1σ1)I = 1,

Φ21 = (ξ†
21
σ1)I = (u†

2
σ1)I = ((1 + σ3)σ1σ1)I = 1,

Φ22 = (ξ†
22
σ1)I = (v†

2
σ1)I = ((1− σ3)σ1)I = 0. (2.185)

Therefore

(σ1)
ab =

(
0 1
1 0

)
. (2.186)

Similarly we obtain from (2.184) when Φ = σ2 and Φ = σ3, respectively,
that

(σ2)
ab =

(
0 −i
i 0

)
, (σ3)

ab =

(
1 0
0 −1

)
. (2.187)

So we have obtained the matrix representation of the basis vectors σi.
Actually (2.186), (2.187) are the well known Pauli matrices.

When Φ = u1 and Φ = u2, respectively, we obtain

(u1)
ab =

(
1 0
0 0

)
, (u2)

ab =

(
0 0
1 0

)
(2.188)

which are a matrix representation of the basis spinors u1 and u2.
Similarly we find

(v1)
ab =

(
0 1
0 0

)
, (v2)

ab =

(
0 0
0 1

)
(2.189)

In general a spinor is a superposition

ψ = ψ1u1 + ψ2u2 , (2.190)

and its matrix representation is

ψ →
(
ψ1 0
ψ2 0

)
. (2.191)
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Another independent spinor is

χ = χ1v1 + χ2v2 , (2.192)

with matrix representation

χ→
(
0 χ1

0 χ2

)
. (2.193)

If we multiply a spinor ψ from the left by any element R of the Pauli
algebra we obtain another spinor

ψ′ = Rψ →
(
ψ′1 0
ψ′2 0

)
(2.194)

which is an element of the same minimal left ideal. Therefore, if only
multiplication from the left is considered, a spinor can be considered as a
column matrix

ψ →
(
ψ1

ψ2

)
. (2.195)

This is just the common representation of spinors. But it is not general
enough to be valid for all the interesting situations which occur in the
Clifford algebra.

We have thus arrived at a very important finding. Spinors are just par-
ticular Clifford numbers: they belong to a left or right minimal ideal. For
instance, a generic spinor is

ψ = ψ1u1 + ψ2u2 with Φab =

(
ψ1 0
ψ2 0

)
. (2.196)

A conjugate spinor is

ψ† = ψ1∗u†1 + ψ2∗u†2 with (Φab)
∗
=

(
ψ1∗ ψ2∗

0 0

)
(2.197)

and it is an element of a minimal right ideal.

4-dimensional case

The above considerations can be generalized to 4 or more dimensions.
Thus

ψ = ψ0u0 + ψ1u1 + ψ2u2 + ψ3u3 →




ψ0 0 0 0
ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0


 (2.198)
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and

ψ† = ψ∗0u†0+ψ
∗1u†1+ψ

∗2u†2+ψ
∗3u†3 →




ψ∗0 ψ∗1 ψ∗2 ψ∗3

0 0 0 0
0 0 0 0
0 0 0 0


 , (2.199)

where u0, u1, u2, u3 are four basis spinors in spacetime, and ψ0, ψ1, ψ2, ψ3

are complex scalar coefficients.
In 3-space the pseudoscalar unit can play the role of the imaginary unit i.

This is not the case of the 4-space V4, since e5 = e0e1e2e3 does not commute
with all elements of the Clifford algebra in V4. Here the approaches taken by
different authors differ. A straightforward possibility [37] is just to use the
complex Clifford algebra with complex coefficients of expansion in terms of
multivectors. Other authors prefer to consider real Clifford algebra C and
ascribe the role of the imaginary unit i to an element of C which commutes
with all other elements of C and whose square is −1. Others [22, 36] explore
the possibility of using a non-commuting element as a substitute for the
imaginary unit. I am not going to review all those various approaches, but
I shall simply assume that the expansion coefficients are in general complex
numbers. In Sec. 7.2 I explore the possibility that such complex numbers
which occur in the quantized theory originate from the Clifford algebra
description of the (2× n)-dimensional phase space (xµ, pµ). In such a way
we still conform to the idea that complex numbers are nothing but special
Clifford numbers.

A Clifford number ψ expanded according to (2.198) is an element of a
left minimal ideal if the four elements u0, u1, u2, u3 satisfy

Cuλ = C0λu0 + C1λu1 + C2λu2 + C3λu3 (2.200)

for an arbitrary Clifford number C. General properties of uλ were investi-
gated by Teitler [37]. In particular, he found the following representation
for uλ:

u0 = 1
4(1− e0 + ie12 − ie012),

u1 = −e13u0 = 1
4(−e13 + e013 + ie23 − ie023),

u2 = −ie3u0 = 1
4(−ie3 − ie03 + e123 + e0123),

u3 = −ie1u0 = 1
4(−ie1 − ie01 − e2 − e02), (2.201)

from which we have

e0u0 = −u0 ,
e1u0 = iu3 ,

e2u0 = −u3 ,
e3u0 = iu2. (2.202)
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Using the representation (2.201) we can calculate from (2.200) the matrix
elements Cρλ of any Clifford number. For the spacetime basis vectors eµ ≡
(e0, ei), i = 1, 2, 3, we obtain

e0 =

(−1 0
0 1

)
, ei =

(
0 iσi

iσi 0

)
, (2.203)

which is one of the standard matrix representations of eµ (the Dirac matri-
ces).

If a spinor is multiplied from the left by an arbitrary Clifford number, it
remains a spinor. But if is multiplied from the right, it in general transforms
into another Clifford number which is no more a spinor. Scalars, vectors,
bivectors, etc., and spinors can be reshuffled by the elements of Clifford
algebra: scalars, vectors, etc., can be transformed into spinors, and vice
versa.

Quantum states are assumed to be represented by polyvector wave func-
tions (i.e., Clifford numbers). If the latter are pure scalars, vectors, bivec-
tors, pseudovectors, and pseudoscalars they describe bosons. If, on the
contrary, wave functions are spinors, then they describe fermions. Within
Clifford algebra we have thus transformations which change bosons into
fermions! It remains to be investigated whether this kind of “supersymme-
try” is related to the well known supersymmetry.

2.6. ON THE SECOND QUANTIZATION OF
THE POLYVECTOR ACTION

If we first quantize the polyvector action (2.117) we obtain the wave
equation

(p̂µp̂µ − m̂2 − κ2)φ = 0, (2.204)

where
p̂µ = −∂/∂xµ ≡ ∂µ , m̂ = −i∂/∂s ,

and κ is a fixed constant. The latter wave equation can be derived from
the action

I[φ] = 1
2

∫
ds ddxφ(−∂µ∂µ +

∂2

∂s2
− κ2)φ

=
1

2

∫
ds ddx

(
∂µφ∂

µφ−
(
∂φ

∂s

)2

− κ2φ2
)
, (2.205)

where in the last step we have omitted the surface and the total derivative
terms.
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The canonical momentum is

π(s, x) =
∂L

∂∂φ/s
= −∂φ

∂s
(2.206)

and the Hamiltonian is

H[φ, π] =

∫
ddx

(
π
∂φ

∂s
− L

)
= 1

2

∫
ddx (−π2 − ∂µφ∂µφ+ κ2φ2). (2.207)

If instead of one field φ there are two fields φ1, φ2 we have

I[φ1, φ2] =

∫
ds ddx

[
∂µφ1∂

µφ1 −
(
∂φ1
∂s

)2

− κ2φ21

+ ∂µφ2∂
µφ2 −

(
∂φ2
∂s

)2

− κ2φ22
]
. (2.208)

The canonical momenta are

π1 =
∂L

∂∂φ1/s
= −∂φ1

∂s
, π2 =

∂L
∂∂φ2/s

= −∂φ2
∂s

(2.209)

and the Hamiltonian is

H[φ1, φ2, π1, π2] =

∫
ddx

(
π1
∂φ1
∂s

+ π2
∂φ2
∂s
− L

)

= 1
2

∫
ddx (−π21 − ∂µφ1∂µφ1 + κ2φ21

− π22 − ∂µφ2∂µφ2 + κ2φ22). (2.210)

Introducing the complex fields

φ = φ1 + iφ2 , π = π1 + iπ2

φ∗ = φ1 − iφ2 , π∗ = π1 − iπ2 (2.211)

we have

I[φ, φ∗] = 1
2

∫
ds ddx

(
∂φ∗

∂s

∂φ

∂s
− ∂µφ∗∂µφ− κ2φ∗φ

)
(2.212)

and

H[φ, φ∗, π, π∗] = 1
2

∫
ddx(−π∗π − ∂µφ∗∂µφ+ κ2φ∗φ). (2.213)

Comparing the latter Hamiltonian with the one of the Stueckelberg field
theory (1.161), we see that it is the same, except for the additional term
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−π∗π which is absent in the Stueckelberg field theory. We see also that
the theory described by (2.212) and (2.213) has the same structure as the
conventional field theory, except for the number of dimensions. In the
conventional theory we have time t and three space-like coordinates xi,
i = 1, 2, 3, while here we have s and four or more coordinates xµ, one of
them being time-like.

As the non-relativistic field theory is an approximation to the relativistic
field theory, so the field theory derived from the Stueckelberg action is an
approximation to the field theory derived from the polyvector action.

On the other hand, at the classical level (as we have seen in Sec. 2.4)
Stueckelberg action, in the absence of interaction, arises exactly from the
polyvector action. Even in the presence of the electromagnetic interaction
both actions are equivalent, since they give the same equations of motion.
However, the field theory based on the latter action differs from the field
theory based on the former action by the term π∗π in the Hamiltonian
(2.213). While at the classical level Stueckelberg and the polyvector action
are equivalent, at the first and the second quantized level differences arise
which need further investigation.

Second quantization then goes along the usual lines: φi and πi become
operators satisfying the equal s commutation relations:

[φi(s, x), φj(s, x
′)] = 0 , [πi(s, x), πj(s, x

′)] = 0 ,

[φi(s, x), πj(s, x
′)] = iδijδ(x− x′). (2.214)

The field equations are then just the Heisenberg equations

π̇i = i[πi, H]. (2.215)

We shall not proceed here with formal development, since it is in many
respects just a repetition of the procedure expounded in Sec. 1.4. But we
shall make some remarks. First of all it is important to bear in mind that
the usual arguments about causality, unitarity, negative energy, etc., do not
apply anymore, and must all be worked out again. Second, whilst in the
conventional quantum field theory the evolution parameter is a time-like
coordinate x0 ≡ t, in the field theory based on (2.212), (2.213) the evo-
lution parameter is the pseudoscalar variable s. In even-dimensions it is
invariant with respect to the Poincaré and the general coordinate trans-
formations of xµ, including the inversions. And what is very nice here is
that the (pseudo)scalar parameter s naturally arises from the straightfor-
ward polyvector extension of the conventional reparametrization invariant
theory.

Instead of the Heisenberg picture we can use the Schrödinger picture and
the coordinate representation in which the operators φi(0, x) ≡ φi(x) are
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diagonal, i.e., they are just ordinary functions. The momentum operator is
represented by functional derivative7

πj = −i
δ

δφj(x)
. (2.216)

A state |Ψ〉 is represented by a wave functional Ψ[φ(x)] = 〈φ(x)|Ψ〉 and
satisfies the Schrödinger equation

i
∂Ψ

∂s
= HΨ (2.217)

in which the evolution parameter is s. Of course s is invariant under the
Lorentz transformations, and H contains all four components of the 4-
momentum. Equation (2.217) is just like the Stueckelberg equation, the
difference being that Ψ is now not a wave function, but a wave functional.

We started from the constrained polyvector action (2.117). Performing
the first quantization we obtained the wave equation (2.204) which follows
from the action (2.205) for the field φ(s, xµ). The latter action is uncon-
strained. Therefore we can straightforwardly quantize it, and thus perform
the second quantization. The state vector |Ψ〉 in the Schrödinger picture
evolves in s which is a Lorentz invariant evolution parameter. |Ψ〉 can be
represented by a wave functional Ψ[s, φ(x)] which satisfied the functional
Schrödinger equation. Whilst upon the first quantization the equation of
motion for the field φ(s, xµ) contains the second order derivative with re-
spect to s, upon the second quantization only the first order s-derivative
remains in the equation of motion for the state functional Ψ[s, φ(x)].

An analogous procedure is undertaken in the usual approach to quantum
field theory (see, e.g., [38]), with the difference that the evolution parameter
becomes one of the space time coordinates, namely x0 ≡ t. When trying to
quantize the gravitational field it turns out that the evolution parameter t
does not occur at all in the Wheeler–DeWitt equation! This is the well
known problem of time in quantum gravity. We anticipate that a sort of
polyvector generalization of the Einstein–Hilbert action should be taken,
which would contain the scalar or pseudoscalar parameter s, and retain it
in the generalized Wheeler–DeWitt equation. Some important research in
that direction has been pioneered by Greensite and Carlini [39]

7A detailed discussion of the Schrödinger representation in field theory is to be found in ref. [38].
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2.7. SOME FURTHER IMPORTANT
CONSEQUENCES OF CLIFFORD
ALGEBRA

RELATIVITY OF SIGNATURE
In previous sections we have seen how Clifford algebra can be used in the

formulation of the point particle classical and quantum theory. The metric
of spacetime was assumed, as usually, to have the Minkowski signature,
and we have used the choice (+−−−). We are now going to find out that
within Clifford algebra the signature is a matter of choice of basis vectors
amongst available Clifford numbers.

Suppose we have a 4-dimensional space V4 with signature (+ + + +).
Let eµ, µ = 0, 1, 2, 3, be basis vectors satisfying

eµ · eν ≡ 1
2(eµeν + eνeµ) = δµν , (2.218)

where δµν is the Euclidean signature of V4. The vectors eµ can be used
as generators of Clifford algebra C over V4 with a generic Clifford number
(also called polyvector or Clifford aggregate) expanded in term of eJ =
(1, eµ, eµν , eµνα, eµναβ), µ < ν < α < β,

A = aJeJ = a+ aµeµ + aµνeµeν + aµναeµeνeα + aµναβeµeνeαeβ . (2.219)

Let us consider the set of four Clifford numbers (e0, eie0), i = 1, 2, 3, and
denote them as

e0 ≡ γ0,

eie0 ≡ γi. (2.220)

The Clifford numbers γµ, µ = 0, 1, 2, 3, satisfy

1
2(γµγν + γνγµ) = ηµν , (2.221)

where ηµν = diag(1,−1,−1,−1) is the Minkowski tensor. We see that the
γµ behave as basis vectors in a 4-dimensional space V1,3 with signature
(+−−−). We can form a Clifford aggregate

α = αµγµ (2.222)

which has the properties of a vector in V1,3. From the point of view of the
space V4 the same object α is a linear combination of a vector and bivector:

α = α0e0 + αieie0. (2.223)

We may use γµ as generators of the Clifford algebra C1,3 defined over
the pseudo-Euclidean space V1,3. The basis elements of C1,3 are γJ =
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(1, γµ, γµν , γµνα, γµναβ), with µ < ν < α < β. A generic Clifford aggre-
gate in C1,3 is given by

B = bJγJ = b+ bµγµ + bµνγµγν + bµναγµγνγα + bµναβγµγνγαγβ. (2.224)

With suitable choice of the coefficients bJ = (b, bµ, bµν , bµνα, bµναβ) we have
that B of eq. (2.224) is equal to A of eq.(2.219). Thus the same number A
can be described either within C4 or within C1,3. The expansions (2.224)
and (2.219) exhaust all possible numbers of the Clifford algebras C1,3 and
C4. The algebra C1,3 is isomorphic to the algebra C4, and actually they are
just two different representations of the same set of Clifford numbers (also
being called polyvectors or Clifford aggregates).

As an alternative to (2.220) we can choose

e0e3 ≡ γ̃0,

ei ≡ γ̃i, (2.225)

from which we have
1
2(γ̃µγ̃ν + γ̃ν γ̃µ) = η̃µν (2.226)

with η̃µν = diag(−1, 1, 1, 1). Obviously γ̃µ are basis vectors of a pseudo-

Euclidean space Ṽ1,3 and they generate the Clifford algebra over Ṽ1,3 which
is yet another representation of the same set of objects (i.e., polyvectors).

But the spaces V4, V1,3 and Ṽ1,3 are not the same and they span different
subsets of polyvectors. In a similar way we can obtain spaces with signa-
tures (+−++), (++−+), (+++−), (−+−−), (−−+−), (−−−+) and
corresponding higher dimensional analogs. But we cannot obtain signatures
of the type (+ + −−), (+ − +−), etc. In order to obtain such signatures
we proceed as follows.

4-space. First we observe that the bivector Ī = e3e4 satisfies Ī2 = −1,
commutes with e1, e2 and anticommutes with e3, e4. So we obtain that the
set of Clifford numbers γµ = (e1Ī , e2Ī , e3, e3) satisfies

γµ · γν = η̄µν , (2.227)

where η̄ = diag(−1,−1, 1, 1).
8-space. Let eA be basis vectors of 8-dimensional vector space with

signature (+ + + + + + + +). Let us decompose

eA = (eµ, eµ̄) , µ = 0, 1, 2, 3,

µ̄ = 0̄, 1̄, 2̄, 3̄. (2.228)

The inner product of two basis vectors

eA · eB = δAB, (2.229)
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then splits into the following set of equations:

eµ · eν = δµν ,

eµ̄ · eν̄ = δµ̄ν̄ ,

eµ · eν̄ = 0. (2.230)

The number Ī = e0̄e1̄e2̄e3̄ has the properties

Ī2 = 1,

Īeµ = eµĪ ,

Īeµ̄ = −eµ̄Ī . (2.231)

The set of numbers

γµ = eµ ,

γµ̄ = eµ̄Ī (2.232)

satisfies

γµ · γν = δµν ,

γµ̄ · γν̄ = −δµ̄ν̄ ,
γµ · γµ̄ = 0. (2.233)

The numbers (γµ, γµ̄) thus form a set of basis vectors of a vector space V4,4
with signature (+ + ++−−−−).

10-space. Let eA = (eµ, eµ̄), µ = 1, 2, 3, 4, 5; µ̄ = 1̄, 2̄, 3̄, 4̄, 5̄ be basis
vectors of a 10-dimensional Euclidean space V10 with signature (+ + + ....).
We introduce Ī = e1̄e2̄e3̄e4̄e5̄ which satisfies

Ī2 = 1 ,

eµĪ = −Īeµ ,
eµ̄Ī = Īeµ̄. (2.234)

Then the Clifford numbers

γµ = eµĪ ,

γµ̄ = eµ (2.235)

satisfy

γµ · γν = −δµν ,
γµ̄ · γν̄ = δµ̄ν̄ ,

γµ · γµ̄ = 0. (2.236)
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The set γA = (γµ, γµ̄) therefore spans the vector space of signature (− −
−−−+++++).

The examples above demonstrate how vector spaces of various signatures
are obtained within a given set of polyvectors. Namely, vector spaces of dif-
ferent signature are different subsets of polyvectors within the same Clifford
algebra.

This has important physical implications. We have argued that physical
quantities are polyvectors (Clifford numbers or Clifford aggregates). Phys-
ical space is then not simply a vector space (e.g., Minkowski space), but a
space of polyvectors. The latter is a pandimensional continuum P [23] of
points, lines, planes, volumes, etc., altogether. Minkowski space is then just
a subspace with pseudo-Euclidean signature. Other subspaces with other
signatures also exist within the pandimensional continuum P and they all
have physical significance. If we describe a particle as moving in Minkowski
spacetime V1,3 we consider only certain physical aspects of the object con-
sidered. We have omitted its other physical properties like spin, charge,
magnetic moment, etc.. We can as well describe the same object as moving
in an Euclidean space V4. Again such a description would reflect only a
part of the underlying physical situation described by Clifford algebra.

GRASSMAN NUMBERS FROM CLIFFORD
NUMBERS

In Sec. 2.5 we have seen that certain Clifford aggregates are spinors.
Now we shall find out that also Grassmann (anticommuting) numbers are
Clifford aggregates. As an example let us consider 8-dimensional space V4,4
with signature (+−−−−+++) spanned by basis vectors γA = (γµ, γµ̄).
The numbers

θµ = 1
2(γµ + γµ̄),

θ†µ = 1
2(γµ − γµ̄) (2.237)

satisfy

{θµ, θν} = {θ†µ, θ†ν} = 0 , (2.238)

{θµ, θ†ν} = ηµν , (2.239)

where {A,B} ≡ AB+BA. From (2.238) we read out that θµ anticommute
among themselves and are thus Grassmann numbers. Similarly θ†µ form a

set of Grassmann numbers. But, because of (2.239), θµ and θ†µ altogether
do not form a set of Grassmann numbers. They form yet another set of
basis elements which generate Clifford algebra.
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A Clifford number in V4,4 can be expanded as

C = c+ cA1γA1 + cA1A2γA1γA2 + ...+ cA1A2...A8γA1γA2 ...γA8 . (2.240)

Using (2.237), the same Clifford number C can be expanded in terms of θµ,
θ†µ:

C = c + aµθµ + aµνθµθν + aµναθµθνθα + aµναβθµθνθαθβ

+ āµθ†µ + āµνθ†µθ
†
ν + āµναθ†µθ

†
νθ
†
α + āµναβθ†µθ

†
νθ
†
αθ
†
β

+ (mixed terms like θ†µθν , etc.) (2.241)

where the coefficients aµ, aµν , ..., āµ, āµν ... are linear combinations of coef-
ficients cAi , cAiAj ,...

In a particular case, coefficients c, āµ, āµν , etc., can be zero and our
Clifford number is then a Grassmann number in 4-space:

ξ = aµθµ + aµνθµθν + aµναθµθνθα + aµναβθµθνθαθβ . (2.242)

Grassmann numbers expanded according to (2.242), or analogous expres-
sions in dimensions other than 4, are much used in contemporary theoret-
ical physics. Recognition that Grassmann numbers can be considered as
particular numbers within a more general set of numbers, namely Clifford
numbers (or polyvectors), leads in my opinion to further progress in un-
derstanding and development of the currently fashionable supersymmetric
theories, including superstrings, D-branes and M -theory.

We have seen that a Clifford number C in 8-dimensional space can be
expanded in terms of the basis vectors (γµ, γµ̄) or (θµ, θ

†
µ). Besides that,

one can expand C also in terms of (γµ, θµ):

C = c + bµγµ + bµνγµγν + bµναγµγνγα + bµναβγµγνγαγβ

+ βµθµ + βµνθµθν + βµναθµθνθα + βµναβθµθνθαθβ

+ (mixed terms such as θµγν , etc.). (2.243)

The basis vectors γµ span the familiar 4-dimensional spacetime, while θµ
span an extra space, often called Grassmann space. Usually it is stated
that besides four spacetime coordinates xµ there are also four extra Grass-
mann coordinates θµ and their conjugates θ†µ or θ̄µ = γ0θ

†
µ. This should be

contrasted with the picture above in which θµ are basis vectors of an extra
space, and not coordinates.
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2.8. THE POLYVECTOR ACTION AND
DE WITT–ROVELLI MATERIAL
REFERENCE SYSTEM

Following an argument by Einstein [42], that points of spacetime are
not a priori distinguishable, DeWitt [25] introduced a concept of reference
fluid. Spacetime points are then defined with respect to the reference fluid.
The idea that we can localize points by means of some matter has been
further elaborated by Rovelli [26]. As a starting model he considers a
reference system consisting of a single particle and a clock attached to
it. Besides the particle coordinate variables Xµ(τ) there is also the clock
variable T (τ), attached to the particle, which grows monotonically along
the particle trajectory. Rovelli then assumes the following action for the
variables Xµ(τ), T (τ):

I[Xµ, T ] = m

∫
dτ

(
dXµ

dτ

dXµ

dτ
− 1

ω2

(
dT

dτ

)2
)1/2

. (2.244)

If we make replacement m→ κ and T/ω → s the latter action reads

I[Xµ, s] =

∫
dτκ

(
ẊµẊµ − ṡ2

)1/2
. (2.245)

If, on the other hand, we start from the polyvector action (2.117) and
eliminate m, pµ, λ by using the equations of motion, we again obtain the
action (2.245). Thus the pseudoscalar variable s(τ) entering the polyvector
action may be identified with Rovelli’s clock variable. Although Rovelli
starts with a single particle and clock, he later fills space with these objects.
We shall return to Rovelli’s reference systems when we discuss extended
objects.



Chapter 3

HARMONIC OSCILLATOR

IN PSEUDO-EUCLIDEAN SPACE

One of the major obstacles to future progress in our understanding of
the relation between quantum field theory and gravity is the problem of
the cosmological constant [43]. Since a quantum field is an infinite set of
harmonic oscillators, each having a non-vanishing zero point energy, a field
as a whole has infinite vacuum energy density. The latter can be considered,
when neglecting the gravitational field, just as an additive constant with
no influence on dynamics. However, the situation changes dramatically
if one takes into account the gravitational field which feels the absolute
energy density. As a consequence the infinite (or, more realistically, the
Planck scale cutoff) cosmological constant is predicted which is in drastic
contradiction with its observed small value. No generally accepted solution
of this problem has been found so far.

In this chapter I study the system of uncoupled harmonic oscillators in
a space with arbitrary metric signature. One interesting consequence of
such a model is vanishing zero point energy of the system when the number
of positive and negative signature coordinates is the same, and so there is
no cosmological constant problem. As an example I first solve a system of
two oscillators in the space with signature (+−) by using a straightforward,
though surprisingly unexploited, approach based on the energy being here
just a quadratic form consisting of positive and negative terms [44, 45].
Both positive and negative energy components are on the same footing,
and the difference in sign does not show up until we consider gravitation.
In the quantized theory the vacuum state can be defined straightforwardly
and the zero point energies cancel out. If the action is written in a covariant
notation one has to be careful of how to define the vacuum state. Usually
it is required that energy be positive, and then, in the absence of a cutoff,
the formalism contains an infinite vacuum energy and negative norm states

93
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[46]. In the formalism I am going to adopt energy is not necessarily positive,
negative energy states are also stable, and there are no negative norm states
[3].

The formalism will be then applied to the case of scalar fields. The
extension of the spinor–Maxwell field is also discussed. Vacuum energy
density is zero and the cosmological constant vanishes. However, the theory
contains the negative energy fields which couple to the gravitational field in
a different way than the usual, positive energy, fields: the sign of coupling
is reversed. This is the price to be paid if one wants to obtain a small
cosmological constant in a straightforward way. One can consider this as
a prediction of the theory to be tested by suitably designed experiments.
Usually, however, the argument is just the opposite of the one proposed
here and classical matter is required to satisfy certain (essentially positive)
energy conditions [47] which can only be violated by quantum field theory.

3.1. THE 2-DIMENSIONAL
PSEUDO-EUCLIDEAN HARMONIC
OSCILLATOR

Instead of the usual harmonic oscillator in 2-dimensional space let us
consider that given by the Lagrangian

L = 1
2(ẋ

2 − ẏ2)− 1
2ω

2(x2 − y2). (3.1)

The corresponding equations of motion are

ẍ+ ω2x = 0 , ÿ + ω2y = 0. (3.2)

Note that in spite of the minus sign in front of the y-terms in the Lagrangian
(3.1), the x and y components satisfy the same type equations of motion.

The canonical momenta conjugate to x,y are

px =
∂L

∂ẋ
= ẋ , py =

∂L

∂ẏ
= −ẏ. (3.3)

The Hamiltonian is

H = pxẋ+ pyẏ − L = 1
2(p

2
x − p2y) + 1

2ω
2(x2 − y2) (3.4)

We see immediately that the energy so defined may have positive or negative
values, depending on the initial conditions. Even if the system happens to
have negative energy it is stable, since the particle moves in a closed curve
around the point (0,0). The motion of the harmonic oscillator based on the
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Lagrangian (3.1) does not differ from that of the usual harmonic oscillator.
The difference occurs when one considers the gravitational fields around
the two systems.

The Hamiltonian equations of motion are

ẋ =
∂H

∂px
= {x,H} = px , ẏ =

∂H

∂py
= {y,H} = −py , (3.5)

ṗx = −∂H
∂x

= {px, H} = −ω2x , ṗy = −
∂H

∂y
= {py, H} = ω2y , (3.6)

where the basic Poisson brackets are {x, px} = 1 and {y, py} = 1.
Quantizing our system we have

[x, px] = i , [y, py] = i (3.7)

Introducing the non-Hermitian operators according to

cx =
1√
2

(√
ωx+

i√
ω
px

)
, c†x =

1√
2

(√
ωx− i√

ω
px

)
, (3.8)

cy =
1√
2

(√
ωx+

i√
ω
py

)
, c†y =

1√
2

(√
ωx− i√

ω
py

)
, (3.9)

we have
H =

ω

2
(c†xcx + cxc

†
x − c†ycy − cyc†y). (3.10)

From the commutation relations (3.7) we obtain

[cx, c
†
x] = 1 , [cy, c

†
y] = 1 , (3.11)

and the normal ordered Hamiltonian then becomes

H = ω(c†xcx − c†ycy). (3.12)

The vacuum state is defined as

cx|0〉 = 0 , cy|0〉 = 0. (3.13)

The eigenvalues of H are

E = ω(nx − ny), (3.14)

where nx and ny are eigenvalues of the operators c
†
xcx and c

†
ycy, respectively.

The zero point energies belonging to the x and y components cancel. Our
2-dimensional pseudo harmonic oscillator has vanishing zero point energy!.
This is a result we obtain when applying the standard Hamilton procedure
to the Lagrangian (3.1).
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In the (x, y) representation the vacuum state 〈x, y|0〉 ≡ ψ0(x, y) satisfies

1√
2

(√
ω x+

1√
ω

∂

∂x
ψ0(x, y)

)
= 0 ,

1√
2

(√
ω y +

1√
ω

∂

∂y
ψ0(x, y)

)
= 0 ,

(3.15)
which comes straightforwardly from (3.13). A solution which is in agree-
ment with the probability interpretation,

ψ0 =
2π

ω
exp[−1

2ω(x
2 + y2)] (3.16)

is normalized according to
∫
ψ2
0 dx dy = 1.

We see that our particle is localized around the origin. The excited states
obtained by applying c†x, c

†
y to the vacuum state are also localized. This is in

agreement with the property that also according to the classical equations
of motion (3.2), the particle is localized in the vicinity of the origin. All
states |ψ〉 have positive norm. For instance,

〈0|cc†|0〉 = 〈0|[c, c†]|0〉 = 〈0|0〉 =
∫
ψ2
0dx dy = 1.

3.2. HARMONIC OSCILLATOR IN
d-DIMENSIONAL PSEUDO-EUCLIDEAN
SPACE

Extending (3.1) to arbitrary dimension it is convenient to use the com-
pact (covariant) index notation

L =
1

2
ẋµẋµ − 1

2ω
2xµxµ , (3.17)

where for arbitrary vector Aµ the quadratic form is AµAµ ≡ ηµνAµAν . The
metric tensor ηµν has signature (+ + +...−−− ...). The Hamiltonian is

H = 1
2p
µpµ +

1
2ω

2xµxµ (3.18)

Conventionally one introduces

aµ =
1√
2

(√
ω xµ +

i√
ω
pµ
)
, aµ† =

1√
2

(√
ωxµ − i√

ω
pµ
)
. (3.19)

In terms of aµ, aµ† the Hamiltonian reads

H =
ω

2
(aµ†aµ + aµa

µ†). (3.20)
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Upon quantization we have

[xµ, pν ] = iδµν or [xµ, pν ] = iηµν (3.21)

and

[aµ, a†ν ] = δµν or [aµ, aν†] = ηµν . (3.22)

We shall now discuss two possible definitions of the vacuum state. The
first possibility is the one usually assumed, whilst the second possibility
[44, 45] is the one I am going to adopt.

Possibility I. The vacuum state can be defined according to

aµ|0〉 = 0 (3.23)

and the Hamiltonian, normal ordered with respect to the vacuum definition
(3.23), becomes, after using (3.22),

H = ω

(
aµ†aµ +

d

2

)
, d = ηµνηµν . (3.24)

Its eigenvalues are all positive and there is the non-vanishing zero point
energy ωd/2. In the x representation the vacuum state is

ψ0 =

(
2π

ω

)d/2
exp[−1

2ωx
µxµ] (3.25)

It is a solution of the Schrödinger equation − 1
2∂

µ∂µψ0 + (ω2/2)xµxµψ0 =

E0ψ0 with positive E0 = ω(12 + 1
2 + ....). The state ψ0 as well as excited

states can not be normalized to 1. Actually, there exist negative norm
states. For instance, if η33 = −1, then

〈0|a3a3†|0〉 = 〈0|[a3, a3†]|0〉 = −〈0|0〉.

Possibility II. Let us split aµ = (aα, aᾱ), where the indices α, ᾱ refer
to the components with positive and negative signature, respectively, and
define the vacuum according to1

aα|0〉 = 0 , aᾱ†|0〉 = 0. (3.26)

1Equivalently, one can define annihilation and creation operators in terms of xµ and the canon-
ically conjugate momentum pµ = ηµνpν according to cµ = (1/

√
2)(
√
ωxµ + (i/

√
ω)pµ) and

cµ† = (1/
√
2)(
√
ωxµ − (i/

√
ω)pµ), satisfying [cµ, cν†] = δµν . The vacuum is then defined as

cµ|0〉 = 0. This is just the higher-dimensional generalization of cx, cy (eq. (3.8),(3.9) and the
vacuum definition (3.13).
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Using (3.22) we obtain the normal ordered Hamiltonian with respect to the
vacuum definition (3.26)

H = ω

(
aα†aα +

r

2
+ aᾱa

ᾱ† − s

2

)
, (3.27)

where δα
α = r and δᾱ

ᾱ = s. If the number of positive and negative signa-
ture components is the same, i.e., r = s, then the Hamiltonian (3.27) has
vanishing zero point energy:

H = ω(aα†aα + aᾱa
ᾱ†). (3.28)

Its eigenvalues are positive or negative, depending on which components
(positive or negative signature) are excited. In the x-representation the
vacuum state (3.26) is

ψ0 =

(
2π

ω

)d/2
exp[−1

2ωδµνx
µxν ], (3.29)

where the Kronecker symbol δµν has the values +1 or 0. It is a solution
of the Schrödinger equation − 1

2∂
µ∂µψ0+(ω2/2)xµxµψ0 = E0ψ0 with E0 =

ω(12 + 1
2 + .... − 1

2 − 1
2 − ...). One can also easily verify that there are no

negative norm states.
Comparing Possibility I with Possibility II we observe that the former

has positive energy vacuum invariant under pseudo-Euclidean rotations,
whilst the latter has the vacuum invariant under Euclidean rotations and
having vanishing energy (when r = s). In other words, we have: either
(i) non-vanishing energy and pseudo-Euclidean invariance or (ii) vanishing
energy and Euclidean invariance of the vacuum state. In the case (ii) the
vacuum state ψ0 changes under the pseudo-Euclidean rotations, but its
energy remains zero.

The invariance group of our Hamiltonian (3.18) and the corresponding
Schrödinger equation consists of pseudo-rotations. Though a solution of
the Schrödinger equation changes under a pseudo-rotation, the theory is
covariant under the pseudo-rotations, in the sense that the set of all possible
solutions does not change under the pseudo-rotations. Namely, the solution
ψ0(x

′) of the Schrödinger equation

−1
2∂
′µ∂′µψ0(x

′) + (ω2/2)x′µx′µψ0(x
′) = 0 (3.30)

in a pseudo-rotated frame S ′ is

ψ0(x
′) =

2π

ω

d/2

exp[−1
2ωδµνx

′µx′ν ]. (3.31)
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If observed from the frame S the latter solution reads

ψ′0(x) =
2π

ω

d/2

× exp[−1
2ωδµνL

µ
ρx

ρLνσx
σ], (3.32)

where x′µ = Lµρx
ρ. One finds that ψ′0(x) as well as ψ0(x) (eq. (3.29)) are

solutions of the Schrödinger equation in S and they both have the same
vanishing energy. In general, in a given reference frame we have thus a
degeneracy of solutions with the same energy [44]. This is so also in the
case of excited states.

In principle it seem more natural to adopt Possibility II, because the
classically energy of our harmonic oscillator is nothing but a quadratic form
E = 1

2(p
µpµ + ω2xµxµ), which in the case of a metric of pseudo-Euclidean

signature can be positive, negative, or zero.

3.3. A SYSTEM OF SCALAR FIELDS

Suppose we have a system of two scalar fields described by the action2

I = 1
2

∫
d4x (∂µφ1 ∂

µφ1 −m2φ21 − ∂µφ2 ∂µφ2 +m2φ22). (3.33)

This action differs from the usual action for a charged field in the sign of
the φ2 term. It is a field generalization of our action for the point particle
harmonic oscillator in 2-dimensional pseudo-Euclidean space.

The canonical momenta are

π1 = φ̇1 , π2 = −φ̇2 (3.34)

satisfying

[φ1(x), π1(x
′)] = iδ3(x− x′) , [φ2(x), π2(x

′)] = iδ3(x− x′). (3.35)

The Hamiltonian is

H = 1
2

∫
d3x (π21 +m2φ21 − ∂iφ1 ∂iφ1 − π22 −m2φ22 + ∂iφ2∂

iφ2). (3.36)

We use the spacetime metric with signature (+ − −−) so that −∂iφ1 ∂iφ1
= (∇φ)2, i = 1, 2, 3. Using the expansion (ωk = (m2 + k2)1/2)

φ1 =

∫
d3k

(2π)3
1

2ωk

(
c1(k)e

−ikx + c†1(k)e
ikx
)
, (3.37)

2Here, for the sake of demonstration, I am using the formalism of the conventional field theory,
though in my opinion a better formalism involves an invariant evolution parameter, as discussed
in Sec. 1.4
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φ2 =

∫
d3k

(2π)3
1

2ωk

(
c2(k)e

−ikx + c†2(k)e
ikx
)

(3.38)

we obtain

H =
1

2

∫
d3k

(2π)3
ωk

2ωk

(
c†1(k)c1(k) + c1(k)c

†
1(k)− c†2(k)c2(k)− c2(k)c†2(k)

)
.

(3.39)

The commutation relations are

[c1(k), c
†
1(k

′] = (2π)32ωk δ
3(k− k′), (3.40)

[c2(k), c
†
2(k

′] = (2π)32ωk δ
3(k− k′). (3.41)

The Hamiltonian can be written in the form

H =
1

2

∫
d3k

(2π)3
ωk

2ωk

(
c†1(k)c1(k)− c†2(k)c2(k)

)
(3.42)

If we define the vacuum according to

c1(k)|0〉 = 0 , c2(k)|0〉 = 0 , (3.43)

then the Hamiltonian (3.42) contains the creation operators on the left and
has no zero point energy. However, it is not positive definite: it may have
positive or negative eigenvalues. But, as is obvious from our analysis of the
harmonic oscillator (3.1), negative energy states in our formalism are not
automatically unstable; they can be as stable as positive energy states.

Extension of the action (3.33) to arbitrary number os fields φa is straight-
forward. Let us now include also the gravitational field gµν . The action is
then

I =
1

2

∫
d4x
√−g

(
gµν∂µφ

a ∂νφ
b γab −m2 φaφbγab +

1

16πG
R

)
, (3.44)

where γab is the metric tensor in the space of φa. Variation of (3.44) with
respect to gµν gives the Einstein equations

Rµν − 1
2gµνR = −8πGTµν , (3.45)

where the stress–energy tensor is

Tµν =
2√−g

∂L
∂gµν

=
[
∂µφ

a ∂νφ
b − 1

2 gµν (g
ρσ∂ρφ

a ∂σφ
b −m2φaφb)

]
γab.

(3.46)
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If γab has signature (+++...−−−), with the same number of plus and minus
signs, then the vacuum contributions to Tµν cancel, so that the expectation
value 〈Tµν〉 remains finite. In particular, we have

T00 =
1
2(φ̇

aφ̇b − ∂iφa ∂iφb +m2φaφb)γab , (3.47)

which is just the Hamiltonian H of eq. (3.36) generalized to an arbitrary
number of fields φa.

A procedure analogous to that before could be carried out for other types
of fields such as charged scalar, spinor and gauge fields. The notorious cos-
mological constant problem does not arise in our model, since the vacuum
expectation value 〈0|Tµν |0〉 = 0. We could reason the other way around:
since experiments clearly show that the cosmological constant is small, this
indicates (especially in the absence of any other acceptable explanation)
that to every field there corresponds a companion field with the signature
opposite of the metric eigenvalue in the space of fields. The companion
field need not be excited —and thus observed— at all. Its mere existence
is sufficient to be manifested in the vacuum energy.

However, there is a price to be paid. If negative signature fields are
excited then 〈T00〉 can be negative, which implies a repulsive gravitational
field around such a source. Such a prediction of the theory could be
considered as an annoyance, on the one hand, or a virtue, on the other. If
the latter point of view is taken then we have here so called exotic matter
with negative energy density, which is necessary for the construction of the
stable wormholes with time machine properties [48]. Also the Alcubierre
warp drive [49] which enables faster than light motion with respect to a
distant observer requires matter of negative energy density.

As an example let me show how the above procedure works for spinor
and gauge fields. Neglecting gravitation the action is

I =

∫
d4x

[
iψ̄aγµ(∂µψ

b + ieAµ
b
cψ

c)−mψ̄aψb + 1

16π
Fµν

acFµνc
b
]
γab,

(3.48)
where

Fµν
ab = ∂µAν

ab − ∂νAµab − (Aµ
acAν

db −AνacAµdb)γcd. (3.49)

This action is invariant under local rotations

ψ′a = Uabφ
b , ψ̄′a = Uabψ

b , A′µ
a

b
= U∗cbAµ

d
cU

a
d + iU∗cb∂µU

a
c, (3.50)

which are generalization of the usual SU(N) transformations to the case of
the metric γab = diag(1, 1, ...,−1,−1).

In the case in which there are two spinor fields ψ1, ψ2, and γab =
diag(1,−1), the equations of motion derived from (3.48) admit a solution
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ψ2 = 0, A12
µ = A21

µ = A22
µ = 0. In the quantum field theory such a solution

can be interpreted as that when the fermions of type ψ2 (the companion
or negative signature fields) are not excited (not present) the gauge fields
A12
µ , A21

µ , A22
µ are also not excited (not present). What remains are just the

ordinary ψ1 ≡ ψ fermion quanta and U(1) gauge field A11
µ ≡ Aµ quanta.

The usual spinor–Maxwell electrodynamics is just a special solution of the
more general system given by (3.48).

Although having vanishing vacuum energy, such a model is consistent
with the well known experimentally observed effects which are manifesta-
tions of vacuum energy. Namely, the companion particles ψ2 are expected
to be present in the material of the Earth in small amounts at most, be-
cause otherwise the gravitational field around the Earth would be repulsive.
So, when considering vacuum effects, there remain only (or predominantly)
the interactions between the fermions ψ1 and the virtual photons A11

µ . For
instance, in the case of the Casimir effect [50] the fermions ψ1 in the two
conducting plates interact with the virtual photons A11

µ in the vacuum, and

hence impose the boundary conditions on the vacuum modes of A11
µ in the

presence of the plates. As a result we have a net force between the plates,
just as in the usual theory.

When gravitation is not taken into account, the fields within the doublet
(ψ1, ψ2) as described by the action (3.48) are not easily distinguishable,
since they have the same mass, charge, and spin. They mutually interact
only through the mixed coupling terms in the action (3.48), and unless the
effects of this mixed coupling are specifically measured the two fields can
be mis-identified as a single field. Its double character could manifest itself
straightforwardly in the presence of a gravitational field to which the mem-
bers of a doublet couple with the opposite sign. In order to detect such
doublets (or perhaps multiplets) of fields one has to perform suitable ex-
periments. The description of such experiments is beyond the scope of this
book, which only aims to bring attention to such a possibility. Here I only
mention that difficulties and discrepancies in measuring the precise value
of the gravitational constant might have roots in negative energy matter.
The latter would affect the measured value of the effective gravitational
constant, but would leave the equivalence principle untouched.

3.4. CONCLUSION

The problem of the cosmological constant is one of the toughest prob-
lems in theoretical physics. Its resolution would open the door to further
understanding of the relation between quantum theory and general rela-
tivity. Since all more conventional approaches seem to have been more or
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less exploited without unambiguous success, the time is right for a more
drastic novel approach. Such is the one which relies on the properties of
the harmonic oscillator in a pseudo-Euclidean space. This can be applied
to the field theory in which the fields behave as components of a harmonic
oscillator. If the space of fields has a metric with signature (+++...−−−)
then the vacuum energy can be zero in the case in which the number of plus
and minus signs is the same. As a consequence the expectation value of
the stress–energy tensor, the source of the gravitational field, is finite, and
there is no cosmological constant problem. However, the stress–energy ten-
sor can be negative in certain circumstances and the matter then acquires
exotic properties which are desirable for certain very important theoreti-
cal constructions, such as time machines [48] or a faster than light warp
drive [49]. Negative energy matter, with repulsive gravitational field, is
considered here as a prediction of the theory. On the contrary, in a more
conventional approach just the opposite point of view is taken. It is argued
that, since for all known forms of matter gravitation is attractive, certain
energy conditions (weak, strong and dominant) must be satisfied [48]. But
my point of view, advocated in this book, is that the existence of nega-
tive energy matter is necessary in order to keep the cosmological constant
small (or zero). In addition to that, such exotic matter, if indeed present in
the Universe, should manifest itself in various phenomena related to grav-
itation. Actually, we cannot claim to possess a complete knowledge and
understanding of all those phenomena, especially when some of them are
still waiting for a generally accepted explanation.

The theory of the pseudo-Euclidean signature harmonic oscillator is im-
portant for strings also. Since it eliminates the zero point energy it also
eliminates the need for a critical dimension, as indicated in ref. [28]. We
thus obtain a consistent string theory in an arbitrary even dimensional
spacetime with suitable signature. Several exciting new possibilities of re-
search are thus opened.

The question is only whether an n-dimensional spacetime Vn has indeed
an equal number of time-like and space-like dimensions. Here we bring into
the game the assumption that physical quantities are Clifford aggregates,
or polyvectors, and that what we observe as spacetime is just a segment of
a higher geometrical structure, called the pandimensional continuum [23].
Among the available elements of Clifford algebra one can choose n elements
such that they serve as basis vectors of a pseudo-Euclidean space with
arbitrary signature. Harmonic oscillator in pseudo-Euclidean space is only
a tip of an iceberg. The iceberg is geometric calculus based on Clifford
algebra which allows for any signature. Actually a signature is relative to
a chosen basis eµ, eµν , eµνα, ... of Clifford algebra.
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On the other hand, in conventional theory a signature with two or more
time-like dimensions is problematic from the point of view of initial condi-
tions: predictability is not possible. But such a problem does not arise in
the theory with an invariant evolution parameter τ , where initial conditions
are given in the entire spacetime, and the evolution then goes along τ . This
is yet another argument in favor of a Stueckelberg-like theory. However, a
question arises of how a theory in which initial conditions are given in the
entire spacetime can be reconciled with the fact that we do not observe the
entire spacetime “at once”. This question will be answered in the remaining
parts of the book.



II

EXTENDED OBJECTS





Chapter 4

GENERAL PRINCIPLES OF MEMBRANE

KINEMATICS AND DYNAMICS

We are now going to extend our system. Instead of point particles
we shall consider strings and higher-dimensional membranes. These ob-
jects are nowadays amongst the hottest topics in fundamental theoretical
physics. Many people are convinced that strings and accompanying higher-
dimensional membranes provide a clue to unify physics [51]. In spite of
many spectacular successes in unifying gravity with other interactions, there
still remain open problems. Amongst the most serious is perhaps the prob-
lem of a geometrical principle behind string theory [52]. The approach
pursued in this book aims to shed some more light on just that problem.
We shall pay much attention to the treatment of membranes as points in an
infinite-dimensional space, called membrane spaceM. When pursuing such
an approach the researchers usually try to build in right from the beginning
a complication which arises from reparametrization invariance (called also
diffeomorphism invariance). Namely, the same n-dimensional membrane
can be represented by different sets of parametric equations xµ = Xµ(ξa),
where functionsXµ map a membrane’s parameters (also called coordinates)
ξa, a = 1, 2, ..., n, into spacetime coordinates xµ, µ = 0, 1, 2, ..., N − 1. The
problem is then what are coordinates of the membrane spaceM? If there
were no complication caused by reparametrization invariance, then the
Xµ(ξa) would be coordinates of M-space. But because of reparametriza-
tion invariance such a mapping from a point in M (a membrane) to its
coordinates Xµ(ξ) is one-to-many. So far there is no problem: a point in
any space can be represented by many different possible sets of coordinates,
and all those different sets are related by coordinate transformations or dif-
feomorphisms. Since the latter transformations refer to the same point they
are called passive coordinate transformations or passive diffeomorphisms.
The problem occurs when one brings into the game active diffeomorphisms

107
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which refer to different points of the space in question. In the case of
membrane space M active diffeomorphisms would imply the existence of
tangentially deformed membranes. But such objects are not present in a
relativistic theory of membranes, described by the minimal surface action
which is invariant under reparametrizations of ξa.

The approach pursued here is the following. We shall assume that at the
kinematic level such tangentially deformed membranes do exist [53]. When
considering dynamics it may happen that a certain action and its equa-
tions of motion exclude tangential motions within the membrane. This is
precisely what happens with membranes obeying the relativistic minimal
surface action. But the latter dynamical principle is not the most general
one. We can extend it according to geometric calculus based on Clifford
algebra. We have done so in Chapter 2 for point particles, and now we
shall see how the procedure can be generalized to membranes of arbitrary
dimension. And we shall find a remarkable result that the polyvector gen-
eralization of the membrane action allows for tangential motions of mem-
branes. Because of the presence of an extra pseudoscalar variable entering
the polyvector action, the membrane variables Xµ(ξ) and the correspond-
ing momenta become unconstrained; tangentially deformed membranes are
thus present not only at the kinematic, but also at the dynamical level. In
other words, such a generalized dynamical principle allows for tangentially
deformed membranes.

In the following sections I shall put the above description into a more
precise form. But in the spirit of this book I will not attempt to achieve
complete mathematical rigor, because for most readers this would be at
the expense of seeing the main outline of my proposal of how to formulate
membrane’s theory

4.1. MEMBRANE SPACE M

The basic kinematically possible objects of the theory we are going to
discuss are n-dimensional, arbitrarily deformable, and hence unconstrained,
membranes Vn living in an N -dimensional space VN . The dimensions n
and N , as well as the corresponding signatures, are left unspecified at this
stage. An unconstrained membrane Vn is represented by the embedding
functions Xµ(ξa), µ = 0, 1, 2, ..., N − 1, where ξa, a = 0, 1, 2, ..., n − 1, are
local parameters (coordinates) on Vn. The set of all possible membranes Vn,
with n fixed, forms an infinite-dimensional spaceM. A membrane Vn can
be considered as a point inM parametrized by coordinates Xµ(ξa) ≡ Xµ(ξ)

which bear a discrete index µ and n continuous indices ξa. To the discrete
index µ we can ascribe arbitrary numbers: instead of µ = 0, 1, 2, ..., N − 1
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we may set µ′ = 1, 2, ..., N or µ′ = 2, 5, 3, 1, ..., etc.. In general,

µ′ = f(µ), (4.1)

where f is a transformation. Analogously, a continuous index ξa can be
given arbitrary continuous values. Instead of ξa we may take ξ′a which are
functions of ξa :

ξ′a = fa(ξ). (4.2)

As far as we consider, respectively, µ and ξa as a discrete and a con-
tinuous index of coordinates Xµ(ξ) in the infinite-dimensional space M,
reparametrization of ξa is analogous to a renumbering of µ. Both kinds of
transformations, (4.1) and (4.2), refer to the same point of the spaceM;
they are passive transformations. For instance, under the action of (4.2)
we have

X ′µ(ξ′) = X ′µ (f(ξ)) = Xµ(ξ) (4.3)

which says that the same point Vn can be described either by functions
Xµ(ξ) or X ′µ(ξ) (where we may write X ′µ(ξ) instead of X ′µ(ξ′) since ξ′ is
a running parameter and can be renamed as ξ).

Then there also exist the active transformations, which transform one
point of the space M into another. Given a parametrization of ξa and a
numbering of µ, a point Vn of M with coordinates Xµ(ξ) can be trans-
formed into another point V ′n with coordinates X ′µ(ξ). Parameters ξa are
now considered as “body fixed”, so that distinct functions Xµ(ξ), X ′µ(ξ)
represent distinct points Vn, V ′n ofM. Physically these are distinct mem-
branes which may be deformed one with respect to the other. Such a
membrane is unconstrained, since all coordinates Xµ(ξ) are necessary for
its description [53]–[55]. In order to distinguish an unconstrained mem-
brane Vn from the corresponding mathematical manifold Vn we use different
symbols Vn and Vn.

It may happen, in particular, that two distinct membranes Vn and V ′n
both lie on the same mathematical surface Vn, and yet they are physically
distinct objects, represented by different points inM.

The concept of an unconstrained membrane can be illustrated by imagin-
ing a rubber sheet spanning a surface V2. The sheet can be deformed from
one configuration (let me call it V2) into another configuration V ′2 in such
a way that both configurations V2, V ′2 are spanning the same surface V2.
The configurations V2, V ′2 are described by functions X i(ξ1, ξ2), X ′i(ξ1, ξ2)
(i = 1, 2, 3), respectively. The latter functions, from the mathematical point
of view, both represent the same surface V2, and can be transformed one
into the other by a reparametrization of ξ1, ξ2. But from the physical point
of view, X i(ξ1, ξ2) and X ′i(ξ1, ξ2) represent two different configurations of
the rubber sheet (Fig. 4.1).
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Figure 4.1. Examples of tangentially deformed membranes. Mathematically the surfaces
on the right are the same as those on the left, but physically they are different.

The reasoning presented in the last few paragraphs implies that, since
our membranes are assumed to be arbitrarily deformable, different functions
Xµ(ξ) can always represent physically different membranes. This justifies
use of the coordinates Xµ(ξ) for the description of points in M. Later,
when we consider a membrane’s kinematics and dynamics we shall admit
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τ -dependence of coordinates Xµ(ξ). In this section all expressions refer to
a fixed value of τ , therefore we omit it from the notation.

In analogy with the finite-dimensional case we can introduce the distance
d` in our infinite-dimensional spaceM :

d`2 =

∫
dξ dζρµν(ξ, ζ) dX

µ(ξ) dXν(ζ)

= ρµ(ξ)ν(ζ) dX
µ(ξ) dXν(ζ) = dXµ(ξ)dXµ(ξ), (4.4)

where ρµν(ξ, ζ) = ρµ(ξ)ν(ζ) is the metric in M. In eq. (4.4) we use a no-
tation, similar to one that is usually used when dealing with more evolved
functional expressions [56], [57]. In order to distinguish continuous indices
from discrete indices, the former are written within parentheses. When we
write µ(ξ) as a subscript or superscript this denotes a pair of indices µ and
(ξ) (and not that µ is a function of ξ). We also use the convention that
summation is performed over repeated indices (such as a, b) and integration
over repeated continuous indices (such as (ξ), (ζ)).

The tensor calculus in M [54, 55] is analogous to that in a finite-
dimensional space. The differential of coordinates dXµ(ξ) ≡ dXµ(ξ) is
a vector in M. The coordinates Xµ(ξ) can be transformed into new coor-
dinates X ′µ(ξ) which are functionals of Xµ(ξ) :

X ′µ(ξ) = F µ(ξ)[X]. (4.5)

The transformation (4.5) is very important. It says that if functions Xµ(ξ)
represent a membrane Vn then any other functions X ′µ(ξ) obtained from
Xµ(ξ) by a functional transformation also represent the same membrane
Vn. In particular, under a reparametrization of ξa the functions Xµ(ξ)
change into new functions; a reparametrization thus manifests itself as a
special functional transformation which belongs to a subclass of the general
functional transformations (4.5).

Under a general coordinate transformation (4.5) a generic vector Aµ(ξ) ≡
Aµ(ξ) transforms as1

Aµ(ξ) =
∂X ′µ(ξ)

∂Xν(ζ)
Aν(ζ) ≡

∫
dζ
δX ′µ(ξ)
δXν(ζ)

Aν(ζ) (4.6)

where δ/δXµ(ξ) denotes the functional derivative (see Box 4.1). Similar
transformations hold for a covariant vector Aµ(ξ), a tensor Bµ(ξ)ν(ζ), etc..

1A similar formalism, but for a specific type of the functional transformations (4.5), namely the
reparametrizations which functionally depend on string coordinates, was developed by Bardakci
[56]
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Indices are lowered and raised, respectively, by ρµ(ξ)ν(ζ) and ρµ(ξ)ν(ζ), the
latter being the inverse metric tensor satisfying

ρµ(ξ)α(η)ρα(η)ν(ζ) = δµ(ξ)ν(ζ). (4.7)

Box 4.1: Functional derivative

Let Xµ(ξ) be a function of ξ ≡ ξa. The functional derivative of a
functional F [Xµ(ξ)] is defined according to

δF

δXν(ξ′)
= lim

ε→0

F [Xµ(ξ) + εδ(ξ − ξ′)δµν ]− F [Xµ(ξ)]

ε
(4.8)

Examples

1) F = Xµ(ξ)

δF

δXν(ξ)
= δ(ξ − ξ′)δµν

2) F = ∂aX
µ(ξ)

δF

δXν(ξ)
= ∂aδ(ξ − ξ′)δµν

3) F = λ(ξ) ∂aX
µ(ξ)

δF

δXν(ξ)
= λ(ξ)

δ∂aX
µ(ξ)

δXν(ξ′)(
in general

δ

δXν(ξ′)
(λ(ξ)F [X]) = λ(ξ)

δF

δXν(ξ)

)

4) F = ∂aX
µ(ξ)∂bXµ(ξ)

δF

δXν(ξ)
= ∂aδ(ξ − ξ′)∂bXν + ∂bδ(ξ − ξ′)∂aXν
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A suitable choice of the metric — assuring the invariance of the line
element (4.4) under the transformations (4.2) and (4.5) — is, for instance,

ρµ(ξ)ν(ζ) =
√
|f |α gµνδ(ξ − ζ), (4.9)

where f ≡ det fab is the determinant of the induced metric

fab ≡ ∂aXα∂bX
β gαβ (4.10)

on the sheet Vn, gµν is the metric tensor of the embedding space VN , and
α an arbitrary function of ξa.

With the metric (4.9) the line element (4.4) becomes

d`2 =

∫
dξ
√
|f |α gµν dXµ(ξ)dXν(ξ). (4.11)

Rewriting the abstract formulas back into the usual notation, with explicit
integration, we have

Aµ(ξ) = Aµ(ξ), (4.12)

Aµ(ξ) = ρµ(ξ)ν(ζ)A
ν(ζ)

=

∫
dζ ρµν(ξ, ζ)A

ν(ξ) =
√
|f |α gµνAν(ξ). (4.13)

The inverse metric is

ρµ(ξ)ν(ζ) =
1

α
√
|f | g

µνδ(ξ − ζ). (4.14)

Indeed, from (4.7), (4.9) and (4.14) we obtain

δµ(ξ)ν(ζ) =

∫
dη gµσgνσ δ(ξ − η)δ(ζ − η) = δµνδ(ξ − ζ). (4.15)

The invariant volume element (measure) of our membrane space M is
[58]

DX = (Det ρµν(ξ, ζ))
1/2
∏

ξ,µ

dXµ(ξ). (4.16)

Here Det denotes a continuum determinant taken over ξ, ζ as well as over
µ, ν. In the case of the diagonal metric (4.9) we have

DX =
∏

ξ,µ

(√
|f |α |g|

)1/2

dXµ(ξ) (4.17)
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As can be done in a finite-dimensional space, we can now also define the
covariant derivative in M. For a scalar functional A[X(ξ)] the covariant
functional derivative coincides with the ordinary functional derivative:

A;µ(ξ) =
δA

δXµ(ξ)
≡ A,µ(ξ). (4.18)

But in general a geometric object in M is a tensor of arbitrary rank,
Aµ1(ξ1)µ2(ξ2)...ν1(ζ1)ν2(ζ2)..., which is a functional of Xµ(ξ), and its covariant

derivative contains the affinity Γ
µ(ξ)
ν(ζ)σ(η) composed of the metric (4.9) [54,

55]. For instance, for a vector we have

Aµ(ξ);ν(ζ) = Aµ(ξ),ν(ζ) + Γ
µ(ξ)
ν(ζ)σ(η)A

σ(η). (4.19)

Let the alternative notations for ordinary and covariant functional deriva-
tive be analogous to those used in a finite-dimensional space:

δ

δXµ(ξ)
≡ ∂

∂Xµ(ξ)
≡ ∂µ(ξ) ,

D

DXµ(ξ)
≡ D

DXµ(ξ)
≡ Dµ(ξ). (4.20)

4.2. MEMBRANE DYNAMICS

In the previous section I have considered arbitrary deformable mem-
branes as kinematically possible objects of a membrane theory. A mem-
brane, in general, is not static, but is assumed to move in an embedding
space VN . The parameter of evolution (“time”) will be denoted τ . Kine-
matically every continuous trajectory Xµ(τ, ξa) ≡ Xµ(ξ)(τ) is possible in
principle. A particular dynamical theory then selects which amongst those
kinematically possible membranes and trajectories are also dynamically
possible. In this section I am going to describe the theory in which a dy-
namically possible trajectory Xµ(ξ)(τ) is a geodesic in the membrane space
M.

MEMBRANE THEORY AS A FREE FALL IN
M-SPACE

LetXα(ξ) be τ -dependent coordinates of a point inM-space and ρα(ξ′)β(ξ′′)
an arbitrary fixed metric inM. From the point of view of a finite-dimensional
space VN the symbol Xα(ξ) ≡ Xα(ξ) represents an n-dimensional membrane
embedded in VN . We assume that every dynamically possible trajectory
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Xα(ξ)(τ) satisfies the variational principle given by the action

I[Xα(ξ)] =

∫
dτ ′

(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)
)1/2

. (4.21)

This is just the action for a geodesic inM-space.
The equation of motion is obtained if we functionally differentiate (4.21)

with respect to Xα(ξ)(τ):

δI

δXµ(ξ)(τ)
=

∫
dτ ′

1

µ1/2
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′′) d

dτ ′
δ(τ − τ ′)δ(ξ)(ξ

′)

+
1

2

∫
dτ ′

1

µ1/2

(
δ

δXµ(ξ)(τ)
ρα(ξ′)β(ξ′′)

)
Ẋα(ξ′′)Ẋβ(ξ′′) = 0, (4.22)

where
µ ≡ ρα(ξ′)β(ξ′′)Ẋα(ξ′)Ẋβ(ξ′′) (4.23)

and
δ(ξ)

(ξ′) ≡ δ(ξ − ξ′). (4.24)

The integration over τ in the first term of eq. (4.22) can be easily performed
and eq. (4.22) becomes

δI

δXµ(ξ)(τ)
= − d

dτ

(
ρα(ξ′)µ(ξ)Ẋ

α(ξ′)

µ1/2

)

+
1

2

∫
dτ ′

1

µ1/2

(
δ

δXµ(ξ)(τ)
ρα(ξ′)β(ξ′′)

)
Ẋα(ξ′)Ẋβ(ξ′′) = 0.

(4.25)
Some exercises with such a variation are performed in Box 4.2, where we
use the notation ∂µ(τ,ξ) ≡ δ/δXµ(τ, ξ).

If the expression for the metric ρα(ξ′)β(ξ′′) does not contain the velocity

Ẋµ, then eq. (4.25) further simplifies to

− d

dτ

(
Ẋµ(ξ)

)
+

1

2
∂µ(ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = 0. (4.26)

This can be written also in the form

dẊµ(ξ)

dτ
+ Γµ(ξ)α(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = 0, (4.27)

which is a straightforward generalization of the usual geodesic equation
from a finite-dimensional space to an infinite-dimensionalM-space.

The metric ρα(ξ′)β(ξ′′) is arbitrary fixed background metric of M-space.
Choice of the latter metric determines, from the point of view of the em-
bedding space VN , a particular membrane theory. But from the viewpoint
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Box 4.2: Excercises with variations and functional derivatives

1) I[Xµ(τ)] =
1

2

∫
dτ ′ Ẋµ(τ ′)Ẋν(τ ′)ηµν

δI

δXα(τ)
=

∫
dτ ′ Ẋµ(τ ′)

δẊν(τ ′)
δXα(τ)

ηµν

=

∫
dτ ′ Ẋα(τ

′)
d

dτ ′
δ(τ − τ ′) = − d

dτ ′
Ẋα

2) I[Xµ(τ, ξ)] =
1

2

∫
dτ ′dξ′

√
|f(ξ′)| Ẋµ(τ ′, ξ′)Ẋν(τ ′, ξ′)ηµν

δI

δXα(τ, ξ)
=

1

2

∫
dτ ′ dξ′

δ
√
|f(τ ′, ξ′)|

δXα(τ ′, ξ′)
Ẋ2(τ ′, ξ′)

+
1

2

∫
dτ ′ dξ′

√
|f(τ ′, ξ′)|2Ẋµ δẊν

δẊα(τ, ξ)
ηµν

=
1

2

∫
dτ ′dξ′

√
|f(τ ′, ξ′)|∂′aXα∂

′
aδ(ξ − ξ′)δ(τ − τ ′)Ẋ2(τ ′, ξ′)

+

∫
dτ ′dξ′

√
|f(τ ′, ξ′)|Ẋα(τ

′, ξ′)
d

dτ ′
δ(τ − τ ′)δ(ξ − ξ′)

= −1

2
∂a

(√
|f |∂aXα Ẋ

2
)
− d

dτ

(√
|f |Ẋα

)

3) I =

∫
dτ ′ (ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) +K)

δI

δXµ(ξ)(τ)
=

1

2

∫
dτ ′
[
∂µ(τ,ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)

+2ρα(ξ′)β(ξ′′)
d

dτ ′
δ(τ − τ ′)δ(ξ − ξ′)δµαẊβ(ξ′′) + ∂µ(τ,ξ)K

]

= − d

dτ
(ρµ(ξ)β(ξ′′)Ẋ

β(ξ′′))+
1

2

∫
dτ ′
[
∂µ(τ,ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)+∂µ(τ,ξ)K

]

(continued)
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Box 4.2 (continued)

a) ρα(ξ′)β(ξ′′) =
κ
√
|f(ξ′)|
λ(ξ′)

δ(ξ′ − ξ′′)ηαβ , K =

∫
dξ
√
|f |κλ

δI

δXµ(ξ)(τ)
= − d

dτ

(
κ
√
|f |
λ

Ẋµ

)
− 1

2
∂a

(
κ
√
|f |∂aXµ Ẋ

2

λ

)

−1

2
∂a(κ

√
|f |∂aXµ λ)

δI

λ(ξ)
= 0 ⇒ λ2 = ẊαẊα

⇒ d

dτ

(
κ
√
|f |√
Ẋ2

Ẋµ

)
+ ∂a(κ

√
|f |∂aXµ

√
Ẋ2) = 0

b) ρα(ξ′)β(ξ′′) =
κ
√
|f(ξ′)|√
Ẋ2(ξ′)

δ(ξ′−ξ′′)ηαβ , K =

∫
dξ
√
|f |κ

√
Ẋ2

∂µ(τ,ξ)ρα(ξ′)β(ξ′′) = κ
δ
√
|f(τ ′, ξ′)|

δXµ(τ, ξ)

1√
Ẋ2(τ ′, ξ′)

ηαβδ(ξ
′ − ξ′′)

+κ
√
|f(τ ′, ξ′)| δ

δXµ(τ, ξ)

(
1√

Ẋ2(τ ′, ξ′)

)
ηαβδ(ξ

′ − ξ′′)

= κ
√
|f(τ ′, ξ′)| ∂′aXµ

∂′aδ(ξ − ξ′)δ(τ − τ ′)√
Ẋ2

ηαβ δ(ξ
′ − ξ′′)

−κ
√
|f(τ ′, ξ′)| Ẋµ(ξ

′)

Ẋ2(ξ′))3/2
δ(ξ − ξ′)δ(ξ′ − ξ′′) d

dτ ′
δ(τ − τ ′)ηαβ

∫
dτ ′

δρα(ξ′)β(ξ′′)

δXµ(ξ)(τ)
Ẋα(ξ′)Ẋβ(ξ′′)

= −κ ∂a(
√
|f |∂aXµ

√
Ẋ2) + κ

d

dτ

(√
|f | Ẋµ√

Ẋ2

)

∫
dτ ′

δK

δXµ(ξ)(τ)
= −κ ∂a(

√
|f |∂aXµ

√
Ẋ2)− κ d

dτ

(√
|f | Ẋµ√

Ẋ2

)
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of M-space there is just one membrane theory in a background metric
ρα(ξ′)β(ξ′′) which is an arbitrary functional of Xµ(ξ)(τ).

Suppose now that the metric is given by the following expression:

ρα(ξ′)β(ξ′′) = κ

√
|f(ξ′)|√
Ẋ2(ξ′)

δ(ξ′ − ξ′′)ηαβ , (4.28)

where Ẋ2(ξ′) ≡ Ẋµ(ξ′)Ẋµ(ξ
′), and κ is a constant. If we insert the latter

expression into the equation of geodesic (4.22) and take into account the
prescriptions of Boxes 4.1 and 4.2, we immediately obtain the following
equations of motion:

d

dτ

(
1

µ1/2

√
|f |√
Ẋ2

Ẋµ

)
+

1

µ1/2
∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.29)

The latter equation can be written as

µ1/2
d

dτ

(
1

µ1/2

) √
|f |√
Ẋ2

Ẋµ +
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
+ ∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0.

(4.30)
If we multiply this by Ẋµ, sum over µ, and integrate over ξ, we obtain

1

2

∫
dξ
√
|f |
√
Ẋ2

1

µ

dµ

dτ

= κ

∫
dξ

[
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
Ẋµ + ∂a(

√
|f |∂aXµ

√
Ẋ2)Ẋµ

]

= κ

∫
dξ

[
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
Ẋµ −

√
|f |
√
Ẋ2∂aXµ∂aẊ

µ

]

= κ

∫
dξ

[√
Ẋ2

d
√
|f |

dτ
+
√
|f | d

dτ

(
Ẋµ√
Ẋ2

)
Ẋµ

−
√
Ẋ2

d

dτ

√
|f |
]

= 0. (4.31)

In the above calculation we have used the relations

d
√
|f |

dτ
=
∂
√
|f |

∂fab
ḟab =

√
|f | fab∂aẊµ∂bXµ =

√
|f | ∂aXµ∂aẊ

µ (4.32)

and
Ẋµ√
Ẋ2

Ẋµ

√
Ẋ2

= 1 ⇒ d

dτ

(
Ẋµ√
Ẋ2

)
Ẋµ = 0. (4.33)
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Since eq. (4.31) holds for arbitrary
√
|f |
√
Ẋ2 > 0, assuming µ > 0, it follows

that dµ/dτ = 0.
We have thus seen that the equations of motion (4.29) automatically

imply
dµ

dτ
= 0 or

d
√
µ

dτ
= 0 , µ 6= 0. (4.34)

Therefore, instead of (4.29) we can write

d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
+ ∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.35)

This is precisely the equation of motion of the Dirac-Nambu-Goto mem-
brane of arbitrary dimension. The latter objects are nowadays known as
p-branes, and they include point particles (0-branes) and strings (1-branes).
It is very interesting that the conventional theory of p-branes is just a par-
ticular case —with the metric (4.28)— of the membrane dynamics given by
the action (4.21).

The action (4.21) is by definition invariant under reparametrizations of
ξa. In general, it is not invariant under reparametrization of the evolution
parameter τ . If the expression for the metric ρα(ξ′)β(ξ′′) does not contain

the velocity Ẋµ then the invariance of (4.21) under reparametrizations of τ
is obvious. On the contrary, if ρα(ξ′)β(ξ′′) contains Ẋ

µ then the action (4.21)
is not invariant under reparametrizations of τ . For instance, if ρα(ξ′)β(ξ′′)
is given by eq. (4.28), then, as we have seen, the equation of motion auto-
matically contains the relation

d

dτ

(
Ẋµ(ξ)Ẋµ(ξ)

)
≡ d

dτ

∫
dξ κ

√
|f |
√
Ẋ2 = 0. (4.36)

The latter relation is nothing but a gauge fixing relation, where by “gauge”
we mean here a choice of parameter τ . The action (4.21), which in the case
of the metric (4.28) is not reparametrization invariant, contains the gauge
fixing term. The latter term is not added separately to the action, but is
implicit by the exponent 1

2 of the expression Ẋµ(ξ)Ẋµ(ξ).

In general the exponent in the Lagrangian is not necessarily 1
2 , but can

be arbitrary:

I[Xα(ξ)] =

∫
dτ
(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)
)a
. (4.37)

For the metric (4.28) the corresponding equation of motion is

d

dτ

(
aµa−1

κ
√
|f |√
Ẋ2

Ẋµ

)
+ aµa−1∂a

(
κ
√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.38)
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For any a which is different from 1 we obtain a gauge fixing relation which
is equivalent to (4.34), and the same equation of motion (4.35). When
a = 1 we obtain directly the equation of motion (4.35), and no gauge fixing
relation (4.34). For a = 1 and the metric (4.28) the action (4.37) is invariant
under reparametrizations of τ .

We shall now focus our attention to the action

I[Xα(ξ)] =

∫
dτ ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′) =

∫
dτ dξ κ

√
|f |
√
Ẋ2 (4.39)

with the metric (4.28). It is invariant under the transformations

τ → τ ′ = τ ′(τ), (4.40)

ξa → ξ′a = ξ′a(ξa) (4.41)

in which τ and ξa do not mix.
Invariance of the action (4.39) under reparametrizations (4.40) of the evo-

lution parameter τ implies the existence of a constraint among the canonical
momenta pµ(ξ) and coordinates Xµ(ξ). Momenta are given by

pµ(ξ) =
∂L

∂Ẋµ(ξ)
= 2ρµ(ξ)ν(ξ′)Ẋ

ν(ξ′) +
∂ρα(ξ′)β(ξ′′)

∂Ẋµ(ξ)
Ẋα(ξ′)Ẋβ(ξ′′)

=
κ
√
|f |√
Ẋ2

Ẋµ. (4.42)

By distinsguishing covariant and contravariant components one finds

pµ(ξ) = Ẋµ(ξ) , pµ(ξ) = Ẋµ(ξ). (4.43)

We define
pµ(ξ) ≡ pµ(ξ) ≡ pµ , Ẋµ(ξ) ≡ Ẋµ(ξ) ≡ Ẋµ. (4.44)

Here pµ and Ẋµ have the meaning of the usual finite dimensional vectors
whose components are lowered raised by the finite-dimensional metric ten-
sor gµν and its inverse gµν :

pµ = gµνpν , Ẋµ = gµνẊ
ν (4.45)

Eq.(4.42) implies
pµpµ − κ2|f | = 0 (4.46)

which is satisfied at every ξa.

Multiplying (4.46) by
√
Ẋ2/(κ

√
|f | ) and integrating over ξ we have

1

2

∫
dξ

√
Ẋ2

κ
√
|f | (p

µpµ − κ2|f |) = pµ(ξ)Ẋ
µ(ξ) − L = H = 0 (4.47)
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where L =
∫
dξ κ

√
|f |
√
Ẋ2.

We see that the Hamiltonian belonging to our action (4.39) is identically
zero. This is a well known consequence of the reparametrization invariance
(4.40). The relation (4.46) is a constraint at ξa and the Hamiltonian (4.47)
is a linear superposition of the constraints at all possible ξa.

An action which is equivalent to (4.39) is

I[Xµ(ξ), λ] =
1

2

∫
dτdξ κ

√
|f |
(
ẊµẊµ

λ
+ λ

)
, (4.48)

where λ is a Lagrange multiplier.
In the compact notation ofM-space eq. (4.48) reads

I[Xµ(ξ), λ] =
1

2

∫
dτ
(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) +K
)
, (4.49)

where

K = K[Xµ(ξ), λ] =

∫
dξκ

√
|f |λ (4.50)

and

ρα(ξ′)β(ξ′′) = ρα(ξ′)β(ξ′′)[X
µ(ξ), λ] =

κ
√
|f(ξ′)|
λ(ξ′)

δ(ξ′ − ξ′′)ηαβ . (4.51)

Variation of (4.49) with respect to Xµ(ξ)(τ) and λ gives

δI

δXµ(ξ)(τ)
= − d

dτ

(
κ
√
|f |
λ

Ẋµ

)

−1

2
∂a

(
κ
√
|f |∂aXµ

(√
Ẋ2

λ
+ λ

))
= 0, (4.52)

δI

δλ(τ, ξ)
= −Ẋ

µẊµ

λ2
+ 1 = 0. (4.53)

The system of equations (4.52), (4.53) is equivalent to (4.35). This is in
agreement with the property that after inserting the λ “equation of motion”
(4.53) into the action (4.48) one obtains the action (4.39) which directly
leads to the equation of motion (4.35).

The invariance of the action (4.48) under reparametrizations (4.40) of
the evolution parameter τ is assured if λ transforms according to

λ→ λ′ =
dτ ′

dτ
λ. (4.54)

This is in agreement with the relations (4.53) which says that

λ = (ẊµẊµ)
1/2.
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Box 4.3: Conservation of the constraint

Since the Hamiltonian H =
∫
dξλH in eq. (4.67) is zero for any

λ, it follows that the Hamiltonian density

H[Xµ, pµ] =
1

2κ

(
pµp

µ

√
|f | − κ

2
√
|f |
)

(4.55)

vanishes for any ξa. The requirement that the constraint (6.1) is
conserved in τ can be written as

Ḣ = {H, H} = 0, (4.56)

which is satisfied if
{H(ξ),H(ξ′)} = 0. (4.57)

That the Poisson bracket (4.57) indeed vanishes can be found
as follows. Let us work in the language of the Hamilton–Jacobi func-
tional S[Xµ(ξ)], in which one considers the momentum vector field
pµ(ξ) to be a function of position Xµ(ξ) inM-space, i.e., a functional
of Xµ(ξ) given by

pµ(ξ) = pµ(ξ)(X
µ(ξ)) ≡ pµ[Xµ(ξ)] =

δS

δXµ(ξ)
. (4.58)

Therefore H[Xµ(ξ), pµ(ξ)] is a functional of Xµ(ξ). Since H = 0, it
follows that its functional derivative also vanishes:

dH
dXµ(ξ)

=
∂H

∂Xµ(ξ)
+

∂H
∂pν(ξ′)

∂pν(ξ′)

∂Xµ(ξ)

≡ δH
δXµ(ξ)

+

∫
dξ′

δH
δpν(ξ′)

δpν(ξ
′)

δXµ(ξ)
= 0. (4.59)

Using (4.59) and (4.58) we have

{H(ξ),H(ξ′)} =
∫

dξ′′
(

δH(ξ)
δXµ(ξ′′)

δH(ξ′)
δpµ(ξ′′)

− δH(ξ′)
δXµ(ξ′′)

δH(ξ)
δpµ(ξ′′)

)

= −
∫

dξ′′ dξ′′′
δH(ξ)
δpν(ξ′′′)

δH(ξ′)
δpµ(ξ′′)

(
δpν(ξ

′′′)
δXµ(ξ′′)

− δpµ(ξ
′′′)

δXµ(ξ′′)

)
= 0.

(4.60)
(continued)
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Box 4.3 (continued)

Conservation of the constraint (4.55) is thus shown to be automati-
cally sastisfied.

On the other hand, we can calculate the Poisson bracket (4.57) by
using the explicit expression (4.55). So we obtain

{H(ξ),H(ξ′)} =

−
√
|f(ξ)|√
|f(ξ′)| ∂aδ(ξ−ξ

′)pµ(ξ
′)∂aXµ(ξ)+

√
|f(ξ′)|√
|f(ξ)| ∂

′
aδ(ξ−ξ′)pµ(ξ)∂′aXµ(ξ′)

= − (pµ(ξ)∂aXµ(ξ) + pµ(ξ
′)∂′aXµ(ξ′)

)
∂aδ(ξ − ξ′) = 0, (4.61)

where we have used the relation

F (ξ′)∂aδ(ξ − ξ′) = ∂a
[
F (ξ′)δ(ξ − ξ′)] = ∂a

[
F (ξ)δ(ξ − ξ′)]

= F (ξ)∂aδ(ξ − ξ′) + ∂aF (ξ)δ(ξ − ξ′). (4.62)

Multiplying (4.61) by an arbitrary “test” function φ(ξ ′) and integrat-
ing over ξ′ we obtain

2pµ∂
aXµ∂aφ+ ∂a(pµ∂

aXµ)φ = 0. (4.63)

Since φ and ∂aφ can be taken as independent at any point ξa, it
follows that

pµ∂aX
µ = 0. (4.64)

The “momentum” constraints (4.64) are thus shown to be automat-
ically satisfied as a consequence of the conservation of the “Hamilto-
nian” constraint (4.55). This procedure was been discovered in ref.
[59]. Here I have only adjusted it to the case of membrane theory.

If we calculate the Hamiltonian belonging to (4.49) we find

H = (pµ(ξ)Ẋ
µ(ξ) − L) = 1

2(pµ(ξ)p
µ(ξ) −K) ≡ 0, (4.65)

where the canonical momentum is

pµ(ξ) =
∂L

∂Ẋµ(ξ)
=
κ
√
|f |
λ

Ẋµ . (4.66)

Explicitly (4.65) reads

H =
1

2

∫
dξ

λ

κ
√
|f |(p

µpµ − κ2|f |) ≡ 0. (4.67)
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The Lagrange multiplier λ is arbitrary. The choice of λ determines the
choice of parameter τ . Therefore (4.67) holds for every λ, which can only
be satisfied if we have

pµpµ − κ2|f | = 0 (4.68)

at every point ξa on the membrane. Eq. (4.68) is a constraint at ξa, and
altogether there are infinitely many constraints.

In Box 4.3 it is shown that the constraint (4.68) is conserved in τ and
that as a consequence we have

pµ∂aX
µ = 0. (4.69)

The latter equation is yet are another set of constraints2 which are satisfied
at any point ξa of the membrane manifold Vn

First order form of the action. Having the constraints (4.68), (4.69)
one can easily write the first order, or phase space action,

I[Xµ, pµ, λ, λ
a] =

∫
dτ dξ

(
pµẊ

µ − λ

2κ
√
|f |(p

µpµ − κ2|f |)− λapµ∂aXµ

)
,

(4.70)
where λ and λa are Lagrange multipliers.

The equations of motion are

δXµ : ṗµ + ∂a

(
κλ
√
|f |∂aXµ − λapµ

)
= 0, (4.71)

δpµ : Ẋµ − λ

κ
√
|f | pµ − λ

a∂aX
µ = 0, (4.72)

δλ : pµpµ − κ2|f | = 0, (4.73)

δλa : pµ∂aX
µ = 0. (4.74)

Eqs. (4.72)–(4.74) can be cast into the following form:

pµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ), (4.75)

λ2 = (Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ) (4.76)

2Something similar happens in canonical gravity. Moncrief and Teitelboim [59] have shown
that if one imposes the Hamiltonian constraint on the Hamilton functional then the momentum
constraints are automatically satisfied.
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λa = Ẋµ∂aXµ. (4.77)

Inserting the last three equations into the phase space action (4.70) we
have

I[Xµ] = κ

∫
dτ dξ

√
|f |

[
ẊµẊν(ηµν − ∂aXµ∂aXν)

]1/2
. (4.78)

The vector Ẋ(ηµν − ∂aXµ∂aXν) is normal to the membrane Vn; its scalar

product with tangent vectors ∂aX
µ is identically zero. The form ẊµẊν(ηµν−

∂aXµ∂aXν) can be considered as a 1-dimensional metric, equal to its de-
terminant, on a line which is orthogonal to Vn. The product

fẊµẊν(ηµν − ∂aXµ∂aXν) = det ∂AX
µ∂BXµ (4.79)

is equal to the determinant of the induced metric ∂AX
µ∂BXµ on the (n+1)-

dimensional surface Xµ(φA), φA = (τ, ξa), swept by our membrane Vn. The
action (4.78) is then the minimal surface action for the (n+1)-dimensional
worldsheet Vn+1:

I[Xµ] = κ

∫
dn+1φ (det ∂AX

µ∂BXµ)
1/2. (4.80)

This is the conventional Dirac–Nambu–Goto action, and (4.70) is one of its
equivalent forms.

We have shown that from the point of view ofM-space a membrane of
any dimension is just a point moving along a geodesic inM. The metric of
M-space is taken to be an arbitrary fixed background metric. For a special
choice of the metric we obtain the conventional p-brane theory. The latter
theory is thus shown to be a particular case of the more general theory,
based on the concept ofM-space.

Another form of the action is obtained if in (4.70) we use the replacement

pµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ) (4.81)

which follows from “the equation of motion” (4.72). Then instead of (4.70)
we obtain the action

I[Xµ, λ, λa] =
κ

2

∫
dτ dnξ

√
|f |

(
(Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ)

λ
+ λ

)
.

(4.82)
If we choose a gauge such that λa = 0, then (4.82) coincides with the action
(4.48) considered before.



126 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

The analogy with the point particle. The action (4.82), and espec-
ially (4.48), looks like the well known Howe–Tucker action [31] for a point
particle, apart from the integration over coordinates ξa of a space-like hy-
persurface Σ on the worldsheet Vn+1. Indeed, a worldsheet can be con-
sidered as a continuum collection or a bundle of worldlines Xµ(τ, ξa), and
(4.82) is an action for such a bundle. Individual worldlines are distinguished
by the values of parameters ξa.

We have found a very interesting inter-relationship between various con-
cepts:

1) membrane as a “point particle” moving along a geodesic in an infinite-
dimensional membrane spaceM;

2) worldsheet swept by a membrane as a minimal surface in a finite-
dimensional embedding space VN ;

3) worldsheet as a bundle of worldlines swept by point particles moving
in VN .

MEMBRANE THEORY AS A MINIMAL SURFACE
IN AN EMBEDDING SPACE

In the previous section we have considered a membrane as a point in an
infinite-dimensional membrane space M. Now let us change our point of
view and consider a membrane as a surface in a finite-dimensional embed-
ding space VD When moving, a p-dimensional membrane sweeps a (d =
p+ 1)-dimensional surface which I shall call a worldsheet3. What is an ac-
tion which determines the membrane dynamics, i.e., a possible worldsheet?
Again the analogy with the point particle provides a clue. Since a point
particle sweeps a worldline whose action is the minimal length action, it is
natural to postulate that a membrane’s worldsheet satisfies the minimal
surface action:

I[Xµ] = κ

∫
ddφ (det ∂AX

µ∂BXµ)
1/2. (4.83)

This action, called also the Dirac–Nambu–Goto action, is invariant under
reparametrizations of the worldsheet coordinates φA, A = 0, 1, 2, ..., d −
1. Consequently the dynamical variables Xµ, µ = 0, 1, 2, ..., D, and the
corresponding momenta are subjected to d primary constraints.

Another suitable form of the action (equivalent to (4.83)) is the Howe–
Tucker action [31] generalized to a membrane of arbitrary dimension p

3In the literature on p-branes such a surface is often called ”world volume” and sometimes world
surface.
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(p-brane):

I[Xµ, γAB] =
κ0
2

∫ √
|γ|(γAB∂AXµ∂BXµ + 2− d). (4.84)

Besides the variables Xµ(φ), µ = 0, 1, 2, ..., D−1, which denote the position
of a d-dimensional (d = p + 1) worldsheet Vd in the embedding spacetime
VD, the above action also contains the auxiliary variables γAB (with the
role of Lagrange multipliers) which have to be varied independently from
Xµ.

By varying (4.84) with respect to γAB we arrive at the equation for the
induced metric on a worldsheet:

γAB = ∂AX
µ∂BXµ. (4.85)

Inserting (4.85) into (4.84) we obtain the Dirac–Nambu–Goto action (4.83).
In eq. (4.84) the γAB are the Lagrange multipliers, but they are not all

independent. The number of worldsheet constraints is d, which is also the
number of independent Lagrange multipliers. In order to separate out of
γAB the independent multipliers we proceed as follows. Let Σ be a space-
like hypersurface on the worldsheet, and nA the normal vector field to Σ.
Then the worldsheet metric tensor can be written as

γAB =
nAnB

n2
+ γ̄AB , γAB =

nAnB
n2

+ γ̄AB , (4.86)

where γ̄AB is projection tensor, satisfying

γ̄ABnB = 0, γ̄ABn
B = 0. (4.87)

It projects any vector into the hypersurface to which na is the normal. For
instance, using (4.86) we can introduce the tangent derivatives

∂̄AX
µ = γ̄ BA ∂BX

µ = γA
B∂BX

µ − nAn
B

n2
∂BX

µ. (4.88)

An arbitrary derivative ∂AX
µ is thus decomposed into a normal and tan-

gential part (relative to Σ):

∂AX
µ = nA∂X

µ + ∂̄AX
µ , (4.89)

where

∂Xµ ≡ nA∂AX
µ

n2
, nA∂̄AX

µ = 0. (4.90)

Details about using and keeping the d-dimensional covariant notation as far
as possible are given in ref. [61]. Here, following ref. [62], I shall present a
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shorter and more transparent procedure, but without the covariant notation
in d-dimensions.

Let us take such a class of coordinate systems in which covariant com-
ponents of normal vectors are

nA = (1, 0, 0, ..., 0). (4.91)

From eqs. (4.86) and (4.91) we have

n2 = γABn
AnB = γABnAnB = n0 = γ00, (4.92)

γ̄00 = 0 , γ̄0a = 0, (4.93)

and

γ00 =
1

n0
+ γ̄ab

nanb

(n0)2
, (4.94)

γ0a = − γ̄abn
b

n0
, (4.95)

γab = γ̄ab, (4.96)

γ00 = n0, (4.97)

γ0a = na, (4.98)

γab = γ̄ab +
nanb

n0
, a, b = 1, 2, ..., p. (4.99)

The decomposition (4.89) then becomes

∂0X
µ = ∂Xµ + ∂̄0X

µ, (4.100)

∂aX
µ = ∂̄aX

µ, (4.101)

where

∂Xµ = Ẋµ +
na∂aX

µ

n0
, Ẋµ ≡ ∂0Xµ ≡ ∂Xµ

∂ξ0
, ∂aX

µ ≡ ∂xµ

∂ξa
, (4.102)

∂̄0X
µ = −n

a∂aX
µ

n0
. (4.103)
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The nA = (n0, na) can have the role of d independent Lagrange multipliers.
We can now rewrite our action in terms of n0, na, and γ̄ab (instead of γAB).
We insert (4.97)–(4.99) into (4.84) and take into account that

|γ| = γ̄

n0
, (4.104)

where γ = det γAB is the determinant of the worldsheet metric and γ̄ =
det γ̄ab the determinant of the metric γ̄ab = γab , a, b = 1, 2, ..., p on the
hypersurface Σ.

So our action (4.84) after using (4.97)–(4.99) becomes

[Xµ, nA, γ̄ab] =
κ0
2

∫
ddφ

√
γ̄√
n0

×
(
n0ẊµẊµ + 2naẊµ∂aXµ + (γ̄ab +

nanb

n0
)∂aX

µ∂bXµ + 2− d
)
. (4.105)

Variation of the latter action with respect to γ̄ab gives the expression for
the induced metric on the surface Σ :

γ̄ab = ∂aX
µ∂bXµ , γ̄abγ̄ab = d− 1. (4.106)

We can eliminate γ̄ab from the action (4.105) by using the relation (4.106):

I[Xµ, na] =
κ0
2

∫
ddφ

√
|f |√
n0

(
1

n0
(n0Ẋµ + na∂aX

µ)(n0Ẋµ + nb∂bXµ) + 1

)
,

(4.107)
where

√
|f | ≡ det ∂aX

µ∂bXµ. The latter action is a functional of the world-
sheet variables Xµ and d independent Lagrange multipliers nA = (n0, na).
Varying (4.107) with respect to n0 and na we obtain the worldsheet con-
straints:

δn0 : (Ẋµ +
nb∂bX

µ

n0
)Ẋµ =

1

n0
, (4.108)

δna : (Ẋµ +
nb∂bX

µ

n0
)∂aXµ = 0. (4.109)

Using (4.102) the constraints can be written as

∂Xµ∂Xµ =
1

n0
, (4.110)

∂Xµ∂iXµ = 0. (4.111)
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The action (4.107) contains the expression for the normal derivative ∂Xµ

and can be written in the form

I =
κ0
2

∫
dτdpξ

√
|f |
(
∂Xµ∂Xµ

λ
+ λ

)
, λ ≡ 1√

n0
, (4.112)

where we have written ddφ = dτ dpξ, since φA = (τ, ξa) .
So we arrived at an action which looks like the well known Howe–Tucker

action for a point particle, except for the integration over a space-like
hypersurface Σ, parametrized by coordinates ξa, a = 1, 2, ..., p. Introducing
λa = −na/n0 the normal derivative can be written as ∂Xµ ≡ Ẋµ−λa∂aXµ.

Instead of n0, na we can take λ ≡ 1/
√
n0, λa ≡ −na/n0 as the Lagrange

multipliers. In eq. (4.112) we thus recognize the action (4.82).

MEMBRANE THEORY BASED ON THE
GEOMETRIC CALCULUS IN M-SPACE

We have seen that a membrane’s velocity Ẋµ(ξ) and momentum pµ(ξ) can
be considered as components of vectors in an infinite-dimensional membrane
space M in which every point can be parametrized by coordinates Xµ(ξ)

which represent a membrane. In analogy with the finite-dimensional case
considered in Chapter 2 we can introduce the concept of a vector in M
and a set of basis vectors eµ(ξ), such that any vector a can be expanded
according to

a = aµ(ξ)eµ(ξ). (4.113)

From the requirement that

a2 = aµ(ξ)eµ(ξ)a
ν(ξ′)eν(ξ′) = ρµ(ξ)ν(ξ′)a

µ(ξ)aν(ξ
′) (4.114)

we have

1

2
(eµ(ξ)eν(ξ′) + eν(ξ′)eµ(ξ)) ≡ eµ(ξ) · eν(ξ′) = ρµ(ξ)ν(ξ′). (4.115)

This is the definition of the inner product and eµ(ξ) are generators of Clifford
algebra inM-space.

A more complete elaboration of geometric calculus based on Clifford
algebra in M will be provided in Chapter 6. Here we just use (4.113),
(4.115) to extend the point particle polyvector action (2.56) toM-space.

We shall start from the first order action (4.70). First we rewrite the
latter action in terms of the compactM-space notation:

I[Xµ, pµ, λ, λ
a] =

∫
dτ

(
pµ(ξ)Ẋ

µ(ξ) − 1

2
(pµ(ξ)p

µ(ξ) −K)− λapµ(ξ)∂aXµ(ξ)
)
.

(4.116)



General principles of membrane kinematics and dynamics 131

In order to avoid introducing a new symbol, it is understood that the pro-
duct λapµ(ξ) denotes covariant components of an M-space vector. The
Lagrange multiplier λ is included in the metric ρµ(ξ)ν(ξ′).

According to (4.113) we can write the momentum and velocity vectors
as

p = pµ(ξ)e
µ(ξ), (4.117)

Ẋ = Ẋµ(ξ)eµ(ξ), (4.118)

where
eµ(ξ) = ρµ(ξ)ν(ξ

′)eν(ξ′) (4.119)

and
eµ(ξ) · eν(ξ′) = δµ(ξ)ν(ξ′). (4.120)

The action (4.116) can be written as

I(X, p, λ, λa) =

∫
dτ

[
p · Ẋ − 1

2
(p2 −K)− λa∂aX · p

]
, (4.121)

where
∂aX = ∂aX

µ(ξ)eµ(ξ) (4.122)

are tangent vectors. We can omit the dot operation in (4.121) and write
the action

I(X, p, λ, λa) =

∫
dτ

[
pẊ − 1

2
(p2 −K)− λap ∂aX

]
(4.123)

which contains the scalar part and the bivector part. It is straightforward
to show that the bivector part contains the same information about the
equations of motion as the scalar part.

Besides the objects (4.113) which are 1-vectors inM we can also form 2-
vectors, 3-vectors, etc., according to the analogous procedures as explained
in Chapter 2. For instance, a 2-vector is

a ∧ b = aµ(ξ)bν(ξ
′)eµ(ξ) ∧ eνξ′), (4.124)

where eµ(ξ) ∧ eνξ′) are basis 2-vectors. Since the index µ(ξ) has the discrete
part µ and the continuous part (ξ), the wedge product

eµ(ξ1) ∧ eµ(ξ2) ∧ ... ∧ eµ(ξk) (4.125)

can have any number of terms with different values of ξ and the same value
of µ. The number of terms in the wedge product

eµ1(ξ) ∧ eµ2(ξ) ∧ ... ∧ eµk(ξ), (4.126)



132 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

with the same value of ξ, but with different values of µ, is limited by the
number of discrete dimensions ofM-space. At fixed ξ the Clifford algebra
ofM-space behaves as the Clifford algebra of a finite-dimensional space.

Let us write the pseudoscalar unit of the finite-dimensional subspace Vn
ofM as

I(ξ) = eµ1(ξ) ∧ eµ2(ξ) ∧ ... ∧ eµn(ξ) (4.127)

A generic polyvector inM is a superposition

A = a0 + aµ(ξ)eµ(ξ) + aµ1(ξ1)µ2(ξ2)eµ1(ξ1) ∧ eµ2(ξ2) + ...

+ aµ1(ξ1)µ2(ξ2)...µk(ξk)eµ1(ξ1) ∧ eµ2(ξ2) ∧ ... ∧ eµk(ξk) + ... . (4.128)

As in the case of the point particle I shall follow the principle that the
most general physical quantities related to membranes, such as momentum
P and velocity Ẋ, are polyvectors inM-space. I invite the interested reader
to work out as an exercise (or perhaps as a research project) what physical
interpretation4 could be ascribed to all possible multivector terms of P and
Ẋ. For the finite-dimensional case I have already worked out in Chapter 2,
Sec 3, to certain extent such a physical interpretation. We have also seen
that at the classical level, momentum and velocity polyvectors which solve
the equations of motion can have all the multivector parts vanishing except
for the vector and pseudoscalar part. Let us assume a similar situation for
the membrane momentum and velocity:

P = P µ(ξ)eµ(ξ) +m(ξ)I(ξ), (4.129)

Ẋ = Ẋµ(ξ)eµ(ξ) + ṡ(ξ).I(ξ) (4.130)

In addition let us assume

∂aX = ∂aX
µ(ξ)eµ(ξ) + ∂as

(ξ)I(ξ). (4.131)

Let us assume the following general membrane action:

I(X,P, λ, λa) =

∫
dτ

[
PẊ − 1

2
(P 2 −K)− λa∂aX P

]
. (4.132)

On the one hand the latter action is a generalization of the action (4.121)
to arbitrary polyvectors Ẋ, P, λa∂aX. On the other hand, (4.132) is a

4As a hint the reader is advised to look at Secs. 6.3 and 7.2.
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generalization of the point particle polyvector action (2.56), where the
polyvectors in a finite-dimensional space Vn are replaced by polyvectors in
the infinite-dimensional spaceM.

Although the polyvectors in the action (4.132) are arbitrary in principle
(defined according to (4.128)), we shall from now on restrict our considera-
tion to a particular case in which the polyvectors are given by eqs. (4.129)-
(4.131). Rewriting the action action (4.132) in the component notation,
that is, by inserting (4.129)-(4.131) into (4.132) and by taking into account
(4.115), (4.120) and

eµ(ξ) · eν(ξ′) = ρµ(ξ)ν(ξ′) =
κ
√
|f |
λ

δ(ξ − ξ′)ηµν , (4.133)

I(ξ) · I(ξ′) = ρ(ξ)(ξ′) = −
κ
√
|f |
λ

δ(ξ − ξ′), (4.134)

I(ξ) · eν(ξ′) = 0, (4.135)

we obtain

〈I〉0 =
∫

dτ

[
pµ(ξ)Ẋ

µ(ξ) − ṡ(ξ)m(ξ) −
1

2
(pµ(ξ)pµ(ξ) +m(ξ)m(ξ) −K)

−λa(∂aXµ(ξ)pµ(ξ) − ∂as(ξ)m(ξ))

]
. (4.136)

By the way, let us observe that using (4.133), (4.134) we have

−K = −
∫

dξ κ
√
|f |λ = λ(ξ)λ(ξ) , λ(ξ) ≡ λ(ξ), (4.137)

which demonstrates that the term K can also be written in the elegant
tensor notation.

More explicitly, (4.136) can be written in the form

I[Xµ, s, pµ,m, λ, λ
a] =

∫
dτ dnξ

[
pµẊ

µ−mṡ− λ

2κ
√
|f |

(
pµpµ −m2 − κ2|f |

)

− λa(∂aXµpµ−∂a sm)

]
(4.138)

This is a generalization of the membrane action (4.70) considered in Sec.
4.2. Besides the coordinate variables Xµ(ξ) we have now an additional
variable s(ξ). Besides the momentum variables pµ(ξ) we also have the
variable m(ξ). We retain the same symbols pµ and m as in the case of
the point particle theory, with understanding that those variables are now
ξ-dependent densities of weight 1.
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The equations of motion derived from (4.138) are:

δs : −ṁ+ ∂a(λ
am) = 0, (4.139)

δXµ : ṗµ + ∂a

(
κλ
√
|f |∂aXµ − λapµ

)
= 0, (4.140)

δm : −ṡ+ λa∂as+
λ

κ
√
|f |m = 0, (4.141)

δpµ : Ẋµ − λa∂aXµ − λ

κ
√
|f | pµ = 0, (4.142)

δλ : pµpµ −m2 − κ2|f | = 0, (4.143)

δλa : ∂aX
µpµ − ∂asm = 0. (4.144)

Let us collect in the action those term which contain s and m and re-
express them by using the equations of motion (4.141). We obtain

−mṡ+ λ

2
√
|f | m

2 + λa∂asm = − λ

2κ
√
|f |m

2 (4.145)

Using again (4.141) and also (4.139) we have

− λ

2κ
√
|f |m

2 =
1

2
(−mṡ+ λa∂asm) =

1

2

(
−d(ms)

dτ
+ ∂a(λ

asm)

)
. (4.146)

Inserting (4.145) and (4.146) into the action (4.138) we obtain

I =

∫
dτ dnξ

[
−1

2

d

dτ
(ms) +

1

2
∂a(msλ

a)

+ pµẊ
µ− λ

2κ
√
|f |(p

µpµ−κ2|f |)−λa∂aXµpµ

]
. (4.147)

We see that the extra variables s, m occur only in the terms which are total
derivatives. Those terms have no influence on the equations of motion, and
can be omitted, so that

I[Xµ, pµ] =

∫
dτ dnξ

[
pµẊ

µ − λ

2κ
√
|f |(p

µpµ − κ2|f |)− λa∂aXµpµ

]
.

(4.148)
This action action looks like the action (4.70) considered in Sec 2.2. How-
ever, now λ and λa are no longer Lagrange multipliers. They should be
considered as fixed since they have already been “used” when forming the
terms −(d/dτ)(ms) and ∂a(msλa) in (4.147). Fixing of λ, λa means fixing
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the gauge, that is the choice of parameters τ and ξa. In (4.148) we have
thus obtained a reduced action which is a functional of the reduced number
of variables Xµ, pµ. All Xµ or all pµ are independent; there are no more
constraints.

However, a choice of gauge (the fixing of λ, λa) must be such that the
equations of motion derived from the reduced action are consistent with
the equations of motion derived from the original constrained action. In
our case we find that an admissible choice of gauge is given by

λ

κ
√
|f | = Λ , λa = Λa, (4.149)

where Λ, Λa are arbitrary fixed functions of τ, ξa. So we obtained the
following unconstrained action:

I[Xµ, pµ] =

∫
dτ dnξ

[
pµẊ

µ − Λ

2
(pµpµ − κ2|f |)− Λa∂aX

µpµ

]
. (4.150)

The fixed function Λ does not transform as a scalar under reparametriza-
tions of ξa, but a scalar density of weight −1, whereas Λa transforms as
a vector. Under reparametrizations of τ they are assumed to transform
according to Λ′ = (dτ/dτ ′)Λ and Λ′a = (dτ/dτ ′)Λa. The action (4.150)
is then covariant under reparametrizations of τ and ξa, i.e., it retains the
same form. However, it is not invariant (Λ and Λa in a new parametriza-
tion are different functions of the new parameters), therefore there are no
constraints.

Variation of the action (4.150) with respect to Xµ and pµ gives

δXµ : ṗµ + ∂a
(
Λκ2|f |∂aXµ − Λapµ

)
= 0, (4.151)

δpµ : Ẋµ − Λa∂aX
µ − Λpµ = 0. (4.152)

The latter equations of motion are indeed equal to the equations of motion
(4.140),(4.142) in which gauge is fixed according to (4.149).

Eliminating pµ in (4.150) by using eq (4.152), we obtain

I[Xµ] =
1

2
dτ dnξ

[
(Ẋµ − Λa∂aX

µ)(Ẋµ − Λb∂bX
µ)

Λ
+ Λκ2|f |

]
. (4.153)

If Λa = 0 this simplifies to

I[Xµ] =
1

2

∫
dτ dnξ

(
ẊµẊµ

Λ
+ Λκ2|f |

)
. (4.154)
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In the static case, i.e., when Ẋµ = 0, we have

I[Xµ] =
1

2

∫
dτ dnξ Λκ2|f |, (4.155)

which is the well known Schild action [63].

Alternative form of theM-space metric. Let us now again consider
the action (4.136). Instead of (4.133), (4.134) let us now take the following
form of the metric:

ρµ(ξ)ν(ξ′) =
1

λ̃
δ(ξ − ξ′)ηµν , (4.156)

ρ(ξ)(ξ′) = −
1

λ̃
δ(ξ − ξ′) , (4.157)

and insert it into (4.136). Then we obtain the action

I[Xµ, s, pµ,m, λ
′, λa] = (4.158)

∫
dτ dnξ

[
−mṡ+ pµẊ

µ − λ̃

2
(pµpµ −m2 − κ2|f |)− λa(∂aXµpµ − ∂asm)

]
,

which is equivalent to (4.138). Namely, we can easily verify that the cor-
responding equations of motion are equivalent to the equations of motion
(4.139)–(4.144). From the action (4.158) we then obtain the unconstrained
action (4.150) by fixing λ̃ = Λ and λa = Λa.

We have again found (as in the case of a point particle) that the polyvec-
tor generalization of the action naturally contains “time” and evolution of
the membrane variables Xµ. Namely, in the theory there occurs an extra
variable s whose derivative ṡ with respect to the worldsheet parameter τ
is the pseudoscalar part of the velocity polyvector. This provides a mech-
anism of obtaining the Stueckelberg action from a more basic principle.

Alternative form of the constrained action. Let us again consider
the constrained action (4.138) which is a functional of the variables Xµ, s
and the canonical momenta pµ, m. We can use equation of motion (4.141)
in order to eliminate the Lagrange multipliers λ from the action. By doing
so we obtain

I =

∫
dτ dnξ

[
−m(ṡ− λa∂as) + pµ(Ẋ

µ − λa∂aXµ)

− ṡ− λa∂as
2m

(p2 −m2 − κ2|f |)
]
.

(4.159)
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We shall now prove that

ds

dτ
= ṡ− λa∂as and

dXµ

dτ
= Ẋµ − λa∂aXµ, (4.160)

where ṡ ≡ ∂s/∂τ and Ẋµ = ∂Xµ/∂τ are partial derivatives. The latter
relations follow from the definitions of the total derivatives

ds

dτ
=
∂s

∂τ
+

dξa

dτ
and

dXµ

dτ
=
∂Xµ

∂τ
+ ∂aX

µ dξa

dτ
, (4.161)

and the relation λa = −dξa/dτ , which comes from the momentum con-
straint pµ∂aX

µ = 0.
Inserting (4.160) into eq. (4.159) we obtain yet another equivalent clas-

sical action

I[Xµ, pµ,m] =

∫
ds dnξ

[
pµ

dXµ

ds
− m

2
− 1

2m
(p2 − κ2|f |)

]
, (4.162)

in which the variable s has disappeared from the Lagrangian, and it has
instead become the evolution parameter. Alternatively, if in the action
(4.159) we choose a gauge such that ṡ = 1, λa = 0, then we also obtain the
same action (4.162).

The variable m in (4.162) acquired the status of a Lagrange multiplier
leading to the constraint

δm : p2 − κ2|f | −m2 = 0. (4.163)

Using the constraint (4.163) we can eliminate m from the action (4.162)
and we obtain the following reduced action

I[Xµ, pµ] =

∫
ds dnξ

(
pµ

dXµ

ds
−
√
p2 − κ2|f |

)
(4.164)

which, of course, is unconstrained. It is straightforward to verify that the
equations of motion derived from the unconstrained action (4.164) are the
same as the ones derived from the original constrained action (4.138).

The extra variable s in the reparametrization invariant constrained action
(4.138), after performing reduction of variables by using the constraints, has
become the evolution parameter.

There is also a more direct derivation of the unconstrained action which
will be provided in the next section.

Conclusion. Geometric calculus based on Clifford algebra in a finite-
dimensional space can be generalized to the infinite-dimensional membrane
space M. Mathematical objects of such an algebra are Clifford numbers,
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also called Clifford aggregates, or polyvectors. It seems natural to assume
that physical quantities are in general polyvectors inM. Then, for instance,
the membrane velocity Ẋµ in general is not a vector, but a polyvector, and
hence it contains all other possible r-vector parts, including a scalar and a
pseudoscalar part. As a preliminary step I have considered here a model in
which velocity is the sum of a vector and a pseudoscalar. The pseudoscalar
component is ṡ, i.e., the derivative of an extra variable s. Altogether we thus
have the variables Xµ and s, and the corresponding canonically conjugate
momenta pµ and m. The polyvector action is reparametrization invariant,
and as a consequence there are constraints on those variables. Therefore
we are free to choose appropriate number of extra relations which eliminate
the redundancy of variables. We may choose relations such that we get rid
of the extra variables s and m, but then the remaining variables Xµ, pµ
are unconstrained, and they evolve in the evolution parameter τ which, by
choice of a gauge, can be made proportional to s.

Our model with the polyvector action thus allows for dynamics in space-
time. It resolves the old problem of the conflict between our experience of
the passage of time on the one hand, and the fact that the theory of relati-
vity seems incapable of describing the flow of time at all: past, present and
future coexist in a four- (or higher-dimensional) “block” spacetime, with
objects corresponding to worldlines (or worldsheets) within this block. And
what, in my opinion, is very nice, the resolution is not a result of an ad
hoc procedure, but is a necessary consequence of the existence of Clifford
algebra as a general tool for the description of the geometry of spacetime!

Moreover, when we shall also consider dynamics of spacetime itself, we
shall find out that the above model with the polyvector action, when suit-
ably generalized, will provide a natural resolution of the notorious “problem
of time” in quantum gravity.

4.3. MORE ABOUT THE
INTERCONNECTIONS AMONG
VARIOUS MEMBRANE ACTIONS

In the previous section we have considered various membrane actions.
One action was just that of a free fall inM-space (eq. (4.21)). For a special
metric (4.28) which contains the membrane velocity we have obtained the
equation of motion (4.35) which is identical to that of the Dirac–Nambu–
Goto membrane described by the minimal surface action (4.80).

Instead of the free fall action inM-space we have considered some equiva-
lent forms such as the quadratic actions (4.39), (4.49) and the corresponding
first order or phase space action (4.70).
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Then we have brought into the play the geometric calculus based on Clif-
ford algebra and applied it to M-space. The membrane velocity and mo-
mentum are promoted to polyvectors. The latter variables were then used to
construct the polyvector phase space action (4.132), and its more restricted
form in which the polyvectors contain the vector and the pseudoscalar parts
only.

Whilst all the actions described in the first two paragraphs were equiv-
alent to the usual minimal surface action which describes the constrained
membrane, we have taken with the polyvectors a step beyond the conven-
tional membrane theory. We have seen that the presence of a pseudoscalar
variable results in unconstraining the rest of the membrane’s variables which
are Xµ(τ, ξ). This has important consequences.

If momentum and velocity polyvectors are given by expressions (4.129)–
(4.131), then the polyvector action (4.132) becomes (4.136) whose more
explicit form is (4.138). Eliminating from the latter phase space action the
variables Pµ and m by using their equations of motion (4.139), (4.142), we
obtain

I[Xµ, s, λ, λa]

=
κ

2

∫
dτ dnξ

√
|f | (4.165)

×
(
(Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ)− (ṡ− λa∂as)2

λ
+ λ

)
.

The choice of the Lagrange multipliers λ, λa fixes the parametrization τ
and ξa. We may choose λa = 0 and action (4.165) simplifies to

I[Xµ, s, λ] =
κ

2

∫
dτ dnξ

√
|f |
(
ẊµẊµ − ṡ2

λ
+ λ

)
, (4.166)

which is an extension of the Howe–Tucker-like action (4.48) or (2.31) con-
sidered in the first two sections.

Varying (4.166) with respect to λ we have

λ2 = ẊµẊµ − ṡ2. (4.167)

Using relation (4.167) in eq. (4.166) we obtain

I[Xµ, s] = κ

∫
dτ dnξ

√
|f |
√
ẊµẊµ − ṡ2. (4.168)

This reminds us of the relativistic point particle action (4.21). The differ-
ence is in the extra variable s and in that the variables depend not only on
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the parameter τ but also on the parameters ξa, hence the integration over
ξa with the measure dnξ

√
|f | (which is invariant under reparametrizations

of ξa).
Bearing in mind Ẋ = ∂Xµ/∂τ , ṡ = ∂s/∂τ , and using the relations

(4.160), (4.161), we can write (4.168) as

I[Xµ] = κ

∫
ds dnξ

√
|f |
√

dXµ

ds

dXµ

ds
− 1. (4.169)

The step from (4.168) to (4.169) is equivalent to choosing the parametriza-
tion of τ such that ṡ = 1 for any ξa, which means that ds = dτ .

We see that in (4.169) the extra variable s takes the role of the evolution
parameter and that the variables Xµ(τ, ξ) and the conjugate momenta
pµ(τ, ξ) = ∂L/∂Ẋµ are unconstrained 5.

In particular, a membrane Vn which solves the variational principle (4.169)
can have vanishing velocity

dXµ

ds
= 0. (4.170)

Inserting this back into (4.169) we obtain the action6

I[Xµ] = iκ

∫
ds dnξ

√
|f |, (4.171)

which governs the shape of such a static membrane Vn.
In the action (4.168) or (4.169) the dimensions and signatures of the

corresponding manifolds Vn and VN are left unspecified. So action (4.169)
contains many possible particular cases. Especially interesting are the fol-
lowing cases:

Case 1. The manifold Vn belonging to an unconstrained membrane Vn
has the signature (+−−− ...) and corresponds to an n-dimensional world-
sheet with one time-like and n− 1 space-like dimensions. The index of the
worldsheet coordinates assumes the values a = 0, 1, 2, ..., n− 1.

Case 2. The manifold Vn belonging to our membrane Vn has the signature
(− − − − ...) and corresponds to a space-like p-brane; therefore we take
n = p. The index of the membrane’s coordinates ξa assumes the values
a = 1, 2, ..., p.

Throughout the book we shall often use the single formalism and apply
it, when convenient, either to the Case 1 or to the Case 2.

5The invariance of action (4.169) under reparametrizations of ξa brings no constraints amongst
the dynamical variables Xµ(τ, ξ) and pµ(τ, ξ) which are related to motion in τ (see also [53]-
[55]).
6The factor i comes from our inclusion of a pseudoscalar in the velocity polyvector. Had we
instead included a scalar, the corresponding factor would then be 1.
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When the dimension of the manifold Vn belonging to Vn is n = p + 1
and the signature is (+ − − − ...), i.e. when we consider Case 1, then the
action (4.171) is just that of the usual Dirac–Nambu–Goto p-dimensional
membrane (well known under the name p-brane)

I = iκ̃

∫
dnξ

√
|f | (4.172)

with κ̃ = κ
∫
ds.

The usual p-brane is considered here as a particular case of a more general
membrane7 which can move in the embedding spacetime (target space)
according to the action (4.168) or (4.169). Bearing in mind two particular
cases described above, our action (4.169) describes either

(i) a moving worldsheet, in the Case I; or
(ii) a moving space like membrane, in the Case II.

Let us return to the action (4.166). We can write it in the form

I[Xµ, s, λ] =
κ

2

∫
dτ dnξ

[√
|f |
(
ẊµẊµ

λ
+ λ

)
− d

dτ

(
κ
√
|f |ṡs
λ

)]
,

(4.173)
where by the equation of motion

d

dτ

(
κ
√
|f |
λ

ṡ

)
= 0 (4.174)

we have
d

dτ

(
κ
√
|f |ṡs
λ

)
=
κ
√
|f |ṡ2
λ

. (4.175)

The term with the total derivative does not contribute to the equations of
motion and we may omit it, provided that we fix λ in such a way that the
Xµ-equations of motion derived from the reduced action are consistent with
those derived from the original constrained action (4.165). This is indeed
the case if we choose

λ = Λκ
√
|f |, (4.176)

where Λ is arbitrary fixed function of τ .
Using (4.167) we have

√
ẊµẊµ − ṡ2 = Λκ

√
|f |. (4.177)

7By using the name membrane we distinguish our moving extended object from the static object,
which is called p-brane.
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Inserting into (4.177) the relation

κ
√
|f |ṡ√

ẊµẊµ − ṡ2
=

1

C
= constant, (4.178)

which follows from the equation of motion (4.139), we obtain

Λ

C
=

ds

dτ
or Λdτ = C ds (4.179)

where the differential ds = (∂s/∂τ)dτ + ∂asdξ
a is taken along a curve on

the membrane along which dξa = 0 (see also eqs. (4.160), (4.161)). Our
choice of parameter τ (given by a choice of λ in eq. (4.176)) is related to
the variable s by the simple proportionality relation (4.179).

Omitting the total derivative term in action (4.173) and using the gauge
fixing (4.176) we obtain

I[Xµ] =
1

2

∫
dτ dnξ

(
ẊµẊµ

Λ
+ Λκ2|f |

)
. (4.180)

This is the unconstrained membrane action that was already derived in
previous section, eq. (4.154).

Using (4.179) we find that action (4.180) can be written in terms of s as
the evolution parameter:

I[Xµ] =
1

2

∫
ds dnξ



◦
X
µ ◦
Xµ

C
+ Cκ2|f |


 (4.181)

where
◦
X
µ
≡ dXµ/ds.

The equations of motion derived from the constrained action (4.166) are

δXµ :
d

dτ

(
κ
√
|f |Ẋµ√

Ẋ2 − ṡ2

)
+ ∂a

(
κ
√
|f |
√
Ẋ2 − ṡ2 ∂aXµ

)
= 0, (4.182)

δs :
d

dτ

(
κ
√
|f |ṡ√

Ẋ2 − ṡ2

)
= 0, (4.183)

whilst those from the reduced or unconstrained action (4.180) are

δXµ :
d

dτ

(
Ẋµ

Λ

)
+ ∂a

(
κ2|f |Λ∂aXµ

)
= 0. (4.184)

By using the relation (4.177) we verify the equivalence of (4.184) and
(4.182).
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The original, constrained action (4.168) implies the constraint

pµpµ −m2 − κ2|f | = 0, (4.185)

where

pµ − κ
√
|f |Ẋµ/λ , m = κ

√
|f |ṡ/λ , λ =

√
ẊµẊµ − ṡ2.

According to the equation of motion (4.174) ṁ = 0, therefore

pµpµ − κ2|f | = m2 = constant. (4.186)

The same relation (4.186) also holds in the reduced, unconstrained theory
based on the action (4.180). If, in particular,m = 0, then the corresponding
solution Xµ(τ, ξ) is identical with that for the ordinary Dirac–Nambu–
Goto membrane described by the minimal surface action which, in a special
parametrization, is

I[Xµ] = κ

∫
dτdn ξ

√
|f |
√
ẊµẊµ (4.187)

This is just a special case of (4.168) for ṡ = 0.
To sum up, the constrained action (4.168) has the two limits:

(i) Limit Ẋµ = 0. Then

I[Xµ(ξ)] = iκ̃

∫
dnξ

√
|f |. (4.188)

This is the minimal surface action. Here the n-dimensional membrane
(or the worldsheet in the Case I ) is static with respect to the evolution8

parameter τ .
(ii) Limit ṡ = 0. Then

I[Xµ(τ, ξ)] = κ

∫
dτ dnξ

√
|f |
√
ẊµẊµ. (4.189)

This is an action for a moving n-dimensional membrane which sweeps an
(n+1)-dimensional surfaceXµ(τ, ξ) subject to the constraint pµpµ−κ2|f | =
0. Since the latter constraint is conserved in τ we have automatically also
the constraint pµẊ

µ = 0 (see Box 4.3). Assuming the Case II we have thus
the motion of a conventional constrained p-brane, with p = n.

In general none of the limits (i) or (ii) is satisfied, and our membrane
moves according to the action (4.168) which involves the constraint (4.185).

8The evolution parameter τ should not be confused with one of the worldsheet parameters ξa.
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From the point of view of the variables Xµ and the conjugate momenta pµ
there is no constraint, and instead of (4.168) we can use the unconstrained
action (4.180) or (4.181), where the extra variable s has become the param-
eter of evolution .



Chapter 5

MORE ABOUT PHYSICS IN M-SPACE

In the previous chapter we have set up the general principle that a
membrane of any dimension can be considered as a point in an infinite-
dimensional membrane space M. The metric of M-space is arbitrary in
principle and a membrane traces out a geodesic inM-space. For a partic-
ular choice of M-space metric, the geodesic in M-space, when considered
from the spacetime point of view, is a worldsheet obeying the dynamical
equations derived from the Dirac–Nambu–Goto minimal surface action. We
have thus arrived very close at a geometric principle behind the string (or,
in general, the membrane) theory. In this chapter we shall explore how
far such a geometric principle can be understood by means of the tensor
calculus inM.

From theM-space point of view a membrane behaves as a point particle.
It is minimally coupled to a fixed background metric field ρµ(ξ)ν(ξ′) ofM-
space. The latter metric field has the role of a generalized gravitational
field. Although at the moment I treat ρµ(ξ)ν(ξ′) as a fixed background field,
I already have in mind a later inclusion of a kinetic term for ρµ(ξ)ν(ξ′).
The membrane theory will thus become analogous to general relativity.
We know that in the case of the usual point particles the gravitational
interaction is not the only one; there are also other interactions which are
elegantly described by gauge fields. One can naturally generalize such a
gauge principle to the case of a point particle inM (i.e., to membranes).
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5.1. GAUGE FIELDS IN M-SPACE

GENERAL CONSIDERATIONS
One of the possible classically equivalent actions which describe the

Dirac–Nambu–Goto membrane is the phase space action (4.70). In M-
space notation the latter action reads

I =

∫
dτ
[
pµ(σ)Ẋ

µ(σ) − 1
2(pµ(σ)p

µ(σ) −K)− λa∂aXµ(σ)pµ(σ)
]
, (5.1)

where the membrane’s parameters are now denoted as σ ≡ σa, a = 1, 2, ..., p.
Since the action (5.1) is just like the usual point particle action, the

inclusion of a gauge field is straightforward. First, let us add to (5.1) a
term which contains a total derivative. The new action is then

I ′ = I +

∫
dτ

dW

dτ
, (5.2)

where W is a functional of Xµ. More explicitly,

dW

dτ
=

∂W

∂Xµ(σ)
Ẋµ(σ). (5.3)

If we calculate the canonical momentum belonging to I ′ we find

p′µ(σ) = pµ(σ) + ∂µ(σ)W. (5.4)

Expressed in terms of p′µ(σ) the transformed action I ′ is a completely new

functional of p′µ(σ), depending on the choice of W . In order to remedy such

an undesirable situation and obtain an action functional which would be
invariant under the transformation (5.2) we introduce a compensating gauge
field Aµ(σ) in M-space and, following the minimal coupling prescription,
instead of (5.1) we write

I =

∫
dτ
[
pµ(σ)Ẋ

µ(σ) − 1
2(πµ(σ)π

µ(σ) −K)− λa∂aXµ(σ)πµ(σ)
]
, (5.5)

where
πµ(σ) ≡ pµ(σ) − qAµ(σ). (5.6)

q being the total electric charge of the membrane. If we assume that under
the transformation (5.2)

Aµ(σ) → A′µ(σ) = Aµ(σ) + q−1∂µ(σ)W, (5.7)

the transformed action I ′ then has the same form as I:

I ′ =
∫

dτ
[
p′µ(σ)Ẋ

µ(σ) − 1
2(π

′
µ(σ)π

′µ(σ) −K)− λa∂aXµ(σ)π′µ(σ)
]
, (5.8)
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where
π′µ(σ) ≡ p′µ(σ) − qA′µ(σ) = pµ(σ) − qAµ(σ) ≡ πµ(σ).

Varying (5.5) with respect to pµ(σ) we find

πµ(σ) = Ẋµ(σ) − λa∂aXµ(σ). (5.9)

Variation with respect to the Lagrange multipliers λ, λa gives the con-
straints1, and the variation with respect to Xµ(σ) gives the equation of
motion

π̇µ(σ) − ∂a(λaπµ(σ))− 1
2∂µ(σ)K − 1

2∂µ(σ)ρα(σ′)β(σ′′)π
α(σ′)πβ(σ

′′)

−
∫

dτ ′Fµ(σ)ν(σ′)(τ, τ ′)Ẋν(σ′)(τ ′) = 0, (5.10)

where

Fµ(σ)ν(σ′)(τ, τ ′) ≡
δAν(σ′)(τ ′)
δXµ(σ)(τ)

− δAµ(σ)(τ)
δXν(σ′)(τ ′)

(5.11)

is theM-space gauge field strength. A gauge field Aµ(σ) inM is, of course,

a function(al) ofM-space coordinate variables Xµ(σ)(τ). In the derivation
above I have taken into account the possibility that the expression for the
functional Aµ(σ) contains the velocity Ẋµ(σ)(τ) (see also Box 4.2).

For

K =

∫
dpσ κ

√
|f |λ (5.12)

and

ρα(σ′)β(σ′′) = (κ
√
|f |/λ)ηαβδ(σ′ − σ′′) (5.13)

eq. (5.10) becomes

π̇µ+∂a(κ
√
|f |∂aXµ−λaπµ)−q

∫
dτ ′Fµ(σ)ν(σ′)(τ, τ ′)Ẋν(σ′)(τ ′) = 0 (5.14)

If we make use of (5.9) we find out that eq. (5.14) is indeed a generalization
of the equation of motion (4.71) derived in the absence of a gauge field.

A SPECIFIC CASE
Now we shall investigate the transformation (5.2) in some more detail.

Assuming

W =

∫
dpσ (w(x) + ∂aw

a(x)) (5.15)

1Remember that πµ(σ)π
µ(σ) = ρµ(σ)ν(σ′)π

µ(σ)πν(σ
′) and ρµ(σ)ν(σ′) = (κ

√
|f |/λ)ηµνδ(σ − σ′).
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the total derivative (5.3) of the functional W can be written as

dW

dτ
= ∂µ(σ)WẊµ(σ) =

∫
dpσ(∂µw − ∂a∂µwa)Ẋµ

=

∫
dpσ (∂µwẊ

µ − ∂aẇa)

=

∫
dpσ (∂µwẊ

µ − ∂µẇa∂aXµ). (5.16)

In the above calculation we have used

∂a∂µw
aẊµ = ∂µ∂aw

aẊµ = (d/dτ)∂aw
a = ∂aẇ

a.

In principle W is an arbitrary functional of Xµ(σ). Let us now choose the
ansatz with χ = χ(Xµ):

w = eχ , −ẇa = eaχ , (5.17)

subjected to the condition
ė+ ∂ae

a = 0 (5.18)

Then (5.16) becomes

dW

dτ
=

∫
dpσ (eẊµ + ea∂aX

µ)∂µχ (5.19)

and, under the transformation (5.2) which implies (5.4), (5.7), we have

p′µ(σ)Ẋ
µ(σ) = pµ(σ)Ẋ

µ(σ) +

∫
dpσ(eẊµ + ea∂aX

µ)∂µχ, (5.20)

qA′µ(σ)Ẋµ(σ) = qAµ(σ)Ẋµ(σ) +

∫
dpσ(eẊµ + ea∂aX

µ)∂µχ. (5.21)

The momentum pµ(σ) thus consists of two terms

pµ(σ) = p̂µ(σ) + p̄µ(σ) (5.22)

which transform according to

p̂′µ(σ)Ẋ
µ(σ) = p̂µ(σ)Ẋ

µ(σ) +

∫
dpσ eẊµ∂µχ, (5.23)

p̄′µ(σ)Ẋ
µ(σ) = p̄µ(σ)Ẋ

µ(σ) +

∫
dpσ ea∂aX

µ∂µχ. (5.24)

Similarly for the gauge field Aµ(σ):

Aµ(σ) = Âµ(σ) + Āµ(σ), (5.25)

qÂ′µ(σ)Ẋµ(σ) = Âµ(σ)Ẋµ(σ) +

∫
dpσ eẊµ∂µχ, (5.26)

qĀ′µ(σ)Ẋµ(σ) = Āµ(σ)Ẋµ(σ) +

∫
dpσ ea∂aX

µ∂µχ. (5.27)
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The last two relations are satisfied if we introduce a field Aµ which trans-
forms according to

A′µ = Aµ + ∂µχ (5.28)

and satisfies the relations

qÂµ(σ)Ẋµ(σ) =

∫
dpσ eẊµAµ, (5.29)

qĀµ(σ)Ẋµ(σ) =

∫
dpσ ea∂aX

µAµ, (5.30)

or

qAµ(σ)Ẋµ(σ) =

∫
dpσ (eẊµ + ea∂aX

µ)Aµ. (5.31)

We now observe that from (5.9), which can be written as

πµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ), (5.32)

and from eq. (5.6) we have

pµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ) + qAµ. (5.33)

Using the splitting (5.22) and (5.25) we find that the choice

p̂µ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ) + qÂµ, (5.34)

p̄µ = qĀµ (5.35)

is consistent with the transformations (5.23), (5.24) and the relations (5.29),
(5.30).

Thus the phase space action can be rewritten in terms of p̂µ by using
(5.22), (5.35) and (5.30):

I =

∫
dτ

[
p̂µ(σ)Ẋ

µ(σ) + ea∂aX
µ(σ)Aµ(σ)

− 1
2(π̂µ(σ)π̂

µ(σ) −K)− λa∂aXµ(σ)π̂µ(σ)

]
. (5.36)

In a more explicit notation eq. (5.36) reads
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I =

∫
dτ dpσ

[
p̂µẊ

µ + ea∂aX
µAµ

− 1

2

λ

κ
√
|f |(π̂µπ̂

µ − κ2|f |)− λa∂aXµπ̂µ

]
. (5.37)

This is an action [64] for a p-dimensional membrane in the presence of a
fixed electromagnetic field Aµ. The membrane bears the electric charge
density e and the electric current density ea which satisfy the conservation
law (5.18).

The Lorentz force term then reads

q

∫
dτ ′Fµ(σ)ν(σ′)(τ, τ ′)Ẋν(σ′)(τ ′)

= q

∫
dτ ′

(
δAν(σ′)(τ ′)
δXµ(σ)(τ)

− δAµ(σ)(τ)
δXν(σ′)(τ ′)

)
Ẋν(σ′)

= q

∫
dτ ′
[
δ
(
Aν(σ′)(τ ′)Ẋν(σ′)(τ ′)

)

δXµ(σ)(τ)
−Aν(σ′)δν(σ

′)
µ(σ)

d

dτ ′
δ(τ − τ ′)

− δAµ(σ)(τ)
δXν(σ′)(τ ′)

Ẋν(σ′)(τ ′)

]

=

∫
dτ ′ dpσ′

(
δAν(τ

′, σ′)
δXµ(τ, σ)

− δAµ(τ, σ)

δXν(τ ′, σ′)

)(
eẊν(τ ′, σ′) + ea∂aX

ν(τ ′, σ′)
)

= Fµν(eẊ
ν + ea∂aX

ν), (5.38)

where we have used eq. (5.31). In the last step of the above derivation we
have assumed that the expression for Aµ(τ, σ) satisfies

δAµ(τ, σ)

δXν(τ ′, σ′)
− δAν(τ

′, σ′)
δXµ(τ, σ)

=

(
∂Aµ
∂Xν

− ∂Aν
∂Xµ

)
δ(τ − τ ′)δ(σ − σ′), (5.39)

where Fµν = ∂µAν − ∂νAµ.
Let us now return to the original phase space action (5.5). It is a func-

tional of the canonical momenta pµ(σ). The latter quantities can be eli-
minated from the action by using the equations of ”motion” (5.9), i.e.,
for pµ we use the substitution (5.33). After also taking into account the
constraints πµπµ − κ2|f | = 0 and ∂aX

µπµ = 0, the action (5.5) becomes

I[Xµ] =

∫
dτ dpσ

[
κ
√
|f |
λ

(Ẋµ − λa∂aXµ)Ẋ
µ + qAµẊµ

]
. (5.40)
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Using (5.31) we have

I[Xµ] =

∫
dτdpσ

[
κ
√
|f |
λ

(Ẋµ − λa∂aXµ)Ẋ
µ + (eẊµ + ea∂aX

µ)Aµ

]
.

(5.41)
From the constraints and from (5.32) we find the expressions (4.76), (4.77)
for λ and λa which we insert into eq. (5.41). Observing also that

(Ẋµ − λa∂aXµ)Ẋ
µ = (Ẋµ − λa∂aXµ)(Ẋ

µ − λb∂bXµ)

we obtain

I[Xµ] =

∫
dτ dpσ

(
κ
√
|f |
[
ẊµẊν(ηµν − ∂aXµ∂aXν)

]1/2

+(eẊµ + ea∂aX
µ)Aµ

)
, (5.42)

or briefly (see eq. (4.79))

I[Xµ] =

∫
dp+1φ

[
κ(det ∂AX

µ∂BXµ)
1/2 + eA∂AX

µAµ
]
, (5.43)

where

∂A ≡
∂

∂φA
, φA ≡ (τ, σa) and eA ≡ (e, ea). (5.44)

This form of the action was used in refs. [65], and is a generalization of the
case for a 2-dimensional membrane considered by Dirac [66].

Dynamics for the gauge field Aµ can be obtained by adding the corre-
sponding kinetic term to the action:

I[Xµ(φ), Aµ]

=

∫
ddφ

[
κ(det∂AX

µ∂BXµ)
1/2 + eA∂AAµ

]
δD (x−X(φ)) dDx

+
1

16π

∫
FµνF

µν dDx, (5.45)

where Fµν = ∂µAν−∂νAµ. Here d = p+1 and D are the worldsheet and the
spacetime dimensions, respectively. The δ-function was inserted in order
to write the corresponding Lagrangian as the density in the embedding
spacetime VD.

By varying (5.45) with respect to Xµ(φ) we obtain the Lorentz force law
for the membrane:

κ ∂A(
√
det∂CXν∂DXν ∂

AXµ) + eA∂AX
νFνµ = 0. (5.46)
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The latter equation can also be derived directly from the previously con-
sidered equation of motion (5.14).

If, on the contrary, we vary (5.45) with respect to the electromagnetic
potential Aµ, we obtain the Maxwell equations

Fµνν = −4πjµ, (5.47)

jµ =

∫
eA∂AX

µδD(x−X(φ))ddφ. (5.48)

The field around our membrane can be expressed by the solution2

Aµ(x) =

∫
eA(φ′) δ[

(
x−X(φ′)

)2
] ∂AX

µ(φ′) ddφ′, (5.49)

which holds in the presence of the gauge condition ∂µA
µ = 0. This shows

that Aµ(x) is indeed a functional of Xµ(φ) as assumed in previous sec-
tion. It is defined at every spacetime point xµ. In particular, xµ may be
positioned on the membrane. Then instead of Aµ(x) we write Aµ(φ), or
Aµ(τ, σa) ≡ Aµ(σ)(τ). If we use the splitting φA = (τ, σa), eA = (e, ea),
a = 1, 2, ..., p, (5.49) then reads

Aµ(τ, σ) =

∫
dτ ′ dpσ′ δD

[(
X(τ, σ)−X(τ ′, σ′)

)2]
(eẊµ + ea∂aX

µ), (5.50)

which demonstrates that the expression for Aµ(σ)(τ) indeed contains the
velocity Ẋµ as admitted in the derivation of the general equation of motion
(5.10).

Moreover, by using the expression (5.50) for Aµ(σ)(τ) we find that the
assumed expression (5.39) is satisfied exactly.

M-SPACE POINT OF VIEW AGAIN
In the previous subsection we have considered the action (5.45) which

described the membrane dynamics from the point of view of spacetime.
Let us now return to considering the membrane dynamics from the point
of view of M-space, as described by the action (5.5), or, equivalently, by
the action

I =

∫
dτ
(
Ẋµ(σ)Ẋµ(σ) + qAµ(σ)Ẋµ(σ)

)
, (5.51)

which is a generalization of (4.39). In order to include the dynamics of the
gauge field Aµ(σ) itself we have to add its kinetic term. A possible choice

2This expression contains both the retarded and the advanced part, Aµ = 1
2
(Aµret+A

µ
adv

). When
initial and boundary conditions require so, we may use only the retarded part.
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for the total action is then

I =

∫
dτ

(
˙̃X
µ(σ) ˙̃Xµ(σ) + qAµ(σ)[X] ˙̃X

µ(σ)
)
δ(M)(X − X̃(τ))DX

+
1

16π

∫
dτ dτ ′Fµ(σ)ν(σ′)(τ, τ ′)Fµ(σ)ν(σ

′)(τ, τ ′)
√
|ρ|DX , (5.52)

where

δ(M)
(
X − X̃(τ)

)
≡
∏

µ(σ)

δ
(
Xµ(σ) − X̃µ(σ)(τ)

)
(5.53)

and √
|ρ|DX ≡

√
|ρ|
∏

µ(σ)

dXµ(σ) =
∏

µ(σ)

κ
√
|f |√
Ẋ2

dXµ(σ) (5.54)

are respectively the δ-function and the volume element inM-space.
Although (5.52) is a straightforward generalization of the point particle

action in spacetime (such that the latter space is replaced by M-space),
I have encountered serious difficulties in attempting to ascribe a physical
meaning to (5.52). In particular, it is not clear to me what is meant by
the distinction between a point X at which the field Aµ(σ)[X] is calculated

and the point X̃ at which there is a “source” of the field. One might
think that the problem would disappear if instead of a single membrane
which is a source of its own field, a system of membranes is considered.
Then, in principle one membrane could be considered as a “test membrane”
(analogous to a “test particle”) to probe the field “caused” by all the other
membranes within our system. The field Aµ(σ)[X] is then a functional of the

test membrane coordinates Xµ(σ) (in analogy with Aµ(x) being a function
of the test particle coordinates xµ). Here there is a catch: how can a field
Aµ(σ) be a functional of a single membrane’s coordinates, whilst it would
be much more sensible (actually correct) to consider it as a functional of
all membrane coordinates within our system. But then there would be no
need for a δ-function in the action (5.52).

Let us therefore write the action without the δ-function. Also let us
simplify our notation by writing

Xµ(τ, σ) ≡ Xµ(τ,σ) ≡ Xµ(φ), (φ) ≡ (τ, σ). (5.55)

Instead of the space of p-dimensional membranes with coordinates Xµ(σ) we
thus obtain the space of (p+ 1)-dimensional membranes3 with coordinates

3When a membrane of dimension p moves it sweeps a wordlsheet Xµ(τ,σ), which is just another
name for a membrane of dimension p+ 1.
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Xµ(φ). The latter space will also be calledM-space, and its metric is

ρµ(φ)ν(φ′) =
κ
√
|f |√
Ẋ2

ηµνδ(φ− φ′), (5.56)

where δ(φ− φ′) = δ(τ − τ ′)δp(σ − σ′). A natural choice for the action is

I = Ẋµ(φ)Ẋ
µ(φ) + qAµ(φ)[X]Ẋµ(φ) +

ε

16π
Fµ(φ)ν(φ′)Fµ(φ)ν(φ

′), (5.57)

where
Fµ(φ)ν(φ′) = ∂µ(φ)Aν(φ′) − ∂ν(φ′)Aµ(φ). (5.58)

A constant ε is introduced for dimensional reasons (so that the units for
Aµ(φ) in both terms of (5.57) will be consistent). Note that the integration
over τ is implicit by the repetition of the index (φ) ≡ (τ, σa).

Variation of the action (5.57) with respect to Xµ(φ) gives

−2 d

dτ
Ẋµ(φ) + ∂µ(φ)ρα(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′) + qFµ(φ)ν(φ′)Ẋν(φ′)

+
ε

8π

(
Dµ(φ)Fα(φ′)β(φ′′)

)
Fα(φ′)β(φ′′) = 0 (5.59)

If we take the metric (5.56) we find that, apart from the last term, the latter
equation of motion is equivalent to (5.14). Namely, as shown in Chapter
4, Sec. 2, the second term in eq. (5.59), after performing the functional
derivative of the metric (5.56), brings an extra term (dẊµ/dτ) and also the

term ∂A(κ
√
|f |Ẋ2∂AXµ).

If we raise the index µ(φ) in eq. (5.59) we obtain

dẊµ(φ)

dτ
+Γ

µ(φ)
α(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′)

− q
2
Fµ(φ)ν(φ′)Ẋν(φ′)− ε

4π

(
Dµ(φ)Fα(φ′)β(φ′′)Fα(φ

′)β(φ′′)
)
= 0 (5.60)

which contains the familiar term of the geodetic equation plus the terms
resulting from the presence of the gauge field. The factor 1

2 in front of the
Lorentz force term compensates for such a factor also accourring in front
of the acceleration after inserting the metric (5.56) into the connection and
summing over the first two terms of eq. (5.60).

If, on the contrary, we vary (5.57) with respect to the field Aµ(φ)[X],
we obtain the equations which contain theM-space δ-function. The latter
is eliminated after integration over DX. So we obtain the following field
equations

−4πqẊµ(φ) = εDν(φ′)Fµ(φ)ν(φ
′). (5.61)



More about physics inM-space 155

They imply the “conservation” law Dµ(φ)Ẋ
µ(φ) = 0.

These equations describe the motion of a membrane interacting with
its own electromagnetic field. First let us observe that the electromagnetic
field Aµ(φ)[X] is a functional of the whole membrane. No explicit spacetime
dependence takes place in Aµ(φ)[X]. Actually, the concept of a field defined
at spacetime points does not occur in this theory. However, besides the
discrete index µ, the field bears the set of continuous indices (φ) = (τ, σa),
andAµ(φ) meansAµ(φ) ≡ Aµ(τ, σa), that is, the field is defined for all values
of the worldsheet parameters τ, σa. At any values of τ, σa we can calculate
the corresponding position xµ in spacetime by making use of the mapping
xµ = Xµ(τ, σ) which, in principle, is determined after solving the system
of equations (5.59), (5.61). The concept of a field which is a functional of
the system configuration is very important and in our discussion we shall
return to it whenever appropriate.

A SYSTEM OF MANY MEMBRANES
We have seen that that within theM-space description a gauge field is

defined for all values of membrane’s parameters φ = (τ, σa), or, in other
words, the field is defined only at those points which are located on the
membrane. If there are more than one membrane then the field is defined
on all those membranes.

One membrane is described by the parametric equation xµ = Xµ(τ, σa),
where xµ are target space coordinates and Xµ are functions of continuous
parameters τ, σa. In order to describe a system of membranes we add one
more parameter k, which has discrete values. The parametric equation for
system of membranes is thus

xµ = Xµ(τ, σa, k). (5.62)

A single symbol φ may now denote the set of those parameters:

φ ≡ (τ, σa, k), (5.63)

and (5.62) can be written more compactly as

xµ = Xµ(φ) or xµ = Xµ(φ). (5.64)

With such a meaning of the index (φ) the equations (5.59), (5.61) describe
the motion of a system of membranes and the corresponding gauge field.

The gauge field Aµ(φ)[X] is a functional of Xµ(φ), i.e., it is a functional

of the system’s configuration, described by Xµ(φ).
The gauge field Aµ(φ)[X] is also a function of the parameters (φ) ≡

(τ, σa, k) which denote position on the k-th membrane. If the system of
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membranes “nearly” fills the target space, then the set of all the points xµ

which, by the mapping (5.62), corresponds to the set of all the parameters
τ, σa, k approximately (whatever this words means) fills the target space.

Eq. (5.61) is a field equation inM-space. We can transform it into a field
equation in target space as follows. Multiplying (5.61) by δ(x−X(φ)) and
integrating over φ we have

−4πq
∫

dφ Ẋµ(φ)δ(x−X(φ)) = ε

∫
dφ δ(x−X(φ))Dν(φ′)Fµ(φ)ν(φ

′). (5.65)

The left hand side of the latter equation can be written explicitly as

−4πq
∑

k

∫
dτ dpσ Ẋµ(τ, σ, k)δ (x−X(τ, σ, k)) ≡ −4πjµ(x). (5.66)

In order to calculate the right hand side of eq. (5.65) we write

Dν(φ′)Fµ(φ)ν(φ) = ρµ(φ)α(φ
′′)ρν(φ

′)β(φ′′′)Dν(φ′)Fα(φ′′)β(φ′′′) (5.67)

and

Dν(φ′)Fα(φ′′)β(φ′′′) = ∂ν(φ′)Fα(φ′′)β(φ′′′)

−Γε(φ̃)ν(φ′)α(φ′′)Fε(φ̃)β(φ′′′) − Γ
ε(φ̃)
ν(φ′)β(φ′′′)Fα(φ′′)ε(φ̃). (5.68)

We also assume4

Fµ(φ)ν(φ′) = Fµνδ(φ− φ′) , Fµν =
∂Aν
∂Xµ

− ∂Aµ
∂Xν

. (5.69)

Then, for the metric (5.56), eq. (5.65) becomes

−4πjµ = εδ(0)
∑

k

∫
dτdpσ δ (x−X(τ, σ, k))

Ẋ2

κ2|f | ∂νF
µν(τ, σ, k)

+ (covariant derivative terms)

= ∂νF
µν(x) + (covariant derivative terms), (5.70)

where we have defined

εδ(0)
∑

k

∫
dτdpσ δ (x−X(τ, σ, k))

Ẋ2

κ2|f |A
µ(τ, σ, k) ≡ Aµ(x) (5.71)

4If Aµ(φ) is given by an expression of the form (5.49) then eq. (5.69) is indeed satisfied.



More about physics inM-space 157

and taken the normalization5 such that εδ(0) = 1. The factor Ẋ2/κ|f |
comes from the inverse of the metric 5.56. Apart from the ‘covariant deriva-
tive terms’, which I shall not discuss here, (5.70) are just the Maxwell equa-
tions in flat spacetime.

The gauge field Aµ(x) is formally defined at all spacetime points x, but
because of the relation (5.71) it has non-vanishing values only at those
points xµ which are occupied by the membranes. A continuous gauge field
over the target space is an approximate concept in this theory. Fundamen-
tally, a gauge field is a functional of the system configuration.

One can also insert (5.69) directly into the action (5.57). We obtain

ε

16π
Fµ(φ)ν(φ′)Fµ(φ)ν(φ

′)

=
εδ(0)

16π

∫
Ẋ2

κ2|f | FµνF
µν(φ) dφ

=
εδ(0)

16π

∫
FµνFµν(φ) dφ δ(x−X(φ)) dNx

=
1

16π

∫
FµνF

µν(x) dNx (5.72)

where we have used the definition (5.71) for Aµ and introduced

Fµν = ∂µAν − ∂νAµ. (5.73)

Similarly

Ẋµ(φ)Ẋ
µ(φ) =

∫
dφκ

√
Ẋ2
√
|f | (5.74)

and

qAµ(φ)Ẋµ(φ) =

∫
dφ eA∂AXµA

µ. (5.75)

The action (5.45) is thus shown to be a special case of theM-space action
(5.57). This justifies use of (5.57) as theM-space action. Had we used the
form (5.52) with a δ-functional, then in the matter term the volume

∫ DX
would not occur, while it would still occur in the field term.

5The infinity δ(0) in an expression such as (5.70) can be regularized by taking into account the
plausible assumption that a generic physical object is actually a fractal (i.e., an object with
detailed structure at all scales). The coordinates Xµ(φ) which we are using in our calculations
are well behaved functions with definite derivatives and should be considered as an approximate
description of the actual physical object. This means that a description with a given Xµ(φ) below
a certain scale has no physical meaning. In order to make a physical sense of the expressions
leading to (5.70), the δ function δ(φ−φ′) should therefore be replaced by a function F (a, φ−φ′)
which in the limit a→ 0 becomes δ(φ− φ′). Instead of δ(0) we thus have F (a, 0) which is finite
for all finite values of a. We then take the normalization ε such that εF (a, 0) = 1 for any a, and
assume that this is true in the limit a→ 0 as well.
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5.2. DYNAMICAL METRIC FIELD IN
M-SPACE

So far I have considered the metric tensor of the membrane spaceM as
a fixed background field. In previous section, for instance, I considered a
fixed metric (5.56). As shown in Section 4.2, a consequence of such a metric
is that a moving p-dimensional membrane sweeps a (p + 1)-dimensional
worldsheet, which is a solution to the usual minimal surface action principle.
Such a worldsheet is a (p+1)-dimensional manifold parametrized by φA =
(τ, σa). All those parameters are on an equal footing, therefore we have
used the compact notation when constructing the action (5.57).

Now I am going to ascribe the dynamical role to the M-space metric
as well. If the metric of M-space is dynamical eq. (5.56) no longer holds.
From the point of view of the infinite-dimensional M-space we have the
motion of a point “particle” in the presence of the metric field ρµ(φ)ν(φ′)
which itself is dynamical. As a model for such a dynamical system let us
consider the action

I[ρ] =

∫
DX

√
|ρ|
(
ρµ(φ)ν(φ′)Ẋ

µ(φ)Ẋν(φ′) +
ε

16π
R
)
. (5.76)

where ρ is the determinant of the metric ρµ(φ)ν(φ′). Here R is the Ricci
scalar inM-space, defined according to

R = ρµ(φ)ν(φ
′)Rµ(φ)ν(φ′), (5.77)

where the Ricci tensor

Rµ(φ)ν(φ) = Γ
ρ(φ′′)
µ(φ)ρ(φ′′),ν(φ′) − Γ

ρ(φ′′)
µ(φ)ν(φ′),ρ(φ′′) (5.78)

+Γ
ρ(φ′′)
σ(φ′′′)ν(φ′)Γ

σ(φ′′′)
µ(φ)ρ(φ′′) − Γ

σ(φ′′′)
µ(φ)ν(φ′)Γ

ρ(φ′′)
σ(φ′′′)ρ(φ′′)

is a contraction of the Riemann tensor inM-space:
Variation of (5.76) with respect to Xµ(φ) gives

2

(
dẊµ(φ)

dτ
+ Γ

µ(φ)
α(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′)

)

− ε

16π
∂µ(φ)R− ∂µ(φ)

√
|ρ|√

|ρ|

(
Ẋ2 +

ε

16π
R
)
= 0 (5.79)

Variation of (5.76) with respect to the metric gives the Einstein equations
inM-space:

ε

16π
Gµ(φ)ν(φ′) + Ẋµ(φ)Ẋν(φ′) − 1

2ρµ(φ)ν(φ′)Ẋ
2 = 0 (5.80)
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where
Gµ(φ)ν(ξ′) ≡ Rµ(ξ)ν(ξ′) − 1

2ρµ(ξ)ν(ξ′)R (5.81)

is the Einstein tensor inM-space.
Contracting eq. (5.80) with ρµ(φ)ν(φ

′) we have

Ẋ2 +
ε

16π
R = 0, (5.82)

where Ẋ2 ≡ Ẋµ(φ)Ẋµ(φ). Because of (5.82) the equations of motion (5.79),
(5.80) can be written as

dẊµ(φ)

dτ
+ Γ

µ(φ)
α(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′) − ε

32π
∂µ(φ)R = 0 (5.83)

Ẋµ(φ)Ẋν(φ) +
ε

16π
Rµ(φ)ν(φ′) = 0 (5.84)

Using

Ẋν(φ′)Dν(φ′)Ẋ
µ(φ) =

DẊµ(φ)

Dτ

≡ dẊµ(φ)

dτ
+ Γ

µ(φ)
α(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′), (5.85)

Ẋµ(φ)∂
µ(φ)R =

dR
dτ

, (5.86)

and multiplying (5.83) with Ẋµ(φ) we have

1

2

dẊ2

dτ
− ε

32π

dR
dτ

= 0. (5.87)

Equations (5.82) and (5.87) imply

dẊ2

dτ
= 0 ,

dR
dτ

= 0. (5.88)

By the Bianchi identity

Dν(φ′)Gµ(φ)ν(φ
′) = 0 (5.89)

eq. (5.80) implies
(
Dν(φ′)Ẋ

µ(φ)
)
Ẋν(φ′) + Ẋµ(φ)

(
Dν(φ′)Ẋ

ν(φ′)
)
− 1

2∂
µ(φ)Ẋ2 = 0 (5.90)

If we multiply the latter equation by Ẋµ(φ) (and sum over µ(φ)) we obtain

Dν(φ)Ẋ
ν(φ) = 0. (5.91)
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After inserting this back into eq. (5.90) we have

DẊµ(φ)

Dτ
− 1

2∂
µ(φ)Ẋ2 = 0, (5.92)

or, after using (5.82),

DẊµ(φ)

Dτ
+

ε

32π
∂µ(φ)R = 0. (5.93)

The latter equation together with eq. (5.83) implies

∂µ(φ)R = 0, (5.94)

or equivalently
∂µ(φ)Ẋ2 = 0. (5.95)

Equation of motion (5.83) or (5.92) thus becomes simply

DẊµ(φ)

Dτ
≡ dẊµ(φ)

dτ
+ Γ

µ(φ)
α(φ′)β(φ′′)Ẋ

α(φ′)Ẋβ(φ′′) = 0, (5.96)

which is the geodesic equation inM-space.
Equation (5.95) is, in fact, the statement that the functional derivative

of the quadratic form

Ẋ2 ≡ Ẋµ(φ)Ẋµ(φ) = ρµ(φ)ν(φ′)Ẋ
µ(φ)Ẋν(φ′) (5.97)

with respect to Xµ(φ) is zero. The latter statement is the geodesic equation.
Equation (5.94) states that the functional derivative of the curvature

scalar does not matter. Formally, in our variation of the action (5.76)
we have also considered the term ∂µ(φ)R, and from the consistency of the
equations of motion we have found that ∂µ(φ)R = 0. Our equations of
motion are therefore simply (5.96) and (5.84).

The metric ρµ(φ)ν(φ′) is a functional of the variables Xµ(φ), and (5.84),
(5.96) is a system of functional differential equations which determine the
set of possible solutions for Xµ(φ) and ρµ(φ)ν(φ′). Note that our membrane
model is independent of background : there is no pre-existing space with
a pre-existing metric, neither curved nor flat. The metric comes out as a
solution of the system of functional differential equations, and at the same
time we also obtain a solution for Xµ(φ).

We can imagine a universe which consists of a single (n-dimensional)
membrane whose configuration changes with τ according to the system of
functional equations (5.84), (5.96). The metric ρµ(φ)ν(φ′)[X], at a given

point φA = (τ, ξa) on the membrane, depends on the membrane config-
uration described by the variables Xµ(φ). In other words, in the theory
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considered here the the metric ρµ(φ)ν(φ′)[X] is defined only on the mem-
brane, and it is meaningless to speak about a metric “outside” the mem-
brane. Also there is no such thing as a metric of a (finite-dimensional)
space into which the membrane is embedded. Actually, there is no em-
bedding space. All what exists is the membrane configuration Xµ(φ) and
the corresponding metric ρµ(φ)ν(φ′) which determines the distance between

two possible configurations Xµ(φ) and X ′µ(φ) inM-space. The latter space
M itself together with the metric ρµ(φ)ν(φ′) is a solution to our dynamical
system of equations (5.79),(5.80).

Instead of a one membrane universe we can imagine a many membrane
universe as a toy model. If Xµ(φ), with the set of continuous indices
φ ≡ φA, represents a single membrane then Xµ(φ,k) with an extra discrete
index k = 1, 2, ..., Z represents a system of Z membranes. If we replace (φ)
with (φ, k), or, alternatively, if we interpret (φ) to include the index k, then
all equations (5.76)–(5.96) are also valid for a system of membranes. The
metric ρµ(φ,k)ν(φ′,k′) as a solution to the system of functional equations of
motion (5.79), (5.80) is defined only on those membranes. If there are many
such membranes then the points belonging to all those membranes approx-
imately sample a finite-dimensional manifold VN into which the system of
membranes is embedded. The metric ρµ(φ,k)ν(φ′,k′), although defined only
on the set of points (φ, k) belonging to the system of membranes, approxi-
mately sample the metric of a continuous finite-dimensional space VN . See
also Fig. 5.1 and the accompanying text.

The concepts introduced above are very important and I shall now rephrase
them. Suppose we have a system of membranes. Each membrane is
described by the variables6 Xµ(φA) = Xµ(ξa, τ), µ = 1, 2, ..., N ; a =
1, 2, ..., n; ξa ∈ [0, π], τ ∈ [−∞,∞]. In order to distinguish different
membranes we introduce an extra index k which assumes discrete val-
ues. The system of membranes is then described by variables Xµ(φA, k),
k = 1, 2, ..., Z. Each configuration of the system is considered as a point,
with coordinates Xµ(φ,k) ≡ Xµ(φA, k), in an infinite-dimensional spaceM
with metric ρµ(φ,k)ν(φ′,k′). The quantities Xµ(φA, k) and ρµ(φ,k)ν(φ′,k′) are
not given a priori, they must be a solution to a dynamical system of equa-
tions. As a preliminary step towards a more realistic model I consider
the action (5.76) which leads to the system of equations (5.84), (5.96). In

6Other authors also considered a class of membrane theories in which the embedding space has
no prior existence, but is instead coded completely in the degrees of freedom that reside on the
membranes. They take for granted that, as the background is not assumed to exist, there are
no embedding coordinates (see e.g., [68]). This seems to be consistent with our usage of Xµ(φ)

which, at the fundamental level, are not considered as the embedding coordinates, but as the
M-space coordinates. Points of M-space are described by coordinates Xµ(φ), and the distance
between the points is determined by the metric ρµ(φ)ν(φ′), which is dynamical.
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(φA, k)

Figure 5.1. The system of membranes is represented as being embedded in a finite-
dimensional space VN . The concept of a continuous embedding space is only an approx-
imation which, when there are many membranes, becomes good at large scales (i.e., at
the “macroscopic” level). The metric is defined only at the points (φ, k) situated on
the membranes. At large scales (or equivalently, when the membranes are “small” and
densely packed together) the set of all the points (φ, k) is a good approximation to a
continuous metric space VN .

this model everything that can be known about our toy universe is in the
variables Xµ(φ,k) and ρµ(φ,k)ν(φ′,k′). The metric is defined for all possible

values of the parameters (φA, k) assigned to the points on the membranes.
At every chosen point (φ, k) the metric ρµ(φ,k)ν(φ′,k′) is a functional of the

system’s configuration, represented by Xµ(φ,k).
It is important to distinguish between the points, represented by the

coordinates Xµ(φ,k), of the infinite-dimensional M-space, and the points,
represented by (φA, k), of the finite-dimensional space spanned by the mem-
branes. In the limit of large distances the latter space becomes the con-
tinuous target space into which a membrane is embeded. In this model
the embedding space (or the “target space”) is inseparable from the set
of membranes. Actually, it is identified with the set of points (φA, k) sit-
uated on the membranes. Without membranes there is no target space.
With membranes there is also the target space, and if the membranes are
“small”, and if their density (defined roughly as the number of membranes
per volume) is high, then the target space becomes a good approximation
to a continuous manifol VN .
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METRIC OF VN FROM THE METRIC OF
M-SPACE
M-space is defined here as the space of all possible configurations of

a system of membranes. The metric ρµ(φ,k)ν(φ′,k′) determines the distance

between the points Xµ(φ,k) and Xµ(φ,k)+dXµ(φ,k) belonging to two different
configurations (see Fig. 5.2) according to the relation

d`2 = ρµ(φ,k)ν(φ′,k′)dX
µ(φ,k)dXν(φ′,k′), (5.98)

where
dXµ(φ,k) = X ′µ(φ,k) −Xµ(φ,k). (5.99)

Besides (5.99), which is an M-space vector joining two different mem-
brane’s configurations (i.e., two points ofM-space), we can define another
quantity which connects two different points, in the usual sense of the word,
within the same membrane configuration:

∆̃Xµ(φ, k) ≡ Xµ(φ′,k′) −Xµ(φ,k). (5.100)

By using theM-space metric let us define the quantity

∆s2 = ρµ(φ,k)ν(φ′,k′)∆̃X
µ(φ, k)∆̃Xν(φ′, k′). (5.101)

In the above formula summation over the repeated indices µ and ν is as-
sumed, but no integration over φ, φ′ and no summation over k, k′.

What is the geometric meaning of the quantity ∆s2 defined in (5.101)?
To a point on a k-th membrane we can assign parameters, or intrinsic
coordinates , (φ, k). Alternatively, we can assign to the same points the
extrinsic coordinates7 Xµ(φ,k) ≡ Xµ(φ, k), µ = 1, 2, ..., N , with φ, k fixed.
It then seems very natural to interpret ∆s2 as the distance between the
points Xµ(φ′, k′) and Xµ(φ, k) within a given membrane configutations.
The quantity ρµ(φ,k)ν(φ′,k′) then has the role of a prototype of the parallel
propagator [67] in VN . Note that we do not yet have a manifold VN , but
we already have a skeleton S of it, formed by the set of all the points with
support on our membranes. The quantity ∆̃Xµ(φ′, k′) is a prototype of a
vector in VN , and if we act on a vector with the parallel propagator we
perform a parallel transport of the vector along the geodesic joining the
points (φ′, k′) and (φ, k). The latter terminology holds for a continuum

7Obviously Xµ(φ,k) ≡ Xµ(φ, k) has a double role. On the one hand it represents a set of all
points with support on the system of membranes. On the other hand it represents a single point

in an infinite-dimensional M-space.
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Figure 5.2. Two different membrane configurations, represented by the coordinates
Xµ(φ,k) and X ′µ(φ,k), respectively. The infinitesimal M-space vector is dXµ(φ,k) =
X ′µ(φ,k) −Xµ(φ,k).

space VN , but we may retain it for our skeleton space S as well. The
quantity ρµ(φ,k)ν(φ′,k′)∆̃X

ν(φ′, k′) is a vector, obtained from ∆̃Xν(φ′, k′) by
parallel transport.

We define
ρµ(φ,k)ν(φ′,k′)∆̃X

ν(φ′, k′) = ∆̃Xµ(φ, k). (5.102)

Then
∆s2 = ∆̃Xµ(φ, k)∆̃X

µ(φ, k). (5.103)

On the other hand, if in eq. (5.101) and (5.102) we take the coincidence
limit (φ, k)→ (φ′, k′), then

∆s2 = ρµν(φ, k)∆̃x
µ(φ, k)∆̃Xν(φ, k), (5.104)

ρµν(φ, k)∆̃X
ν(φ, k) = ∆̃xµ(φ, k), (5.105)

with
ρµν(φ, k) ≡ ρµ(φ,k)ν(φ,k). (5.106)

We see that the quantity ρµ(φ,k)ν(φ,k) has the property of the metric in the
skeleton target space S.

Now we can envisage a situation in which the index k is not discrete,
but consists of a set of continiuous indices such that instead of the discrete
membranes we have a fluid of membranes. We can arrange a situation such
that the fluid fills anN -dimensional manifold VN , and ρµν(φ, k) is the metric
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of VN defined at the points (φ, k) of the fluid. Here the fluid is a reference
system, or reference fluid (being itself a part of the dynamical system under
consideration), with respect to which the points of the manifold VN are
defined.

The metric ρµν(φ, k) satisfies the functional differental equations (5.79)
which presumably reduce to the usual Einstein equations, at least as an
approximation. Later we shall show that this is indeed the case. The
description with a metric tensor will be surpassed in Sec. 6.2, when we
shall discuss a very promising description in terms of the Clifford algebra
equivalent of the tetrad field which simplifies calculation significantly. The
specific theory based on the action (5.76) should be considered as serving
the purpose of introducing us to the concept of mathematical objects, based
onM-space, representing physical quantities at the fundamental level.

To sum up, we have taken the membrane spaceM seriously as an arena
for physics. The arena itself is also a part of the dynamical system, it is not
prescribed in advance. The membrane spaceM is the space of all kinemat-
ically possible membrane configurations. Which particular configuration is
actually realized is selected by the functional equations of motion together
with the initial and boundary conditions. A configuration may consist of
many membranes. The points located on all those membranes form a space
which, at a sufficiently large scale, is a good approximation to a continuous
N -dimensional space. The latter space is just the embedding space for a
particular membrane.

We have thus formulated a theory in which an embedding space per se
does not exist, but is intimately connected to the existence of membranes.
Without membranes there is no embedding space. This approach is back-
ground independent. There is no pre-existing space and metric: they appear
dynamically as solutions to the equations of motion.

The system, or condensate of membranes (which, in particular, may be
so dense that the corrseponding points form a continuum), represents a
reference system or reference fluid with respect to which the points of the
target space are defined. Such a system was postulated by DeWitt [25],
and recently reconsidered by Rovelli [26].

The famous Mach principle states that the motion of matter at a given
location is determined by the contribution of all the matter in the universe
and this provides an explanation for inertia (and inertial mass). Such a
situation is implemented in the model of a universe consisting of a system
of membranes: the motion of a k-th membrane, including its inertia, is
determined by the presence of all the other membranes.
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In my opinion the M-space approach is also somehow related to loop
quantum gravity proposed by Rovelli [69] and Smolin [70].

It seems to me that several concepts which have been around in theoreti-
cal physics for some time, and especially those sketched above, all naturally
emerge fromM-space physics.



Chapter 6

EXTENDED OBJECTS

AND CLIFFORD ALGEBRA

We have seen that geometric calculus based on Clifford algebra is a very
useful tool for a description of geometry and point particle physics in flat
spacetime. In Sec. 4.2 we have encountered a generalization of the concepts
of vectors and polyvectors in an infinite-dimensionalM-space, which is in
general a curved space. What we need now is a more complete description,
firstly, of the usual finite-dimensional vectors and polyvectors in curved
space, and secondly, of the corresponding objects in an infinite-dimensional
space (which may beM-space, in particular).

After such mathematical preliminaries I shall discuss a membrane de-
scription which employsM-space basis vectors. A background independent
approach will be achieved by proclaiming the basis vectors themselves as
dynamical objects. The corresponding action has its parallel in the one con-
sidered in the last section of previous chapter. However, now the dynamical
object is not theM-space metric, but its “square root”.

Until the techniques of directly solving the functional differential equa-
tions are more fully developed we are forced to make the transition from
functional to the usual partial differential equations, i.e., from the infinite-
dimensional to the finite-dimensional differential equations. Such a transi-
tion will be considered in Sec. 6.2, where a description in terms of position-
dependent target space vectors will be provided. We shall observe that a
membrane is a sort of a fluid localized in the target space, and exploit
this concept in relation to the DeWitt-Rovelli reference fluid necessary for
localization of spacetime points. Finally we shall realize that we have just
touched the tip of an iceberg which is the full polyvector description of
the membrane together with the target space in which the membrane is
embedded.

167
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6.1. MATHEMATICAL PRELIMINARIES

I will now provide an intuitive description of vectors in curved spaces and
their generalization to the infinite-dimensional (also curved) spaces. The
important concept of the vector and multivector, or polyvector, derivative
will also be explained. The usual functional derivative is just a component
description of the vector derivative in an infinite-dimensional space. My aim
is to introduce the readers into those very elegant mathematical concepts
and give them a feeling about their practical usefulness. To those who seek
a more complete mathematical rigour I advise consulting the literature
[22]. In the case in which the concepts discussed here are not found in the
existing literature the interested reader is invited to undertake the work
and to develop the ideas initiated here further in order to put them into a
more rigorous mathematical envelope. Such a development is beyond the
scope of this book which aims to point out how various pieces of physics and
mathematics are starting to merge before our eyes into a beautiful coherent
picture.

VECTORS IN CURVED SPACES
Basis vectors need not be equal at all point of a manifold VN . They may

be position-dependent. Let γµ(x), µ = 1, 2, ..., N , be N linearly indepen-
dent coordinate vectors which depend on position xµ. The inner products
of the basis vectors form the metric tensor which is also position-dependent:

γµ · γν = gµν , (6.1)

γµ · γν = gµν . (6.2)

What is the relation between vectors at two successive infinitesimally
separated points xµ and xµ + dxµ? Clearly coordinate vectors at xµ + dxµ

after the parallel transport to xµ cannot be linearly independent from the
vectors at xµ, since they are associated with the same manifold. Therefore
the derivative of a basis vector must be a linear combination of basis vectors:

∂αγ
µ = −Γµαβγβ . (6.3)

Denoting by γµ(x+ dx) a vector transported from x+ dx to x, we have

γµ(x+ dx) = γµ(x) + ∂αγ
µ(x)dxα = (δµα − Γµαβdx

β)γα,

which is indeed a linear combination of γα(x).
The coefficients Γµαβ form the connection of manifold VN . From (6.3) we

have
Γµαβ = −γβ · ∂αγµ. (6.4)
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The relation γµ · γβ = δµβ implies

∂αγ
µ · γβ + γµ · ∂αγβ = 0, (6.5)

from which it follows that

Γµαβ = γµ · ∂αγβ . (6.6)

Multiplying the latter expression by γµ, summing over µ and using

γµ(γ
µ · a) = a, (6.7)

which holds for any vector a, we obtain

∂αγβ = Γµαβγµ. (6.8)

In general the connection is not symmetric. In particular, when it is sym-
metric, we have

γµ · (∂αγβ − ∂βγα) = 0 (6.9)

and also

∂αγβ − ∂βγα = 0 (6.10)

in view of the fact that (6.9) holds for any γµ. For a symmetric connection,
after using (6.1), (6.2), (6.10) we find

Γµαβ = 1
2g
µν(gνα,β + gνβ,α − gαβ,ν). (6.11)

Performing the second derivative we have

∂β∂αγ
µ = −∂βΓµασγσ − Γµασ∂βγ

σ = −∂βΓµασγσ + ΓµασΓ
σ
βργ

ρ (6.12)

and

[∂α, ∂β]γ
µ = Rµναβγ

ν , (6.13)

where

Rµναβ = ∂βΓ
µ
να − ∂αΓµνβ + ΓµβρΓ

ρ
αν − ΓµαρΓ

ρ
βν (6.14)

is the curvature tensor. In general the latter tensor does not vanish and we
have a curved space.

SOME ILLUSTRATIONS

Derivative of a vector. Let a be an arbitrary position-dependent vector,
expanded according to

a = aµγµ. (6.15)
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Taking the derivative with respect to coordinates xµ we have

∂νa = ∂νa
µ γµ + aµ∂νγµ. (6.16)

Using (6.8) and renaming the indices we obtain

∂νa =
(
∂νa

µ + Γµνρa
ρ
)
γµ, (6.17)

or
γµ · ∂νa = ∂νa

µ + Γµνρa
ρ ≡ Dνa

µ, (6.18)

which is the well known covariant derivative. The latter derivative is the
projection of ∂νa onto one of the basis vectors.

Locally inertial frame. At each point of a space VN we can define a set
of N linearly independent vectors γa, a = 1, 2, ..., N , satisfying

γa · γb = ηab, (6.19)

where ηab is the Minkowski tensor. The set of vector fields γa(x) will be
called the inertial or Lorentz (orthonormal) frame field. .

A coordinate basis vector can be expanded in terms of local basis vector

γµ = eµa γ
a, (6.20)

where the expansion coefficients eµa form the so called fielbein field (in
4-dimensions “fielbein” becomes “vierbein” or “tetrad”).

eµa = γµ · γa. (6.21)

Also
γa = eµaγµ, (6.22)

and analogous relations for the inverse vectors γµ and γa satisfying

γµ · γν = δµν , (6.23)

γa · γb = δab, (6.24)

From the latter relations we find

γµ · γν = (eµaγ
a) · (eνbγb) = eµaeν

a = gµν , (6.25)

γa · γb = (eµ
aγµ) · (eνbγν) = eµ

aeµb = ηab. (6.26)
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A vector a can be expanded either in terms of γµ or γa:

a = aµγµ = aµeµ
aγa = aaγa , aa = aµeµ

a. (6.27)

Differentiation gives
∂µγ

a = ωabµγ
b, (6.28)

where ωabµ is the connection for the orthonormal frame field γa. Inserting
(6.20) into the relation (6.3) we obtain

∂νγ
µ = ∂ν(e

µ
aγ

a) = ∂νe
µ
aγ

a + eµa∂νγ
a = −Γµνσγσ, (6.29)

which, in view of (6.28), becomes

∂νe
µa + Γµνσe

σa + ωabνe
µ
b = 0. (6.30)

Because of (6.25), (6.26) we have

∂νeµ
a − Γσνµeσ

a + ωabνeµ
b = 0. (6.31)

These are the well known relations for differentiation of the fielbein field.

Geodesic equation in VN . Let p be the momentum vector satisfying
the equation of motion

dp

dτ
= 0. (6.32)

Expanding p = pµγµ, where p
µ = mẊµ, we have

ṗµ + pµγ̇µ = ṗµγµ + pµ∂νγµ Ẋ
ν . (6.33)

Using (6.8) we obtain, after suitably renaming the indices,

(ṗµ + Γµαβp
αẊβ)γµ = 0, (6.34)

which is the geodesic equation in component notation. The equation of mo-
tion (6.32) says that the vector p does not change during the motion. This
means that vectors p(τ) for all values of the parameter τ remain paral-
lel amongst themselves (and, of course, retain the same magnitude square
p2). After using the expansion p = pµγµ we find that the change of the
components pµ is compensated by the change of basis vectors γµ.

Geometry in a submanifold Vn. In the previous example we considered
a geodesic equation in spacetime VN . Suppose now that a submanifold
— a surface — Vn, parametrized by ξa, is embedded in VN . Let1 ea,
a = 1, 2, ..., n, be a set of tangent vectors to Vn. They can be expanded in

1Notice that the index a has now a different meaning from that in the case of a locally inertial
frame considered before.
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terms of basis vectors of VN :

ea = ∂aX
µ γµ, (6.35)

where
∂aX

µ = ea · γµ (6.36)

are derivatives of the embedding functions of Vn. They satisfy

∂aX
µ ∂bXµ = (ea · γµ)(eb · γµ) = ea · eb = γab, (6.37)

which is the expression for the induced metric of Vn. Differentiation of ea
gives

∂bea = ∂b∂aX
µ γµ + ∂aX

µ∂b.γµ (6.38)

Using
∂bγµ = ∂νγµ∂bX

ν (6.39)

and the relation (6.8) we obtain from (6.38), after performing the inner
product with ec,

(ec · ∂bea) = ∂a∂bX
µ ∂cXµ + Γσµν∂aX

µ∂bX
ν∂cXσ. (6.40)

On the other hand, the left hand side of eq. (6.38) involves the connection
of Vn:

ec · ∂bea = Γcba, (6.41)

and so we see that eq. (6.40) is a relation between the connection of Vn and
VN . Covariant derivative in the submanifold Vn is defined in terms of Γdba.

An arbitrary vector P in VN can be expanded in terms of γµ:

P = Pµγ
µ. (6.42)

It can be projected onto a tangent vector ea:

P · ea = Pµγ
µ · ea = Pµ∂aX

µ ≡ Pa (6.43)

In particular, a vector of VN can be itself a tangent vector of a subspace
Vn. Let p be such a tangent vector. It can be expanded either in terms of
γµ or ea:

p = pµγµ = pae
a, (6.44)

where
pa = pµγ

µ · ea = pµ∂aX
µ,

pµ = pae
a · γµ = pa∂

aXµ. (6.45)

Such symmetric relations between pµ and pa hold only for a vector p which
is tangent to Vn.
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Suppose now that p is tangent to a geodesic of Vn. Its derivative with
respect to an invariant parameter τ along the geodesic is

d

dτ
(paea) =

d

dτ
(pa∂aX

µγµ)

= (ṗa∂aX
µ + ∂a∂bX

µpaξ̇b + pa∂aX
αΓµαβẊ

β)γµ (6.46)

where we have used eq. (6.8) and

d

dτ
∂aX

µ = ∂a∂bX
µξ̇b.

The above derivative, in general, does not vanish: a vector p of VN that is
tangent to a geodesic in a subspace Vn changes with τ .

Making the inner product of the left and the right side of eq. (6.46) with
ec we obtain

dp

dτ
· ec = ṗc + Γcabp

aξ̇b = 0. (6.47)

Here Γcab is given by eq. (6.40). For a vector p tangent to a geodesic of Vn
the right hand side of eq. (6.47) vanish.

On the other hand, starting from p = pµγµ and using (6.8) the left hand
side of eq. (6.47) gives

dp

dτ
· ec =

(
dpµ

dτ
+ Γµαβp

αẊβ
)
∂cXµ = 0. (6.48)

Eqs.(6.47), (6.48) explicitly show that in general a geodesic of Vn is not a
geodesic of VN .

A warning is necessary. We have treated tangent vectors ea to a subspace
Vn as vectors in the embedding space VN . As such they do not form a
complete set of linearly independent vectors in VN . An arbitrary vector of
VN , of course, cannot be expanded in terms of ea; only a tangent vector

to Vn can be expanded so. Therefore, the object
(
dp
dτ · e

c
)
ec should be

distinguished from the object
(
dp
dτ · γ

µ
)
γµ = dp/dτ . The vanishing of the

former object does not imply the vanishing of the latter object.

DERIVATIVE WITH RESPECT TO A VECTOR

So far we have considered derivatives of position-dependent vectors with
respect to (scalar) coordinates. We shall now consider the derivative with
respect to a vector. Let F (a) be a polyvector-valued function of a vector
valued argument a which belongs to an n-dimensional vector space An. For
an arbitrary vector e in An the derivative of F in the direction e is given



174 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

by

(
e · ∂
∂a

)
F (a) = lim

τ→0

F (a+ eτ)− F (a)
τ

=
∂F (a+ eτ)

∂τ

∣∣∣∣∣
τ=0

. (6.49)

For e we may choose one of the basis vectors. Expanding a = aνeν , we have
(
eµ ·

∂

∂a

)
F (a) ≡ ∂F

∂aµ
= lim

τ→0

F (aνeν + eµτ)− F (aνeν)
τ

= lim
τ→0

F ((aν + δνµτ)eν)− F (aνeν)
τ

. (6.50)

The above derivation holds for an arbitrary function F (a). For instance,
for F (a) = a = aνeν eq. (6.50) gives

∂F

∂aµ
=

∂

∂aµ
(aνeν) = eµ = δµ

νeν (6.51)

For the components F · eα = aα it is

∂aα

∂aµ
= δµ

α (6.52)

The derivative in the direction eµ, as derived in (6.50), is the partial deriva-
tive with respect to the component aµ of the vector argument a. (See Box
6.1 for some other examples.)

In eq. (6.50) we have derived the operator

eµ ·
∂

∂a
≡ ∂

∂aµ
. (6.53)

For a running index µ these are components (or projections) of the operator

∂

∂a
= eµ

(
eµ ·

∂

∂a

)
= eµ

∂

∂aµ
(6.54)

which is the derivative with respect to a vector a.
The above definitions (6.49)–(6.53) hold for any vector a of An. Suppose

now that all those vectors are defined at a point a of an n-dimensional
manifold Vn. They are said to be tangent to a point x in Vn [22]. If we
allow the point x to vary we have thus a vector field a(x). In components
it is

a(x) = aµ(x)eµ(x), (6.55)

where aµ(x) are arbitrary functions of x. A point x is parametrized by a
set of n coordinates xµ, hence aµ(x) are functions of xµ. In principle aµ(x)
are arbitrary functions of xµ. In particular, we may choose

aµ(x) = xµ. (6.56)
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Box 6.1: Examples of differentiation by a vector

1) Vector valued function:

F = x = xνeν ;
∂F

∂xµ
= eµ = δµ

νeν ;
∂F

∂x
= eµ

∂F

∂xµ
= eµeµ = n.

2) Scalar valued function

F = x2 = xνxν ;
∂F

∂xµ
= 2xµ ;

∂F

∂x
= eµ2xµ = 2x.

3) Bivector valued function

F = b ∧ x = (bαeα) ∧ (xβeβ) = bαxβ eα ∧ eβ ,

∂F

∂xµ
= lim

τ→0

bαeα ∧ (xβeβ + eµτ)− bαeα ∧ xβeβ
τ

= bαeα ∧ eµ,

∂F

∂x
= eµ

∂F

∂xµ
= bαeµ(eα ∧ eµ) = bαeµ · (eα ∧ eµ) + bαeµ ∧ eα ∧ eµ,

= bα(δα
µeµ − δµµeα) = bαeα(1− n) = b(1− n).

Then
a(x) = xµeµ(x). (6.57)

Under a passive coordinate transformation the components aµ(x) change
according to

a′µ(x′) =
∂x′µ

∂xν
aν(x). (6.58)

This has to be accompanied by the corresponding (active) change of basis
vectors,

e′µ(x′) =
∂xν

∂x′µ
eν(x), (6.59)

in order for a vector a(x) to remain unchanged. In the case in which the
components fields aµ(x) are just coordinates themselves, the transformation
(6.58) reads

a′µ(x′) =
∂x′µ

∂xν
xν . (6.60)

In new coordinates x′µ the components a′µ of a vector a(x) = xµeµ are,
of course, not equal to the new coordinates x′µ. The reader can check
by performing some explicit transformations (e.g., from the Cartesian to
spherical coordinates) that an object as defined in (6.56), (6.57) is quite
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a legitimate geometrical object and has, indeed, the required properties
of a vector field, even in a curved space. The set of points of a curved
space can then, at least locally2, be considered as a vector field, such that
its components in a certain basis are coordinates. In a given space, there
are infinitely many fields with such a property, one field for every possible
choice of coordinates. As an illustration I provide the examples of two such
fields, denoted X and X ′:

a(x) = xµeµ(x) = a′µ(x′)e′µ(x
′) = X,

b(x) = bµ(x)eµ(x) = x′µe′µ(x
′) = X ′. (6.61)

Returning to the differential operator (6.49) we can consider a as a vector
field a(x) and the definition (6.49) is still valid at every point x of Vn. In
particular we can choose

a(x) = x = xνeν . (6.62)

Then (6.50) reads

(
eµ ·

∂

∂x

)
F (x) ≡ ∂F

∂xµ
= lim

τ→0

F ((xν + δµ
ντ)eν)− F (xνeν)
τ

. (6.63)

This is the partial derivative of a multivector valued function F (x) of posi-
tion x. The derivative with respect to the polyvector x is

∂

∂x
= eµ

(
e′µ ·

∂

∂x

)
= eµ

∂

∂xµ
(6.64)

Although we have denoted the derivative as ∂/∂x or ∂/∂a, this notation
should not be understood as implying that ∂/∂a can be defined as the limit
of a difference quotient. The partial derivative (6.50) can be so defined, but
not the derivative with respect to a vector.

DERIVATIVE WITH RESEPCT TO A POLYVECTOR

The derivative with respect to a vector can be generalized to polyvectors.
Definition (6.49) is then replaced by

(
E ∗ ∂

∂A

)
F (A) = lim

τ→0

F (A+ Eτ)− F (A)
τ

=
∂F (A+ Eτ)

∂τ
. (6.65)

2Globally this canot be true in general, since a single coordinate system cannot cover all the
space.
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Here F (A) is a polyvector-valued function of a polyvector A, and E is
an arbitrary polyvector . The star “ * ” denotes the scalar product

A ∗B = 〈AB〉0 (6.66)

of two polyvectors A and B, where 〈AB〉0 is the scalar part of the Clifford
product AB. Let eJ be a complete set of basis vector of Clifford algebra
satisfying3

eJ ∗ eK = δJK , (6.67)

so that any polyvector can be expanded as A = AJeJ . For E in eq. (6.65)
we may choose one of the basis vectors. Then

(
eK ∗

∂

∂A

)
F (A) ≡ ∂F

∂AK
= lim

τ→0

F (AJeJ + eKτ)− F (AJeJ)
τ

. (6.68)

This is the partial derivative of F with respect to the multivector compo-
nents AK . The derivative with respect to a polyvector A is the sum

∂F

∂A
= eJ

(
eJ ∗

∂

∂A

)
F = eJ

∂F

∂AJ
. (6.69)

The polyvector A can be a polyvector field A(X) defined over the position
polyvector field X which is a generalizatin of the position vector field x
defined in (6.61). In particular, the field A(X) can be A(X) = X. Then
(6.68), (6.69) read

(
eK ∗

∂

∂X

)
F (X) ≡ ∂F

∂XK
= lim

τ→0

F (XJeJ + eKτ)− F (XJeJ)

τ
, (6.70)

∂F

∂X
= eJ

(
eJ ∗

∂

∂X

)
F = eJ

∂F

∂XJ
(6.71)

which generalizes eqs. (6.63),6.64).

VECTORS IN AN INFINITE-DIMENSIONAL
SPACE

In functional analysis functions are considered as vectors in infinite di-
mensional spaces. As in the case of finite-dimensional spaces one can intro-
duce a basis h(x) in an infinite-dimensional space V∞ and expand a vector
of V∞ in terms of the basis vectors. The expansion coefficients form a
function f(x):

f =

∫
dx f(x)h(x). (6.72)

3Remember that the set {eJ} = {1, eµ, eµ, eµeν , ...}.
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The basis vectors h(x) are elements of the Clifford algebra C∞ of V∞. The
Clifford or geometric product of two vectors is

h(x)h(x′) = h(x) · h(x′) + h(x) ∧ h(x′). (6.73)

The symmetric part

h(x) · h(x′) = 1
2

(
h(x)h(x′) + h(x′)h(x)

)
(6.74)

is the inner product and the antisymmetric part

h(x) ∧ h(x′) = 1
2

(
h(x)h(x′)− h(x′)h(x)) (6.75)

is the outer, or wedge, product of two vectors.
The inner product defines the metric ρ(x, x′) of V∞:

h(x) · h(x′) = ρ(x, x′) (6.76)

The square or the norm of f is

f2 = f · f =

∫
dx dx′ ρ(x, x′)f(x)f(x′). (6.77)

It is convenient to introduce notation with upper and lower indices and
assume the convention of the integration over the repeated indices. Thus

f = f (x)h(x), (6.78)

f2 = f (x)f (x
′)h(x) · h(x′) = f (x)f (x

′)ρ(x)(x′) = f (x)f(x), (6.79)

where (x) is the continuous index.
It is worth stressing here that h(x) ≡ h(x) are abstract elements satisfying

the Clifford algebra relation (6.76) for a chosen metric ρ(x, x′) ≡ ρ(x)(x′).
We do not need to worry here about providing an explicit representation
of h(x); the requirement that they satisfy the relation (6.76) is all that
matters for our purpose4.

The basis vectors h(x) are generators of Clifford algebra C∞ of V∞. An
arbitrary element F ∈ C∞, called a polyvector, can be expanded as

F = f0 + f (x)h(x) + f (x)(x
′)h(x) ∧ h(x′) + f (x)(x

′)(x′′)h(x) ∧ h(x′) ∧ h(x′′) + ...,
(6.80)

4Similarly, when introducing the imaginary number i, we do not provide an explicit representation
for i. We remain satisfied by knowing that i satisfies the relation i2 = −1.
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i.e.,

F = f0 +

∫
dx f(x)h(x) +

∫
dx dx′ f(x, x′)h(x)h(x′)

+

∫
dx dx′ dx′′ f(x, x′, x′′)h(x)h(x′)h(x′′) + ..., (6.81)

where the wedge product can be replaced by the Clifford product, if f(x, x′),
f(x, x′, x′′) are antisymmetric in arguments x, x′, . . . .

We see that once we have a space V∞ of functions f(x) and basis vectors
h(x), we also automatically have a larger space of antisymmetric functions
f(x, x′), f(x, x′, x′′). This has far reaching consequences which will be dis-
cussed in Sec.7.2.

DERIVATIVE WITH RESPECT TO AN
INFINITE-DIMENSIONAL VECTOR

The definition (6.49), (6.50) of the derivative can be straightforwardly
generalized to the case of polyvector-valued functions F (f) of an infinite-
dimensional vector argument f . The derivative in the direction of a vector
g is defined according to

(
g · ∂

∂f

)
F (f) = lim

τ→0

F (f + gτ)− F (f)
τ

. (6.82)

If g = h(x′) then

(
h(x′) ·

∂

∂f

)
F =

∂F

∂f (x′)
≡ δF

δf(x′)

= lim
τ→0

F (f (x)h(x) + h(x′)τ)− F (f (x)h(x))
τ

= lim
τ→0

F
[
(f (x) + τδ(x)(x′))h(x′)

]
− F [f (x)h(x)]

τ
,

(6.83)
where δ(x)(x′) ≡ δ(x− x′). This is a definition of the functional derivative.
A polyvector F can have a definite grade, e.g.,

r = 0 : F (f) = F0[f
(x)h(x)] = Φ0[f(x)],

r = 1 : F (f) = F (x)[f (x)h(x)]h(x) = Φ(x)[f(x)]h(x), (6.84)

r = 2 : F (f) = F (x)(x′)[f (x)h(x)]h(x)h(x′) = Φ(x)(x′)[f(x)]h(x)h(x′).
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For a scalar-valued F (f) the derivative (6.83) becomes

δΦ0

δf(x′)
= lim

τ→0

Φ0[f(x) + δ(x− x′)τ ]− φ0[f(x)]
τ

, (6.85)

which is the ordinary definition of the functional derivative. Analogously
for an arbitrary r-vector valued field F (f).

The derivative with respect to a vector f is then

h(x)
(
h(x) ·

∂

∂f

)
F =

∂F

∂f
= h(x)

∂F

∂f (x)
. (6.86)

INCLUSION OF DISCRETE DIMENSIONS

Instead of a single function f(x) of a single argument x we can consider
a discrete set of functions fa(xµ), a = 1, 2, ..., N , of a multiple argument
xµ, µ = 1, 2, ..., n. These functions can be considered as components of a
vector f expanded in terms of the basis vectors ha(x) according to

f =

∫
dx fa(x)ha(x) ≡ fa(x)ha(x). (6.87)

Basis vectors ha(x) ≡ ha(x) and components fa(x) ≡ fa(x) are now labeled
by a set of continuous numbers xµ, µ = 1, 2, ..., n, and by a set of discrete
numbers a, such as, e.g., a = 1, 2, ..., N . All equations (6.72)–(6.85) consid-
ered before can be straightforwardly generalized by replacing the index (x)
with a(x).

6.2. DYNAMICAL VECTOR FIELD IN
M-SPACE

We shall now reconsider the action (5.76) which describes a membrane
coupled to its own metric field inM-space. The first term is the square of
the velocity vector

ρµ(φ)ν(φ)Ẋ
µ(φ)Ẋν(φ′) ≡ Ẋ2. (6.88)

The velocity vector can be expanded in terms ofM-space basis vectors
hµ(φ) (which are a particular example of generic basis vectors ha(x) consid-
ered at the end of Sec. 6.1):

Ẋ = Ẋµ(φ)hµ(φ). (6.89)
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Basis vectors hµ(φ) are not fixed, but they depend on the membrane
configuration. We must therefore include in the action not only a kinetic
term for Ẋµ(φ), but also for hµ(φ). One possibility is just to rewrite theM-
space curvature scalar in terms of hµ(φ) by exploiting the relations between
the metric and the basis vectors,

ρµ(φ)ν(φ′) = hµ(φ) · hν(ξ′), (6.90)

and then perform variations of the action with respect to hµ(φ) instead of
ρµ(φ)ν(φ′).

A more direct procedure is perhaps to exploit the formalism of Sec. 6.1.
There we had the basis vectors γµ(x) which were functions of the coordi-
nates xµ. Now we have the basis vectors hµ(φ)[X] which are functionals of

the membrane configuration X (i.e., of the M-space coordinates Xµ(φ)).
The relation (6.8) now generalizes to

∂α(φ′)hβ(φ′′) = Γ
µ(φ)
α(φ′)β(φ′′)hµ(φ) (6.91)

where

∂α(φ′) ≡
∂

∂Xα(φ′)
≡ δ

δXα(φ′)

is the functional derivative. The commutator of two derivatives gives the
curvature tensor inM-space

[∂α(φ′), ∂β(φ′′)]h
µ(φ) = Rµ(φ)ν(φ̄)α(φ′)β(φ′′)hν(φ̄). (6.92)

The inner product of the left and the right hand side of the above equation
with hν(φ̄′) gives (after renaming the indices)

Rµ(φ)ν(φ̄)α(φ′)β(φ′′) =
(
[∂α(φ′), ∂β(φ′′)]h

µ(φ)
)
· hν(φ̄). (6.93)

The Ricci tensor is then

Rν(φ̄)β(φ′′) = Rµ(φ)ν(φ̄)µ(φ)β(φ′′) =
(
[∂µ(φ), ∂β(φ′′)]h

µ(φ)
)
· hν(φ̄), (6.94)

and the curvature scalar is

R = ρν(φ̄)β(φ
′′)Rν(φ̄)β(φ′′)

=
(
[∂µ(φ), ∂ν(φ′)]

)
· hν(φ′)

=
(
∂µ(φ)∂ν(φ′)h

µ(φ)
)
· hν(φ′) −

(
∂ν(φ′)∂µ(φ)h

µ(φ)
)
· hν(φ′). (6.95)
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A possible action is then

I[Xµ(φ), hµ(φ)] =

∫
DX

√
|ρ|
(
Ẋ2 +

ε

16π
R
)
, (6.96)

where ρ is the determinant of M-space metric, and where R and ρ are
now expressed in terms of hµ(φ). Variation of (6.96) with respect to hα(φ)
gives their equations of motion. In order to perform such a variation we
first notice that ρ = det ρµ(φ)ν(φ′), in view of the relation (6.90), is now

a function of hα(φ). Differentiation of
√
|ρ| with respect to a vector hα(φ)

follows the rules given in Sec. 6.1:

∂
√
|ρ|

∂hα(φ)
=

∂
√
|ρ|

∂ρµ(φ′)ν(φ′′)
∂ρµ(φ

′)ν(φ′′)

∂hα(φ)

= −1
2

√
|ρ|ρµ(φ′)ν(φ′′)(δµ(φ

′)
α(φ)h

ν(φ′′) + δν(φ
′′)
α(φ)h

µ(φ′))

= −
√
|ρ|hα(φ). (6.97)

Since the vectors hα(φ) are functionals of the membrane’s configuration

Xµ(φ), instead of the derivative we take the functional derivative

δ
√
|ρ[X]|

δhα(φ)[X ′]
= −

√
|ρ[X]hα(φ)[X]δ(M)(X −X ′), (6.98)

where
δ(M)(X −X ′) ≡

∏

µ(φ)

(Xµ(φ) −X ′µ(φ)) (6.99)

is the δ-functional inM-space.
Functional deriative of R with respect to hα(φ)[X] gives

δR[X]

δhα(φ)[X ′]
=
(
[∂µ(φ′), ∂ν(φ′′)]δ

µ(φ′)
α(φ)δ

(M)(X −X ′)
)
hν(φ

′′)[X]

+ [∂µ(φ′), ∂ν(φ′′)]h
µ(φ′)[X]δν(φ

′′)
α(φ)δ

(M)(X −X ′). (6.100)

For the velocity term we have

δ

δhα(φ)[X ′]

(
Ẋµ(φ′)h

µ(φ′)Ẋν(φ′′)h
ν(φ′′)

)

= 2Ẋα(φ)Ẋν(φ′′)h
ν(φ′′)δ(M)(X −X ′). (6.101)

We can now insert eqs. (6.97)–(6.101) into

δI

δhα(φ)[X ′]
=

∫
DX δ

δhα(φ)[X ′]

[√
|ρ|
(
Ẋ2 +

ε

16π
R
)]

= 0. (6.102)
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We obtain

Ẋα(φ)Ẋν(φ′)h
ν(φ′) − 1

2hα(φ)Ẋ
2

+
ε

16π

(
−1

2hα(φ)R+ [∂ν(φ′), ∂α(φ′′)]h
ν(φ′)

)
= 0. (6.103)

These are the equations of “motion” for the variables hµ(φ). The equations

for Xµ(φ) are the same equations (5.79).
After performing the inner product of eq. (6.103) with a basis vector

hβ(φ′) we obtain theM-space Einstein equations (5.80). This justifies use
of hµ(φ) as dynamical variables, since their equations of motion contain the
equations for the metric ρµ(φ)ν(φ′).

DESCRIPTION WITH THE VECTOR FIELD IN
SPACETIME

The set of M-space basis vectors hµ(φ) is an arbitrary solution to the
dynamical equations (6.103). In order to find a connection with the usual
theory which is formulated, not in M-space, but in a finite-dimensional
(spacetime) manifold VN , we now assume a particular Ansatz for hµ(φ):

hµ(φ) = h(φ)γµ(φ), (6.104)

where

h(φ) · h(φ′) =
√
Ẋ2

κ
√
|f | δ(φ− φ

′) (6.105)

and
γµ(φ) · γν(φ) = gµν . (6.106)

Altogether the above Ansatz means that

hµ(φ) · hν(φ′) =
√
Ẋ2

√
|f | g

µν(φ)δ(φ− φ′). (6.107)

Here gµν(φ) is the proto-metric, and γµ(φ) are the proto-vectors of space-
time. The symbol f now meens

f ≡ det fab , fab ≡ ∂aXµ∂bX
µγνγν = ∂aXµ ∂bXν γ

µγν . (6.108)

Here the M-space basis vectors are factorized into the vectors h(φ), φ =
(φA, k), φA ∈ [0, 2π] , k = 1, 2, ..., Z, which are independent for all values
of µ, and are functions of parameter φ. Loosely speaking, h(φ) bear the
task of being basis vectors of the infinite-dimensional part (index (φ) ofM-
space, while γµ(φ) are basis vectors of the finite-dimensional part (index µ)
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of M-space. As in Sec. 6.1, γµ here also are functions of the membrane’s
parameters φ = (φA, k).

The functional derivative of hµ(φ) with respect to the membrane coordi-
nates Xµ(φ) is

∂ν(φ′)h
µ(φ) =

δh(φ)

δXν(φ′)
γµ(φ) + h(φ)

δγµ(φ)

δXν(φ′)
. (6.109)

Let us assume a particular case where

[∂µ(φ), ∂ν(φ′)]γ
µ(φ′′) =

[
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ′′)δ(φ− φ′′)δ(φ′ − φ′′)

6= 0 (6.110)

and
[∂µ(φ), ∂ν(φ′)]h(φ

′′) = 0. (6.111)

Inserting the relations (6.104)–(6.111) into the action (6.96), and omitting
the integration over DX we obtain

εR = ε

∫ √
Ẋ2

κ
√
|f(φ)|δ

2(0)dφ

([
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)

= ε

∫ √
Ẋ2

κ
√
|f(φ)|δ

2(0)dφ

×
([

∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)δ (x−X(φ))√

|g|
√
|g| dNx

=
1

G

∫
dNx

√
|g| R̃, (6.112)

where we have set

ε

∫
dφ δ2(0)

√
Ẋ2

κ
√
|f(φ)|

([
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)δ (x−X(φ))√

|g|

=
1

G
R̃(x), (6.113)

G being the gravitational constant. The expression R̃(x) is defined formally
at all points x, but because of δ(x − X(φ)) it is actually different from
zero only on the set of membranes. If we have a set of membranes filling
spacetime, then R̃(x) becomes a continuous function of x:

R̃(x) = ([∂µ, ∂ν ]γ
µ(x)) · γν(x) = R(x) (6.114)
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which is actually a Ricci scalar.
For the first term in the action (6.96) we obtain

hµ(φ)hν(φ′)Ẋ
µ(φ)Ẋν(φ′)

=

∫
κ
√
|f |√
Ẋ2

dφγµ(φ)γν(φ)Ẋ
µ(φ)Ẋν(φ)

=

∫
dnφ

κ
√
|f |√
Ẋ2

γµ(x)γν(x)Ẋ
µ(φ)Ẋν(φ) δ (x−X(φ)) dNx

=

∫
dnφ

κ
√
|f |√
Ẋ2

gµν(x)Ẋ
µ(φ)Ẋν(φ) δ (x−X(φ)) dNx. (6.115)

Altogether we have

I[Xµ(φ), γµ(x)] = κ

∫
dφ
√
|f |
√
γµ(x)γν(x)Ẋµ(φ)Ẋν(φ) δN (x−X(φ)) dNx

+
1

16πG

∫
dNx

√
|g| ([∂µ, ∂ν ]γµ(x)) · γν(x). (6.116)

This is an action for the spacetime vector field γµ(x) in the presence of a
membrane configuration filling spacetime. It was derived from the action
(6.96) in which we have omitted the integration over DX√ρ.

Since γµ · γν = gµν , and since according to (6.13)

([∂µ, ∂ν ]γ
µ) · γν = R, (6.117)

the action (6.116) is equivalent to

I[Xµ(φ), gµν ] = κ

∫
dφ
√
|f |
√
Ẋ2 δ (x−X(φ)) dNx

+
1

16πG

∫
dNx

√
|g|R (6.118)

which is an action for the gravitational field gµν in the presence of mem-
branes.

Although (6.118) formally looks the same as the usual gravitational ac-
tion in the presence of matter, there is a significant difference. In the con-
ventional general relativity the matter part of the action may vanish and
we thus obtain the Einstein equations in vacuum. On the contrary, in the
theory based onM-space, the metric ofM-space is intimately connected to
the existence of a membrane configuration. Without membranes there is no
M-space and no M-space metric. When considering the M-space action
(5.76) or (6.96) from the point of view of an effective spacetime (defined
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in our case by the Ansatz (6.104)–(6.107), we obtain the spacetime action
(6.118) in which the matter part cannot vanish. There is always present a
set of membranes filling spacetime. Actually, the points of spacetime are
identified with the points on the membranes.

The need to fill spacetime with a reference fluid (composed of a set of
reference particles) has been realized recently by Rovelli [26], following an
earlier work by DeWitt [25]. According to Rovelli and DeWitt, because of
the Einstein “hole argument” [42], spacetime points cannot be identified
at all. This is a consequence of the invariance of the Einstein equations
under active diffeomorphisms. One can identify spacetime points if there
exists a material reference fluid with respect to which spacetime points are
identified.

We shall now vary the action (6.116) with respect to the vector field
γα(x):

δI

δγα(x)
=

∫
dφ

√
|f |√
Ẋ2

ẊαẊν γ
νδ (x−X(φ)) (6.119)

+
1

16πG

∫
dx′

[
δ
√
|g(x′)|

δγα(x)
R(x′) +

√
|g(x′)| δR(x

′)
δγα(x)

]
.

For this purpose we use

δγµ(x)

δγν(x′)
= δµνδ(x− x′) (6.120)

and
δ
√
|g(x)|

δγν(x′)
= −

√
|g(x)| γν(x)δ(x− x′). (6.121)

In (6.121) we have taken into account that g ≡ det gµν and gµν = γµ · γν .
Using (6.120), we have for the gravitational part

δIg
δγα(x)

=
1

16πG

∫
dNx′

√
|g(x′)|

[
−γα(x′)R(x′)δ(x− x′)

+
(
[∂′µ, ∂

′
ν ]δ

µ
αδ(x− x′)

)
γν(x′) + [∂′µ, ∂

′
ν ]γ

µ(x′)δναδ(x− x′)
]

=
1

16π

√
|g| (−γαR+ 2[∂µ, ∂α]γ

µ) . (6.122)

The equations of motion for γα(x) are thus
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[∂µ, ∂α]γ
µ − 1

2Rγα

= −8πG
∫

dφ
√
|f |
√
Ẋ2

(
ẊαẊν

Ẋ2
+ ∂aXα ∂aXν

)

× γν δ (x−X(φ))√
|g| , (6.123)

where now Ẋ2 ≡ ẊµẊµ.
After performing the inner product with γβ the latter equations become

the Einstein equations

Rαβ − 1
2Rgαβ = −8πGTαβ , (6.124)

where

Rαβ = ([∂µ, ∂α])γ
µ · γβ (6.125)

and

Tαβ = κ

∫
dφ
√
|f |
√
Ẋ2

(
ẊαẊβ

Ẋ2
+ ∂aXα∂aXβ

)
δ(x−X(φ)√

|g| (6.126)

is the stress–energy tensor of the membrane configuration. It is the ADW
split version of the full stress–energy tensor

Tµν = κ

∫
dφ (det∂AX

α∂BXα)
1/2 ∂AXµ∂AXν

δ (x−X(φ))√
|g| . (6.127)

The variables γµ(x) appear much easier to handle than the variables gµν .
The expressions for the curvature scalar (6.117) and the Ricci tensor (6.125)
are very simple, and it is easy to vary the action (6.116) with respect to
γ(x).5

We should not forget that the matter stress–energy tensor on the right
hand side of the Einstein equations (6.124) is present everywhere in space-
time and it thus represents a sort of background matter6 whose origin is
in the originalM-space formulation of the theory. The ordinary matter is
then expected to be present in addition to the background matter. This
will be discussed in Chapter 8.

5At this point we suggest the interested reader study the Ashtekar variables [74], and compare
them with γ(x).
6It is tempting to speculate that this background is actually the hidden mass or dark matter

postulated in astrophysics and cosmology [73].
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6.3. FULL COVARIANCE IN THE SPACE OF
PARAMETERS φA

So far we have exploited the fact that, according to (4.21), a membrane
moves as a point particle in an infinite-dimensionalM-space. For a special
choice of M-space metric (5.4) which involves the membrane velocity we
obtain equations of motion which are identical to the equations of motion
of the conventional constrained membrane, known in the literature as the
p-brane, or simply the brane7. A moving brane sweeps a surface Vn which
incorporates not only the brane parameters ξa, a = 1, 2, ..., p, but also an
extra, time-like parameter τ . Altogether there are n = p + 1 parameters
φA = (τ, ξa) which denote a point on the surface Vn. The latter surface is
known in the literature under names such as world surface, world volume
(now the most common choice) and world sheet (my favorite choice).

Separating the parameter τ from the rest of the parameters turns out to
be very useful in obtaining the unconstrained membrane out of the Clifford
algebra based polyvector formulation of the theory.

On the other hand, when studying interactions, the separate treatment
of τ was a nuisance, therefore in Sec. 5.1 we switched to a description
in terms of the variables Xµ(τ, ξa) ≡ Xµ(φA) which were considered as
M-space coordinates Xµ(φA) ≡ Xµ(φ). So M-space was enlarged from
that described by coordinates Xµ(ξ) to that described by Xµ(φ). In the
action and in the equations of motion there occurred theM-space velocity
vector Ẋµ(φ) ≡ ∂Xµ(φ)/∂τ . Hence manifest covariance with respect to
reparametrizations of φA was absent in our formulation. In my opinion such
an approach was good for introducing the theory and fixing the development
of the necessary concepts. This is now to be superceded. We have learnt
enough to be able to see a way how a fully reparametrization covariant
theory should possibly be formulated.

DESCRIPTION IN SPACETIME
As a first step I now provide a version of the action (6.116) which is

invariant under arbitrary reparametrizations φA → φ′A = fA(τ). In the
form as it stands (6.116) (more precisely, its “matter” term) is invariant
under reparametrizations of ξa and τ separately. A fully invariant action

7For this reason I reserve the name p-brane or brane for the extended objetcs described by
the conventional theory, while the name membrane stands for the extended objects of the more
general, M-space based theory studied in this book (even if the same name “membrane” in the
conventional theory denotes 2-branes, but this should not cause confusion).
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(without a kinetic term for the gravitational field) is

I[Xµ] = κ

∫
dnφ (det ∂AX

µ∂BX
νgµν)

1/2. (6.128)

An equivalent form (considered in Sec. 4.2) is

I[Xµ, γAB] =
κ

2

∫
dnφ

√
|γ|(γAB∂AXµ∂BX

νgµν + 2− n), (6.129)

where Xµ and γAB are to be varied independently. Remember that the
variation of (6.129) with respect to γAB gives the relation

γAB = ∂AX
µ∂BXµ , (6.130)

which says that γAB is the induced metric on Vn.

DESCRIPTION IN TERMS OF VECTORS eA

Let us now take into account the basic relation

γAB = eA · eB , (6.131)

where eA, A = 1, 2, ..., n, form a set of basis vectors in an n-dimensional
space Vn whose points are described by coordinates φA. After inserting
(6.131) into (6.129) we obtain the action

I[Xµ, eA] =
κ

2

∫
dnφ

√
|γ|(eA∂AXµeB∂BX

νgµν + 2− n) (6.132)

which is a functional of Xµ(φA) and eA. The vectors eA now serve as the
auxiliary variables. The symbol γ ≡ detγAB now depends on eA. We have

∂
√
|γ|

∂eA
=
∂
√
|γ|

∂γCD
∂γCD

∂eA
= −1

2

√
|γ| γCD (δCAe

D + δDAe
C)

= −
√
|γ|eA. (6.133)

Variation of (6.132) with respect to eC gives

−1

2
eC(e

A∂AX
µeB∂BXµ + 2− n) + ∂CX

µ∂DXµe
D = 0. (6.134)

Performing the inner product with eC and using eC · eC = n we find

eA∂AX
µeB∂BXµ = n. (6.135)

Eq. (6.134) then becomes

eC = ∂CX
µ∂DXµe

D , (6.136)
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or
eD(δ

D
C − ∂CXµ∂DXµ) = 0. (6.137)

Forming the inner product of the left hand side and the right hand side of
eq. (6.136) with eA we obtain

eC · eA = ∂CX
µ∂DXµ e

D · eA. (6.138)

Since eC · eA = γCA and eD · eA = δDA the equation (6.138) becomes (after
renaming the indices)

γAB = ∂AX
µ∂BXµ. (6.139)

This is the same relation as resulting when varying I[Xµ, γAB] (eq. (6.129))
with respect to γAB. So we have verified that I[Xµ, eA] is equivalent to
I[Xµ, γAB].

In the action (6.132) eA(φ) are auxiliary fields serving as Lagrange multi-
pliers. If we add a kinetic term for eA then eA become dynamical variables:

I[Xµ, eA] =
κ

2

∫
dnφ

√
|γ|(eA∂AXµ eB∂BXµ + 2− n)

+
1

16πG(n)

∫
dnφ

√
|γ|R(n) (6.140)

Here, according to the theory of Sec. 6.2,

R(n) =
(
[∂A, ∂B]e

A
)
· eB. (6.141)

Variation of (6.140) with respect to eC leads to the Einstein equations
in Vn which can be cast in the form

γAB = ∂AX
µ∂BXµ +

1

16πG(n)
R
(n)
AB. (6.142)

In general, therefore, γAB, satisfying (6.140), is not the induced metric on
Vn.

DESCRIPTION IN TERMS OF γµ

In eqs. (6.132)–(6.140) we have written the metric of Vn as γAB = eA ·eB
and considered the action as a functional of the vectors eA, but we have
kept the metric gµν of the embedding space VN fixed. Now let us write

gµν = γµ · γν , (6.143)

where γµ , µ = 1, 2, ..., N , form a complete set of basis vectors in VN , and
write an action
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I[Xµ, γAB, γµ]

=
κ

2

∫
dnφ

√
|γ| (γAB∂AXµ∂BX

νγµγν + 2− n)δN (x−X(φ))dNx

+
1

16πG(N)

∫
dNx

√
|g|R(N). (6.144)

Variation of the latter action with respect to γα goes along similar lines to
eqs. (6.119)–(6.122). We obtain

[∂µ, ∂α]γ
µ − 1

2
R(N)γα (6.145)

= − 8πG(N)
∫

dnφ
√
|γ| ∂AXα∂AXνγ

ν δ(x−X(φ))√
|g| .

These equations of motion for γµ are a fully reparametrization covariant
form of eq. (6.123). The inner product with γβ gives the Einstein equations
(6.124) with

Tαβ = κ

∫
dnφ

√
|γ| ∂AXα∂AXβ

δ(x−X(φ))√
|g| , (6.146)

which is a fully reparametrization covariant form of the stress–energy tensor
(6.126).

DESCRIPTION IN TERMS OF eA AND γµ

Combining the descriptions as given in eqs. (6.140) and (6.144) we obtain
the following action:

I[Xµ, eA, γµ] =

∫
dφ
√
|γ|
(
κ

2
eAeB∂AX

µ∂BX
νγµγν +

κ

2
(2− n)

+
1

16πG(n)
R(n)

)
dNx δ (x−X(φ))

+
1

16πG(N)

∫
dNx

√
|g|R(N). (6.147)

The first term in (6.147) can be written as

(eA · eB + eA ∧ eB)(γµ · γν + γµ ∧ γν)∂AXµ∂BX
ν , (6.148)

which gives the usual scalar part and a multivector part:

(eA · eB)∂AXµ∂BX
ν(γµ · γν) + (eA ∧ eB)∂AXµ∂BX

ν(γµ ∧ γν), (6.149)
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Now, considering the string (worldsheet dimension n = 2), we have
eA ∧ eB = I(2)ε

AB, where I(2) is the pseudoscalar unit, I(2) = e1e2, in 2

dimensions, and εAB is the antisymmetric tensor density in 2 dimensions.
So we have

(eA ∧ eB)(γµ ∧ γν) = εABI(2)(γµ ∧ γν) (6.150)

〈e1e2(γµ ∧ γν〉0 = e1
[
(e2 · γµ)γν − (e2 · γν)γµ

]
(6.151)

= (e2 · γµ)(e1 · γν)− (e2 · γν)(e1 · γµ)

≡ Bµν (6.152)

where 〈 〉0 means the scalar part. For the string case the antisymmetric field
Bµν thus naturally occurs in the action (6.147) whose Lagrangian contains
the terms

γAB∂AX
µ∂BX

νgµν + εAB∂AX
µ∂BX

νBµν , (6.153)

well known in the usual theory of strings. However, in the theory of p-
branes (when n = p+ 1 is arbitrary), instead of a 2-form field there occurs
an n-form field and the action contains the term

εA1A2...An∂A1X
µ1 ...∂AnX

µnBµ1....µn . (6.154)

If we generalize the action (6.147) to a corresponding polyvector action

I[Xµ, eA, γµ]

=
κ

2

∫
dnφ

√
|γ|
(
eA1eA2∂A1X

µ1∂A2X
µ2γµ1γµ2

+ eA1eA2eA3∂A1X
µ1∂A2X

µ2∂A3x
µ3γµ1γµ2γµ3

+...+ eA1eA2 ...eAn∂A1X
µ1∂A2x

µ2 ...∂AnX
µnγµ1γµ2 ...γµn

+(2− n) + 1

16πG(n)

2

κ
R(n)

)
dNx δ (x−X(φ))

+
1

16G(N)

∫
dNx

√
|g|R(N) , (6.155)

then in addition to the other multivector terms we also obtain a term
(6.154), since the highest rank multivector term gives
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〈(eA1 ∧ ... ∧ eAn)(γµ1 ∧ ... ∧ γµn)〉0 = 〈εA1...AnI(n)(γµ1 ∧ ... ∧ γµn)〉0

≡ εA1...AnBµ1...µn . (6.156)

Alternatively, for the p-brane Lagrangian we can take

L(Xµ) = κ
√
|γ|
[〈

2n∑

r=1

r∏

i=1

eAi∂AiX
µiγµi

〉

0

]1/2
(6.157)

The latter expression is obtained if we square the brane part of the La-
grangian (6.155), take the scalar part, and apply the square root.

Although the action (6.155) looks quite impressive, it is not the most
general polyvector action for a membrane. Some preliminary suggestions
of how to construct such an action will now be provided.

POLYVECTOR ACTION

Polyvector action in terms of eA. The terms eA∂AX
µ, µ = 1, 2, ..., N

which occur in the action (6.140) can be generalized to world sheet polyvec-
tors:

V µ = sµ+ eA∂AX
µ+ eA1 ∧ eA2vµA1A2 + ...+ eA1 ∧ ...∧ eAn .vµA1....An (6.158)

The action can then be

I[Xµ, eA, gµν ] =
κ

2

∫
dnφ

√
|γ|V µV νgµν + I[eA] + I[gµν ]. (6.159)

The kinetic term for eA includes, besides R(n), the term with (2 − n) and
possible other terms required for consistency.

Polyvector action in terms of γµ. Similarly we can generalize the
terms ∂AX

µγµ, A = 1, 2, ..., n, in eq. (6.144), so as to become spacetime
polyvectors:

CA = cA+∂AX
µγµ+c

µ1µ2
A γµ1∧γµ2+...+cµ1...µNA γµ1∧γµ1∧...∧γµN (6.160)

A corresponding action is then

I[Xµ, γAB, γµ] = 1
2

∫
dnφ

√
|γ|γABCACB + I[γAB] + I[γµ]. (6.161)

where

I[γµ] =
1

16πG(N)

∫
dNx

√
|g| ([∂µ, ∂ν ]γµ(x)) · γν(x). (6.162)
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Polyvector action in terms of eA and γµ. From the expression V µ in
eq. (6.158) we can form another expression

V µγµ = sµγµ + eA∂AX
µγµ + eA1 ∧ eA2vµA1A2γµ + ...

+ eA1 ∧ ... ∧ eAnvµA1....Anγµ.
(6.163)

The latter expression can be generalized accoridng to

V = s+ V µγµ + V µ1µ2γµ1 ∧ γµ2 + ...+ V µ1...µNγµ1 ∧ ... ∧ γµN , (6.164)

where we assume
V µ1µ2...µk ≡ V µ1V µ2 ...V µk (6.165)

and where V µ1 , V µ2 , etc., are given by (6.158). For instance,

V µ1µ2 = V µ1V µ2

= (sµ1 + eA∂AX
µ1 + eA1 ∧ eA2vµ1A1A2 + ...+ eA1 ∧ ... ∧ eAnvµ1A1....An)

× (sµ2 + eA
′

∂A′Xµ2 + eA
′
1 ∧ eA′

2vµ2A′
1A′

2
+ ...

+ eA
′
1 ∧ ... ∧ eA′

nvµ2A′
1....A′

n
). (6.166)

The action is then

I[Xµ, vA1...Ar , e
A, γµ] = 1

2

∫
dnφ

√
|γ|V 2 + I[eA] + I[γµ]. (6.167)

Another possibility is to use (6.161) and form the expression

eACA = eAcA + eA∂AX
µγµ + eAcµ1µ2A γµ1 ∧ γµ2 + ...

+ eAcµ1...µNA γµ1 ∧ ... ∧ γµN , (6.168)

which is a spacetime polyvector, but a worldsheet 1-vector. We can gener-
alize (6.168) so as to become a world sheet polyvector:

C = c+ eACA + eA1 ∧ eA2CA1A2 + ...+ eA1 ∧ ... ∧ eAnCA1...An , (6.169)

where
CA1A−2...Ak = CA1CA2 ...CAk (6.170)

and where CA1 , CA2 ,... are given by the expression (6.168).
A corresponding action is

I[Xµ, cµ1...µkA , eA, γµ] = 1
2

∫
dnφ

√
|γ|C2+I[cµ1...µkA ]+I[eA]+I[γµ] (6.171)
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Whichever action, (6.167) or (6.171), we choose, we have an action which
is a polyvector both in the target space and on the world sheet. According to
the discussion of Chapter 2, Section 5, particular polyvectors are spinors.
Our action therefore contains the target space and and the worldsheet
spinors. In order to obtain dynamics of such spinors the coefficients cµ1...µkA
or vµA1...Ak and the corresponding kinetic terms should be written explic-
itly. This will come out naturally within an M-space description of our
membrane.

DESCRIPTION IN M-SPACE
So far in this section we have considered various possible formulations

of the membrane action, but without the powerfulM-space formalism. In
Sec. 6.2, throughout eqs. (6.88)–(6.103), we have used a description with
M-space basis vectors hµ(φ), but the equations were not fully invariant or
covariant with respect to arbitrary reparametrizations of the worldsheet
parameters φA ≡ (τ, ξa). One parameter, namely τ , was singled out, and
the expressions contained the velocity Ẋµ(φ). On the contrary, throughout
eqs. (6.129)–(6.171) of this section we have used a fully reparametrization
covariant formalism.

We shall now unify both formalisms. First we will consider a straightfor-
ward reformulation of the action (6.140) and then proceed towards a “final”
proposal for a polyvector action inM-space.

By introducing the metric

ρµ(φ)ν(φ′) = κ
√
|γ| δ(φ− φ′)gµν (6.172)

the first term in the action (6.140) can be written as the quadratic form in
M-space

κ

2

∫
dnφ

√
|γ| gµνeA∂AXµeB∂BX

ν =
1

2
ρµ(φ)ν(φ′)v

µ(φ)vν(φ
′) , (6.173)

where
vµ(φ) = eA∂AX

µ(φ). (6.174)

Here vµ(φ) is the uncountable (infinite) set of vectors in the n-dimensional
worldsheet manifold Vn.

The projection
e0 · vµ(φ) = ∂0X

µ(φ) ≡ Ẋµ(φ) (6.175)

is the membrane velocity considered in Chapter 4.
More generally,

eB · vµ(φ) = ∂BX
µ(φ). (6.176)
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POLYVECTOR ACTION IN TERMS OF eA

The vectors (6.174) can be promoted to polyvectors in Vn:

V µ(φ) = sµ(φ)+eA∂AX
µ(φ)+eA1∧eA2vµ(φ)A1A2

+...+eA1∧...∧vµ(φ)A1...An
. (6.177)

This is the same expression (6.158), V µ(φ) ≡ V µ(φ) = V µ.
The first term in the action (6.159) can be written as

V µ(φ)Vµ(φ) = ρµ(φ)ν(φ′)V
µ(φ)V µ(φ′). (6.178)

Instead of the action (6.159) we can consider itsM-space generalization

I[Xµ(φ), eA, ρµ(φ)ν(φ′)] (6.179)

=

∫
DX

√
|ρ|
(
1

2
ρµ(φ)ν(φ′)V

µ(φ)V µ(φ′) + L[eA] + L[ρµ(φ)ν(φ′)]
)
,

where

L[eA] =
∫

dnφ
√
|γ|
(
κ

2
(2− n) + 1

16πG(n)
R(n)

)
(6.180)

and

L[ρµ(φ)ν(φ′)] =
ε

16π
R (6.181)

are nowM-space Lagrangians.

POLYVECTOR ACTION IN TERMS OF eA AND hµ(φ)

TheM-space metric can be written as the inner product of twoM-space
basis vectors:

ρµ(φ)ν(φ′) = hµ(φ) · hν(φ′). (6.182)

Hence (6.173) becomes

vµ(φ)vµ(φ) = vµ(φ)vν(φ
′)hµ(φ)hν(φ′)

= eA∂AX
µ(φ) eB∂BX

ν(φ′) hµ(φ)hν(φ′). (6.183)

It is understood that eA∂AX
µ(φ) is considered as a single object with index

µ(φ).
Using (6.182) the quadratic form (6.178) becomes

V µ(φ)Vµ(φ) = V µ(φ)hµ(φ)V
ν(φ′)hµ(φ′). (6.184)
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The object V µ(φ)hµ(φ) is a vector from the M-space point of view and a
polyvector from the point of view of the worldsheet Vn. We can promote
V µ(φ)hµ(φ) to anM-space polyvector:

V = s+ V µ(φ)hµ(φ) + V µ1(φ1)µ2(φ2)hµ1(φ1) ∧ hµ2(φ2) + ...

+V µ1(φ1)...µN (φN )hµ1(φ1) ∧ ... ∧ hµN (φN ) , (6.185)

where V µ1(φ1)...µk(φk) are generalizations of V µ(φ):

V µ1(φ1)...µk(φk) = sµ1(φ1)...µk(φk) + eA∂AX
µ1(φ1)...µk(φk) + ...

+ eA1 ∧ ... ∧ eAnvµ1(φ1)...µk(φk)A1...An
. (6.186)

A corresponding action is

I[Xµ(φ), v
µ1(φ1)...µk(φk)
A1...Ap

, eA, hµ(φ)]

=

∫
DX

√
|ρ|
(
1

2
V 2 + L[vµ1(φ1)...µk(φk)A1...Ap

] + L[eA] + L[hµ(φ)]
)
. (6.187)

Although in any single term in an expression which involves products
of eA and hµ(φ) (or γµ) there appears an ordering ambiguity because eA

and hµ(φ) (or γµ) do not commute, there is no such ordering ambiguity in
any expression which invloves worldsheet and target space polyvectors. A
change of order results in a reshuffling of various multivector terms, so that
only the coefficients become different from those in the original expression,
but the form of the expression remains the same.

A question now arises of what are the coefficients v
µ1(φ1)...µk(φk)
A1...Ap

in the

expansion (6.186). There is no simple and straightforward answer to this
question if φ ≡ φA is a set of scalar coordinate functions (parameters) on the
worldsheet Vn. In the following we shall find out that the theory becomes
dramatically clear if we generalize φ to polyvector coordinate functions.

DESCRIPTION IN THE ENLARGED M-SPACE
So far we have considered a set of N scalar-valued functions Xµ(φA) of

parameters φA. This can be written as a set of scalar-valued functions of a
vector valued parameter φ = φAeA, where φ

A are coordinate functions in
the coordinate basis eA (see also Sec. 6.1).

Let us now promote φ to a polyvector Φ in Vn:

Φ = φ0 + φAeA + φA1A2eA1eA2 + ...φA1...AneA1 ...eAn ≡ φJeJ , (6.188)
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where eJ are basis vectors of the Clifford algebra generated by the vectors
eA. The worldsheet polyvector V µ(φ) ≡ V µ(φ), considered in (6.177), is an
extension of the velocity vector eA∂AX

µ. The latter expression is nothing
but the derivative of Xµ(φ) with respect to the coordinate vector:

vµ(φ) ≡ ∂Xµ

∂φ
= eA

∂Xµ

∂φA
. (6.189)

If instead ofXµ(φ) we haveXµ(Φ), i.e., a function of the polyvector (6.188),
then (6.189) generalizes to

V µ(Φ) ≡ ∂Xµ

∂Φ
=
∂Xµ

∂φ0
+ eA

∂Xµ

∂φA
+ eA1eA2

∂Xµ

∂φA1A2
+ ...

+ eA1 ...eAn
∂Xµ

∂φA1...An

≡ eJ∂JX
µ. (6.190)

This is just like (6.177), except that the argument is now Φ instead of φ.

In eq. (6.177) V µ(Φ), µ = 1, 2, ..., N , are polyvectors in the worldsheet
Vn, but scalars in target space VN . By employing the basis vectors γµ, µ =
1, 2, ..., N , we can form a vector V µγµ in VN (and also generalize it to a
polyvector in VN ).

What about M-space? Obviously M-space is now enlarged: instead of
Xµ(φ) ≡ Xµ(φ) we have Xµ(Φ) ≡ Xµ(Φ). Our basic object is no longer a
simple worldsheet (n-dimensional membrane or surface) described byXµ(φ),
but a more involved geometrical object. It is described by Xµ(Φ) which are
coordinates of a point in an infinite-dimensional space which I will denote
M(Φ), whereas theM-space considered so far will from now on be denoted
M(φ). Whilst the basis vectors in M(φ)-space are hµ(φ), the basis vectors

inM(Φ)-space are hµ(Φ). The objects V µ(Φ) ≡ V µ(Φ) are components of a

vector V µ(Φ)hµ(Φ) inM(Φ)-space.

The generalization of (6.190) is now at hand:

V = v0 + eJ∂JX
µ(Φ)hµ(Φ) + eJ∂JX

µ1(Φ1)µ2(Φ2)hµ1(Φ1)hµ2(Φ2) + ... . (6.191)

It is instructive to write the latter object more explicitly
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V = v0 +

(
∂Xµ(Φ)

∂φ0
+ eA

∂Xµ(Φ)

∂φA
+ eA1eA2

∂Xµ(Φ)

∂φA1A2
+ ...

+ eA1 ...eAn
∂Xµ(Φ)

∂φA1...An

)
hµ(Φ)

+

(
∂Xµ1(Φ1)µ2(Φ2)

∂φ0
+ eA

∂Xµ1(Φ1)µ2(Φ2)

∂φA
+ eA1eA2

∂Xµ1(Φ1)µ2(Φ2)

∂φA1A2
+ ...

+eA1 ...eAn
∂Xµ1(Φ1)µ2(Φ2)

∂φA1...An

)
hµ1(Φ1)hµ2(Φ2) + ..., (6.192)

and more compactly,
V = eJ∂JX

[Z]h[Z] , (6.193)

where h[Z] = hµ(φ), hµ1(φ1)hµ2(Φ2), ... form a basis of Clifford algebra in
M(Φ)-space.

A repeated index (Φ) means the integration:

V µ(Φ)hµ(Φ) =

∫
V µ(Φ)hµ(Φ)dΦ (6.194)

where

dΦ ≡
∏

J

dφJ (6.195)

= dφ0

(
∏

A

dφA

)
 ∏

A1<A2

dφA1A2


 ...


 ∏

A1<A2<...<An

dφA1...An


 .

We do not need to worry about the measure, since the measure is assumed to
be included in theM(Φ)-space metric which we define as the inner product

ρµ(Φ)ν(Φ) = hµ(Φ) · hν(Φ′). (6.196)

All expressions of the form ρµ(Φ)ν(Φ)A
µ(Φ)Bν(Φ′) are then by definition in-

variant under reparametrizations of Φ. (See also the discussion in Sec. 4.1.)
The object of our study is a generalized world sheet. It is described by

anM(Φ)-space polyvector

X = X [Z]h[Z] = x0+X
µ(Φ)hµ(Φ)+X

µ1(Φ1)µ2(Φ2)hµ1(Φ1)hµ2(Φ2)+..., (6.197)

where Xµ(Φ), Xµ1(Φ1)µ2(Φ2), etc., are 1-vector, 2-vector, etc., coordinate
functions. In a finite-dimensional sector VN ofM(Φ), i.e., at a fixed value

of Φ = Φ1 = Φ2 = ... = Φp, the quantities Xµ1(Φ)µ2(Φ)...µp(Φ) ≡ Xµ1µ2...µp ,
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p = 1, 2, ..., N , are holographic projections of points, 1-loops, 2-loops,...,
N -loop onto the embedding space planes spanned by γµ, γµ1 ∧ γµ2 , ... ,
γµ1 ∧ ...∧γµN . Infinite loops, manifesting themselves as straight p-lines, are
also included.

On the other hand, the polyvector parameters Φ = φJeJ , where φJ

are scalar parameters (coordinates) φA, φA1A2 , ..., φA1...An , represent holo-
graphic projections of points, 1-loops, ..., p-loops, ... n-loops onto the
planes, spanned by eA, eA1 ∧ eA2 , ..., eA1 ∧ ... ∧ eAn in the world sheet Vn.

If we let the polyvector parameter Φ vary, thenXµ1(Φ)µ2(Φ)...µp(Φ) become
infinite sets.

For instance, if we let only φA vary, and keep φ0, φA1A2 , ...φA1...An fixed,
then:

Xµ(Φ) becomes a set of 0-loops (i.e., points), constituting an ordinary
n-dimensional world sheet;

Xµ1(Φ)µ2(Φ) becomes a set of 1-loops, constituting a bivector type world-
sheet;

...

Xµ1(Φ)µ2(Φ)...µN (Φ) becomes a set of (N − 1)-loops, constituting an N -
vector type worldsheet.

To an (r − 1)-loop is associated an r-vector type worldsheet, since the
differential of an (r− 1)-loop, i.e., dXµ1(Φ)µ2(Φ)...µr−1(Φ) is an r-vector. The
multivector type of an ordinary worldsheet is 1.

If we let all compnents φJ = φ0, φA, φA1A2 , ..., φA1...An of Φ vary, then
Xµ1(Φ)µ2(Φ)...µr(Φ), 1 ≤ r ≤ N , become even more involved infinite sets,
whose precise properties will not be studied in this book.

In general, Φ1,Φ2, ...,Φn can be different, and Xµ1(Φ1)µ2(Φ2)...µr(Φr) rep-
resent even more complicated sets of p-loops inM(Φ)-space. In (6.197) all
those objects of different multivector type are mixed together and X is a
Clifford algebra valued position in the infinite-dimensional Clifford mani-
fold which is just the Clifford algebra of M(Φ)-space. Here we have an
infinite-dimensional generalization of the concept of “pandimensional con-
tinuum” introduced by Pezzaglia [23] and used by Castro [75] under the
name “Clifford manifold”.

Let an action encoding the dynamics of such a generalized membrane be

I[X] = I[X [Z], eA, hµ(Φ)]

=

∫
DX

√
|ρ|
(
I[X [Z]] + I[eA] + I[hµ(Φ)]

)
, (6.198)
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where
DX ≡

∏

[Z]

dX [Z] (6.199)

and

ρ ≡ detρ[Z][Z′] , ρ[Z][Z′] = h[Z] ∗ h[Z′] = 〈h[Z]h[Z′]〉0 , (6.200)

I[X [Z]] = 1
2V

2, (6.201)

I[eA] =

∫
dΦ

[
1

2

√
|γ|+ 1

16πG(n)

(
[∂A, ∂B]e

A
)
· eB

]
, (6.202)

I[hµ(Φ)] =
1

16πG(N)

(
[∂µ(Φ), ∂ν(Φ′)]h

µ(Φ)
)
· hν(Φ′). (6.203)

If we consider a fixed backgroundM(φ)-space then the last term, as well

as the integration over X [Z], can be omitted and we have

I[X] = I[X [Z]] + I[eA]. (6.204)

In eq. (6.198) we have a generalization of the action (6.187). The dy-
namical system described by (6.198) has no fixed background space with
a fixed metric. Actually, instead of a metric, we have the basis vectors
hµ(Φ) as dynamical variables (besidesM(Φ)-space coordinates X [Z] and Vn
basis vectors eA). The inner product hµ(Φ) · hν(Φ′) = ρµ(Φ)ν(Φ′) gives the
metric, but the latter is not prescribed. It comes out after a solution to
the equations of motion for hµ(Φ) is found. The target space is an infinite-
dimensionalM(Φ)-space. A finite-dimensional spacetime VN , whose points
can be identified, is associated with a particular worldsheet configuration
Xµ(Φ) (a system of many worldsheets).

The first term in (6.198), I[X [Z]], is the square of V , which is a worldsheet
and a target space polyvector. We have seen in Sec. 2.5 that any polyvector
can be written as a superposition of basis spinors which are elements of left
and right ideals of the Clifford algebra. World sheet and target space spinors
are automatically included in our action (6.198). There must certainly be
a connection with descriptions which employ Grassmann odd variables. A
step in this direction is indicated in Sec. 7.2, where it is shown that a
polyvector can be written as a superposition of Grassmann numbers.

A theory of the generalized point-particle tracing a Clifford algebra-
valued line X(Σ) “living” in the Clifford manifold (C-space) has been con-
vincingly outlined by Castro [75]. The polyvector

X = Ωp+1 + Λpxµγ
µ + Λp−1σµνγ

µγν + ...
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encodes at one single stroke the point history represented by the ordinary
xµ coordinates and the nested family of 1-loop, 2-loop, ..., p-loop histories.
Castro [76] also investigated some important consequences for string the-
ory and the conjectured M -theory [77]. Castro’s work built on important
contributions of Aurilia et al. [78], who formulated p-branes in terms of
(p+ 1)-tangents to a p-brane’s worldvolumes (which I call worldsheets),

Xν1ν2...νp+1(σ) = εσ
1σ2...σp+1∂σ1Xν1 ...∂σp+1Xνp+1 .

The action they considered contains the square of the latter expression.
The same expression also enters the term of the highest degree in the ac-
tions (6.155) or (6.157). It also occurs in (6.187) if we identify the coeffi-
cients vµ1...µnA1...An

with ∂A1X
µ1 ...∂AnX

µn , and analogously for the coefficients

∂Xµ1(Φ)...µ2(Φ)/∂φA1...An in (6.192).
Here we have considered a natural generalization of the approaches in-

vestigated by Aurilia et al., and Castro. Our object of study is a mess
which encompasses the set of points, 1-lines (1-loops), 2-lines (2-loops),
..., N -lines (N -loops). Spinors are automatically present because of the
polyvector character of the basic quantities X and V . There is very proba-
bly a deep relationship between this approach and the ones known as loop
quantum gravity [70], spin networks [71], and spin foams [72], pioneered
by Smolin, Rovelli and Baez, to name just few. I beleive that in this book
we have an outline of a possible general, unifying, background independent
geometrical principle behind many of the approaches incorporating strings,
p-branes, and quantum gravity.



Chapter 7

QUANTIZATION

Quantization of extended objects has turned out to be extremely diffi-
cult, and so far it has not yet been competely solved. In this Chapter I
provide some ideas of how quantization might be carried out technically.
First I demonstrate how quantization of the unconstrained membrane is
more or less straightforward. Then I consider the subject from a much
broader perspective, involving the Clifford algebra approach. Section 1 is
largely based on a published paper [55] (and also [54]) with some additional
material, whilst Section 2 is completely novel.

7.1. THE QUANTUM THEORY OF
UNCONSTRAINED MEMBRANES

When studying the classical membrane we arrived in Sec. 4.3 at the
unconstrained action (4.148) or (4.154). The latter action can be written
in terms of theM-space tensor notation

I[Xµ(ξ), pµ(ξ)] =

∫
dτ
[
pµ(ξ)Ẋ

µ(ξ) − 1
2(p

µ(ξ)pµ(ξ) −K)− Λa∂aX
µ(ξ)pµ(ξ)

]
,

(7.1)
where the metric is

ρµ(ξ)ν(ξ′) =
1

Λ
ηµνδ(ξ − ξ′) (7.2)

and

K ≡
∫

dnξ Λκ2|f | = K[X] = α(ξ)α(ξ), (7.3)

where α(ξ) ≡ Λκ
√
|f | In principle the metric need not be restricted to the

above form. In this section we shall often use, when providing specific

203
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examples, the metric

ρµ(ξ)ν(ξ′) =
κ
√
|f |

Λ
ηµνδ(ξ − ξ′), (7.4)

which is just the metric (4.51) with fixed λ = Λ. eq. (7.1) holds for any
fixed background metric ofM-space.

The Hamiltonian belonging to (7.1) is [53]-[55]

H = 1
2(p

µ(ξ)pµ(ξ) −K[X]) + Λa∂aX
µ(ξ)pµ(ξ). (7.5)

In the following we are going to quantize the system described by the
action (7.1) and the Hamiltonian (7.5).

THE COMMUTATION RELATIONS AND THE
HEISENBERG EQUATIONS OF MOTION

Since there are no constraints on the dynamical variables Xµ(ξ) and
the corresponding canonical momenta pµ(ξ), quantization of the theory is
straightforward. The classical variables become operators and the Poisson
brackets are replaced by commutators, taken at equal τ :

[Xµ(ξ), pν(ξ
′)] = i δµν δ(ξ − ξ′), (7.6)

[Xµ(ξ), Xν(ξ′)] = 0 , [pµ(ξ), pν(ξ
′)] = 0. (7.7)

The Heisenberg equations of motion for an operator A read

∂aA = − i [A, Ha], (7.8)

Ȧ = − i [A, H]. (7.9)

In particular, we have

ṗµ(ξ) = − i [pµ(ξ), H], (7.10)

Ẋµ(ξ) = − i [Xµ(ξ), H]. (7.11)

We may use the representation in which the operators Xµ(ξ) are diago-
nal, and

pµ(ξ) = − i
(

δ

δXµ(ξ)
+

δF

δXµ(ξ)

)
, (7.12)
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where F is a suitable functional of Xµ (see eq. (7.26)). The extra term
in pµ(ξ) is introduced in order to take into account the metric (7.4) of
the membrane space M. In such a representation it is straightforward to
calculate the useful commutators

[pµ(ξ),
√
|f |] = − i δ

√
|f(ξ′)|

δXµ(ξ)
= i ∂a

(√
|f | ∂aXµ δ(ξ − ξ′)

)
, (7.13)

[pµ(ξ), ∂aX
ν(ξ′)] = − i δ∂aX

ν(ξ′)
δXµ(ξ)

= − i δµν ∂a δ(ξ − ξ′). (7.14)

For the Hamiltonian (7.5) the explicit form of eqs. (7.10) and (7.11) can be
obtained straightforwardly by using the commutation relations (7.6), (7.7):

ṗµ(ξ) = − ∂a
[
Λ

2κ
∂aXµ

√
|f |( p

2

|f | + κ2)

]
, (7.15)

Ẋµ(ξ) = − i
∫

dξ′
[
Xµ(ξ),

Λ

2κ

√
|f |
(
pα(ξ′)pα(ξ′)
|f | − κ2

)

−Λa∂aXα(ξ′)pα(ξ
′)

]

=
Λ√
|f |κ p

µ(ξ′)− Λa∂aX
µ. (7.16)

We recognise that the operator equations (7.15), (7.16) have the same form
as the classical equations of motion belonging to the action (7.1).

THE SCHRÖDINGER REPRESENTATION
The above relations (7.6)–(7.11), (7.15), (7.16) are valid regardless of

representation. A possible representation is one in which the basic states
|Xµ(ξ)〉 have definite values Xµ(ξ) of the membrane’s position operators1

X̂µ(ξ). An arbitrary state |a〉 can be expressed as

|a〉 =
∫
|Xµ(ξ)〉DXµ(ξ)〈Xµ(ξ)|a〉 (7.17)

where the measure DXµ(ξ) is given in eq. (4.17) with α = κ/Λ.
We shall now write the equation of motion for the wave functional ψ ≡

〈Xµ(ξ)|a〉. We adopt the requirement that, in the classical limit, the wave

1When necessary we use symbols with a hat in order to distinguish operators from their eigen-
values.
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functional equation should reproduce the Hamilton–Jacobi equation (see
ref. [55])

−∂S
∂τ

= H. (7.18)

The supplementary equation

∂S

∂Xµ(ξ)
= pµ(ξ) (7.19)

has to arise from the corresponding quantum equation. For this goal we
admit that ψ evolves with the evolution parameter τ and is a functional of
Xµ(ξ) :

ψ = ψ[τ,Xµ(ξ)]. (7.20)

It is normalized according to
∫
DX ψ∗ψ = 1, (7.21)

which is a straightforward extension of the corresponding relation
∫

d4xψ∗ψ = 1 (7.22)

for the unconstrained point particle in Minkowski spacetime [1]–[16], [53]–
[55]. It is important to stress again [53]–[55] that, since (7.21) is satisfied
at any τ , the evolution operator U which brings ψ(τ)→ ψ(τ ′) = Uψ(τ) is
unitary.

The following equations are assumed to be satisfied (ρ = Det ρµ(ξ)ν(ξ′)):

− ih̄ 1

|ρ|1/4∂µ(ξ)(|ρ|
1/4ψ) = p̂µ(ξ)ψ, (7.23)

ih̄
1

|ρ|1/4
∂(|ρ|1/4ψ)

∂τ
= Hψ, (7.24)

where2

H = 1
2(p̂

µ(ξ)p̂µ(ξ) −K) + Λa∂aX
µ(ξ)p̂µ(ξ). (7.25)

When the metric ρµ(ξ)ν(ξ′) inM explicitly depends on τ (which is the case

when Λ̇ 6= 0) such a modified τ -derivative in eq. (7.24) is required [33] in

2Using the commutator (7.14) we find that

Λa[pµ(ξ), ∂aX
µ(ξ)] =

∫
dξ dξ′ Λa [pµ(ξ), ∂aX

ν(ξ′)] δν
µ δ(ξ − ξ′) = 0,

therefore the order of operators in the second term of eq. (7.25) does not matter.
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order to assure conservation of probability, as expressed by the τ -invariance
of the integral (7.21).

The momentum operator given by

p̂µ(ξ) = −ih̄
(
∂µ(ξ) +

1
2Γ

ν(ξ′)
µ(ξ)ν(ξ′)

)
, (7.26)

where
1

2
Γ
ν(ξ′)
µ(ξ)ν(ξ′) = |ρ|−1/4 ∂µ(ξ)|ρ|1/4,

satisfies the commutation relations (7.6), (7.7) and is Hermitian with respect
to the scalar product

∫ DX ψ∗p̂µ(ξ)ψ inM.
The expression (7.25) for the Hamilton operator H is obtained from the

corresponding classical expression (7.5) in which the quantities Xµ(ξ), pµ(ξ)
are replaced by the operators X̂µ(ξ), p̂µ(ξ). There is an ordering ambiguity in

the definition of p̂µ(ξ)p̂µ(ξ). Following the convention in a finite-dimensional
curved space [33], we use the identity

|ρ|1/4p̂µ(ξ)|ρ|−1/4 = − ih̄ ∂µ(ξ)
and define

p̂µ(ξ)p̂µ(ξ)ψ = |ρ|−1/2|ρ|1/4p̂µ(ξ)|ρ|−1/4|ρ|1/2ρµ(ξ)ν(ξ
′)|ρ|1/4p̂ν(ξ′)|ρ|−1/4ψ

= −|ρ|−1/2∂µ(ξ)
(
|ρ|1/2ρµ(ξ)ν(ξ′)∂ν(ξ′)ψ

)

= −Dµ(ξ)D
µ(ξ)ψ. (7.27)

Let us derive the classical limit of equations (7.23), (7.24). For this pur-
pose we write

ψ = A[τ,Xµ(ξ)] exp

[
i

h̄
S[τ,Xµ(ξ)

]
(7.28)

with real A and S.
Assuming (7.28) and taking the limit h̄→ 0 eq. (7.23) becomes

p̂µ(ξ)ψ = ∂µ(ξ)S ψ. (7.29)

If we assume that in eq. (7.28) A is a slowly varying and S a quickly varying
functional of Xµ(ξ) we find that ∂µ(ξ)S is the expectation value of the
momentum operator p̂µ(ξ).

Let us insert (7.28) into eq. (7.24). Taking the limit h̄ → 0, and writing
separately the real and imaginary part of the equation, we obtain

− ∂S
∂τ

= 1
2(∂µ(ξ)S ∂

µ(ξ)S −K) + Λa∂aX
µ(ξ) ∂µ(ξ)S, (7.30)
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1

|ρ|1/2
∂

∂τ
(|ρ|1/2A2) + Dµ(ξ)[A

2(∂µ(ξ)S + Λa ∂aX
µ(ξ))] = 0. (7.31)

eq. (7.30) is just the functional Hamilton–Jacobi (7.18) equation of the clas-
sical theory. Eq. (7.31) is the continuity equation, where ψ∗ψ = A2 is the
probability density and

A2 (∂µ(ξ)S − Λa ∂aX
µ(ξ)) = jµ(ξ) (7.32)

is the probability current. Whilst the covariant components ∂µ(ξ)S form a
momentum vector pµ, the contravariant components form a vector ∂Xµ

(see also Sec. 4.2):

∂µ(ξ)S = ρµ(ξ)ν(ξ
′) ∂ν(ξ′)S

=

∫
dξ′

Λ

κ
√
|f | η

µν δ(ξ − ξ′) δS

δXν(ξ′)

=
Λ

κ
√
|f |η

µν δS

δXν(ξ)
= ∂Xµ , (7.33)

where we have taken

δS/δXν(ξ) = pν(ξ) =
κ
√
|f |

Λ
∂Xν(ξ),

and raised the index by ηµν , so that

∂Xµ(ξ) = ηµν∂Xν(ξ). (7.34)

So we have
∂µ(ξ)S + Λa ∂aX

µ(ξ) = Ẋµ(ξ),

and the current (7.32) is proportional to the velocity, as it should be.
Since eq. (7.24) gives the correct classical limit it is consistent and can

be taken as the equation of motion for the wave functional ψ. We shall
call (7.24) the (functional) Schrödinger equation. In general, it admits the
following continuity equation:

1

|ρ|1/2
∂

∂τ
(|ρ|1/2ψ∗ψ) + Dµ(ξ)j

µ(ξ) = 0, (7.35)

where

jµ(ξ) = 1
2ψ
∗(p̂µ(ξ) + Λa∂aX

µ(ξ))ψ + h.c.

= − i

2
(ψ∗ ∂µ(ξ)ψ − ψ ∂µ(ξ)ψ∗) + Λa∂aX

µ(ξ)ψ∗ψ. (7.36)
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For exercise we prove below that the probability current (7.36) satisfies
(7.35). First we observe that

δ ∂′aXµ(ξ′)
δXν(ξ)

= ∂′a

(
δXµ(ξ′)
δXν(ξ′)

)

= δµν ∂
′
aδ(ξ

′ − ξ) = − δµν∂aδ(ξ′ − ξ). (7.37)

Then we calculate

∂ν(ξ)(Λ
a∂aX

µ(ξ′)ψ∗ψ) =
δ

δXν(ξ)
(Λa∂aX

µ(ξ′)ψ∗ψ)

= −Λaδµν ∂aδ(ξ
′−ξ)ψ∗ψ+Λa∂aX

µ(ξ′)
(
ψ

δψ∗

δXν(ξ)
+ ψ∗

δψ

δXν(ξ)

)
. (7.38)

Multiplying (7.38) by δµνδ(ξ
′− ξ)dξ′dξ, summing over µ, ν and integrating

over ξ′, ξ, we obtain

∂µ(ξ)(Λ
a∂aX

µ(ξ)ψ∗ψ) = −N
∫

dξ′ dξ Λa δ(ξ′ − ξ) ∂aδ(ξ′ − ξ)ψ∗ψ

+

∫
dξ Λa ∂aX

µ(ξ)

(
ψ

δψ∗

δXµ(ξ)
+ ψ∗

δψ

δXµ(ξ)

)

= Λa ∂aX
µ(ξ)(ψ ∂µ(ξ)ψ

∗ + ψ∗ ∂µ(ξ)ψ). (7.39)

In eq. (7.39) we have taken δµνδ
ν
µ = N and

∫
dξ Λaδ(ξ′−ξ) ∂aδ(ξ′−ξ) = 0.

Next we take into account

Dµ(ξ)(Λ
a∂aX

µ(ξ)ψ∗ψ) = (Dµ(ξ) ∂aX
µ(ξ))Λaψ∗ψ + ∂aX

µ(ξ) ∂µ(ξ)(Λ
aψ∗ψ)

and
Dµ(ξ)∂aX

µ(ξ) = ∂µ(ξ)∂aX
µ(ξ) + Γ

µ(ξ)
µ(ξ)ν(ξ′) ∂

′
aX

ν(ξ′). (7.40)

From (7.36), (7.39) and (7.40) we have

Dµ(ξ)j
µ(ξ) = − i

2
(ψ∗Dµ(ξ)D

µ(ξ)ψ − ψDµ(ξ)D
µ(ξ)ψ∗) (7.41)

+Λa∂aX
µ(ξ)(ψ∗∂µ(ξ)ψ + ψ∂µ(ξ)ψ

∗ + Γ
ν(ξ′)
µ(ξ)ν(ξ′) ψ

∗ψ).

Using the Schrödinger equation

i|ρ|−1/4∂(|ρ|1/4ψ)/∂τ = Hψ (7.42)

and the complex conjugate equation

−i|ρ|−1/4∂(|ρ|1/4ψ∗)/∂τ = H∗ψ∗, (7.43)
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where H is given in (7.25), we obtain that the continuity equation (7.35)
is indeed satisfied by the probability density ψ∗ψ and the current (7.36).
For the Ansatz (7.28) the current (7.36) becomes equal to the expression
(7.32), as it should.

We notice that the term with Γ
ν(ξ′)
µ(ξ)ν(ξ′) in eq. (7.41) is canceled by the

same type of the term in H. The latter term in H comes from the definition
(7.26) of the momentum operator in a (curved) membrane spaceM, whilst
the analogous term in eq. (7.41) results from the covariant differentiation.
The definition (7.26) of p̂µ(ξ), which is an extension of the definition intro-
duced by DeWitt [33] for a finite-dimensional curved space, is thus shown
to be consistent also with the conservation of the current (7.36).

THE STATIONARY SCHRÖDINGER EQUATION
FOR A MEMBRANE

The evolution of a generic membrane’s state ψ[τ,Xµ(ξ)] is given by the
τ -dependent functional Schrödinger equation (7.24) and the Hamiltonian
(7.25). We are now going to consider solutions which have the form

ψ[τ,Xµ(ξ)] = e−iEτφ[Xµ(ξ)], (7.44)

where E is a constant. We shall call it energy, since it has a role analogous to
energy in non-relativistic quantum mechanics. Considering the case Λ̇ = 0,
Λ̇a = 0 and inserting the Ansatz (7.44) into eq. (7.24) we obtain
(
− 1

2D
µ(ξ)Dµ(ξ) + iΛa∂aX

µ(ξ)(∂µ(ξ) +
1
2Γ

ν(ξ′)
µ(ξ)ν(ξ′))−

1

2
K

)
φ = E φ. (7.45)

So far the membrane’s dimension and signature have not been specified. Let
us now consider Case 2 of Sec. 4.3. All the dimensions of our membrane
have the same signature, and the index a of a membrane’s coordinates
assumes the values a = 1, 2, ..., n = p. Assuming a real φ eq. (7.45) becomes

(
− 1

2D
µ(ξ)Dµ(ξ) − 1

2K − E
)
φ = 0, (7.46)

Λa∂aX
µ(ξ)(∂µ(ξ) +

1
2Γ

ν(ξ′)
µ(ξ)ν(ξ′))φ = 0. (7.47)

These are equations for a stationary state. They remind us of the well
known p-brane equations [79].

In order to obtain from (7.46), (7.47) the conventional p-brane equations
we have to assume that eqs. (7.46), (7.47) hold for any Λ and Λa, which is
indeed the case. Then instead of eqs. (7.46), (7.47) in which we have the
integration over ξ, we obtain the equations without the integration over ξ:

(
− Λ

2κ|f |η
µν D2

DXµ(ξ)DXν(ξ)
− Λ

2
− E

)
φ = 0, (7.48)
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∂aX
µ(ξ)

(
δ

δXµ(ξ)
+ 1

2Γ
ν(ξ′)
µ(ξ)ν(ξ′)

)
φ = 0. (7.49)

The last equations are obtained from (7.46), (7.47) after writing the en-
ergy as the integral of the energy density E over the membrane, E =∫
dnξ

√
|f | E , taking into account that K =

∫
dnξ

√
|f |κΛ, and omitting

the integration over ξ.
Equations (7.48), (7.49), with E = 0, are indeed the quantum analogs

of the classical p-brane constraints used in the literature [79, 80] and their
solution φ represents states of a conventional, constrained, p-brane with a
tension κ. When E 6= 0 the preceding statement still holds, provided that
E(ξ) is proportional to Λ(ξ), so that the quantity κ(1−2E/Λ) is a constant,
identified with the effective tension. Only the particular stationary states
(as indicated above) correspond to the conventional, Dirac–Nambu–Goto p-
brane states, but in general they correspond to a sort of wiggly membranes
[53, 81].

DIMENSIONAL REDUCTION OF THE
SCHRÖDINGER EQUATION

Let us now consider the Case 1. Our membrane has signature (+−−−...)
and is actually an n-dimensional worldsheet. The index a of the worldsheet
coordinates ξa assumes the values a = 0, 1, 2, ..., p, where p = n− 1.

Amongst all possible wave functional satisfying eqs. (7.24) there are also
the special ones for which it holds (for an example see see eqs. (7.81), (7.84)–
(7.86))

δψ

δXµ(ξ0, ξi)
= δ(ξ0 − ξ0Σ)(∂0Xµ∂0Xµ)

1/2 δψ

δXµ(ξ0Σ, ξ
i)
, (7.50)

i = 1, 2, ..., p = n− 1,

where ξ0Σ is a fixed value of the time-like coordinate ξ0. In the compact
tensorial notation in the membrane spaceM eq. (7.50) reads

∂µ(ξ0,ξi)φ = δ(ξ0 − ξ0Σ) (∂0Xµ∂0Xµ)
1/2∂µ(ξ0Σ,ξi)

ψ. (7.51)

Using (7.51) we find that the dimension of the Laplace operator in

Dµ(ξ)Dµ(ξ)ψ =

∫
dnξ

Λ

κ
√
|f | η

µν D2ψ

DXµ(ξ)DXν(ξ)

=

∫
dξ0 dpξ

Λ

κ
√
|f |(∂0X

µ∂0Xµ)
1/2 ηµνδ(ξ0 − ξ0Σ)×
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× D2ψ

DXµ(ξ0, ξi)DXν(ξ0Σ, ξ
i)

=

∫
dpξ

Λ

κ
√
|f̄ |
ηµν

D2ψ

DXµ(ξ0Σ, ξ
i)Xν(ξ0Σ, ξ

i)

=

∫
dpξ

Λ

κ
√
|f̄ |
ηµν

D2ψ

DXµ(ξi)DXν(ξi)
. (7.52)

Here f̄ ≡ detf̄ij is the determinant of the induced metric f̄ij ≡ ∂iX
µ∂jXµ

on Vp, and it is related to the determinant f ≡ detfab of the induced metric
fab = ∂aX

µ∂bXµ on Vp+1 according to f = f̄ ∂0X
µ∂0Xµ (see refs. [61, 62]).

The differential operator in the last expression of eq. (7.52) (where we

have identified Xµ(ξ0Σ,ξ
i) ≡ Xµ(ξi)) acts in the space of p-dimensional mem-

branes, although the original operator we started from acted in the space of
(p+1)-dimensional membranes (n = p+1). This comes from the fact that
our special functional, satisfying (7.50), has vanishing functional derivative
δψ/δXµ(ξ0, ξi) for all values of ξ0, except for ξ0 = ξ0Σ. The xpression (7.50)
has its finite-dimensional analog in the relation ∂φ/∂xA = δA

µ ∂φ/∂xµ,
A = 0, 1, 2, 3, ..., 3 + m, µ = 0, 1, 2, 3, which says that the field φ(xA)
is constant along the extra dimensions. For such a field the (4 + m)-

dimensional Laplace expression ηAB ∂2φ
∂xA∂xB

reduces to the 4-dimensional

expression ηµν ∂2φ
∂xµ∂xν .

The above procedure can be performed not only for ξ0 but also for any
of the coordinates ξa; it applies both to Case 1 and Case 2.

Using (7.51), (7.52) we thus find that, for such a special wave functional
ψ, the equation (7.24), which describes a state of a (p + 1)-dimensional
membrane, reduces to the equation for a p-dimensional membrane. This is
an important finding. Namely, at the beginning we may assume a certain
dimension of a membrane and then consider lower-dimensional membranes
as particular solutions of the higher-dimensional equation. This means
that the point particle theory (0-brane), the string theory (1-brane), and
in general a p-brane theory for arbitrary p, are all contained in the theory
of a (p+ 1)-brane.

A PARTICULAR SOLUTION TO THE
COVARIANT SCHRÖDINGER EQUATION

Let us now consider the covariant functional Schrödinger equation (7.24)
with the Hamiltonian operator (7.25). The quantities Λa are arbitrary in
principle. For simplicity we now take Λa = 0. Additionally we also take a
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τ -independent Λ, so that ρ̇ = 0. Then eq. (7.24) becomes simply (h̄ = 1)

i
∂ψ

∂τ
= − 1

2 (D
µ(ξ)Dµ(ξ) +K)ψ. (7.53)

The operator on the right hand side is the infinite-dimensional analog of
the covariant Klein–Gordon operator. Using the definition of the covariant
derivative (4.19) and the corresponding affinity we have [54, 55]

Dµ(ξ)D
µ(ξ)ψ = ρµ(ξ)ν(ξ

′)Dµ(ξ)Dν(ξ′)ψ

= ρµ(ξ)ν(ξ
′)
(
∂µ(ξ)∂ν(ξ′)ψ − Γ

α(ξ′′)
µ(ξ)ν(ξ′) ∂α(ξ′′)ψ

)
. (7.54)

The affinity is explicitly

Γ
α(ξ′′)
µ(ξ)ν(ξ′) =

1
2ρ

α(ξ′′)β(ξ′′′)
(
ρβ(ξ′′′)µ(ξ),ν(ξ′) + ρβ(ξ′′′)ν(ξ′),µ(ξ) − ρµ(ξ)ν(ξ′),β(ξ′′′)

)
,

(7.55)
where the metric is given by (7.4). Using

ρβ(ξ′′)µ(ξ),ν(ξ′) = ηµν α(ξ)δ(ξ − ξ′′)
δ
√
|f(ξ)|

δXν(ξ′)
(7.56)

= ηµν α(ξ)δ(ξ − ξ′′)
√
|f(ξ)|∂aXν(ξ)∂aδ(ξ − ξ′)

the equation (7.54) becomes

Dµ(ξ)D
µ(ξ)ψ = ρµ(ξ)ν(ξ

′) ∂2ψ

∂Xµ(ξ)Xν(ξ′)
(7.57)

−δ(0)
κ

∫
dnξ

δψ

δXµ(ξ)

[
N

2

Λ√
|f |

1√
|f | ∂a(

√
|f(ξ)| ∂aXµ)

+ (
N

2
+ 1)Λ∂aXµ ∂a(

1√
|f(ξ)|) +

∂aXµ∂aΛ√
|f(ξ)|

]
,

where N = ηµνηµν is the dimension of spacetime. In deriving eq. (7.57)
we encountered the expression δ2(ξ − ξ′) which we replaced by the corre-
sponding approximate expression F (a, ξ − ξ ′)δ(ξ − ξ′), whereF (a, ξ − ξ′)
is any finite function, e.g., (1/

√
πa)exp[−(ξ − ξ′)2/a2], which in the limit

a → 0 becomes δ(ξ − ξ′). The latter limit was taken after performing
all the integrations, and δ(0) should be considered as an abbreviation for
lima→0 F (a, 0).

As already explained in footnote 5 of Chapter 5, the infinity δ(0) in an
expression such as (7.57) can be regularized by taking into account the
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plausible assumption that a generic physical object is actually a fractal
(i.e., an object with detailed structure on all scales). The objects Xµ(ξ)
which we are using in our calculations are well behaved functions with def-
inite derivatives and should be considered as approximations of the actual
physical objects. This means that a description with a given Xµ(ξ) below a
certain scale a has no physical meaning. In order to make physical sense of
the expression (7.57), δ(0) should therefore be replaced by F (a, 0). Choice
of the scale a is arbitrary and determines the precision of our description.
(Cf., the length of a coast depends on the scale of the units with which it
is measured.)

Expression (7.54) is analogous to the corresponding finite dimensional
expression. In analogy with a finite-dimensional case, a metric tensor
ρ′µ(ξ)ν(ξ′) obtained from ρµ(ξ)ν(ξ′) by a coordinate transformation (4.5) be-
longs to the same spaceM and is equivalent to ρµ(ξ)ν(ξ′). Instead of a finite
number of coordinate conditions which express a choice of coordinates, we
now have infinite coordinate conditions. The second term in eq. (7.57)
becomes zero if we take

N

2

Λ√
|f |

1√
|f | ∂a

(√
|f(ξ)| ∂aXµ

)
(7.58)

+

(
(
N

2
+ 1)Λ∂a(

1√
|f(ξ)|) +

∂aΛ√
|f(ξ)|

)
∂aXµ = 0,

and these are just possible coordinate conditions in the membrane space
M. eq. (7.58), together with boundary conditions, determines a family of
functionsXµ(ξ) for which the functional ψ is defined; in the operator theory
such a family is called the domain of an operator. Choice of a family of
functions Xµ(ξ) is, in fact, a choice of coordinates (a gauge) inM.

If we contract eq. (7.58) by ∂bXµ and take into account the identity
∂cX

µDaDbXµ = 0 we find

(
N

2
+ 1)Λ∂a(

1√
|f(ξ)|) +

∂aΛ√
|f(ξ)| = 0. (7.59)

From (7.59) and (7.58) we have

1√
|f(ξ)| ∂a

(√
|f(ξ)| ∂aXµ

)
= 0. (7.60)

Interestingly, the gauge condition (7.58) in M automatically implies the
gauge condition (7.59) in Vn. The latter condition is much simplified if we
take Λ 6= 0 satisfying ∂aΛ = 0; then for |f | 6= 0 eq. (7.59) becomes

∂a

√
|f | = 0 (7.61)
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which is just the gauge condition considered by Schild [63] and Eguchi [82].

In the presence of the condition (7.58) (which is just a gauge, or co-
ordinate, condition in the function space M) the functional Schrödinger
equation (7.53) can be written in the form

i
∂ψ

∂τ
= −1

2

∫
dnξ

(
Λ√
|f |κ

δ2

δXµ(ξ)δXµ(ξ)
+
√
|f |Λκ

)
ψ. (7.62)

A particular solution to eq. (7.62) can be obtained by considering the fol-
lowing eigenfunctions of the momentum operator

p̂µ(ξ)ψp[X
µ(ξ)] = pµ(ξ)ψp[X

µ(ξ)], (7.63)

with

ψp[X
µ(ξ)] = N exp

[
i

∫ X

X0

pµ(ξ) dX
′µ(ξ)

]
. (7.64)

This last expression is invariant under reparametrizations of ξa (eq. (4.2))
and of Xµ(ξa) (eq. (4.5)). The momentum field pµ(ξ), in general, function-

ally depends on Xµ(ξ) and satisfies (see [55])

∂µ(ξ)pν(ξ′) − ∂ν(ξ′)pµ(ξ) = 0 , Dµ(ξ)p
µ(ξ) = 0. (7.65)

In particular pµ(ξ) may be just a constant field, such that ∂ν(ξ′)pµ(ξ) = 0.
Then (7.64) becomes

ψp[X
µ(ξ)] = N exp

[
i

∫
dnξ pµ(ξ)(X

µ(ξ)−Xµ
0 (ξ))

]

= N exp
[
ipµ(ξ)(X

µ(ξ) −Xµ(ξ)
0 )

]
. (7.66)

The latter expression holds only in a particular parametrization3 (eq. (4.5))
of M space, but it is still invariant with respect to reparametrizations of
ξa.

Let the τ -dependent wave functional be

ψp[τ,X
µ(ξ)]

= N exp

[
i

∫
dnξ pµ(ξ) (X

µ(ξ)−Xµ
0 (ξ))

]
×

3Solutions to the equations of motion are always written in a particular parametrization (or
gauge). For instance, a plane wave solution exp [ipµxµ] holds in Cartesian coordinates, but not
in spherical coordinates.
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× exp

[
− iτ

2

∫
Λdnξ

(
pµ(ξ)pµ(ξ)√
|f |κ −

√
|f |κ

)]

≡ N exp

[
i

∫
dnξ S

]
. (7.67)

where f ≡ det ∂aX
µ(ξ)∂bXµ(ξ) should be considered as a functional of

Xµ(ξ) and independent of τ . From (7.67) we find

− i δψp[τ,X
µ]

δXα
= − i

(
∂S
∂Xα

− ∂a
∂S

∂∂aXα

)
ψp[τ,X

µ]

= pαψp − τ∂a

(√
|f | ∂aXµ

)
Λ

2κ

(
p2

|f | + κ2
)
ψp

− τ
√
|f | ∂aXµ∂a

[
Λ

2κ

(
p2

|f | + κ2
)]

ψp. (7.68)

Let us now take the gauge condition (7.60). Additionally let us assume

∂a

[
Λ

2κ

(
p2

|f | + κ2
)]
≡ κ ∂aµ = 0. (7.69)

By inspecting the classical equations of motion with Λa = 0 we see [55] that
eq. (7.69) is satisfied when the momentum of a classical membrane does not
change with τ , i.e.,

dpµ
dτ

= 0. (7.70)

Then the membrane satisfies the minimal surface equation

DaD
aXµ = 0, (7.71)

which is just our gauge condition4 (7.60) in the membrane spaceM. When

Λ̇ = 0 the energy E ≡ ∫
Λdnξ

(
pµpµ√
|f |κ
−
√
|f |κ

)
is a constant of motion.

Energy conservation in the presence of eq. (7.70) implies

d
√
|f |

dτ
= 0. (7.72)

4The reverse is not necessarily true: the imposition of the gauge condition (7.60) does not
imply (7.69), (7.70). The latter are additional assumptions which fix a possible congruence of
trajectories (i..e., of Xµ(ξ)(τ)) over which the wave functional is defined.
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Our stationary state (7.67) is thus defined over a congruence of classical
trajectories satisfying (7.71) and (7.70), which imply also (7.69) and (7.72).
eq. (7.68) then becomes simply

− i δψp
δXα

= pαψp. (7.73)

Using (7.73) it is straightforward to verify that (7.67) is a particular solution
to the Schrödinger eqation (7.53). In ref. [54] we found the same relation
(7.73), but by using a different, more involved procedure.

THE WAVE PACKET
From the particular solutions (7.67) we can compose a wave packet

ψ[τ,Xµ(ξ)] =

∫
Dp c[p]ψp[τ,Xµ(ξ)] (7.74)

which is also a solution to the Schrödinger equation (7.53). However, since
all ψp[τ,X

µ(ξ)] entering (7.74) are assumed to belong to a restricted class
of particular solutions with pµ(ξ) which does not functionally depend on
Xµ(ξ), a wave packet of the form (7.74) cannot represent every possible
state of the membrane. This is just a particular kind of wave packet; a gen-
eral wave packet can be formed from a complete set of particular solutions
which are not restricted to momenta pµ(ξ) satisfying ∂ν(ξ′)pµ(ξ) = 0, but

allow for pµ(ξ) which do depend on Xµ(ξ). Treatment of such a general case
is beyond the scope of the present book. Here we shall try to demonstrate
some illustrative properties of the wave packet (7.74).

In the definition of the invariant measure in momentum space we use
the metric (4.14) with α = κ/Λ:

Dp ≡
∏

ξ,µ

(
Λ√
|f |κ

)1/2

dpµ(ξ). (7.75)

Let us take5

5This can be written compactly as

c[p] = B exp[−1

2
ρµ(ξ)ν(ξ′′)(p

µ(ξ) − pµ(ξ)0 )(pν(ξ
′) − pν(ξ

′)
0 )σ(ξ′)

(ξ′′)],

where σ(ξ′)
(ξ′′) = σ(ξ′)δ(ξ′, ξ′′). Since the covariant derivative of the metric is zero, we have that

Dµ(ξ)c[p] = 0. Similarly, the measure Dp = (Det ρµ(ξ)ν(ξ′))
1/2
∏

µ,ξ
dpµ(ξ), and the covariant

derivative of the determinant is zero. Therefore

Dµ(ξ)

∫
Dp c[p]ψp[τ,Xµ(ξ)] =

∫
Dp c[p] Dµ(ξ)ψp[τ,Xµ(ξ)].

This confirms that the superposition (7.74) is a solution if ψp is a solution of (7.24).
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c[p] = B exp
[
−1

2

∫
dnξ

Λ√
|f |κ(p

µ − pµ0 )2 σ(ξ)
]
, (7.76)

where

B = lim
∆ξ→0

∏

ξ,µ

(
∆ξ σ(ξ)

π

)1/4

(7.77)

is the normalization constant, such that
∫ Dp c∗[p]c[p] = 1. For the normal-

ization constant N occurring in (7.67) we take

N = lim
∆ξ→0

∏

ξ,µ

(
∆ξ

2π

)1/2

. (7.78)

From (7.74)–(7.76) and (7.67) we have

ψ[τ,X(ξ)] =

lim
∆ξ→0

∏

ξ,µ

∫ (
∆ξ

2π

)1/2(∆ξ σ(ξ)
π

)1/4
(

Λ√
|f |κ

)1/2

dpµ(ξ)

× exp

[
−∆ξ

2

Λ√
|f |κ

(
(pµ − pµ0 )2σ(ξ)− 2i

√
|f |κ
Λ

pµ(X
µ −Xµ

0 ) + iτpµp
µ

)]

× exp

[
iτ

2

∫
dnξ

√
|f |Λκ

]
.

(7.79)
We assume no summation over µ in the exponent of the above expression
and no integration (actually summation) over ξ, because these operations
are now already included in the product which acts on the whole expression.

Because of the factor

(
∆ξΛ√
|f |κ

)1/2

occurring in the measure and the same

factor in the exponent, the integration over p in eq. (7.79) can be performed
straightforwardly. The result is

ψ[τ,X] =

[
lim

∆ξ→0

∏
ξ,µ

(
∆ξ σ

π

)1/4( 1

σ + iτ

)1/2
]

× exp




∫
dnξ

Λ√
|f |κ




(
i

√
|f |κ
Λ (Xµ −Xµ

0 ) + pµ0σ

)2

2(σ + iτ)
− p20σ

2





×
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× exp

[
iτ

2

∫
dnξ

√
|f |Λκ

]
. (7.80)

Eq. (7.80) is a generalization of the familiar Gaussian wave packet. At
τ = 0 eq. (7.80) becomes

ψ[0, X] =

[
lim∆ξ→0

∏
ξ,µ

(
∆ξ
πσ

)1/4]
exp

[
−
∫

dnξ

√
|f |κ
Λ

(Xµ(ξ)−Xµ
0 (ξ))

2

2σ(ξ)

]

×exp
[
i

∫
p0µ(X

µ −Xµ
0 ) d

nξ

]
. (7.81)

The probability density is given by

|ψ[τ,X]|2 =

 lim
∆ξ→0

∏

ξ,µ

(
∆ξ σ

π

)1/2( 1

σ2 + τ2

)1/2



× exp


−

∫
dnξ

√
|f |κ
Λ

(Xµ −Xµ
0 − Λ√

|f |κ
pµ0τ)

2

(σ2 + τ2)/σ


 , (7.82)

and the normalization constant, although containing the infinitesimal ∆ξ,
gives precisely

∫ |ψ|2DX = 1.
From (7.82) we find that the motion of the centroid membrane of our

particular wave packet is determined by the equation

Xµ
c (τ, ξ) = Xµ

0 (ξ) +
Λ√
|f |κ p

µ
0 (ξ)τ. (7.83)

From the classical equation of motion [55] derived from (7.1) (see also (7.70),
(7.72)) we indeed obtain a solution of the form (7.83). At this point it is
interesting to observe that the classical null strings considered, within
different theoretical frameworks, by Schild [63] and Roshchupkin et al. [83]
also move according to equation (7.83).

A special choice of wave packet. The function σ(ξ) in eqs. (7.76)–
(7.82) is arbitrary; the choice of σ(ξ) determines how the wave packet is
prepared. In particular, we may consider Case 1 of Sec. 4.3 and take σ(ξ)
such that the wave packet of a (p+1)-dimensional membrane Vp+1 is peaked
around a space-like p-dimensional membrane Vp. This means that the wave
functional localizes Vp+1 much more sharply around Vp than in other regions
of spacetime. Effectively, such a wave packet describes the τ -evolution of
Vp (although formally it describes the τ -evolution of Vp+1). This can be
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clearly seen by taking the following limiting form of the wave packet (7.81),
such that

1

σ(ξ)
=

δ(ξ0 − ξ0Σ)
σ(ξi)(∂0Xµ∂0Xµ)1/2

, i = 1, 2, ..., p , (7.84)

and choosing

p0µ(ξ
a) = p̄0µ(ξ

i)δ(ξ0 − ξ0Σ). (7.85)

Then the integration over the δ-function gives in the exponent of eq. (7.81)
the expression

∫
dpξ

√
|f̄ |κ
Λ

(Xµ(ξi)−Xµ
0 (ξ

i))2
1

2σ(ξi)
+ i

∫
dpξ p̄0µ(X

µ(ξi)(ξi)−Xµ
0 (ξ

i)),

(7.86)
so that eq. (7.81) becomes a wave functional of a p-dimensional membrane
Xµ(ξi). Here again f̄ is the determinant of the induced metric on Vp, while
f is the determinant of the induced metric on Vp+1. One can verify that
such a wave functional (7.81), (7.86) satisfies the relation (7.50).

Considerations analogous to those described above hold for Case 2 as
well, so that a wave functional of a (p − 1)-brane can be considered as a
limiting case of a p-brane’s wave functional.

THE EXPECTATION VALUES
The expectation value of an operator Â is defined by

〈Â〉 =
∫
ψ∗[τ,X(ξ)] Â ψ[τ,X(ξ)]DX , (7.87)

where the invariant measure (see (4.16) in the membrane spaceM with the
metric (7.4) is

DX =
∏

ξ,µ

(√
|f(ξ)|κ
Λ

)1/2

dXµ(ξ). (7.88)

Using (7.74) we can express eq. (7.87) in the momentum space

〈Â〉 =
∫
DX DpDp′ c∗[p′]c[p]ψ∗p′Â ψp , (7.89)

where ψp is given in eq. (7.67). For the momentum operator6 we have
p̂µψ = pµ ψ, and eq. (7.89) becomes

6In order to distinguish operators from their eigenvalues we use here the hatted notation.
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〈p̂µ(ξ)〉 =
(7.90)

lim
∆ξ′→0

∏

ξ′,ν

∫ (
∆ξ′

2π

)(√|f |κ
Λ

)1/2

dXν(ξ′)

× exp

[
i∆ξ(pν − p0ν)(Xν −Xν

0 )

]

× exp


−i∆ξ

(√
|f |κ
Λ

)−1
(p′ν0p

′
0ν − pν0p0ν)τ


 pµ(ξ)c∗[p′]c[p]DpDp′.

The following relations are satisfied:

∏

ξ,µ

∫ (
∆ξ
2π

)(√|f |κ
Λ

)1/2

dXµ(ξ) exp
[
i∆ξ(p

′

µ − p0µ)(Xµ −Xµ
0 )
]

=
∏

ξµ

δ
(
p′µ(ξ)− pµ(ξ)

)

(√
|f |κ
Λ

)−1/2 , (7.91)

∏

ξ,µ

∫ (
∆ξ
2π

)(√|f |κ
Λ

)−1/2
dpµ(ξ) exp

[
i∆ξ pµ(X

′µ −Xµ)
]

=
∏

ξ,µ

δ (X ′µ(ξ)−Xµ(ξ))
(√

|f |κ
Λ

)1/2
. (7.92)

Using (7.92) in eq. (7.90) we have simply

〈p̂µ(ξ)〉 =
∫
Dp pµ(ξ)c∗[p]c[p]. (7.93)

Let us take for c[p] the expression (7.76). From (7.93), using the measure
(7.75), we obtain after the straightforward integration that the expectation
value of the momentum is equal to the centroid momentum p0µ of the
Gaussian wave packet (7.76):

〈p̂µ(ξ)〉 = pµ(ξ). (7.94)
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Another example is the expectation value of the membrane position
Xµ(ξ) with respect to the evolving wave packet (7.80):

〈X̂µ(ξ)〉 =
∫
DX ψ∗[τ,X(ξ)]Xµ(ξ)ψ[τ,X(ξ)]. (7.95)

Inserting the explicit expression (7.80), into (7.95) we find

〈X̂µ〉 = Xµ
0 (ξ) +

Λ√
|f |κ p

µ
0 (ξ)τ ≡ Xµ

c (τ, ξ), (7.96)

which is the correct expectation value, in agreement with that obtained
from the probability density (7.82).

Although the normalization constants in eqs. (7.76)-(7.82) contain the
infinitesimal ∆ξ, it turns out that, when calculating the expectation values,
∆ξ disappears from the expressions. Therefore our wave functionals (7.76)
and (7.80) with such normalization constants are well defined operationally.

CONCLUSION
We have started to elaborate a theory of relativistic p-branes which is

more general than the theory of conventional, constrained, p-branes. In the
proposed generalized theory, p-branes are unconstrained, but amongst the
solutions to the classical and quantum equations of motion there are also
the usual, constrained, p-branes. A strong motivation for such a general-
ized approach is the elimination of the well known difficulties due to the
presence of constraints. Since the p-brane theories are still at the stage of
development and have not yet been fully confronted with observations, it
makes sense to consider an enlarged set of classical and quantum p-brane
states, such as, e.g., proposed in the present and some previous works [53]–
[55]. What we gain is a theory without constraints, still fully relativistic,
which is straightforward both at the classical and the quantum level, and
is not in conflict with the conventional p-brane theory.

Our approach might shed more light on some very interesting develop-
ments concerning the duality [84], such as one of strings and 5-branes, and
the interesting interlink between p-branes of various dimensions p. In this
chapter we have demonstrated how a higher-dimensional p-brane equation
naturally contains lower-dimensional p-branes as solutions.

The highly non-trivial concept of unconstrained membranes enables us
to develop the elegant formulation of “point particle” dynamics in the
infinite-dimensional space M. It is fascinating that the action, canonical
and Hamilton formalism, and, after quantization, the Schrödinger equation
all look like nearly trivial extensions of the correspondings objects in the
elegant Fock–Stueckelberg–Schwinger–DeWitt proper time formalism for a
point particle in curved space. Just this “triviality”, or better, simplicity, is
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a distinguished feature of our approach and we have reasons to expect that
also the p-brane gauge field theory —not yet a completely solved problem—
can be straightforwardly formulated along the lines indicated here.

7.2. CLIFFORD ALGEBRA AND
QUANTIZATION

PHASE SPACE
Let us first consider the case of a 1-dimensional coordinate variable q

and its conjugate momentum p. The two quantities can be considered as
coordinates of a point in the 2-dimensional phase space. Let eq and ep be
the basis vectors satisfying the Clifford algebra relations

eq · ep ≡ 1
2(eqep + epeq) = 0, (7.97)

e2q = 1 , e2p = 1. (7.98)

An arbitrary vector in phase space is then

Q = qeq + pep. (7.99)

The product of two vectors ep and eq is the unit bivector in phase space
and it behaves as the imaginary unit

i = epeq , i2 = −1. (7.100)

The last relation immediately follows from (7.97), (7.98): i2 = epeqepeq =
−e2pe2q = −1.

Multiplying (7.99) respectively from the right and from the left by eq we
thus introduce the quantities Z and Z∗:

Qeq = q + pepeq = q + pi = Z, (7.101)

eqQ = q + peqep = q − pi = Z∗. (7.102)

For the square we have

QeqeqQ = ZZ∗ = q2 + p2 + i(pq − qp), (7.103)

eqQQeq = Z∗Z = q2 + p2 − i(pq − qp). (7.104)
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Upon quantization q, p do not commute, but satisfy

[q, p] = i, (7.105)

therefore (7.103), (7.104) become

ZZ∗ = q2 + p2 + 1, (7.106)

Z∗Z = q2 + p2 − 1, (7.107)

[Z,Z∗] = 2. (7.108)

Even before quantization the natural variables for describing physics are
the complex quantity Z and its conjugate Z∗. The imaginary unit is the
bivector of the phase space, which is 2-dimensional.

Writing q = ρ cosφ and p = ρ sinφ we find

Z = ρ(cosφ+ i sinφ) = ρ eiφ , (7.109)

Z∗ = ρ(cosφ− i sinφ) = ρ e−iφ , (7.110)

where ρ and φ are real numbers. Hence taking into account that physics
takes place in the phase space and that the latter can be described by
complex numbers, we automatically introduce complex numbers into both
the classical and quantum physics. And what is nice here is that the complex
numbers are nothing but the Clifford numbers of the 2-dimensional phase
space.

What if the configuration space has more than one dimension, say n?
Then with each spatial coordinate is associated a 2-dimensional phase space.
The dimension of the total phase space is then 2n. A phase space vector
then reads

Q = qµeqµ + pµepµ. (7.111)

The basis vectors have now two indices q, p (denoting the direction in the
2-dimensional phase space) and µ = 1, 2, ..., n (denoting the direction in the
n-dimensional configuration space).

The basis vectors can be written as the product of the configuration space
basis vectors eµ and the 2-dimensional phase space basis vectors eq, ep:

eqµ = eqeµ , epµ = epeµ . (7.112)

A vector Q is then

Q = (qµeq + pµep)eµ = Qµeµ , (7.113)
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where
Qµ = qµeq + pµep. (7.114)

Eqs. (7.101), (7.102) generalize to

Qµeq = qµ + pµepeq = qµ + pµi = Zµ , (7.115)

eqQ
µ = qµ + pµeqep = qµ − pµi = Z∗µ. (7.116)

Hence, even if configuration space has many dimensions, the imaginary
unit i in the variables Xµ comes from the bivector eqep of the 2-dimensional
phase space which is associated with every direction µ of the configuration
space.

When passing to quantum mechanics it is then natural that in general
the wave function is complex-valued. The imaginary unit is related to the
phase space which is the direct product of the configuration space and the
2-dimensional phase space.

At this point let us mention that Hestenes was one of the first to point
out clearly that imaginary and complex numbers need not be postulated
separately, but they are automatically contained in the geometric calculus
based on Clifford algebra. When discussing quantum mechanics Hestenes
ascribes the occurrence of the imaginary unit i in the Schrödinger and
especially in the Dirac equation to a chosen configuration space Clifford
number which happens to have the square −1 and which commutes with
all other Clifford numbers within the algebra. This brings an ambiguity as
to which of several candidates should serve as the imaginary unit i. In this
respect Hestenes had changed his point of view, since initially he proposed
that one must have a 5-dimensional space time whose pseudoscalar unit
I = γ0γ1γ2γ3γ4 commutes with all the Clifford numbers of C5 and its square
is I2 = −1. Later he switched to 4-dimensional space time and chose the
bivector γ1γ2 to serve the role of i. I regard this as unsatisfactory, since
γ2γ3 or γ1γ3 could be given such a role as well. In my opinion it is more
natural to ascribe the role of i to the bivector of the 2-dimensional phase
space sitting at every coordinate of the configuration space. A more detailed
discussion about the relation between the geometric calculus in a generic 2-
dimensional space (not necessarily interpreted as phase space) and complex
number is to be found in Hestenes’ books [22].

WAVE FUNCTION AS A POLYVECTOR
We have already seen in Sec. 2.5 that a wave function can in general be

considered as a polyvector, i.e., as a Clifford number or Clifford aggregate
generated by a countable set of basis vectors eµ. Such a wave function
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contains spinors, vectors, tensors, etc., all at once. In particular, it may
contain only spinors, or only vectors, etc. .

Let us now further generalize this important procedure. In Sec. 6.1 we
have discussed vectors in an infinite-dimensional space V∞ from the point
of view of geometric calculus based on the Clifford algebra generated by the
uncountable set of basis vectors h(x) of V∞. We now apply that procedure
to the case of the wave function which, in general, is complex-valued.

For an arbitrary complex function we have

f(x) =
1√
2
(f1(x) + if2(x)) , f∗(x) =

1√
2
(f1(x)− if2(x)) , (7.117)

where f1(x), f2(x) are real functions. From (7.117) we find

f1(x) =
1√
2
(f(x) + f∗(x)) , f2(x) =

1

i
√
2
(f(x)− f∗(x)). (7.118)

Hence, instead of a complex function we can consider a set of two indepen-
dent real functions f1(x) and f2(x).

Introducing the basis vectors h1(x) and h2(x) satisfying the Clifford al-
gebra relations

hi(x) · hj(x′) ≡ 1
2(hi(x)hj(x

′) + hj(x
′)hi(x)) = δijδ(x− x′) , i, j = 1, 2,

(7.119)
we can expand an arbitrary vector F according to

F =

∫
dx(f1(x)h1(x) + f2(x)h2(x)) = f i(x)hi(x) , (7.120)

where hi(x) ≡ hi(x), f i(x) ≡ fi(x). Then

F · h1(x) = f1(x) , F · h2(x) = f2(x) (7.121)

are components of F .
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Introducing the imaginary unit i which commutes7 with hi(x) we can
form a new set of basis vectors

h(x) =
h1(x) + ih2(x)√

2
, h∗(x) =

h1(x)− ih2(x)√
2

, (7.122)

the inverse relations being

h1(x) =
h(x) + h∗(x)√

2
, h2(x) =

h(x)− h∗(x)
i
√
2

. (7.123)

Using (7.118), (7.123) and (7.120) we can re-express F as

F =

∫
dx(f(x)h∗(x) + f∗(x)h(x)) = f (x)h(x) + f∗(x)h∗(x) , (7.124)

where

f (x) ≡ f∗(x) , f∗(x) ≡ f(x) , h(x) ≡ h(x) , h∗(x) ≡ h∗(x). (7.125)

From (7.119) and (7.123) we have

h(x) · h∗(x) ≡ 1
2(h(x)h

∗(x′) + h∗(x′)h(x)) = δ(x− x′) , (7.126)

h(x) · h(x′) = 0 , h∗(x) · h∗(x′) = 0 , (7.127)

which are the anticommutation relations for a fermionic field.
A vector F can be straightforwardly generalized to a polyvector:

F = f i(x)hi(x) + f i(x)j(x
′)hi(x)hj(x′) + f i(x)j(x

′)k(x′′)hi(x)hj(x′)hk(x′′) + ...

= f (x)h(x) + f (x)(x
′)h(x)h(x′) + f (x)(x

′)(x′′)h(x)h(x′)h(x′′) + ...

+ f∗(x)h∗(x) + f∗(x)(x
′)h∗(x)h

∗
(x′) + f∗(x)(x

′)(x′′)h∗(x)h
∗
(x′)h

∗
(x′′) + ...

(7.128)

7Now, the easiest way to proceed is in forgetting how we have obtained the imaginary unit,
namely as a bivector in 2-dimensional phase space, and define all the quantities i, h1(x), h2(x),
etc., in such a way that i commutes with everything. If we nevertheless persisted in maintaining
the geometric approach to i, we should then take h1(x) = e(x), h2(x) = e(x)epeq , satisfying

h1(x) · h1(x′) = e(x) · e(x′) = δ(x− x′),
h2(x) · h2(x) = −δ(x− x′),
h1(x) · h2(x′) = δ(x− x′)1 · (epeq) = 0,

where according to Hestenes the inner product of a scalar with a multivector is zero. Introducing
h = (h1 + h2)/

√
2 and h∗ = (h1 − h2)/

√
2 one finds h(x) · h∗(x′) = δ(x − x′), h(x) · h(x′) = 0,

h∗(x) · h∗(x′) = 0.
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where f (x)(x
′)(x′′)... are scalar coefficients, antisymmetric in (x)(x′)(x′′)...

We have exactly the same expression (7.128) in the usual quantum field
theory (QFT), where f (x), f (x)(x

′),..., are 1-particle, 2-particle,..., wave
functions (wave packet profiles). Therefore a natural interpretation of the
polyvector F is that it represents a superposition of multi-particle states.

In the usual formulation of QFT one introduces a vacuum state |0〉, and
interprets h(x), h∗(x) as the operators which create or annihilate a particle
or an antiparticle at x, so that (roughly speaking) e.g. h∗(x)|0〉 is a state
with a particle at position x.

In the geometric calculus formulation (based on the Clifford algebra of
an infinite-dimensional space) the Clifford numbers h∗(x), h(x) already
represent vectors. At the same time h∗(x), h(x) also behave as operators,
satisfying (7.126), (7.127). When we say that a state vector is expanded
in terms of h∗(x), h(x) we mean that it is a superposition of states in
which a particle has a definite position x. The latter states are just h∗(x),
h(x). Hence the Clifford numbers (operators) h∗(x), h(x) need not act on
a vacuum state in order to give the one-particle states. They are already
the one-particle states. Similarly the products h(x)h(x′), h(x)h(x′)h(x′′),
h∗(x)h∗(x′), etc., already represent the multi-particle states.

When performing quantization of a classical system we arrived at the
wave function. The latter can be considered as an uncountable (infinite) set
of scalar components of a vector in an infinite-dimensional space, spanned
by the basis vectors h1(x), h2(x). Once we have basis vectors we auto-
matically have not only arbitrary vectors, but also arbitrary polyvectors
which are Clifford numbers generated by h1(x), h2(x) (or equivalently by
h(x), h∗(x). Hence the procedure in which we replace infinite-dimensional
vectors with polyvectors is equivalent to the second quantization.

If one wants to consider bosons instead of fermions one needs to introduce
a new type of fields ξ1(x), ξ2(x), satisfying the commutation relations

1
2 [ξi(x), ξj(x

′)] ≡ 1
2 [ξi(x)ξj(x

′)− ξj(x′)ξi(x)] = εij∆(x− x′)12 , (7.129)

with εij = −εji, ∆(x − x′) = −∆(x′ − x), which stay instead of the an-
ticommutation relations (7.119). Hence the numbers ξ(x) are not Clifford
numbers. By (7.129) the ξi(x) generate a new type of algebra, which could
be called an anti-Clifford algebra.

Instead of ξi(x) we can introduce the basis vectors

ξ(x) =
ξ1(x) + iξ2√

2
, ξ∗(x) =

ξ1(x)− iξ2√
2

(7.130)

which satisfy the commutation relations

[ξ(x), ξ∗(x′)] = −i∆(x− x′), (7.131)
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[ξ(x), ξ(x′)] = 0 , [ξ∗(x), ξ∗(x′)] = 0. (7.132)

A polyvector representing a superposition of bosonic multi-particle states
is then expanded as follows:

B = φi(x)ξi(x) + φi(x)j(x
′)ξi(x)ξj(x′) + ... (7.133)

= φ(x)ξ(x) + φ(x)(x
′)ξ(x)ξ(x′) + φ(x)(x

′)(x′′)ξ(x)ξ(x′)ξ(x′′) + ...

+φ∗(x)ξ∗(x) + φ∗(x)(x
′)ξ∗(x)ξ

∗
(x′) + φ∗(x)(x

′)(x′′)ξ∗(x)ξ
∗
(x′)ξ

∗
(x′′) + ... ,

where φi(x)j(x
′)... and φ(x)(x

′)..., φ∗(x)(x
′)(x′′)... are scalar coefficients, symmet-

ric in i(x)j(x′)... and (x)(x′)..., respectively. They can be interpreted as rep-
resenting 1-particle, 2-particle,..., wave packet profiles. Because of (7.131)
ξ(x) and ξ∗(x) can be interpreted as creation operators for bosons. Again,
a priori we do not need to introduce a vacuum state. However, whenever
convenient we may, of course, define a vacuum state and act on it by the
operators ξ(x), ξ∗(x).

EQUATIONS OF MOTION FOR BASIS VECTORS
In the previous subsection we have seen how the geometric calculus na-

turally leads to the second quantization which incorporates superpositions
of multi-particle states. We shall now investigate what are the equations of
motion that the basis vectors satisfy.

For illustration let us consider the action for a real scalar field φ(x):

I[φ] = 1
2

∫
d4x (∂µφ∂

µφ−m2). (7.134)

Introducing the metric

ρ(x, x′) = h(x) · h(x′) ≡ 1
2(h(x)h(x

′) + h(x′)h(x)) (7.135)

we have

I[φ] = 1
2

∫
dx dx′

(
∂µφ(x)∂

′µφ(x′)−m2φ(x)φ(x′)
)
h(x)h(x′). (7.136)

If, in particular,
ρ(x, x′) = h(x) · h(x′) = δ(x− x′) (7.137)

then the action (7.136) is equivalent to (7.134).
In general, ρ(x, x′) need not be equal to δ(x − x′), and (7.136) is then

a generalization of the usual action (7.134) for the scalar field. An action
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which is invariant under field redefinitions (‘coordinate’ transformations in
the space of fields) has been considered by Vilkovisky [85]. Integrating
(7.136) per partes over x and x′ and omitting the surface terms we obtain

I[φ] = 1
2

∫
dx dx′ φ(x)φ(x′)

(
∂µh(x)∂

′µh(x′)−m2h(x)h(x′)
)
. (7.138)

Derivatives no longer act on φ(x), but on h(x). If we fix φ(x) then instead
of an action for φ(x) we obtain an action for h(x).

For instance, if we take

φ(x) = δ(x− y) (7.139)

and integrate over y we obtain

I[h] =
1

2

∫
dy

(
∂h(y)

∂yµ
∂h(y)

∂yµ
−m2h2(y)

)
. (7.140)

The same equation (7.140), of course, follows directly from (7.136) in
which we fix φ(x) according to (7.139).

On the other hand, if instead of φ(x) we fix h(x) according to (7.137),
then we obtain the action (7.134) which governs the motion of φ(x).

Hence the same basic expression (7.136) can be considered either as an
action for φ(x) or an action for h(x), depending on which field we consider
as fixed and which one as a variable. If we consider the basis vector field
h(x) as a variable and φ(x) as fixed according to (7.139), then we obtain
the action (7.140) for h(x). The latter field is actually an operator. The
procedure from now on coincides with the one of quantum field theory.

Renaming yµ as xµ (7.140) becomes an action for a bosonic field:

I[h] = 1
2

∫
dx (∂µh∂

µh−m2h2). (7.141)

The canonically conjugate variables are

h(t,x) and π(t,x) = ∂L/∂ḣ = ḣ(t,x).

They satisfy the commutation relations

[h(t,x), π(t,x′) = iδ3(x− x′) , [h(t,x), h(t,x′)] = 0. (7.142)

At different times t′ 6= t we have

[h(x), h(x′)] = i∆(x− x′) , (7.143)
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where ∆(x−x′) is the well known covariant function, antisymmetric under
the exchange of x and x′.

The geometric product of two vectors can be decomposed as

h(x)h(x′) = 1
2

(
h(x)h(x′) + h(x′)h(x)

)
+ 1

2

(
h(x)h(x′)− h(x′)h(x)) .

(7.144)
In view of (7.143) we have that the role of the inner product is now given
to the antisymmetric part, whilst the role of the outer product is given to
the symmetric part. This is characteristic for bosonic vectors; they generate
what we shall call the anti-Clifford algebra. In other words, when the basis
vector field h(x) happens to satisfy the commutation relation

[h(x), h(x′)] = f(x, x′), (7.145)

where f(x, x′) is a scalar two point function (such as i∆(x−x′)), it behaves
as a bosonic field. On the contrary, when h(x) happens to satisfy the
anticommutation relation

{h(x), h(x′)} = g(x, x′), (7.146)

where g(x, x′) is also a scalar two point function, then it behaves as a
fermionic field8

The latter case occurs when instead of (7.134) we take the action for the
Dirac field:

I[ψ, ψ̄] =

∫
d4x ψ̄(x)(iγµ∂µ −m)ψ(x). (7.147)

Here we are using the usual spinor representation in which the spinor field
ψ(x) ≡ ψα(x) bears the spinor index α. A generic vector is then

Ψ =

∫
dx
(
ψ̄α(x)hα(x) + ψα(x)h̄α(x)

)

≡
∫

dx
(
ψ̄(x)h(x) + ψ(x)h̄(x)

)
. (7.148)

Eq. (7.147) is then equal to the scalar part of the action

I[ψ, ψ̄] =

∫
dx dx′ ψ̄(x′)h̄(x)h(x′)(iγµ∂µ −m)ψ(x)

=

∫
dx dx′ ψ̄(x′)

[
h̄(x)(iγµ −m)h(x′)

]
ψ(x), (7.149)

where h(x), h̄(x) are assumed to satisfy

h̄(x) · h(x′) ≡ 1
2

(
h̄(x)h(x′) + h(x′)h̄(x)

)
= δ(x− x′) (7.150)

8In the previous section the bosonic basis vectors were given a separate name ξ(x). Here we
retain the same name h(x) both for bosonic and fermionic basis vectors.
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The latter relation follows from the Clifford algebra relations amongst the
basis fields hi(x), i = 1, 2,

hi(x) · hj(x′) = δij(x− x′) (7.151)

related to h̄(x), h(x) accroding to

h1(x) =
h(x) + h̄(x)√

2
, h2(x) =

h(x)− h̄(x)
i
√
2

. (7.152)

Now we relax the condition (7.150) and (7.149) becomes a generalization
of the action (7.147).

Moreover, if in (7.149) we fix the field ψ according to

ψ(x) = δ(x− y), (7.153)

integrate over y, and rename y back into x, we find

I[h, h̄] =

∫
dx h̄(x)(iγµ∂µ −m)h(x). (7.154)

This is an action for the basis vector field h(x), h̄(x), which are operators.
The canonically conjugate variables are now

h(t,x) and π(t,x) = ∂L/∂ḣ = ih̄γ0 = ih†.

They satisfy the anticommutation relations

{h(t,x), h†(t,x′} = δ3(x− x′), (7.155)

{h(t,x), h(t,x′)} = {h†(t,x), h†(t,x′)} = 0. (7.156)

At different times t′ 6= t we have

{h(x), h̄(x′)} = (iγµ +m)i∆(x− x′), (7.157)

{h(x), h(x′)} = {h̄(x), h̄(x′)} = 0. (7.158)

The basis vector fields hi(x), i = 1, 2, defined in (7.152) then satisfy

{hi(x), hj(x′)} = δij(iγ
µ +m)i∆(x− x′), (7.159)

which can be written as the inner product

hi(x) · hj(x′) = 1
2δij(iγ

µ +m)i∆(x− x′) = ρ(x, x′) (7.160)
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with the metric ρ(x, x′). We see that our procedure leads us to a metric
which is different from the metric assumed in (7.151).

Once we have basis vectors we can form an arbitrary vector according to

Ψ =

∫
dx

(
ψ(x)h̄(x) + ψ̄(x)h(x)

)
= ψ(x)h(x) + ψ̄(x)h̄(x). (7.161)

Since the h(x) generates a Clifford algebra we can form not only a vector
but also an arbitrary multivector and a superposition of multivectors, i.e.,
a polyvector (or Clifford aggregate):

Ψ =

∫
dx

(
ψ(x)h̄(x) + ψ̄(x)h(x)

)

+

∫
dx dx′

(
ψ(x, x′)h̄(x)h̄(x′) + ψ̄(x, x′)h(x)h(x′)

)
+ ...

= ψ(x)h(x) + ψ(x)(x′)h(x)h(x′) + ...

+ ψ̄(x)h̄(x) + ψ̄(x)(x′)h̄(x)h̄(x′) + ... , (7.162)

where ψ(x, x′, ...) ≡ ψ̄(x)(x′)..., ψ̄(x, x′, ...) ≡ ψ(x)(x′)... are antisymmetric
functions, interpreted as wave packet profiles for a system of free fermions.

Similarly we can form an arbitrary polyvector

Φ =

∫
dxφ(x)h(x) +

∫
dx dx′ φ(x, x′)h(x)h(x′) + ...

≡ φ(x)h(x) + φ(x)(x
′)h(x)h(x′) + ... (7.163)

generated by the basis vectors which happen to satisfy the commutation
relations (7.142). In such a case the uncountable set of basis vectors behaves
as a bosonic field. The corresponding multi-particle wave packet profiles
φ(x, x′, ...) are symmetric functions of x, x′,... . If one considers a complex
field, then the equations (7.141)–(7.142) and (7.163) are generalized in an
obvious way.

As already mentioned, within the conceptual scheme of Clifford algebra
and hence also of anti-Clifford algebra we do not need, if we wish so, to
introduce a vacuum state9, since the operators h(x), h̄(x) already represent
states. From the actions (7.141), (7.147) we can derive the corresponding
Hamiltonian, and other relevant operators (e.g., the generators of spacetime
translations, Lorentz transformations, etc.). In order to calculate their
expectation values in a chosen multi-particle state one may simply sandwich
those operators between the state and its Hermitian conjugate (or Dirac

9Later, when discussing the states of the quantized p-brane, we nevertheless introduce a vacuum
state and the set of orthonormal basis states spanning the Fock space.
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conjugate) and take the scalar part of the expression. For example, the
expectation value of the Hamiltonian H in a bosonic 2-particle state is

〈H〉 = 〈
∫

dx dx′ φ(x, x′)h(x)h(x′)H
∫

dx′′ dx′′′ φ(x′′, x′′′)h(x′′)h(x′′′)〉0,
(7.164)

where, in the case of the real scalar field,

H = 1
2

∫
d3x(ḣ2(x)− ∂ih∂ih+m2h2). (7.165)

Instead of performing the operation 〈 〉0 (which means taking the scalar
part), in the conventional approach to quantum field theory one performs
the operation 〈0|....|0〉 (i.e., taking the vacuum expectation value). How-
ever, instead of writing, for instance,

〈0|a(k)a∗(k′)|0〉 = 〈0|[a(k), a∗(k′)]|0〉 = δ3(k− k′), (7.166)

we can write

〈a(k)a∗(k′)〉0 = 1
2〈a(k)a∗(k′) + a∗(k′)a(k)〉0

+ 1
2〈a(k)a∗(k′)− a∗(k′)a(k)〉0

= 1
2δ

3(k− k′), (7.167)

where we have taken into account that for a bosonic operator the symmetric
part is not a scalar. Both expressions (7.166) and (7.167) give the same
result, up to the factor 1

2 which can be absorbed into the normalization of
the states.

We leave to the interested reader to explore in full detail (either as an
exercise or as a research project), for various operators and kinds of field,
how much the results of the above procedure (7.164) deviate, if at all, from
those of the conventional approach. Special attention should be paid to
what happens with the vacuum energy (the cosmological constant prob-
lem) and what remains of the anomalies. According to a very perceptive
explanation provided by Jackiw [86], anomalies are the true physical effects
related to the choice of vacuum (see also Chapter 3). So they should be
present, at least under certain circumstances, in the procedure like (7.164)
which does not explicitly require a vacuum. I think that, e.g. for the
Dirac field our procedure, in the language of QFT means dealing with
bare vacuum. In other words, the momentum space Fourier transforms of
the vectors h(x), h̄(x) represent states which in QFT are created out of
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the bare vacuum. For consistency reasons, in QFT the bare vacuum is re-
placed by the Dirac vacuum, and the creation and annihilation operators
are redefined accordingly. Something analogous should also be done in our
procedure.

QUANTIZATION OF THE STUECKELBERG FIELD

In Part I we have paid much attention to the unconstrained theory which
involves a Lorentz invariant evolution parameter τ . We have also seen that
such an unconstrained Lorentz invariant theory is embedded in a polyvector
generalization of the theory. Upon quantization we obtain the Schrödinger
equation for the wave function ψ(τ, xµ):

i
∂ψ

∂τ
=

1

2Λ
(−∂µ∂µ − κ2)ψ. (7.168)

The latter equation follows from the action

I[ψ,ψ∗] =
∫

dτ d4x

(
iψ∗

∂ψ

∂τ
− Λ

2
(∂µψ

∗∂µψ − κ2ψ∗ψ)
)
. (7.169)

This is equal to the scalar part of

I[ψ,ψ∗] =
∫

dτ dτ ′ dx dx′
[
iψ∗(τ ′, x′)

∂ψ(τ, x)

∂τ
− Λ

2
(∂′µψ

∗(τ ′, x′)∂µψ(τ, x)

−κ2ψ∗(τ ′, x′)ψ(τ, x)
]
h∗(τ, x)h(τ ′, x′)

=

∫
dτ dτ ′ dx dx′ ψ∗(τ ′, x′)ψ(τ, x)

×
[
−i∂h

∗(τ, x)
∂τ

h(τ ′, x′)

− Λ

2

(
∂µh

∗(τ, x)∂′µh(τ ′, x′)− κ2h∗(τ, x)h(τ ′, x′)
)]

(7.170)
where h(τ ′, x′), h∗(τ, x) are assumed to satisfy

h(τ ′, x′) · h∗(τ, x) ≡ 1
2

(
h(τ ′, x′)h∗(τ, x) + h∗(τ, x)h(τ ′, x′)

)
,

= δ(τ − τ ′)δ4(x− x′)

h(τ, x) · h(τ ′, x′) = 0 , h∗(τ, x) · h∗(τ ′, x′) = 0. (7.171)
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The relations above follow, as we have seen in previous subsection (eqs. (7.119)–
(7.127)) from the Clifford algebra relations amongst the basis fields hi(x),
i = 1, 2,

hi(τ, x) · hj(τ ′, x′) = δijδ(τ − τ ′)δ(x− x′) (7.172)

related to h(τ, x), h∗(τ, x) according to

h1 =
h+ h∗√

2
, h2 =

h− h∗
i
√
2
. (7.173)

Let us now relax the condition (7.171) so that (7.170) becomes a gener-
alization of the original action (7.169).

Moreover, if in (7.170) we fix the field ψ according to

ψ(τ, x) = δ(τ − τ ′)δ4(x− x′), (7.174)

integrate over τ ′, x′, and rename τ ′, x′ back into τ , x, we find

I[h, h∗] =
∫

dτ d4x

[
ih∗

∂h

∂τ
− Λ

2
(∂µh

∗∂µh− κ2h∗h)
]
, (7.175)

which is an action for basis vector fields h(τ, x), h∗(τ, x). The latter fields
are operators.

The usual canonical procedure then gives that the field h(x) and its
conjugate momentum π = ∂L/∂ḣ = ih∗, where ḣ ≡ ∂h/∂τ , satisfy the
commutation relations

[h(τ, x), π(τ ′, x′)]|τ ′=τ = iδ(x− x′),
[h(τ, x), h(τ ′, x′)]τ ′=τ = [h∗(τ, x), h∗(τ ′, x′)]τ ′=τ = 0. (7.176)

From here on the procedure goes along the same lines as discussed in Chap-
ter 1, Section 4.

QUANTIZATION OF THE PARAMETRIZED DIRAC FIELD

In analogy with the Stueckelberg field we can introduce an invariant
evolution parameter for the Dirac field ψ(τ, xµ). Instead of the usual Dirac
equation we have

i
∂ψ

∂τ
= −iγµ∂µψ. (7.177)

The corresponding action is

I[ψ, ψ̄] =

∫
dτ d4x

(
iψ̄
∂ψ

∂τ
+ iψ̄γµ∂µψ

)
. (7.178)
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Introducing a basis h(τ, x) in function space so that a generic vector can
be expanded according to

Ψ =

∫
dτ dx

(
ψ̄α(τ, x)hα(τ, x) + ψα(τ, x)h̄α(τ, x)

)

≡
∫

dτ dx
(
ψ̄(τ, x)h(τ, x) + ψ(τ, x)h̄(τ, x)

)
. (7.179)

We can write (7.178) as the scalar part of

I[ψ, ψ̄] =

∫
dτ dτ ′ dx dx′ iψ̄(τ ′, x′)h̄(τ, x)h(τ ′, x′)

(
∂ψ(τ, x)

∂τ
+ iγµ∂µψ(τ, x)

)
,

(7.180)
where we assume

h̄(τ, x) · h(τ ′, x′) ≡ 1
2

(
h̄(τ, x)h(τ ′, x′) + h(τ ′, x′)h̄(τ, x)

)

= δ(τ − τ ′)δ(x− x′) (7.181)

For simplicity, in the relations above we have suppressed the spinor indices.
Performing partial integrations in (7.180) we can switch the derivatives

from ψ to h, as in (7.149):

I =

∫
dτ dτ ′ dx dx′ ψ̄(τ, x) (7.182)

×
[
−i h̄(τ, x)

∂τ
h(τ ′, x′)− iγµ∂µh̄(τ, x)h(τ ′, x′)

]
ψ(τ ′, x′).

We now relax the condition (7.181). Then eq. (7.182) is no longer equiv-
alent to the action (7.178). Actually we shall no more consider (7.182) as
an action for ψ. Instead we shall fix10 ψ according to

ψ(τ, x) = δ(τ − τ ′)δ4(x− x′). (7.183)

Integrating (7.182) over τ ′′, x′′ and renaming τ ′′, x′′ back into τ , x, we
obtain an action for basis vector fields h(τ, x), h̄(τ, x):

I[h, h̄] =

∫
dτ d4x

[
ih̄
∂h

∂τ
+ ih̄γµ∂µh

]
. (7.184)

Derivatives now act on h, since we have performed additional partial inte-
grations and have omitted the surface terms.

10Taking also the spinor indices into account, instead of (7.183) we have

ψα(τ, x) = δα,α′δ(τ − τ ′′)δ4(x− x′′).
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Again we have arrived at an action for field operators h, h̄. The equations
of motion (the field equations) are

i
∂h

∂τ
= −iγµ∂µh. (7.185)

The canonically conjugate variables are h and π = ∂L/∂ḣ = ih̄, and they
satisfy the anticommutation relations

{h(τ, x), π(τ ′, x′)}|τ ′=τ = iδ(x− x′), (7.186)

or

{h(τ, x), h̄(τ ′, x′)}|τ ′=τ = δ(x− x′), (7.187)

and

{h(τ, x), h(τ ′, x′)}|τ ′=τ = {h̄(τ, x), h̄(τ ′, x′)}|τ ′=τ = 0. (7.188)

The anticommutation relations above being satisfied, the Heisenberg
equation

∂h

∂τ
= i[h,H] , H =

∫
dx ih̄γµ∂µh , (7.189)

is equivalent to the field equation (7.185).

QUANTIZATION OF THE p-BRANE:
A GEOMETRIC APPROACH

We have seen that a field can be considered as an uncountable set of
components of an infinite-dimensional vector. Instead of considering the
action which governs the dynamics of components, we have considered the
action which governs the dynamics of the basis vectors. The latter behave
as operators satisfying the Clifford algebra. The quantization consisted
of the crucial step in which we abolished the requirement that the basis
vectors satisfy the Clifford algebra relations for a “flat” metric in function
space (which is proportional to the δ-function). We admitted an arbitrary
metric in principle. The action itself suggested which are the (commutation
or anti commutation) relations the basis vectors (operators) should satisfy.
Thus we arrived at the conventional procedure of the field quantization.

Our geometric approach brings a new insight about the nature of field
quantization. In the conventional approach classical fields are replaced by
operators which satisfy the canonical commutation or anti-commutation
relations. In the proposed geometric approach we observe that the field
operators are, in fact, the basis vectors h(x). By its very definition a basis
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vector h(x), for a given x, “creates” a particle at the position x. Namely,
an arbitrary vector Φ is written as a superposition of basis vectors

Φ =

∫
dx′ φ(x′)h(x′) (7.190)

and φ(x) is “the wave packet” profile. If in particular φ(x′) = δ(x′ − x),
i.e., if the “particle” is located at x, then

Φ = h(x). (7.191)

We shall now explore further the possibilities brought by such a geometric
approach to quantization. Our main interest is to find out how it could be
applied to the quantization of strings and p-branes in general. In Sec. 4.2,
we have found out that a conventional p-brane can be described by the
following action

I[Xα(ξ)(τ)] =

∫
dτ ′ ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = ρα(φ′)β(φ′′)Ẋ
α(φ′)Ẋβ(φ′′),

(7.192)
where

ρα(φ′)β(φ′′) =
κ
√
|f |√
Ẋ2

δ(τ ′ − τ ′′)δ(ξ′ − ξ′′)gαβ . (7.193)

Here Ẋα(φ) ≡ Ẋα(τ,ξ) ≡ Ẋα(ξ)(τ), where ξ ≡ ξa are the p-brane coordinates,
and φ ≡ φA = (τ, ξa) are coordinates of the world surface which I call
worldsheet.

If theM-space metric ρα(φ′)β(φ′′) is different from (7.193), then we have
a deviation from the usual Dirac–Nambu–Goto p-brane theory. Therefore
in the classical theory ρα(φ′)β(φ′′) was made dynamical by adding a suitable
kinetic term to the action.

Introducing the basis vectors hα(φ) satisfying

hα(φ′) · hβ(φ′′) = ρα(φ′)β(φ′′) (7.194)

we have
I[Xα(φ)] = hα(φ′)hβ(φ′′)Ẋ

α(φ′)Ẋβ(φ′′). (7.195)

Here hα(φ′) are fixed while Xα(φ′) are variables. If we now admit that hα(φ′)
also change with τ , we can perform the partial integrations over τ ′ and τ ′′

so that eq. (7.195) becomes

I = ḣα(φ′)ḣβ(φ′′)X
α(φ′)Xβ(φ′′). (7.196)
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We now assume that Xα(φ′) is an arbitrary configuration, not necessarily
the one that solves the variational principle (7.192). In particular, let us
take

Xα(φ′) = δα(φ
′)
µ(φ) , Xβ(φ′′) = δβ(φ

′′)
µ(φ), (7.197)

which means that our p-brane is actually a point at the values of the pa-
rameters φ ≡ (τ, ξa) and the value of the index µ. So we have

I0 = ḣµ(φ)ḣµ(φ) no sum and no integration. (7.198)

By taking (7.197) we have in a sense “quantized” the classical action. The
above expression is a “quantum” of (7.192).

Integrating (7.198) over φ and summing over µ we obtain

I[hµ(φ)] =

∫
dφ

∑

µ

ḣµ(φ)ḣµ(φ). (7.199)

The latter expression can be written as11

I[hµ(φ)] =

∫
dφ dφ′ δ(φ− φ′)ηµν ḣ(φ)ḣν(φ′)

≡ ηµ(φ)ν(φ
′)ḣµ(φ)ḣν(φ′), (7.200)

where

ηµ(φ)ν(φ
′) = ηµνδ(φ− φ′) (7.201)

is the flatM-space metric. In general, of course,M-space is not flat, and
we have to use arbitrary metric. Hence (7.200) generalizes to

I[hµ(φ)] = ρµ(φ)ν(φ
′)ḣµ(φ)ḣν(φ′), (7.202)

where

ρµ(φ)ν(φ
′) = hµ(φ) · hν(φ′) = 1

2(h
µ(φ)hν(φ

′) + hν(φ
′)hµ(φ)). (7.203)

Using the expression (7.203), the action becomes

I[hµ(φ)] = hµ(φ)hν(φ
′)ḣµ(φ)ḣν(φ′). (7.204)

11Again summation and integration convention is assumed.
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METRIC IN THE SPACE OF OPERATORS

In the definition of the action (7.202), or (7.204), we used the relation
(7.203) in which the M-space metric is expressed in terms of the basis
vectors hµ(φ). In order to allow for a more general case, we shall introduce

the metric Zµ(φ)ν(φ
′) in the “space” of operators. In particular it can be

1
2Z

µ(φ)ν(φ′) = hµ(φ)hν(φ
′), (7.205)

or
1
2Z

µ(φ)ν(φ′) = 1
2(h

µ(φ)hν(φ
′) + hν(φ

′)hµ(φ)), (7.206)

but in general, Zµ(φ)ν(φ
′) is expressed arbitrarily in terms of hµ(φ). Then

instead of (7.204), we have

I[h] = 1
2Z

µ(φ)ν(φ′)ḣµ(φ)ḣν(φ′) =
1
2

∫
dτ Zµ(ξ)ν(ξ

′)ḣµ(ξ)ḣν(ξ′). (7.207)

The factor 1
2 is just for convenience; it does not influence the equations of

motion.
Assuming Zµ(φ)ν(φ

′) = Zµ(ξ)ν(ξ
′)δ(τ − τ ′) we have

I[h] = 1
2

∫
dτ Zµ(ξ)ν(ξ

′)ḣµ(ξ)ḣν(ξ′). (7.208)

Now we could continue by assuming the validity of the scalar product
relations (7.194) and explore the equations of motion derived from (7.207)
for a chosen Zµ(φ)ν(φ

′). This is perhaps a possible approach to geometric
quantization, but we shall not pursue it here.

Rather we shall forget about (7.194) and start directly from the action
(7.208), considered as an action for the operator field hµ(ξ) where the com-
mutation relations should now be determined. The canonically conjugate
variables are

hµ(ξ) , πµ(ξ) = ∂L/∂ḣµ(ξ) = Zµ(ξ)ν(ξ
′)ḣν(ξ′). (7.209)

They are assumed to satisfy the equal τ commutation relations

[hµ(ξ), hν(ξ′)] = 0 , [πµ(ξ), πν(ξ
′)] = 0 ,

[hµ(ξ), π
ν(ξ′)] = iδµ(ξ)

ν(ξ′). (7.210)

By imposing (7.210) we have abolished the Clifford algebra relation (7.194)
in which the inner product (defined as the symmetrized Clifford product)
is equal to a scalar valued metric.
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The Heisenberg equations of motion are

ḣµ(ξ) = −i[hµ(ξ), H], (7.211)

π̇µ(ξ) = −i[πµ(ξ), H], (7.212)

where the Hamiltonian is

H = 1
2Zµ(ξ)ν(ξ′)π

µ(ξ)πν(ξ
′). (7.213)

In particular, we may take a trivial metric which does not contain hµ(ξ),
e.g.,

Zµ(ξ)ν(ξ
′) = ηµνδ(ξ − ξ′). (7.214)

Then the equation of motion resulting from (7.212) or directly from the
action (7.208) is

π̇µ(ξ) = 0. (7.215)

Such a dynamical system cannot describe the usual p-brane, since the equa-
tions of motion is too simple. It serves here for the purpose of demon-
strating the procedure. In fact, in the quantization procedures for the
Klein–Gordon, Dirac, Stueckelberg field, etc., we have in fact used a fixed
prescribed metric which was proportional to the δ-function.

In general, the metric Zµ(ξ)ν(ξ
′) is an expression containing hµ(ξ). The

variation of the action (7.207) with respect to hµ(ξ) gives

d

dτ
(Zµ(φ)ν(φ

′)ḣν(φ))−
1

2

δZα(φ
′)β(φ′′)

δhµ(φ)
ḣα(φ′)ḣβ(φ′′) = 0. (7.216)

Using (7.210) one finds that the Heisenberg equation (7.212) is equivalent
to (7.216).

THE STATES OF THE QUANTIZED BRANE

According to the traditional approach to QFT one would now introduce
a vacuum state vector |0〉 and define

hα(ξ)|0〉 , hα(ξ)hβ(ξ)|0〉 , ... (7.217)

as vectors in Fock space. Within our geometric approach we can do some-
thing quite analogous. First we realize that because of the commutation re-
lations (7.210) hµ(ξ) are in fact not elements of the Clifford algebra. There-
fore they are not vectors in the usual sense. In order to obtain vectors we
introduce an object v0 which, by definition, is a Clifford number satisfying12

v0v0 = 1 (7.218)

12The procedure here is an alternative to the one considered when discussing quantization of the
Klein–Gordon and other fields.
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and has the property that the products

hµ(ξ)v0 , hµ(ξ)hν(ξ)v0 ... (7.219)

are also Clifford numbers. Thus hµ(ξ)v0 behaves as a vector. The inner
product between such vectors is defined as usually in Clifford algebra:

(hµ(ξ)v0) · (hν(ξ′)v0) ≡ 1
2

[
(hµ(ξ))v0)(hν(ξ′)v0) + (hν(ξ′)v0)(hµ(ξ))v0)

]

= ρ0µ(ξ)ν(ξ′) , (7.220)

where ρ0µ(ξ)ν(ξ′) is a scalar-valued metric. The choice of ρ0µ(ξ)ν(ξ′) is deter-
mined by the choice of v0. We see that the vector v0 corresponds to the
vacuum state vector of QFT. The vectors (7.219) correspond to the other
basis vectors of Fock space. And we see here that choice of the vacuum
vector v0 determines the metric in Fock space. Usually basis vector of Fock
space are orthonormal, hence we take

ρ0µ(ξ)ν(ξ′) = ηµνδ(ξ − ξ′). (7.221)

In the conventional field-theoretic notation the relation (7.220) reads

〈0|12(hµ(ξ)hν(ξ′) + hν(ξ′)hµ(ξ))|0〉 = ρ0µ(ξ)ν(ξ′). (7.222)

This is the vacuum expectation value of the operator

ρ̂µ(ξ)ν(ξ′) =
1
2(hµ(ξ)hν(ξ′) + hν(ξ′)hµ(ξ)), (7.223)

which has the role of theM-space metric operator.
In a generic state |Ψ〉 of Fock space the expectation value of the operator

ρ̂µ(ξ)ν(ξ′) is
〈Ψ|ρ̂µ(ξ)ν(ξ′)|Ψ〉 = ρµ(ξ)ν(ξ′). (7.224)

Hence, in a given state, for the expectation value of the metric operator we
obtain a certain scalar valuedM-space metric ρµ(ξ)ν(ξ′).

In the geometric notation (7.224) reads

〈V hµ(ξ)hν(ξ′)V 〉0 = ρµ(ξ)ν(ξ′). (7.225)

This means that we choose a Clifford number (Clifford aggregate) V formed
from (7.219)

V = (φµ(ξ)hµ(ξ) + φµ(ξ)ν(ξ
′)hµ(ξ)hν(ξ′) + ... )v0, (7.226)

where φµ(ξ), φµ(ξ)ν(ξ
′), ... , are the wave packet profiles, then we write the

expression V hµ(ξ)hν(ξ′)V and take its scalar part.
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Conceptually our procedure appears to be very clear. We have an action
(7.208) for operators hµ(ξ) satysfying the commutation relations (7.210) and
the Heisenberg equation of motion (7.212). With the aid of those operators
we form a Fock space of states, and then we calculate the expectation value
of the metric operator ρ̂µ(ξ)ν(ξ′) in a chosen state. We interpret this expec-
tation value as the classical metric of M-space. This is justified because
there is a correspondence between the operators hµ(ξ) and the M-space
basis vectors (also denoted hµ(ξ), but obeying the Clifford algebra relations
(7.198)). The operators create, when acting on |0〉 or v0, the many brane
states and it is natural to interpret the expectation value of ρ̂µ(ξ)ν(ξ′) as the
classicalM-space metric for such a many brane configuration.

WHICH CHOICE FOR THE OPERATOR METRIC Zµ(ξ)ν(ξ′)?

A question now arise of how to choose Zµ(ξ)ν(ξ
′). In principle any com-

bination of operators hµ(ξ) is good, provided that Zµ(ξ)ν(ξ
′) has its inverse

defined according to

Zµ(ξ)α(ξ
′′)Zα(ξ′′)ν(ξ′) = δµ(ξ)ν(ξ′) ≡ δµνδ(ξ − ξ′). (7.227)

Different choices of Zµ(ξ)ν(ξ
′) mean different membrane theories, and hence

different expectation values ρµ(ξ)ν(ξ′) = 〈ρ̂µ(ξ)ν(ξ′)〉 of the M-space met-
ric operator ρ̂µ(ξ)ν(ξ′). We have already observed that different choices of
ρµ(ξ)ν(ξ′) correspond to different classical membrane theories. In order to
get rid of a fixed background we have given ρµ(ξ)ν(ξ′) the status of a dy-
namical variable and included a kinetic term for ρµ(ξ)ν(ξ′) in the action (or
equivalently for hµ(ξ), which is the “square root” of ρµ(ξ)ν(ξ′), since clas-
sically ρµ(ξ)ν(ξ′) = hµ(ξ) · hν(ξ′)). In performing the quantization we have
seen that to the classical vectors hµ(ξ) there correspond quantum opera-

tors13 ĥµ(ξ) which obey the equations of motion determined by the action
(7.208). Hence in the quantized theory we do not need a separate kinetic

term for ĥµ(ξ). But now we have something new, namely, Zµ(ξ)ν(ξ
′) which

is a background metric in the space of operators ĥµ(ξ). In order to obtain a

background independent theory we need a kinetic term for Zµ(ξ)ν(ξ
′). The

search for such a kinetic term will remain a subject of future investigations.
It has its parallel in the attempts to find a background independent string
or p-brane theory. However, it may turn out that we do not need a kinetic
term for Zµ(ξ)ν(ξ

′) and that it is actually given by the expression (7.205)
or (7.206), so that (7.204) is already the “final” action for the quantum
p-brane.

13Now we use hats to make a clear distinction between the classical vectors hµ(ξ), satisfying the

Clifford algebra relations (7.194), and the quantum operators ĥµ(ξ) satisfying (7.210).
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In the field theory discussed previously we also have a fixed metric
Zµ(ξ)ν(ξ

′), namely, Z(ξ)(ξ′) = δ(ξ − ξ′) for the Klein–Gordon and similarly
for the Dirac field. Why such a choice and not some other choice? This
clearly points to the plausible possibility that the usual QFT is not com-
plete. That QFT is not yet a finished story is clear from the occurrence of
infinities and the need for “renormalization”14.

14An alternative approach to the quantization of field theories, also based on Clifford algebra,
has been pursued by Kanatchikov [87].
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BRANE WORLD





Chapter 8

SPACETIME AS A MEMBRANE

IN A HIGHER-DIMENSIONAL SPACE

When studying dynamics of a system of membranes, as seen from theM-
space point of view, we have arrived in Chapter 5 at a fascinating conclusion
that all that exists in such a world model is a membrane configuration. The
membrane configuration itself is a ‘spacetime’. Without membranes there
is no spacetime. According to our basic assumption, at the fundamental
level we have an M-space — the space of all possible membrane configu-
rations — and nothing else. If the membrane configuration consists of the
membranes of various dimensions n, lower and higher than the dimension
of our observed word (n = 4), then we are left with a model in which our
4-dimensional spacetime is one of those (4-dimensional) membranes (which
I call worldsheets).

What is the space our worldsheet is embedded in? It is just the space
formed by the other n-dimensional (n = 0, 1, 2, ... ) extended objects (say
membranes) entering the membrane configuration. If all those other mem-
branes are sufficiently densely packed together, then as an approximation a
concept of a continuous embedding space can be used. Our spacetime can
then be considered as a 4-dimensional worldsheet embedded into a higher-
dimensional space.

8.1. THE BRANE IN A CURVED
EMBEDDING SPACE

We are now going to explore a brane moving in a curved background
embedding space VN . Such a brane sweeps an n-dimensional surface which
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I call worldsheet1 The dynamical principle governing motion of the brane
requires that its worldsheet is a minimal surface. Hence the action is

I[ηa] =

∫ √
|f̃ | dnx, (8.1)

where
f̃ = detf̃µν , f̃µν = ∂µη

a∂νη
bγab. (8.2)

Here xµ, µ = 0, 1, 2, ..., n− 1, are coordinates on the worldsheet Vn, whilst
ηa(x) are the embedding functions. The metric of the embedding space
(from now on also called bulk) is γab, and the induced metric on the world-
sheet is f̃µν .

In this part of the book I shall use the notation which is adapted to
the idea that our world is a brane. Position coordinates in our world are
commonly denoted as xµ, µ = 0, 1, 2, ..., n − 1, and usually it is assumed
that n = 4 (for good reasons, of course, unless one considers Kaluza–Klein
theories). The notation in (8.1) (8.2) is ”the reverse video” of the notation
used so far. The correspondence between the two notations is the following

worldsheet coordinates ξa, ξA, φA xµ

embedding space coordinates xµ ηa

embedding functions Xµ(ξa) , Xµ(φA) ηa(xµ)

worldsheet metric γab , γAB gµν

embedding space metric gµν γab

Such a reverse notation reflects the change of role given to spacetime. So
far ‘spacetime’ has been associated with the embedding space, whilst the
brane has been an object in spacetime. Now spacetime is associated with
a brane, so spacetime itself is an object in the embedding space2.

For the extended object described by the minimal surface action (8.1)
I use the common name brane. For a more general extended object de-
scribed by a Clifford algebra generalization of the action (8.1) I use the
name membrane (and occasionally also worldsheet, when I wish to stress
that the object of investigation is a direct generalization of the object Vn
described by (8.1) which is now understood as a special kind of (generalized)
worldsheet).

1Usually, when n > 2 such a surface is called a world volume. Here I prefer to retain the name
worldsheet, by which we can vividly imagine a surface in an embedding space.
2Such a distinction is only manifest in the picture in which we already have an effective embedding
space. In a more fundamental picture the embedding space is inseparable from the membrane
configuration, and in general is not a manifold at all.
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Suppose now that the metric of VN is conformally flat (with ηab being
the Minkowski metric tensor in N -dimensions):

γab = φ ηab. (8.3)

Then from (8.2) we have

f̃µν = φ∂µη
a∂νη

bηab ≡ φfµν , (8.4)

f̃ ≡ detf̃µν = φn detfµν ≡ φnf (8.5)

√
|f̃ | = ω|f | , ω ≡ φn/2. (8.6)

Hence the action (8.1) reads

I[ηa] =

∫
ω(η)

√
|f |dnx, (8.7)

which looks like an action for a brane in a flat embedding space, except for
a function ω(η) which depends on the position3 ηa in the embedding space
VN .

Function ω(η) is related to the fixed background metric which is arbitrary
in principle. Let us now assume [88] that ω(η) consists of a constant part

ω0 and a singular part with support on another brane’s worldsheet V̂m:

ω(η) = ω0 + κ

∫
dmx̂

√
|f̂ | δ

N (η − η̂)√
|γ| . (8.8)

Here η̂a(x̂) are the embedding functions of the m-dimensional worldsheet

V̂m, f̂ is the determinant of the induced metric on V̂m, and
√
|γ| allows for

taking curved coordinates in otherwise flat VN .
The action for the brane which sweeps a worldsheet Vn is then given by

(8.7) in which we replace ω(η) with the specific expression (8.8):

I[η] =

∫
ω0 d

nx
√
|f |+ κ

∫
dnx dmx̂

√
|f |
√
|f̂ | δ

N (η − η̂)√
|γ| . (8.9)

If we take the second brane as dynamical too, then the kinetic term for
η̂a should be added to (8.9). Hence the total action for both branes is

I[η, η̂] =

∫
ω0 d

nx
√
|f |+

∫
ω0 d

mx̂
√
|f̂ |+κ

∫
dnx dmx̂

√
|f |
√
|f̂ | δ

N (η − η̂)√
|γ| .

(8.10)

3We use here the same symbol ηa either for position coordinates in VN or for the embedding
functions ηa(x).
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The first two terms are the actions for free branes, whilst the last term
represents the interaction between the two branes. The interaction occurs
when the branes intersect. If we takem = N−n+1 then the intersection of
Vn and V̂m can be a (one-dimensional) line, i.e., a worldline V1. In general,
when m = N − n + (p + 1), the intersection can be a (p + 1)-dimensional
worldsheet representing the motion of a p-brane.
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Figure 8.1. The intersection between two different branes Vn and V̂m can be a p-brane
Vp+1.

In eq. (8.10) we assume contact interaction between the branes (i.e., the
interaction at the intersection). This could be understood by imagining
that gravity decreases so quickly in the transverse direction from the brane
that it can be approximated by a δ-function. More about this will be said
in Section 4.

The equations of motion derived from the (8.10) by varying respectively
ηa and η̂ are:

∂µ

[√
|f |∂µηa

(
ω0 + κ

∫
dmx̂

√
|f̂ | δ

N (η − η̂)√
|γ|

)]
= 0 (8.11)

∂̂µ̂

[√
|f̂ |∂̂µ̂η̂a

(
ω0 + κ

∫
dnx

√
|f | δ

N (η − η̂)√
|γ|

)]
= 0 (8.12)

where ∂µ ≡ ∂/∂xµ and ∂̂µ̂ ≡ ∂/∂x̂µ̂. When deriving eq. (8.11) we have
taken into account that
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∂

∂ηa

∫
κ dmx̂

√
|f̂ | δN (η − η̂) = −

∫
κ dmx̂

√
|f̂ | ∂
∂η̂a

δN (η − η̂) (8.13)

= κ

∫
dmx̂

∂
√
|f̂ |

∂η̂a
δN (η − η̂) = 0,

since

∂
√
|f̂ |

∂η̂a
=
∂
√
|f̂ |

∂f̂

∂f̂µν
∂η̂a

= 0, (8.14)

because

f̂µν = ∂̂µ̂η̂
a ∂̂ν̂ η̂a ,

∂f̂µν
∂η̂a

= 0. (8.15)

Analogous holds for eq. (8.12).

Assuming that the intersection Vp+1 = Vn
⋂
V̂m does exist, and, in par-

ticular, that it is a worldline (i.e., p = 0), then we can write

∫
dmx̂

√
|f̂ | δ

N (η − η̂)√
|γ| =

∫
dτ
δn(x−X(τ))√

|f | (ẊµẊµ)
1/2. (8.16)

The result above was obtained by writing

dmx̂ = dm−1x̂ dτ,
√
|f̂ | =

√
|f̂ (m−1)|(ẊµẊµ)

1/2

and taking the coordinates ηa such that ηa = (xµ, ηn, ηn+1, ..., ηN−1), where
xµ are (curved) coordinates on Vn. The determinant of the metric of
the embedding space VN in such a curvilinear coordinates is then γ =
det ∂µη

a∂νηa = f .
In general, for arbitrary intersection we have

∫
dmx̂

√
|f̂ | δ

N (η − η̂)√
|γ| =

∫
dp+1ξ

δn(x−Xξ)√
|f | (det ∂AX

µ∂BXµ)
1/2,

(8.17)
where Xµ(ξA), µ = 0, 1, 2, ..., n − 1, A = 1, 2, ..., p, are the embedding
functions of the p-brane’s worlsdsheet Vp+1 in Vn.

Using (8.16) the equations of motion become

∂µ

[√
|f |(ω0fµν + Tµν)∂νηa

]
= 0, (8.18)

∂̂µ̂

[√
|f̂ |(ω0f̂ µ̂ν̂ + T̂ µ̂ν̂)∂̂ν̂ η̂a

]
= 0, (8.19)
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where

Tµν =

∫
κ√
|f | δ

n(x−X(τ))
ẊµẊν

(ẊαẊα)1/2
dτ (8.20)

and

T̂ µ̂ν̂ =

∫
κ√
|f̂ |

δn(x̂− X̂(τ))
˙̂
X
µ̂ ˙̂
X
ν̂

(
˙̂
X
α̂ ˙̂
X α̂)1/2

dτ (8.21)

are the stress–energy tensors of the point particle on Vn and V̂m, respec-
tively.

If dimensions m and n are such that the intersection Vp+1 is a worldsheet
with a dimension p ≥ 1, then using (8.17) we obtain the equations of motion
of the same form (8.18),(8.19), but with the stress–energy tensor

Tµν =

∫
κ√
|f | δ

n(x−X(ξ)) ∂AX
µ∂AXν (det ∂CX

α∂DXα)
1/2 dp+1ξ,

(8.22)

T̂ µ̂ν̂ =

∫
κ√
|f̂ |

δn(x̂− X̂(ξ)) ∂AX̂
µ̂∂AX̂ ν̂ (det ∂CX̂

α̂∂DX̂α̂)
1/2 dp+1ξ.

(8.23)

This can also be seen directly from the action (8.9) in which we substitute
eq. (8.16)

I[ηa, Xµ] = ω0

∫
dnx

√
|f |+κ

∫
dnx dτ δn(x−X(τ))(fµνẊ

µẊν)1/2 (8.24)

or if we substitute (8.17)

I[ηa, Xµ] = ω0

∫
dnx

√
|f | (8.25)

+κ

∫
dnx dp+1ξ δn(x−X(ξ)) (det ∂AX

µ∂BX
νfµν)

1/2.

Remembering that
fµν = ∂µη

a∂νη
bηab (8.26)

we can vary (8.24) or (8.25) with respect to ηa(x) and we obtain (8.18).
Eq.(8.18) can be written as

ω0DµD
µηa +Dµ(T

µν∂νηa) = 0. (8.27)

where Dµ denotes covariant derivative in Vn. If we multiply the latter
equation by ∂αηa, sum over a, and take into account the identity

∂αηaDµDνηa = 0, (8.28)
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which follows from Dµ(∂ρη
a∂σηa) = Dµfρσ = 0, we obtain

DµT
µν = 0. (8.29)

Equation (8.29) implies that Xµ(τ) is a geodesic equation in a space with
metric fµν , i.e., X

µ(τ) is a geodesic on Vn. This can be easily shown by
using the relation

DTµν =
1√
|f | ∂µ(

√
|f |Tµν) + ΓνρµT

ρµ = 0. (8.30)

Taking (8.20) we have

∫
dτ

∂

∂xµ
δn(x−X(τ))

ẊµẊν

(ẊαẊα)1/2
dnx

+Γνρµ

∫
dτδn(x−X(τ))

ẊµẊν

(ẊαẊα)1/2
dnx = 0. (8.31)

The first term in the latter equation gives

−
∫

dτ
∂

∂Xµ(τ)
δn(x−X(τ))

ẊµẊν

(ẊαẊα)1/2
dnx

= −
∫

dτ
d

dτ
δn(x−X(τ))

Ẋν

(ẊαẊα)1/2
dnx

=

∫
dτ

d

dτ

(
Ẋν

(ẊαẊα)1/2

)
. (8.32)

Differentiating eq. (8.31) with respect to τ we indeed obtain the geodesic
equation.

In a similar way we find for T µν , as given in eq. (8.22), that (8.30) implies

1√
|det∂CXα∂DXα|

∂A(
√
|det∂CXα∂DXα| ∂AXν) + Γνρµ∂AX

ρ∂AXµ = 0,

(8.33)
which is the equation of motion for a p-brane in a background metric
fµν = ∂µη

a∂νηa. Do not forget that the latter p-brane is the intersection
between two branes:

Vp+1 = Vn ∩ V̂m . (8.34)
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It is instructive to integrate (8.27) over dnx. We find

ω0

∮ √
|f | dΣµ ∂µηa (8.35)

= −κ
∫

dp+1ξ(|det ∂CXα∂DXα|)1/2 ∂AXµ∂AXν DµDνηa

∣∣∣∣
x=X(ξ)

where dΣµ is an element of an (n − 1)-dimensional hypersurface Σ on Vn.
Assuming that the integral over the time-like part of Σ vanishes (either
because ∂µηa → 0 at the infinity or because Vn is closed) we have

ω0

∫ √
|f | dΣµ ∂µηa

∣∣∣∣∣
τ2

−ω0
∫ √
|f | dΣµ ∂µηa

∣∣∣∣∣
τ1

(8.36)

= −κ
∫

dτ dpξ(|det ∂CXα∂DXα|)1/2 ∂AXµ∂AXν DµDνηa

∣∣∣∣
x=X(ξ)

or

dPa
dτ

= −κ
∫

dpξ(|det ∂CXα∂DXα|)1/2 ∂AXµ∂AXν DµDνηa

∣∣∣∣
x=X(ξ)

(8.37)

where

Pa ≡ ω0
∫ √
|f | dΣµ ∂µηa . (8.38)

When p = 0, i.e., when the intersection is a worldline, eq. (8.37) reads

dPa
dτ

= −κ ẊµẊν

(ẊαẊα)1/2
DµDνηa

∣∣∣∣
x=X(ξ)

. (8.39)

8.2. A SYSTEM OF MANY INTERSECTING
BRANES

Suppose we have a sytem of branes of various dimensionalities. They may
intersect and their intersections are the branes of lower dimensionality. The
action governing the dynamics of such a system is a generalization of (8.10)
and consists of the free part plus the interactive part (i, j = 1, 2, ... ):

I[ηi] =
∑

i

∫
ω0

√
|fi|dxi +

1

2

∑

i6=j

∫
ωij

δN (ηi − ηj)√
|γ|

√
|fi|
√
|fj | dxidxj .

(8.40)
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The equations of motion for the i-th brane are

∂µ



√
|fi|∂µηai


ω0 +

∑

i6=j

∫
ωij

δN (ηi − ηj)√
|γ|

√
|fj |dxj




 = 0. (8.41)

Neglecting the kinetic term for all other branes the action leading to (8.41)
is (for a fixed i)

I[ηi] =

∫
ω0

√
|fi|dxi +

∑

i6=j

∫
ωij

δN (ηi − ηj)√
|γ|

√
|fi|
√
|fj | dxidxj (8.42)

or

I[ηi] =

∫
ωi(η)

√
|fi|dxi , (8.43)

with

ωi(η) = ω0 +
∑

j

κj
δN (η − ηj)√

|γ|
√
|fj |dxj , (8.44)

where κj ≡ ωij .
Returning now to eqs. (8.3)–(8.6) we see that ωi(η) is related to the con-

formally flat background metric as experienced by the i-th brane. The
action (8.43) is thus the action for a brane in a background metric γab,
which is conformally flat:

I[ηi] =

∫ √
|f̃ | dxi. (8.45)

Hence the interactive term in (8.40) can be interpreted as a contribution
to the background metric in which the i-th brane moves. Without the
interactive term the metric is simply a flat metric (multiplied by ω); with
the interactive term the background metric is singular on all the branes
within our system.

The total action (8.40), which contains the kinetic terms for all the other
branes, renders the metric of the embedding space VN dynamical. The way
in which other branes move depends on the dynamics of the whole system.
It may happen that for a system of many branes, densely packed together,
the effective (average) metric could no longer be conformally flat. We have
already seen in Sec 6.2 that the effective metric for a system of generalized
branes (which I call membranes) indeed satisfies the Einstein equations.

Returning now to the action (8.42) as experienced by one of the branes
whose worldsheet Vn is represented by ηai (xi) ≡ ηa(x) we find, after inte-
grating out xj , j 6= i, that
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I[ηa, Xµ] = ω0

∫
dnx

√
|f | (8.46)

+
∑

j

κj

∫
dnx dpj+1ξ (det∂AX

µ
j ∂BX

ν
j fµν)

1/2δn(x−Xj(ξ)).

For various pj the latter expression is an action for a system of point parti-
cles (pj = 0), strings (pj = 1), and higher-dimensional branes (pj = 2, 3, ... )
moving in the background metric fµν , which is the induced metric on our
brane Vn represented by ηa(x). Variation of (8.46) with respect to Xµ

k gives
the equations of motion (8.33) for a p-brane with p = pk. Variation of (8.46)
with respect to ηa(x) gives the equations of motion (8.18 for the (n − 1)-
brane. If we vary (8.46) with respect to ηa(x) then we obtain the equation
of motion (III1.18) for an (n − 1)-brane. The action (8.46) thus describes
the dynamics of the (n−1)-brane (world sheet Vn) and the dynamics of the
p-branes living on Vn.

We see that the interactive term in (8.40) manifests itself in various
ways, depending on how we look at it. It is a manifestation of the metric
of the embedding space being curved (in particular, the metric is singular
on the system of branes). From the point of view of a chosen brane Vn
the interactive term becomes the action for a system of p-branes (including
point particles) moving on Vn. If we now adopt the brane world view,
where Vn is our spacetime, we see that matter on Vn comes from other
branes’ worldsheets which happen to intersect our worldsheet Vn. Those
other branes are responsible for the non trivial metric of the embedding
space, also called the bulk.

THE BRANE INTERACTING WITH ITSELF
In (8.42) or (8.46) we have a description of a brane interacting with other

branes. What about self-interaction? In the second term of the action
(8.40) (8.42) we have excluded self-interaction. In principle we should not
exclude self-interaction, since there is no reason why a brane could not
interact with itself.

Let us return to the action (8.9) and let us calculate ω(η), this time

assuming that V̂m coincides with our brane Vn. Hence the intersection is
the brane Vn itself, and according to (8.17) we have

ω(η) = ωo + κ

∫
dnx̂

√
|f̂ | δ

N (η − η̂(x̂)√
|γ|

= ω0 + κ

∫
dnξ

δn(x−X(ξ))√
|f |

√
|f̂ |

= ω0 + κ

∫
dnx δn(x−X(x)) = ω0 + κ. (8.47)
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Here the coordinates ξA, A = 0, 1, 2, ..., n − 1, cover the manifold Vn, and
f̂AB is the metric of Vn in coordinates ξA. The other coordinates are xµ,
µ = 0, 1, 2, ..., n − 1. In the last step in (8.47) we have used the property

that the measure is invariant, dnξ
√
|f̂ | = dnx

√
|f |.

The result (8.47) demonstrates that we do not need to separate a constant
term ω0 from the function ω(η). For a brane moving in a background of
many branes we can replace (8.44) with

ω(η) =
∑

j

κj
δN (η − ηj)√

|γ|
√
|fj |dxj , (8.48)

where j runs over all the branes within the system. Any brane feels the
same background, and its action for a fixed i is

I[ηi] =

∫
ω(ηi)

√
|f |dx =

∑

j

∫
κj
δN (ηi − ηj)√

|γ|
√
|fi|
√
|fj |dxi dxj . (8.49)

However the background is self-consistent: it is a solution to the variational
principle given by the action

I[ηi] =
∑

i≥j
ωij δ

N (ηi − ηj)
√
|fi|
√
|fj |dxi dxj , (8.50)

where now also i runs over all the branes within the system; the case i = j
is also allowed.

In (8.50) the self-interaction or self coupling occurs whenever i = j. The
self coupling term of the action is

Iself [ηi] =
∑

i

κi

∫
δN (ηi(xi)− ηi(x′i))

√
|fi(xi)|

√
|fi(x′i)|dxidx′i

=
∑

i

κi

∫
δN (η − ηi(xi))δN (η − ηi(x′i))

×
√
|fi(xi)|

√
|fi(x′i)|dxidx′idNη

=
∑

i

κi

∫
δN (η − ηi(xi))δni(x′i − x′′i )

√
|fi(xi)|dxidx′idNη

=
∑

i

κi

√
|fi(xi)|dnixi , (8.51)

where we have used the same procedure which led us to eq. (8.17) or (8.47).
We see that the interactive action (8.50) automatically contains the minimal
surface terms as well, so they do not need to be postulated separately.
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A SYSTEM OF MANY BRANES CREATES THE
BULK AND ITS METRIC

We have seen several times in this book (Chapters 5, 6) that a system
of membranes (a membrane configuration) can be identified with the em-
bedding space in which a single membrane moves. Here we have a concrete
realization of that idea. We have a system of branes which intersect. The
only interaction between the branes is owed to intersection (‘contact’ in-
teraction). The interaction at the intersection influences the motion of a
(test) brane: it feels a potential because of the presence of other branes. If
there are many branes and a test brane moves in the midst of them, then
on average it feels a metric field which is approximately continuous. Our
test brane moves in the effective metric of the embedding space.

A single brane or several branes give the singular conformal metric. Many
branes give, on average, an arbitrary metric.

There is a close inter-relationship between the presence of branes and
the bulk metric. In the model we discuss here the bulk metric is singular
on the branes, and zero elsewhere. Without the branes there is no metric
and no bulk. Actually the bulk consists of the branes which determine its
metric.
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Figure 8.2. A system of many intersecting branes creates the bulk metric. In the absence
of the branes there is no bulk (no embedding space).
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8.3. THE ORIGIN OF MATTER IN THE
BRANE WORLD

Our principal idea is that we have a system of branes (a brane configura-
tion). With all the branes in the system we associate the embedding space
(bulk). One of the branes (more precisely, its worldsheet) represents our
spacetime. Interactions between the branes (occurring at the intersections)
represent matter in spacetime.

MATTER FROM THE INTERSECTION OF OUR
BRANE WITH OTHER BRANES

We have seen that matter in Vn naturally occurs as a result of the inter-
section of our worldsheet Vn with other worldsheets. We obtain exactly the
stress–energy tensor for a dust of point particles, or p-branes in general.
Namely, varying the action (8.46) with respect to ηa(x) we obtain

ω0DµD
µηa +Dµ(T

µν∂νηa) = 0, (8.52)

with

Tµν =
∑

j

κj

∫
dpj+1ξ (det ∂AX

µ
j ∂BX

ν
j fµν)

1/2 δ
n(x−Xj(ξ))√

|f | (8.53)

being the stress–energy tensor for a system of p-branes (which are the in-
tersections of Vn with the other worldsheets). The above expression for T µν

holds if the extended objects have any dimensions pj . In particular, when
all objects have pj = 0 (point particles) eq. (8.53) becomes

Tµν =
∑

j

κj

∫
dτ

ẊµẊν

√
Ẋ2

δ(x−X(τ))√
|f | . (8.54)

From the equations of motion (8.53) we obtain (see eqs. (8.27)–(8.29))

DµT
µν = 0, (8.55)

which implies (see (8.30)–(8.33)) that any of the objects follows a geodesic
in Vn.

MATTER FROM THE INTERSECTION OF OUR
BRANE WITH ITSELF

Our model of intersecting branes allows for the possibility that a brane
intersects with itself, as is schematically illustrated in Fig. 8.3. The analysis
used so far is also valid for situations like that in Fig. 8.3, if we divide the
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worldsheet Vn into two pieces which are glued together at a submanifold C
(see Fig. 8.4).
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Vp+1

Vn

VN

Figure 8.3. Illustration of a self-intersecting brane. At the intersection Vp+1, because
of the contact interaction the stress–energy tensor on the brane Vn is singular and it
manifests itself as matter on Vn. The manifold Vp+1 is a worldsheet swept by a p-brane
and it is is minimal surface (e.g., a geodesic, when = 0) in Vn.

C

ηa1(x1)

ηa2(x2)

Figure 8.4. A self-intersecting worldsheet is cut into two pieces, described by ηa1 (x1)
and ηa2 (x2), which are glued together at a submanifold C where the boundary condition
ηa1 (x1)|C = ηa2 (x2)|C is imposed.
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There is a variety of ways a worldsheet can self-intersect. Some of them
are sketched in Fig. 8.5.
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b) c)

Figure 8.5. Some possible self-intersecting branes.

In this respect some interesting new possibilities occur, waiting to be
explored in detail. For instance, it is difficult to imagine how the three
particles entangled in the topology of the situation (a) in Fig. 8.5 could be
separated to become asymptotically free. Hence this might be a possible
classical model for hadrons composed of quarks; the extra dimensions of Vn
would bring, via the Kaluza–Klein mechanism, the chromodynamic force
into the action.

To sum up, it is obvious that a self-intersecting brane can provide a
variety of matter configurations on the brane. This is a fascinating and
intuitively clear mechanism for the origin of matter in a brane world.
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8.4. COMPARISON WITH THE
RANDALL–SUNDRUM MODEL

In our brane world model, which starts from theM-space Einstein equa-
tions, we have assumed that gravity is localized on the brane. This was
formally represented by the δ-function. In a more conventional approach
the starting point is Einstein’s equations in the ordinary space, not inM-
space. Let us therefore explore a little what such an approach has to say
about gravity around a brane embedded in a “bulk”.

Randall and Sundrum [95] have considered a model in which a 3-brane
with tension κ is coupled to gravity, the cosmological constant Λ being
different from zero. After solving the Einstein equations they found that
the metric tensor decreases exponentially with the distance from the brane.
Hence gravity is localized on the brane.

More precisely, the starting point is the action

I = κ

∫
dnx

√
|f | δN (η−η(x)) dNη+ 1

16πG(N)

∫
dNη

√
|f |(2Λ+R), (8.56)

which gives the Einstein equations

Gab ≡ Rab − 1
2Rγab = −Λγab − 8πG(N)Tab , (8.57)

Tab =

∫
κ dnx

√
|f | fµν ∂µηa∂νηb δN (η − η(x)). (8.58)

Let us consider a 3-brane (n = 4) embedded in a 5-dimensional bulk
(N = 5). In a particular gauge the worldsheet embedding functions are
ηµ = xµ, η5 = η5(xµ). For a flat worldsheet η5(xµ) = y0, where y0 is
independent of xµ, it is convenient to take y0 = 0. For such a brane located
at η5 ≡ y = 0 the appropriate Ansatz for the bulk metric respecting the
symmetry of the brane configuration is

ds2 = a2(y)ηµν dx
µ dxν − dy2. (8.59)

The Einstein equations read

G0
0 = G1

1 = G2
2 = G3

3

=
3a′′

a
+

3a′2

a2
= −Λ− 8πG(N)T 0

0 , (8.60)

G5
5 =

6a′2

a2
= −Λ , (8.61)

where

Tαβ =

∫
κ d4x

√
|f |fαβ δ4(ηµ − xµ)δ(y) = κ

√
|f |fαβδ(y), (8.62)
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whilst Tα5 = 0, T55 = 0. The induced metric is

fαβ = ∂αη
a∂βηa = ηαβ a

2(y).

Hence
T 0

0 = T 1
1 = T 2

2 = T 3
3 = κ a4δ(y). (8.63)

From eq. (8.61), which can be easily integrated, we obtain

a = a0 e
−|y|
√
−Λ/6. (8.64)

Such a solution makes sense if Λ < 0 and it respects the symmetry a(y) =
a(−y), so that the bulk metric is the same on both sides of the brane.

Introducing α′ = a′/a (where a′ ≡ da/dy) eq. (8.60) can be written as

3α′′ = −8πG(N)κ a4δ(y). (8.65)

Integrating both sides of the latter equation over y we find

3(α′(0+)− α′(0−)) = −8πG(N) κa4(0). (8.66)

Using (8.64) we have

a′(0+)
a

= α′(0+) = −
√
−Λ
6

,

a′(0−)
a

= α′(0−) =

√
−Λ
6

, (8.67)

a(0) = a0 = 1.

Hence (8.66) gives

6

√
−Λ
6

= 8πG(N)κ (8.68)

which is a relation between the cosmological constant Λ and the brane
tension κ.

From (8.59) and (8.64) it is clear that the metric tensor is localized on
the brane’s worldsheet and falls quickly when the transverse coordinates y
goes off the brane.

An alternative Ansatz. We shall now consider an alternative Ansatz
in which the metric is conformally flat:

ds2 = b2(z)(ηµνdx
µdxν − dz2). (8.69)
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The Einstein equations read

G0
0 =

3b′′

b3
= −Λ− 8πG(N)κb4(z) (8.70)

G5
5 =

6b′2

b4
= −Λ (8.71)

The solution of (8.71) is

b = − 1

C +
√
−Λ
6 |z|

. (8.72)

From (8.70) (8.71) we have

3

(
b′′

b2
− b′2

b3

)
= −8πG(N)κb5δ(z). (8.73)

Introducing β′ = b′/b2 the latter equation becomes

3β′′ = −8πG(N)κb5δ(z). (8.74)

After integrating over z we have

3(β′(0+)− β′(0−)) = −8πG(N)κb5(0), (8.75)

where

β′(0+) = C−4
√
−Λ
6

, β′(0−) = −C−4
√
−Λ
6

, b(0) = −C−1. (8.76)

Hence

6

√
−Λ
6

= 8πG(N)κC−1. (8.77)

If we take C = 1 then the last relation coincides with (8.68). The metric in
the Ansatz (8.69) is of course obtained from that in (8.59) by a coordinate
transformation.
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THE METRIC AROUND A BRANE IN A
HIGHER-DIMENSIONAL BULK

It would be very interesting to explore what happens to the gravitational
field around a brane embedded in more than five dimensions. One could
set an appropriate Ansatz for the metric, rewrite the Einstein equations
and attempt to solve them. My aim is to find out whether in a space of
sufficiently high dimension the metric — which is a solution to the Einstein
equations — can be approximated with the metric (8.3), the conformal
factor being localized on the brane.

Let us therefore take the Ansatz

γab = Ω2γ̄ab . (8.78)

We then find

Ra
b = Ω−2R̄ba + (N − 2)Ω−3Ω;a

;b − 2(N − 2)Ω−4Ω,aΩ
,b

+Ω−3δa
bΩ;c

;c + (N − 3)Ω−4δa
bΩ,cΩ

,c , (8.79)

R = Ω−2R̄+ 2(N − 1)Ω−3Ω;c
;c + (N − 1)(N − 4)Ω−4Ω,cΩ

,c. (8.80)

Splitting the coordinates according to

ηa = (xµ, yµ̄), (8.81)

where yµ̄ are the transverse coordinates and assuming that Ω depends on
yµ̄ only, the Einstein equations become

Gµ
ν = Ω−2Ḡνµ +Ω−3δµ

ν
[
(2−N)Ω; µ̄;µ̄ + (N − 3)Ω−1Ω, µ̄Ω,µ̄

]

= −8πG(N)Tµ
ν − Λδµ

ν , (8.82)

Gµ̄
ν̄ = Ω−2Ḡν̄µ̄ +Ω−3

[
(N − 2)Ω;µ̄

;ν̄ − 2(N − 2)Ω−1Ω,µ̄Ω
,ν̄

+ δµ̄
ν̄
(
(2−N)Ω;ᾱ

;ᾱ +Ω−1Ω,ᾱΩ
,ᾱ ((N − 3) + (N − 1)(N − 4))

)]

= −8πG(N)Tµ̄
ν̄ − Λδµ̄

ν̄ . (8.83)

Let Ta
b be the stress–energy tensor of the brane itself. Then Tµ̄

ν̄ = 0 (see
eq. (8.62). Using (8.83) we can express Ω−1Ω,ᾱΩ,ᾱ in terms of Ω;ᾱ

;ᾱ and
insert it into (8.82). Taking4 N > 5, Λ = 0 and assuming that close to the

4If dimension N = 5 then Λ must be different from zero, otherwise eq. (8.83) gives Ω,5Ω,5 = 0,
which is inconsistent with eq. (8.82).
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brane the term Ω−2Ḡba can be neglected we obtain the Laplace equation for
Ω

Ω;µ̄
;µ̄ = 16πG(N)T Ω3A (8.84)

where

A = (N − 2)(N − 1) (8.85)

×
[
2− (N − 4)

(N − 2) + n̄(2−N)

−2(N − 2) + n̄(N − 3)− n̄
2 (N − 1)(N − 4)

]
,

n̄ being the dimension of the transverse space, n̄ = δµ̄
µ̄, and T ≡ Taa = Tµ

µ.
The above procedure has to be taken with reserve. Neglect of the term

Ω−2Ḡba in general is not expected to be consistent with the Bianchi iden-
tities. Therefore equation (8.85) is merely an approximation to the exact
equation. Nevertheless it gives an idea about the behavior of the function
Ω(yµ̄).

The solution of eq. (8.84) has the form

Ω = − k

rn̄−2
, (8.86)

where r is the radial coordinate in the transverse space. For a large trans-
verse dimension n̄ the function Ω falls very quickly with r. The gravitational
field around the brane is very strong close to the brane, and negligible any-
where else. The interaction is practically a contact interaction and can
be approximated by the δ-function. Taking a cutoff rc determined by the
thickness of the brane we can normalize Ω according to

∫ ∞

rc
Ω(r) dr =

k

(n̄− 1)rn̄−1c
= 1 (8.87)

and take Ω(r) ≈ δ(r).
The analysis above is approximate and requires a more rigorous study.

But intuitively it is clear that in higher dimensions gravitational interaction
falls very quickly. For a point particle the gravitational potential has the
asymptotic behavior γ00−1 ∝ r−(N−3), and for a sufficiently high spacetime
dimension N the interaction is practically contact (like the Van der Waals
force). Particles then either do not feel each other, or they form bound
states upon contact. Network-like configurations are expected to be formed,
as shown in Fig.8.6. Such configurations mimic very well the intersecting
branes considered in Secs. 8.1–8.3.

In this section we have started from the conventional theory of gravitation
and found strong arguments that in a space of very high dimension the
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A
B

Figure 8.6. In a space of very large dimension separated point particles do not feel
gravitational interaction, since it is negligible. When two particles meet they form a
bound system which grows when it encounters other particles. There is (practically) no
force between the ‘tails’ (e.g., between the points A and B). However, there is tension
within the tail. (The tail, of course, need not be 1-dimensional; it could be a 2, 3 or
higher-dimensional brane.)

gravitational force is a contact force. Various network-like configurations
are then possible and they are stable. Effectively there is no gravity outside
such a network configuration. Such a picture matches very well the one we
postulated in the previous three sections of this chapter, and also the picture
we considered when studying the M-space formulation of the membrane
theory.





Chapter 9

THE EINSTEIN–HILBERT ACTION

ON THE BRANE

AS THE EFFECTIVE ACTION

After so many years of intensive research the quantization of gravity is
still an unfinished project. Amongst many approaches followed, there is the
one which seems to be especially promising. This is the so called induced
gravity proposed by Sakharov [96]. His idea was to treat the metric not as
a fundamental field but as one induced from more basic fields. The idea
has been pursued by numerous authors [97]; especially illuminating are
works by Akama, Terazawa and Naka [98]. Their basic action contains N
scalar fields and it is formally just a slight generalization of the well-known
Dirac–Nambu–Goto action for an n-dimensional world sheet swept by an
(n− 1)-dimensional membrane.

Here we pursue such an approach and give a concrete physical inter-
pretation of the N scalar fields which we denote ηa(x). We assume that
the spacetime is a surface V4, called the spacetime sheet, embedded in a
higher-dimensional space VN , and η

a(x) are the embedding functions. An
embedding model has been first proposed by Regge and Teitelboim [99]
and investigated by others [100]. In that model the action contains the
Ricci scalar expressed in terms of the embedding functions. In our present
model [88, 90, 89], on the contrary, we start from an action which is es-
sentially the minimal surface action1 weighted with a function ω(η) in VN .
For a suitably chosen ω, such that it is singular (δ-function like) on certain

surfaces V̂m, also embedded in VN , we obtain on V4 a set of world lines.
In the previous chapter it was shown that these worldlines are geodesics
of V4, provided that V4 described by ηa(x) is a solution to our variational

1Recently Bandos [91] has considered a string-like description of gravity by considering bosonic
p-branes coupled to an antisymmetric tensor field.
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procedure. I will show that after performing functional integrations over
ηa(x) we obtain two contributions to the path integral. One contribution

comes from all possible ηa(x) not intersecting V̂m, and the other from those

ηa(x) which do intersect the surfaces V̂m. In the effective action so obtained
the first contribution gives the Einstein–Hilbert term R plus higher-order
terms like R2. The second contribution can be cast into the form of a path
integral over all possible worldlines Xµ(τ). Thus we obtain an action which
contains matter sources and a kinetic term for the metric field (plus higher
orders in R). So in the proposed approach both the metric field and the
matter field are induced from more basic fields ηa(x).

9.1. THE CLASSICAL MODEL

Let us briefly summarize the discussion of Chapter 8. We assume that the
arena where physics takes place is an N -dimensional space VN with N ≥ 10.
Next we assume that an n-dimensional surface Vn living in VN represents
a possible spacetime. The parametric equation of such a ‘spacetime sheet’
Vn is given by the embedding functions ηa(xµ), a = 0, 1, 2, ..., N , where xµ,
µ = 0, 1, 2, . . . , n− 1, are coordinates (parameters) on Vn. We assume that
the action is just that for a minimal surface Vn

I[ηa(x)] =

∫
(det ∂µη

a ∂νη
bγab)

1/2dnx, (9.1)

where γab is the metric tensor of VN . The dimension of the spacetime
sheet Vn is taken here to be arbitrary, in order to allow for the Kaluza–
Klein approach. In particular, we may take n = 4. We admit that the
embedding space is curved in general. In particular, let us consider the
case of a conformally flat VN , such that γab = ω2/nηab, where ηab is the
N -dimensional Minkowski tensor. Then Eq. (9.1) becomes

I[ηa(x)] =

∫
ω(η)(det ∂µη

a ∂νη
bηab)

1/2dnx. (9.2)

From now on we shall forget about the origin of ω(η) and consider it as a
function of position in a flat embedding space. The indices a, b, c will be
raised and lowered by ηab and ηab, respectively.

In principle ω(η) is arbitrary. But it is very instructive to choose the
following function:

ω(η) = ω0 +
∑

i

∫
mi
δN (η − η̂i)√

|γ| dmx̂
√
|f̂ | , (9.3)
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where ηa = η̂ai (x̂) is the parametric equation of an m-dimensional surface

V̂
(i)
m , called the matter sheet, also embedded in VN , f̂ is the determinant of

the induced metric on V̂
(i)
m , and

√
|γ| allows for taking curved coordinates in

otherwise flat VN . If we take m = N −n+1 then the intersection of Vn and

V̂
(i)
m can be a (one-dimensional) line, i.e., a worldline Ci on Vn. In general,

when m = N − n + (p + 1) the intersection can be a (p + 1)-dimensional
world sheet representing the motion of a p-dimensional membrane (also
called p-brane). In this chapter we confine our consideration to the case
p = 0, that is, to the motion of a point particle.

Inserting (9.3) into (9.2) and writing fµν ≡ ∂µη
a∂νηa, f ≡ det fµν we

obtain

I[η] = ω0

∫
dnx

√
|f | +

∫
dnx

∑

i

mi δ
n(x−Xi)(fµνẊ

µ
i Ẋ

ν
i )

1/2 dτ. (9.4)

As already explained in Sec. 8.1, the result above was obtained by writing

dmx̂ = dm−1x̂ dτ , f̂ = f̂ (m−1)(Ẋµ
i Ẋiµ)

1/2

and taking the coordinates ηa such that ηa = (xµ, ηn, ..., ηN−1), where xµ

are (curved) coordinates on Vn. The determinant of the metric of the em-
bedding space VN in such curvilinear coordinates is then γ = det ∂µη

a ∂νηa
= f .

If we vary the action (9.4) with respect to ηa(x) we obtain

∂µ

[√
|f | (ω0fµν + Tµν)∂νηa

]
= 0, (9.5)

where

Tµν =
1√
|f |

∑

i

∫
dnxmi δ

n(x−Xi)
Ẋµ
i Ẋ

ν
i

(Ẋα
i Ẋiα)1/2

dτ

(9.6)

is the stress–energy tensor of dust. Eq. (9.5) can be rewritten in terms of
the covariant derivative Dµ on Vn:

Dµ [(ω0f
µν + Tµν)∂νηa] = 0. (9.7)

The latter equation gives

∂νηaDµT
µν + (ω0f

µν + Tµν)DµDνηa = 0, (9.8)

where we have taken into account that a covariant derivative of metric is
zero, i.e., Dαfµν = 0 and Dαf

µν = 0, which implies also ∂αη
cDµDνηc = 0,

since fµν ≡ ∂µη
a∂νηa. Contracting Eq.(9.8) by ∂αηa we have

DµT
µν = 0. (9.9)
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The latter are the well known equations of motion for the sources. In the
case of dust (9.9) implies that dust particles move along geodesics of the
spacetime Vn. We have thus obtained the very interesting result that the

worldlines Ci which are obtained as intersections Vn ∩ V̂ (i)
m are geodesics

of the spacetime sheet Vn. The same result is also obtained directly by
varying the action (9.4) with respect to the variables Xµ

i (τ).
A solution to the equations of motion (9.5) (or (9.7)) gives both: the

spacetime sheet ηa(x) and the worldlines Xµ
i (τ). Once ηa(x) is determined

the induced metric gµν = ∂µη
a∂νηa is determined as well. But such a metric

in general does not satisfy the Einstein equations. In the next section we
shall see that quantum effects induce the necessary Einstein–Hilbert term
(−g)1/2R.

9.2. THE QUANTUM MODEL

For the purpose of quantization we shall use the classical action [88], that
is, a generalization of the well known Howe–Tucker action [31], which is
equivalent to (9.2) (see also Sec. 4.2):

I[ηa, gµν ] = 1
2

∫
dnx

√
|g|ω(η)(gµν∂µηa∂νηa + 2− n). (9.10)

It is a functional of the embedding functions ηa(x) and the Lagrange mul-
tipliers gµν . Varying (9.10) with respect to gµν gives the constraints

−ω
4

√
|g| gαβ(gµν∂µηa∂νηa + 2− n) + ω

2

√
|g| ∂αηa∂βηa = 0. (9.11)

Contracting (9.11) with gαβ , we find gµν∂µη
a∂νηa = n, and after inserting

the latter relation back into (9.11) we find

gαβ = ∂αη
a∂βηa, (9.12)

which is the expression for an induced metric on the surface Vn. In the
following paragraphs we shall specify n = 4; however, whenever necessary,
we shall switch to the generic case of arbitrary n.

In the classical theory we may say that a 4-dimensional spacetime sheet
is swept by a 3-dimensional space-like hypersurface Σ which moves forward
in time. The latter surface is specified by initial conditions, and the equa-
tions of motion then determine Σ at every value of a time-like coordinate
x0 = t. Knowledge of a particular hypersurface Σ implies knowledge of the
corresponding intrinsic 3-geometry specified by the 3-metric gij = ∂iη

a∂jηa
induced on Σ (i, j = 1, 2, 3). However, knowledge of the data ηa(t, xi) on
an entire infinite Σ is just a mathematical idealization which cannot be
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realized in a practical situation by an observer because of the finite speed
of light.

In quantum theory a state of a surface Σ is not specified by the coordi-
nates ηa(t, xi), but by a wave functional ψ[t, ηa(xi)]. The latter represents
the probability amplitude that at time t an observer would obtain, as a
result of measurement, a particular surface Σ.

The probability amplitude for the transition from a state with definite
Σ1 at time t1 to a state Σ2 at time t2 is given by the Feynman path integral

K(2, 1) = 〈Σ2, t2|Σ1, t1〉 =
∫

ei I[η,g]DηDg. (9.13)

Now, if in Eq.(9.13) we perform integration only over the embedding func-
tions ηa(xµ), then we obtain the so called effective action Ieff

eiIeff [g] ≡
∫

ei I[η,g]Dη, (9.14)

which is a functional of solely the metric gµν . From eq. (9.14) we obtain by
functional differentiation

δIeff [g]

δgµν
=

∫ δI[η,g]

δgµν ei I[η,g]Dη
∫
ei I[η,g]Dη ≡

〈
δI[η, g]

δgµν

〉
= 0. (9.15)

On the left hand side of eq. (9.15) we have taken into account the constraints
δI[η, g]/δgµν = 0 (explicitly given in eq. (9.11)).

The expression δIeff [η, g]/δg
µν = 0 gives the classical equations for the

metric gµν , derived from the effective action.

Let us now consider a specific case in which we take for ω(η) the expres-
sion (9.3). Then our action (9.10) splits into two terms

I[η, g] = I0[η, g] + Im[η, g] (9.16)

with

I0[η, g] =
ω0
2

∫
dn x

√
|g| (gµν∂µηa∂νηa+2−n), (9.17)

Im[η, g] =
1

2

∫
dnx

√
|g|
∑

i

mi
δN (η − η̂i)√

|γ| dmx̂

×
√
|f̂ | (gµν∂µηa∂νηa + 2− n). (9.18)

The last expression can be integrated over m−1 coordinates x̂µ, while x̂0

is chosen so to coincide with the parameter τ of a worldline Ci. We also
split the metric as gµν = nµnν/n2+ ḡµν , where nµ is a time-like vector and
ḡµν is the projection tensor, giving ḡµν∂µη

a∂νηa = n− 1. So we obtain
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Im[η, g] =
1

2

∫
dnx

√
|g|
∑

i

δn(x−Xi(τ))√
|g|

×
(
gµνẊ

µ
i Ẋ

ν
i

µi
+ µi

)
dτ = Im[Xi, g]. (9.19)

Here µi ≡ 1/
√
n2|Ci are the Lagrange multipliers giving, after variation, the

worldline constraints µ2i = Ẋ2
i . Eq. (9.19) is the well known Howe-Tucker

action [31] for point particles.
Now let us substitute our specific action (9.16)–(9.19) into the expression

(9.14) for the effective action. The functional integration now runs over two
distinct classes of spacetime sheets Vn [represented by ηa(x)]:

(a) those Vn which either do not intersect the matter sheets V̂
(i)
m [repre-

sented by η̂ai (x̂)] and do not self-intersect, or, if they do, the intersections
are just single points, and

(b) those Vn which do intersect V̂
(i)
m and/or self-intersect, the intersections

being worldlines Ci.

The sheets Vn which correspond to the case (b) have two distinct classes
of points (events):

(b1) the points outside the intersection, i.e., outside the worldlines Ci,
and

(b2) the points on the intersection, i.e., the events belonging to Ci.

The measure Dηa(x) can be factorized into the contribution which cor-
responds to the case (a) or (b1) (x /∈ Ci), and the contribution which
corresponds to the case (b2) (x ∈ Ci):

Dη =
∏

a,x

(|g(x)|)1/4dηa(x)

=
∏

a,x/∈Ci
(|g(x)|)1/4dηa(x)

∏

a,x∈Ci
(|g(x)|)1/4dηa(x)

≡ D0ηDm. (9.20)

The additional factor (|g(x)|)1/4 comes from the requirement that the mea-
sure be invariant under reparametrizations of xµ (see Ref. [102] and Sec.
4.1 for details). From the very definition of

∏
a,x∈Ci(|g(x)|)1/4dηa(x) as the

measure of the set of points on the worldlines Ci (each Ci being represented
by an equation x = Xµ

i (τ)) we conclude that

Dmηa(x) = DXµ
i (τ). (9.21)
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The effective action then satisfies [owing to (9.16)–(9.21)]

eiIeff [g] =

∫
eiI0[η,g]D0η e

iIm[Xi,g]DXi ≡ eiW0 eiWm ,

(9.22)

Ieff = W0 +Wm. (9.23)

The measure D0η includes all those sheets Vn that do not intersect the
matter sheet and do not self-intersect [case (a)], and also all those sheets
which do intersect and/or self-intersect [case (b1)], apart from the points
on the intersections.

The first factor in the product (9.22) contains the action (9.17). The
latter has the same form as the action for N scalar fields in a curved back-
ground spacetime with the metric gµν . The corresponding effective action
has been studied and derived in Refs. [103]. Using the same procedure and
substituting our specific constants ω0/2 and (n− 1) occurring in eq. (9.17),
we find the following expression for the effective action:

Ieff = lim
µ2→0

∫
dnx

√
|g|
(
N ω−10 (4π)−n/2

∞∑

j=0

(µ2)n/2−j aj(x) Γ(j−
n

2
)

+
ω0
2
(2− n)

)
(9.24)

with

a0(x) = 1 (9.25)

a1(x) = R/6 (9.26)

a2(x) =
1

12
R2 +

1

180
(RαβγδR

αβγδ −RαβRαβ)−
1

30
DµD

µR (9.27)

where R, Rαβ and Rαβγδ are the Ricci scalar, the Ricci tensor and
the Riemann tensor, respectively. The function Γ(y) =

∫∞
0 e−t ty−1 dt; it

is divergent at negative integers y and finite at y = 3
2 ,

1
2 ,−1

2 ,−3
2 ,−5

2 , ....
The effective action (9.24) is thus divergent in even-dimensional spaces Vn.
For instance, when n = 4, the argument in eq. (9.24) is j − 2, which for
j = 0, 1, 2, ... is indeed a negative integer. Therefore, in order to obtain a
finite effective action one needs to introduce a suitable cut-off parameter Λ
and replace

(µ2)n/2−jΓ(j − n

2
) =

∫ ∞

0
tj−1−n/2e−µ

2tdt

with ∫ ∞

1/Λ2
tj−1−n/2e−µ

2tdt
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Then we find

Ieff =

∫
dnx

√
|g|
(
λ0 + λ1R+ λ2R

2 + λ3(RαβγδR
αβγδ −RαβRαβ)

+λ4DµD
µR+O(Λn−6)

)
, (9.28)

where2, for n > 4,

λ0 =
Nω0

4(4π)n/2
2Λn

n
+
ω0
2
(2− n),

λ1 =
Nω0

4(4π)n/2
2Λn−2

6(n− 2)
,

λ2 =
Nω0

4(4π)n/2
2Λn−4

12(n− 4)
,

λ3 =
Nω0

4(4π)n/2
2Λn−4

180(n− 4)
,

λ4 = −
Nω0

4(4π)n/2
2Λn−4

30(n− 4)
. (9.29)

Here λ0 is the cosmological constant, whilst λ1 is related to the gravita-
tional constant G in n-dimensions according to

λ1 ≡ (16πG)−1. (9.30)

This last relation shows how the induced gravitational constant is calculated
in terms of ω0, which is a free parameter of our embedding model, and the
cutoff parameter Λ. According to Akama [98], et al., and Sugamoto [92],
we consider the cutoff Λ to be a physical quantity, the inverse thickness
of a membrane, because the original action (9.17) describes an idealized
theory of extended objects with vanishing thickness, but the real extended
objects have non-vanishing thickness playing a role of the ultraviolet cutoff.
In the case of thin extended objects, we can ignore the O(Λn−4) terms in
eq. (9.28).

In the above calculation of the effective action we have treated all func-
tions ηa(x) entering the path integral (9.14) as those representing distinct
spacetime sheets Vn. However, owing to the reparametrization invariance,
there exist equivalence classes of functions representing the same Vn. This
complication must be taken into account when calculating the entire ampli-
tude (9.13). The conventional approach is to introduce ghost fields which

2In the case n = 4 it is convenient to use Akama’s regularization [98]. Similarly for the problem-
atic coefficients in higher dimensions.
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cancel the non-physical degrees of freedom. An alternative approach, first
explored in ref. [53]–[55] and much discussed in this book, is to assume
that all possible embedding functions ηa(x) can nevertheless be interpreted
as describing physically distinct spacetime sheets Vn. This is possible if the
extra degrees of freedom in ηa(x) describe tangent deformations of Vn. Such
a deformable surface Vn is then a different concept from a non-deformable
surface Vn. The path integral can be performed in a straightforward way in
the case of Vn, as was done in arriving at the result (9.24). However, even
from the standard point of view [93], gauge fixing is not required for the
calculation of the effective action, since in the ηa integration, gµν is treated
as a fixed background.

Let us now return to eq. (9.22). In the second factor of eq. (9.22) the
functional integration runs over all possible worldlines Xµ(τ). Though they

are obtained as intersections of various Vn with V̂
(i)
m , we may consider all

those worldlines to be lying in the same effective spacetime V
(eff)
n with the

intrinsic metric gµν . In other words, in the effective theory we identify
all those various Vn’s, having the same induced (intrinsic) metric gµν , as
one and the same spacetime. If one considers the embedding space VN of
sufficiently high dimension N , then there is enough freedom to obtain as

an intersection any possible worldline in the effective spacetime V
(eff)
n .

This is even more transparent when the spacetime sheet self-intersects.
Then we can have a situation in which various sheets coincide in all the
points, apart from the points in the vicinity of the intersections

When the condition for the classical approximation is satisfied, i.e., when
Im À h̄ = 1, then only those trajectories Xµ

i which are close to the classi-
cally allowed ones effectively contribute:

eiWm = eiIm[Xi,g] , Wm = Im (9.31)

The effective action is then a sum of the gravitational kinetic term
W0 given in eq. (9.28) and the source term Im given in (9.19). Variation
of Ieff with respect to gµν then gives the gravitational field equation in the
presence of point particle sources with the stress–energy tensor T µν as given
in Eq. (9.6):

Rµν − 1

2
gµν + λ0g

µν + (higher order terms) = −8πGT µν . (9.32)

However, in general the classical approximation is not satisfied, and in
the evaluation of the matter part Wm of the effective action one must take
into account the contributions of all possible paths Xµ

i (τ). So we have
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(confining ourselves to the case of only one particle, omitting the subscript
i, and taking µ = 1)

eiWm =

∫ xb

xa
DX exp

(
i

2

∫ τb

τa
dτ m (gµνẊ

µẊν + 1)

)

= K(xb, τb;xa, τa) ≡ K(b, a) (9.33)

which is a propagator or a Green’s function satisfying (for τb ≥ τa) the
equation

(
i
∂

∂τb
−H

)
K(xb, τb;xa, τa) = −

1√
|g| δ

n(xb − xa) δ(τb − τa) , (9.34)

where H = (|g|)−1/2∂µ((|g|)1/2∂µ). From (9.34) it follows that

K(b, a) = −
[
i
∂

∂τ
−H

]−1

xb,τb;xa,τa

(9.35)

where the inverse Green’s function is treated as a matrix in the (x, τ) space.

Using the following relation [32] for Gaussian integration

∫
ymyn

N∏

i=1

dyi e
−
∑

ij
yiAijyj ∝ (A−1)mn

(det |Aij |)1/2
, (9.36)

we can rewrite the Green’s function in terms of the second quantized field:

K(a, b) =
∫
ψ∗(xb, τb)ψ(xb, τb)Dψ∗Dψ

× exp

[
−i
∫

dτ dnx
√
|g|ψ∗(i∂τ −H)ψ

]
. (9.37)

If the conditions for the “classical” approximation are satisfied, so that
the phase in (9.37) is much greater than h̄ = 1, then only those paths
ψ(τ, x) , ψ∗(τ, x) which are close to the extremal path, along which the
phase is zero, effectively contribute to K(a, b). Then the propagator is
simply

K(b, a) ∝ exp

[
−i
∫

dτ dnx
√
|g|ψ∗(i∂τ−H)ψ

]
. (9.38)

The effective one-particle “matter” action Wm is then

Wm = −
∫

dτ dnx
√
|g|ψ∗(τ, x)(i∂τ−H)ψ(τ, x). (9.39)
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If we assume that the τ -dependence of the field ψ(τ, x) is specified3 by
ψ(τ, x) = eimτ φ(x), then eq. (9.39) simplifies to the usual well known ex-
pression for a scalar field:

Wm =

∫
dnx

√
|g|φ∗(x)

[
1√
|g|∂µ(

√
|g|∂µ) +m2

)
φ(x)

= −1
2

∫
dnx

√
|g| (gµν ∂µφ∗ ∂νφ−m2) , (9.40)

where the surface term has been omitted.
Thus, starting from our basic fields ηa(x), which are the embedding func-

tions for a spacetime sheet Vn, we have arrived at the effective action Ieff
which contains the kinetic termW0 for the metric field gµν (see Eq. (9.28))
and the source termWm (see eq. (9.32) and (9.18), or (9.40)). Both the met-
ric field gµν and the bosonic matter field φ are induced from the basic fields
ηa(x).

9.3. CONCLUSION

We have investigated a model which seems to be very promising in at-
tempts to find a consistent relation between quantum theory and gravity.
Our model exploits the approach of induced gravity and the concept of
spacetime embedding in a higher-dimensional space and has the following
property of interest: what appear as worldlines in, e.g., a 4-dimensional
spacetime, are just the intersections of a spacetime sheet V4 with “matter”

sheets V̂
(i)
m , or self-intersections of V4. Various choices of spacetime sheets

then give various configurations of worldlines. Instead of V4 it is convenient
to consider a spacetime sheet Vn of arbitrary dimension n. When passing
to the quantized theory a spacetime sheet is no longer definite. All possible
alternative spacetime sheets are taken into account in the expression for a
wave functional or a Feynman path integral. The intersection points of Vn
with itself or with a matter sheet V̂

(i)
m are treated specially, and it is found

that their contribution to the path integral is identical to the contribution
of a point particle path. We have paid special attention to the effective ac-
tion which results from functionally integrating out all possible embeddings
with the same induced metric tensor. We have found that the effective ac-

3By doing so we in fact project out the so called physical states from the set of all possible states.
Such a procedure, which employs a “fictitious” evolution parameter τ is often used (see Chapter
1). When gauge fixing the action (9.33) one pretends that such an action actually represents
an “evolution” in parameter τ . Only later, when all the calculations (e.g., path integral) are
performed, one integrates over τ and thus projects out the physical quantities.
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tion, besides the Einstein–Hilbert term and the corresponding higher-order
terms, also contains a source term. The expression for the latter is equal to
that of a classical (when such an approximation can be used) or quantum
point particle source described by a scalar (bosonic) field.

In other words, we have found that the (n-dimensional) Einstein equa-
tions (including the R2 and higher derivative terms) with classical or quan-
tum point-particle sources are effective equations resulting from perform-
ing a quantum average over all possible embeddings of the spacetime.
Gravity —as described by Einstein’s general relativity— is thus considered
not as a fundamental phenomenon, but as something induced quantum-
mechanically from more fundamental phenomena.

In our embedding model of gravity with bosonic sources, new and in-
teresting possibilities are open. For instance, instead of a 4-dimensional
spacetime sheet we can consider a sheet which possesses additional dimen-
sions, parametrized either with usual or Grassmann coordinates. In such a
way we expect to include, on the one hand, via the Kaluza–Klein mecha-
nism, other interactions as well besides the gravitational one, and, on the
other hand, fermionic sources. The latter are expected also to result from
the polyvector generalization of the action, as discussed in Sec. 2.5.

It is well known that the quantum field theory based on the action (9.40)
implies the infinite vacuum energy density and consequently the infinite
(or, more precisely, the Planck scale cutoff) cosmological constant. This is
only a part of the total cosmological constant predicted by the complete
theory, as formulated here. The other part comes from eqs. (9.28), (9.29).
The parameters N , ω0, Λ and n could in principle be adjusted so to give a
small or vanishing total cosmological constant. If carried out successfully
this would be then an alternative (or perhaps a complement) to the solution
of the cosmological constant problem as suggested in Chapter 3.

Finally, let us observe that within the “brane world” model of Randall
and Sundrum [95], in which matter fields are localized on a 3-brane, whilst
gravity propagates in the bulk, it was recently proposed [104] to treat the
Einstein–Hilbert term on the brane as being induced in the quantum theory
of the brane. It was found that the localized matter on a brane can induce
via loop correction a 4D kinetic term for gravitons. This also happens in our
quantum model if we consider the effective action obtained after integrating
out the second quantized field in (9.37). (The procedure expounded in refs.
[21] is then directly applicable.) In addition, in our model we obtain, as
discussed above, a kinetic term for gravity on the brane after functionally
integrating out the embedding functions.



Chapter 10

ON THE RESOLUTION OF

TIME PROBLEM

IN QUANTUM GRAVITY

Since the pioneering works of Sakharov [96] and Adler [97] there has
been increasing interest in various models of induced gravity [98]. A par-
ticularly interesting and promising model seems to be the one in which
spacetime is a 4-dimensional manifold (a ‘spacetime sheet’) V4 embedded
in an N -dimensional space VN [101, 88], [53]–[55]. The dynamical variables
are the embedding functions ηa(x) which determine positions (coordinates)
of points on V4 with respect to VN . The action is a straightforward gen-
eralization of the Dirac–Nambu–Goto action. The latter can be written in
an equivalent form in which there appears the induced metric gµν(x) and
ηa(x) as variables which have to be varied independently. Quantization of
such an action enables one to express an effective action as a functional
of gµν(x). The effective action is obtained in the Feynman path integral
in which we functionally integrate over the embedding functions ηa(x) of
V4, so that what remains is a functional dependence on gµν(x). Such an
effective action contains the Ricci curvature scalar R and its higher orders.
This theory was discussed in more detail in the previous chapter.

In this chapter we are going to generalize the above approach. The main
problem with any reparametrization invariant theory is the presence of con-
straints relating the dynamical variables. Therefore there exist equivalence
classes of functions ηa(x) —related by reparametrizations of the coordinates
xµ— such that each member of an equivalence class represents the same
spacetime sheet V4. This must be taken into account in the quantized the-
ory, e.g., when performing, for instance, a functional integration over ηa(x).
Though elegant solutions to such problems were found in string theories
[105], the technical difficulties accumulate in the case of a p-dimensional
membrane (p-brane) with p greater than 2 [80].

283
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In Chapters 4–6 we discussed the possibility of removing constraints
from a membrane (p-brane) theory. Such a generalized theory possesses
additional degrees of freedom and contains the usual p-branes of the Dirac–
Nambu–Goto type [106] as a special case. It is an extension, from a point
particle to a p-dimensional membrane, of a theory which treats a relativistic
particle without constraint, so that all coordinates xµ and the conjugate
momenta pµ are independent dynamical variables which evolve along the
invariant evolution parameter τ [1]–[16]. A membrane is then considered as
a continuum of such point particles and has no constraints. It was shown
[53] that the extra degrees of freedom are related to variable stress and fluid
velocity on the membrane, which is therefore, in general, a “wiggly mem-
brane”. We shall now apply the concept of a relativistic membrane without
constraints to the embedding model of induced gravity in which the whole
spacetime is considered as a membrane in a flat embedding space.

In Sec. 10.1 we apply the theory of unconstrained membranes to the con-
cept of an (n−1)-dimensional membrane Vn−1 moving in an N -dimensional
embedding space VN and thus sweeping a spacetime sheet Vn.

In Sec. 10.2 we consider the theory in which the whole space-time is an
n-dimensional1 unconstrained membrane Vn. The theory allows for motion
of Vn in the embedding space VN . When considering the quantized theory
it turns out that a particular wave packet functional exists such that:

(i) it approximately represents evolution of a simultaneity surface Vn−1
(also denoted VΣ), and

(ii) all possible space-time membranes Vn composing the wave packet are

localized near an average space-time membrane V (c)n which corresponds
to a classical space-time unconstrained membrane.

This approach gives both: the evolution of a state (to which classically
there corresponds the progression of time slice) and a fixed spacetime as
the expectation value. The notorious problem of time, as it occurs in a
reparametrization invariant theory (for instance in general relativity), does
not exist in our approach.

1Usually n = 4, but if we wish to consider a Kaluza–Klein like theory then n > 4
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10.1. SPACE AS A MOVING
3-DIMENSIONAL MEMBRANE IN VN

The ideas which we have developed in Part II may be used to describe ele-
mentary particles as extended objects —unconstrained p-dimensional mem-
branes Vp— living in spacetime. In this Part we are following yet another
application of p-branes: to represent spacetime itself! Spacetime is con-
sidered as a surface —also called a spacetime sheet— Vn embedded in a
higher-dimensional space VN . For details about some proposed models of
such a kind see refs. [99]–[101], [88, 90, 54]. In this section we consider a
particular model in which an (n − 1)-dimensional membrane, called a si-
multaneity surface VΣ, moves in the embedding space according to the un-
constrained theory of Part II and sweeps an n-dimensional spacetime sheet
Vn. In particular, the moving membrane is 3-dimensional and it sweeps a
4-dimensional surface.

Since we are now talking about spacetime which is conventionally para-
metrized by coordinates xµ, the notation of Part II is not appropriate.
For this particular application of the membrane theory we use different
notation. Coordinates denoting position of a spacetime sheet Vn (alias
worldsheet) in the embedding space VN are

ηa , a = 0, 1, 2, ..., N − 1, (10.1)

whilst parameters denoting positions of points on Vn are

xµ , µ = 0, 1, 2, ..., n− 1. (10.2)

The parametric equation of a spacetime sheet is2

ηa = ηa(x) (10.3)

Parameters on a simultaneity surface VΣ are

σi , i = 1, 2, ..., n− 1, (10.4)

and its parametric equation is ηa = ηa(σ). A moving VΣ is described by
the variables ηa(τ, σ).

The formal theory goes along the similar lines as in Sec. 7.1. The action
is given by

I[ηa(τ, σ)] = 1
2

∫
ω dτ dn−1σ

√
f̄

(
η̇a η̇a
Λ

+ Λ

)
, (10.5)

2To simplify notation we use the same symbol ηa to denote coordinates of an arbitrary point in
VN and also to to denote the embedding variables (which are functions of xµ).
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where

f̄ ≡ detf̄ij , f̄ij ≡
∂ηa

∂σi
∂ηa
∂σj

, (10.6)

is the determinant of the induced metric on VΣ, and Λ = Λ(τ, σ) a fixed
function. The tension κ is now replaced by the symbol ω. The latter may
be a constant. However, in the proposed embedding model of spacetime we
admit ω to be a function of position in VN :

ω = ω(η). (10.7)

In the case in which ω is a constant we have a spacetime without “matter”
sources. When ω is a function of ηa, we have in general a spacetime with
sources (see Chapter 8)

A solution to the equations of motion derived from (10.5) represents a
motion of a simultaneity surface VΣ. This is analogous to the motion of
an unconstrained membrane discussed in Part II. Here again we see a big
advantage of such an unconstrained theory: it predicts actual motion of VΣ
and evolution of a corresponding quantum state with τ being the evolution
parameter or historical time [7]. The latter is a distinct concept from the
coordinate time t ≡ x0. The existence (and progression) of a time slice
is automatically incorporated in our unconstrained theory. It not need be
separately postulated, as it is in the usual, constrained relativistic theory3.
Later, when discussing the quantized theory, we shall show how to take into
account that setting up data on an entire (infinite) spacelike hypersurface
is an idealistic situation, since it would require an infinite time span which,
in practice, is not available to an observer.

The theory based on the action (10.5) is satisfactory in several respects.
However, it still cannot be considered as a complete theory, because it is
not manifestly invariant with respect to general coordinate transformations
of spacetime coordinates (which include Lorentz transformations). In the
next section we shall “improve” the theory and explore some of its con-
sequences. We shall see that the theory of the motion of a time slice VΣ,
based on the action (10.5), comes out as a particular case (solution) of the
generalized theory which is fully relativistic, i.e., invariant with respect to
reparametrizations of xµ. Yet it incorporates the concept of state evolution.

3More or less explicit assumption of the existence of a time slice (associated with the perception
of “now”) is manifest in conventional relativistic theories from the very fact that the talk is about
’‘point particles” or “strings” which are objects in three dimensions.
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10.2. SPACETIME AS A MOVING
4-DIMENSIONAL MEMBRANE IN VN

GENERAL CONSIDERATION
The experimental basis4 on which rests the special relativity and its

generalization to curved spacetime clearly indicates that spacetime is a
continuum in which events are existing. On the contrary, our subjective
experience clearly tells us that not the whole 4-dimensional5 spacetime, but
only a 3-dimensional section of it is accessible to our immediate experience.
How to reconcile those seemingly contradictory observations?

It turns out that this is naturally achieved by joining the formal theory
of membrane motion (7.1) with the concept of spacetime embedded in a
higher-dimensional space VN (Chapter 8). Let us assume that the spacetime
is an unconstrained 4-dimensional membrane V4 which evolves (or moves)
in the embedding space VN . Positions of points on V4 at a given instant of
the evolution time τ are described by embedding variables ηa(τ, xµ). The
latter now depend not only on the spacetime sheet parameters (coordinates)
xµ, but also on τ . Let us, for the moment, just accept such a possibility
that V4 evolves, and we shall later see how the quantized theory brings a
physical sense to such an evolution.

The action, which is analogous to that of eq. (10.5), is

I[ηa(τ, x)] =
1

2

∫
ωdτd4x

√
|f |
(
η̇aη̇a
Λ

+ Λ

)
, (10.8)

f ≡ detfµν , fµν ≡ ∂µηa∂νηa , (10.9)

where Λ = Λ(τ, x) is a fixed function of τ and xµ (like a “background field”)
and ω = ω(η).

The action (10.8) is invariant with respect to arbitrary transformations of
the spacetime coordinates xµ. But it is not invariant under reparametriza-
tions of the evolution parameter τ . Again we use analogous reasoning as
in Chapter 4. Namely, the freedom of choice of parametrization on a given
initial V4 is trivial and it does not impose any constraints on the dynamical
variables ηa which depend also on τ . In other words, we consider spacetime
V4 as a physical continuum, the points of which can be identified and their
τ -evolution in the embedding space VN followed. For a chosen parametriza-
tion xµ of the points on V4 different functions ηa(x), η′a(x) (at arbitrary τ)

4Crucial is the fact that simultaneity of events is relative to an observer. Different observers (in
relative motion) determine as simultaneous different sets of events. Hence all those events must
exist in a 4-dimensional spacetime in which time is just one of the coordinates.
5When convenient, in order to specify the discussion, let us specify the dimension of spacetime
and take it to be 4.
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represent different physically deformed spacetime continua V4, V ′

4. Different
functions ηa(x), η′a(x), even if denoting positions on the same mathemati-
cal surface V4 will be interpreted as describing physically distinct spacetime
continua, V4, V ′

4, locally deformed in different ways. An evolving physical
spacetime continuum V4 is not a concept identical to a mathematical surface
V4.

6

If, on the other hand, we focus attention to the mathematical manifold
V4 belonging to V4, then different functions ηa(x), η′a(x) which represent
the same manifold V4 are interpreted as belonging to an equivalence class
due to reparametrizations of xµ. There are thus two interpretations (see
also Sec. 4.1) of the transformations relating such functions ηa(x), η′a(x):
(i) the passive transformations, due to reparametrizations of xµ, and (ii)
the active transformations, due to deformations of the physical continuum
V4 into V ′

4. In the first case, the induced metric on V4, which is isometrically
embedded in VN , is given by gµν = ∂µη

a∂νηa . The same expression also
holds for the metric on the physical continuum V4 . If the latter is deformed
into V ′

4 , then the metric tensor of V ′

4 is g
′

µν = ∂µη
′a∂νη

′

a , which is still the
expression for the induced metric on a mathematical manifold isometrically
embedded in VN .

Let us now start developing some basic formalism. The canonically con-
jugate variables belonging to the action (10.8) are

ηa(x) , pa(x) =
∂L

∂η̇a
= ω

√
|f | η̇a

Λ
. (10.10)

The Hamiltonian is

H =
1

2

∫
d4x

√
|f | Λ

ω

(
papa
|f | − ω

2
)
. (10.11)

The theory can be straightforwardly quantized by considering ηa(x), pa(x)
as operators satisfying the equal τ commutation relations

[ηa(x), pb(x
′)] = δabδ(x− x′). (10.12)

In the representation in which ηa(x) are diagonal the momentum operator
is given by the functional derivative

pa = − i
δ

δηa(x)
. (10.13)

6A strict notation would then require a new symbol, for instance η̃a(x) for the variables of the
physical continuum V4, to be distinguished from the embedding functions ηa(x) of a mathematical
surface V4. We shall not use this distinction in notation, since the meaning will be clear from
the context.
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A quantum state is represented by a wave functional ψ[τ, ηa(x)] which de-
pends on the evolution parameter τ and the coordinates ηa(x) of a physical
spacetime sheet V4, and satisfies the functional Schrödinger equation7

i
∂ψ

∂τ
= Hψ. (10.14)

The Hamiltonian operator is given by eq. (10.11) in which pa are now
operators (10.13). According to the analysis given in Sec. 7.1 a possible
solution to eq. (10.14) is a linear superposition of states with definite mo-
mentum pa(x) which are taken as constant functionals of ηa(x), so that
δpa/δη

a = 0:

ψ[τ, η(x)] =

∫
Dp c(p) exp

[
i

∫
d4x pa(x)(η

a(x)− ηa0(x))
]

× exp

[
− i
2

∫
d4x

√
|f | Λ

ω

(
papa
|f | − ω

2
)
τ

]
, (10.15)

where pa(x) are now eigenvalues of the momentum operator, and Dp is the
invariant measure in momentum space.

A PHYSICALLY INTERESTING SOLUTION
Let us now pay attention to eq. (10.15). It defines a wave functional

packet spread over a continuum of functions ηa(x). As discussed in more
detail in Section 7.1, the expectation value of ηa(x) is

〈ηa(x)〉 = ηac(τ, x) (10.16)

where ηac(τ, x) represents motion of the centroid spacetime sheet V (c)4 which
is the “centre” of the wave functional packet. This is illustrated in Fig.
10.1.

In general, the theory admits an arbitrary motion ηac(τ, x) which is a solu-
tion of the classical equations of motion derived from the action (10.8). But,
in particular, a wave packet (10.15) which is a solution of the Schrödinger
equation (10.14) can be such that its centroid spacetime sheet is either

(i) at rest in the embedding space VN , i.e. η̇
a
c = 0;

or, more generally:

(ii) it moves “within itself” so that its shape does not change with τ . More
precisely, at every τ and xµ there exists a displacement ∆Xµ along a

7This is the extension, from point particle to membrane, of the equation proposed by Stueckelberg
[2]. Such an equation has been discussed several times throughout this book.
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curve Xµ(τ) such that ηac(τ+∆τ, xµ) = ηac(τ, x
µ+∆Xµ) , which implies

η̇ac = ∂µη
a
c Ẋ

µ . Therefore η̇ac is always tangent to a fixed mathematical
surface V4 which does not depend on τ .

Existence of a membrane ηa(τ, xµ), satisfying the requirement (ii) and
the classical equations of motion, can be demonstrated as follows. The
relation η̇a = Ẋµ∂µη

a can be written (after expressing Ẋµ = η̇a∂
µηa) also

in the form η̇cbc
a = 0, where bc

a ≡ δc
a − ∂µηc ∂µη

a. At an initial time
τ = 0, the membrane ηa(0, xµ) and its velocity η̇a(0, xµ) can be specified
arbitrarily. Let us choose the initial data such that

η̇c(0)bc
a(0) = 0, (10.17)

η̈c(0)bc
a(0) + η̇c(0)ḃ ac (0) = 0, (10.18)

where η̈a(0) can be expressed in terms of ηa(0) and η̇a(0) by using the
classical equations of motion [54, 55]. At an infinitesimally later instant
τ = ∆τ we have ηa(∆τ) = ηa(0) + η̇a(0)∆τ , η̇a(∆τ) = η̇a(0) + η̈a(0)∆τ ,
and

η̇c(∆τ)bc
a(∆τ) = η̇c(0)bc

a(0) +
[
η̈c(0)bc

a(0) + η̇c(0)ḃ ac (0)
]
∆τ. (10.19)

Using (10.17), (10.18) we find that eq. (10.19) becomes

η̇c(∆τ)bc
a(∆τ) = 0. (10.20)

From the classical equations of motion [54, 55] it follows that also

η̈c(∆τ)bc
a(∆τ) + η̇c(∆τ)ḃ ac (∆τ) = 0. (10.21)

By continuing such a procedure step by step we find that the relation
η̇cbc

a = 0 holds at every τ . This proves that a membrane satisfying the
initial conditions (10.17),(10.18) and the equations of motion indeed moves
“within itself”.

Now let us consider a special form of the wave packet as illustrated
in Fig. 10.2. Within the effective boundary B a given function ηa(x) is
admissible with high probability, outside B with low probability. Such is,
for instance, a Gaussian wave packet which, at the initial τ = 0, is given
by

ψ[0, ηa(x)] = A exp

[
−
∫
d4x

√
|f | ω

Λ
(ηa(x)− ηa0(x))2

1

2σ(x)

]

× exp

[
i

∫
d4x p0a(x) (η

a(x)− ηa0(x))
]
, (10.22)
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Figure 10.1. Quantum mechanically a state of our space–time membrane V4 is given
by a wave packet which is a functional of ηa(x). Its “centre” ηac(τ, x) is the expectation
value 〈ηa(x)〉 and moves according to the classical equations of motion (as derived from
the action (10.8).

where p0c(x) is momentum and ηa0(x) position of the “centre” of the wave
packet at τ = 0. The function σ(x) vary with xµ so that the wave packet
corresponds to Fig. 10.2.

Of special interest in Fig. 10.2 is the region P around a spacelike hyper-

surface Σ on V(c)4 . In that region the wave functional is much more sharply
localized than in other regions (that is, at other values of xµ). This means
that in the neighborhood of Σ a spacetime sheet V4 is relatively well de-
fined. On the contrary, in the regions that we call past or future, space-time
is not so well defined, because the wave packet is spread over a relatively
large range of functions ηa(x) (each representing a possible spacetime sheet
V4).

The above situation holds at a certain, let us say initial, value of the evo-
lution parameter τ . Our wave packet satisfies the Schrödinger equation and
is therefore subjected to evolution. The region of sharp localization depends
on τ , and so it moves as τ increases. In particular, it can move within the
mathematical spacetime surface V4 which corresponds to such a “centroid”

(physical) spacetime sheet V (c)4 = 〈V4〉 which “moves within itself” (case (ii)
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Figure 10.2. The wave packet representing a quantum state of a space–time membrane
is localized within an effective boundary B. The form of the latter may be such that the
localization is significantly sharper around a space-like surface Σ.

above). Such a solution of the Schrödinger equation provides, on the one
hand, the existence of a fixed spacetime V4, defined within the resolution
of the wave packet (see Fig. 10.2), and, on the other hand, the existence
of a moving region P in which the wave packet is more sharply localized.
The region P represents the “present” of an observer. We assume that an
observer measures, in principle, the embedding positions ηa(x) of the entire
spacetime sheet. Every ηa(x) is possible, in principle. However, in the prac-
tical situations available to us a possible measurement procedure is expected
to be such that only the embedding positions ηa(xµΣ) of a simultaneity hy-
persurface Σ are measured with high precision8, whereas the embedding
positions ηa(x) of all other regions of spacetime sheet are measured with
low precision. As a consequence of such a measurement a wave packet like
one of Fig. 10.2 and eq. (10.22) is formed and it is then subjected to the
unitary τ -evolution given by the covariant functional Schrödinger equation
(10.14).

8Another possibility is to measure the induced metric gµν on V4, and measure ηa(x) merely with
a precision at a cosmological scale or not measure it at all.
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Using our theory, which is fully covariant with respect to reparametriza-
tions of spacetime coordinates xµ, we have thus arrived in a natural way at
the existence of a time slice Σ which corresponds to the “present” expe-
rience and which progresses forward in spacetime. The theory of Sec.10.1
is just a particular case of this more general theory. This can be seen by
taking in the wave packet (10.22) the limit

1

σ(x)
=

δ(x0 − x0Σ)
σ(xi)(∂0ηa∂0ηa)1/2

, i = 1, 2, 3 , (10.23)

and choosing

p0a(x
µ) = p

(3)
0a (x

i)δ(x0 − x0Σ). (10.24)

Then the integration over the δ-function gives in the exponent the expres-
sion
∫

d3x
√
|f̄ |ω

Λ

(
ηa(xi)− ηa0(xi)

)2
/2σ(xi) + i

∫
d3x p0a(x

i)
(
ηa(xi)− ηa0(xi)

)

so that eq. (10.22) becomes a wave functional of a 3-dimensional membrane
ηa(xi)

So far we have taken the region of sharp localization P of a wave func-
tional packet situated around a spacelike surface Σ, and so we have obtained
a time slice. But there is a difficulty with the concept of “time slice” related
to the fact that an observer in practice never has access to the experimental
data on an entire spacelike hypersurface. Since the signals travel with the
final velocity of light there is a delay in receiving information. Therefore,
the greater is a portion of a space-like hypersurface, the longer is the delay.
This imposes limits on the extent of a space-like region within which the
wave functional packet (10.22) can be sharply localized. The situation in
Fig. 10.2 is just an idealization. A more realistic wave packet, illustrated in
Fig. 10.3, is sharply localized around an finite region of spacetime. It can
still be represented by the expression (10.22) with a suitable width function
σ(x).

A possible interpretation is that such a wave packet of Fig. 10.3 repre-
sents a state which is relative (in the Everett sense9) to a state of a regis-
tering device with memory of past records. The region of sharp localization
of such a relative state is centered within the registering device.

In summary, our model predicts:

9The Everett interpretation [107] of quantum mechanics which introduces the concept of a wave
function relative to a registering device is not so unpopular among cosmologists. Namely, in
quantum gravity the whole universe is considered to be described (of course, up to a sensible
approximation) by a single wave function, and there is no outside observer who could measure
it.
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VN

P

B

Figure 10.3. Illustration of a wave packet with a region of sharp localization P .

(i) existence of a spacetime continuum V4 without evolution in τ (such
is a spacetime of the conventional special and general relativity);

(ii) a region P of spacetime which changes its position on V4 while the
evolution time τ increases.

Feature (i) comes from the expectation value of our wave packet, and
feature (ii) is due to its peculiar shape (Fig. 10.2 or Fig. 10.3) which evolves
in τ .

INCLUSION OF SOURCES
In the previous chapter we have included point particle sources in the

embedding model of gravity (which was based on the usual constrained p-
brane theory). This was achieved by including in the action for a spacetime
sheet a function ω(η) which consists of a constant part and a δ-function
part. In an analogous way we can introduce sources into our unconstrained
embedding model which has explicit τ -evolution.

For ω we can choose the following function of the embedding space co-
ordinates ηa:

ω(η) = ω0 +
∑

i

∫
mi δ

N (η − η̂i)
√
|f̂ | dmx̂ , (10.25)

where ηa = η̂ai (x̂) is the parametric equation of an m-dimensional surface

V̂
(i)
m , called matter sheet, also embedded in VN ; x̂

µ̂ are parameters (coor-
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dinates) on V̂
(i)
m and f̂ is the determinant of the induced metric tensor on

V̂
(i)
m . If we take m = N − 4 + 1, then the intersection of V4 and V̂

(i)
m can

be a (one-dimensional) line, i.e., a worldline Ci on V4. If V4 moves in VN ,
then the intersection Ci also moves. A moving spacetime sheet was denoted
by V4 and described by τ -dependent coordinate functions ηa(τ, xµ). Let a
moving worldline be denoted Ci. It can be described either by the coor-
dinate functions ηa(τ, u) in the embedding space VN or by the coordinate
functions Xµ(τ, u) in the moving spacetime sheet V4. Besides the evolution
parameter τ we have also a 1-dimensional worldline parameter u which has
an analogous role as the spacetime sheet parameters xµ in ηa(τ, xµ). At
a fixed τ , Xµ(τ, u) gives a 1-dimensional worldline Xµ(u). If τ increases
monotonically, then the worldlines continuously change or move. In the ex-
pression (10.25) m− 1 coordinates x̂µ̂ can be integrated out and we obtain

ω = ω0 +
∑

i

∫
mi
δ4(x−Xi)√

|f |

(
dXµ

i

du

dXν
i

du
fµν

)1/2

du , (10.26)

where xµ = Xµ
i (τ, u) is the parametric equation of a (τ -dependent) world-

line Ci , u an arbitrary parameter on Ci , fµν ≡ ∂µη
a∂νηa the induced

metric on V4 and f ≡ detfµν . By inserting eq. (10.26) into the membrane’s
action (10.8) we obtain the following action

I[Xµ(τ, u)] = I0 + Im (10.27)

=
ω0
2

∫
dτ d4x

√
|f |
(
η̇aη̇a
Λ

+ Λ

)

+
1

2

∫
dτ d4x

√
|f |
∑

i

(
Ẋµ
i Ẋ

ν
i fµν
Λ

+ Λ

)

×mi
δ4(x−Xi)√

|f |

(
dXµ

i

du

dXν
i

du
fµν

)1/2

dλ.

In a special case where the membrane V4 is static with respect to the evo-
lution in τ , i.e., all τ derivatives are zero, then we obtain, taking Λ = 2,
the usual Dirac–Nambu–Goto 4-dimensional membrane coupled to point
particle sources

I[Xµ(u)] = ω0

∫
d4xΛ

√
|f |+

∫
du
∑

i

mi

(
dXµ

i

du

dXν
i

du
fµν

)1/2

. (10.28)

However, the action (10.27) is more general than (10.28) and it allows for
solutions which evolve in τ . The first part I0 describes a 4-dimensional
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membrane which evolves in τ , whilst the second part Im describes a sys-
tem of (1-dimensional) worldlines which evolve in τ . After performing the
integration over xµ, the ‘matter’ term Im becomes —in the case of one
particle— analogous to the membrane’s term I0:

Im =
1

2

∫
dτ dum

(
dXµ

du

dXν

du
fµν

)1/2
(
ẊµẊνfµν

Λ
+ Λ

)
. (10.29)

Instead of 4 parameters (coordinates) xµ we have in (10.29) a single pa-
rameter u, instead of the variables ηa(τ, xµ) we have Xµ(τ, u), and instead
of the determinant of the 4-dimensional induced metric fµν ≡ ∂µηa∂νηa we
have (dXµ/du)(dXµ/du). All we have said about the theory of an uncon-
strained n-dimensional membrane evolving in τ can be straightforwardly
applied to a worldline (which is a special membrane with n = 1).

After inserting the matter function ω(η) of eq. (10.25) into the Hamilton-
ian (10.11) we obtain

H =
1
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)
, (10.30)

where p
(0)
a = ω0Λ

−1√|f | η̇a is the membrane’s momentum everywhere ex-

cept on the intersections V4 ∩ V̂ (i)
m , and P

(i)
µ = miẊiµ/Λ is the membrane

momentum on the intersections V4∩V̂ (i)
m . In other words, P

(i)
µ is the momen-

tum of a worldline Ci . The contribution of the wordlines is thus explicitly
separated out in the Hamiltonian (10.30).

In the quantized theory a membrane’s state is represented by a wave
functional which satisfies the Schrödinger equation (10.14). A wave packet
(e.g., one of eq. (10.22)) contains, in the case of ω(η) given by eq. (10.25),
a separate contribution of the membrane’s portion outside and on the in-

tersection V4 ∩ V̂ (i)
m :

ψ[0, η(x)] = ψ0[0, η(x)]ψm[0, X(u)] (10.31)
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(10.32)
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ψm[0, X(u)] = Am exp
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In the second factor of eq. (10.31) the wave packets of worldlines are ex-
pressed explicitly (10.33). For a particular σ(x), such that a wave packet
has the form as sketched in Fig. 10.2 or Fig. 10.3, there exists a region P
of parameters xµ at which the membrane V4 is much more sharply localized
than outside P . The same is true for the intersections (which are word-
lines): any such worldline Ci is much more sharply localized in a certain
interval of the worldline parameter u. With the passage of the evolution
time τ the region of sharp localization on a worldline moves in space-time
V4. In the limit (10.23), (10.24) expression (10.33) becomes a wave packet
of a point particle (event) localized in space-time. The latter particle is just
an unconstrained point particle, a particular case (for p = 0) of a generic
unconstrained p-dimensional membrane described in Sec. 7.1.

The unconstrained theory of point particles has a long history. It was
considered by Fock, Stueckelberg, Schwinger, Feynman, Horwitz, Fanchi,
Enatsu, and many others [1]–[16]. Quantization of the theory had appeared
under various names, for instance the Schwinger proper time method or the
parametrized relativistic quantum theory. The name unconstrained theory
is used in Ref. [15, 16] both for the classical and the quantized theory.
In the last few years similar ideas in relation to canonical quantization
of gravity and Wheeler DeWitt equation were proposed by Greensite and
Carlini [39]. In a very lucid paper Gaioli and Garcia-Alvarez [40] have
convincingly explained why the invariant evolution parameter is necessary
in quantum gravity (see also ref. [41]).

CONCLUSION

We have formulated a reparametrization invariant and Lorentz invariant
theory of p-dimensional membranes without constraints on the dynamical
variables. This is possible if we assume a generalized form of the Dirac–
Nambu–Goto action, such that the dependence of the dynamical variables
on an extra parameter, the evolution time τ , is admitted. In Sec. 4.2
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we have seen that the unconstrained theory naturally arises within the
larger framework of a constrained theory formulated by means of geometric
calculus based on Clifford algebra which incorporates polyvectors (Clifford
aggregates) as representing physical quantities.

Such a membrane theory manifests its full power in the embedding model
of gravity, in which space-time is treated as a 4-dimensional unconstrained
membrane, evolving in an N -dimensional embedding space. The embed-
ding model was previously discussed within the conventional theory of con-
strained membranes [88]. Release of the constraints and introduction of
the τ evolution brings new insight into the quantization of the model. Par-
ticularly interesting is a state represented by a functional of 4-dimensional

membranes V4, localized around an average space-time membrane V (c)4 , and
even more sharply localized around a finite segment of a space-like surface

Σ on V(c)4 . Such a state incorporates the existence of a classical space–time
continuum and the evolution in it. The notorious problem of time [108] is
thus resolved in our approach to quantum gravity. The space-time coor-
dinate x0 = t is not time10 at all! Time must be separately introduced,
and this has been achieved in our theory in which the action depends on
the evolution time τ . The importance of the evolution time has been
considered, in the case of a point particle, by many authors [1]–[16].

Our embedding model incorporates sources in a natural way. Worldlines
occur in our embedding model as intersections of space–time membranes
V4 with (N − 4 + 1)-dimensional “matter” sheets or as the intersections of
V4 with itself. In the quantized theory the state of a worldline can be repre-
sented by a wave functional ψm[τ,X

µ(u)] , which may be localized around
an average worldline (in the quantum mechanical sense of the expectation
value). Moreover, at a certain value u = uP of the worldline parameter the
wave functional may be much more sharply localized than at other values
of u, thus approximately imitating the wave function of a point particle (or
event) localized in space-time. And since ψm[τ,X

µ(u)] evolves with τ , the
point uP also changes with τ .

The embedding model, based on the theory of unconstrained membranes
satisfying the action (10.8), appears to be a promising candidate for the

10In this sentence ‘time’ stands for the parameter of evolution. Such is the meaning of the word
‘time’ adopted by the authors who discuss the problem of time in general relativity. What they
say is essentially just that there is a big problem because the coordinate x0 does not appear at
all in the Wheeler DeWitt equation and hence cannot have the role of an evolution parameter
(or ‘time,’ in short). In our work, following Horwitz [7], we make explicit distinction between
the coordinate x0 and the parameter of evolution τ (which indeed takes place in our classical
and quantum equations of motions). These two distinct concepts are usually mixed and given
the same name ‘time’. In order to distinguish them, we use the names ‘coordinate time’ and
‘evolution time’.
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theoretical formulation of quantum gravity including bosonic sources. In-
corporation of fermions is expected to be achieved by taking into account
the Grassmann coordinates or by employing the polyvector generalization
of the underlying formalism.





IV

BEYOND THE HORIZON





Chapter 11

THE LANDSCAPE OF THEORETICAL

PHYSICS: A GLOBAL VIEW

In the last Part, entitled “Beyond the Horizon”, I am going to discuss
conceptual issues and the foundations of theoretical physics. I shall try to
outline a broader1 view of the theoretical physics landscape as I see it, and,
as seems to me, is becoming a view of an increasing number of researchers.
The introductory chapter of Part IV, bearing the same title as the whole
book, is an overview aimed at being understandable to the widest possible
circle of readers. Therefore use of technical terminology and jargon will
be avoided. Instead, the concepts and ideas will be explained by analogies
and illustrative examples. The cost, of course, is a reduced scientific rigor
and precision of expression. The interested reader who seeks a more precise
scientific explanation will find it (but without much maths and formulas)
in the next chapters, where many concepts will be discussed at a more
elaborate level.

Throughout history people have been always inventing various cosmolog-
ical models, and they all have always turned out to be wrong, or at least
incomplete. Can we now be certain that a similar fate does not await the
current widely accepted model, according to which the universe was born
in a “big bang”? In 1929 an american astronomer Edwin Hubble discov-
ered that light coming from galaxies is shifted towards the red part of the
spectrum, and the shift increases with galactic distance. If we ascribe the
red shift to galactic velocity, then Hubble’s discovery means that the uni-
verse is expanding, since the more distant a galaxy is from us the greater
is its velocity; and this is just a property of expansion. Immediately after
that discovery Einstein recognized that his equation for gravity admitted

1The outline of the view will in many respects be indeed “broader” and will go beyond the
horizon.
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precisely such a solution which represented the expansion of a universe uni-
formly filled with matter. In fact, he had already come to just such a result
in 1917, but had rejected it because he had considered it a nonsense, since
an expanding universe was in disagreement with the static model of the
universe widely accepted at that time. In 1917 he had preferred to modify
his equation by adding an extra term containing the so called “cosmological
constant”. He had thus missed the opportunity of predicting Hubble’s dis-
covery, and later he proclaimed his episode with the cosmological constant
as the biggest blunder in his life.

General relativity is one of the most successful physical theories. It is
distinguished by an extraordinary conceptual elegance, simplicity of the
basic postulates, and an accomplished mathematical apparatus, whilst nu-
merous predictions of the theory have been tested in a variety of important
and well known experiments. No experiment of whatever kind has been
performed so far that might cast doubt on the validity of general relativ-
ity. The essence of the theory is based on the assumption (already well
tested in special relativity) that space and time form a four-dimensional
continuum named spacetime. In distinction with special relativity, which
treats spacetime as a flat continuum, in general relativity spacetime can
be curved, and curvature is responsible for gravitational phenomena. How
spacetime is curved is prescribed by Einstein’s equation. Strictly speaking,
Einstein’s equations determine only in which many different possible ways
spacetime can be curved; how it is actually curved we have to find out at
“the very place”. But how do we find this? By observing particles in their
motion. If we are interested in spacetime curvature around the Sun, then
such particles are just planets, and if we are interested in the curvature of
the Universe as the whole, then such particles are galaxies or clusters of
galaxies. In flat spacetime, in the absence of external forces, all particles
move uniformly along straight lines, whilst in a curved spacetime particles
move non-uniformly and in general along curved lines. By measuring the
relative acceleration and velocity of one particle with respect to another,
nearby, particle we can then calculate the curvature of spacetime in a given
point (occupied by the particle). Repeating such a procedure we can de-
termine the curvature in all sample points in a given region of spacetime.
The fact that a planet does not move along a straight line, but along an
elliptic trajectory, is a consequence of the curvature of spacetime around
the Sun. The gravitational “force” acting on a planet is a consequence of
the curvature. This can be illustrated by an example of a curved membrane
onto which we throw a tiny ball. The ball moves along a curved trajectory,
hence a force is acting on the ball. And the latter force results from the
membrane’s curvature.
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Another very successful theory is quantum mechanics. Without quan-
tum mechanics we would not be able to explain scattering of electrons by
crystals, nor the ordered stable crystal structure itself, nor the properties
of electromagnetic waves and their interactions with matter. The widely
known inventions of today, such as the laser, semiconductors, and tran-
sistors, have developed as a result of understanding the implications of
quantum mechanics. Without going into too much detail, the essence of
quantum mechanics, or at least one of its essential points, can be summa-
rized in the following simplified explanation. There exists a fundamental
uncertainty about what the universe will be like at a future moment. This
uncertainty is the bigger, as more time passes after a given moment. For
instance, it is impossible to predict precisely at which location an electron
will be found, after leaving it to move undisturbed for some time. When we
finally measure its position it will be, in principle, anywhere in space; how-
ever, the probability of finding the electron will be greater at some places
than at others. To everyone of those possible results of measurements there
corresponds a slightly different universe. In classical, Newtonian, physics
the uncertainty about the future evolution of the universe is a consequence
of the uncertainty about the present state of the universe. If the present
state could be known precisely, then also the future evolution of the universe
could be precisely calculated. The degree of precision about the prediction
of the future is restricted by the degree of precision with which the initial
conditions are determined. (I am intentionally speaking about the whole
universe, since I wish to point out that the size of the observed system
and its complexity here does not, in principle, play any role.) In quantum
mechanics, on the contrary, such uncertainty is of quite a different kind
from that in classical mechanics. No matter how precisely the present state
of an observed system is known, the uncertainty about what position of
the particles we shall measure in the future remains. A generic state of a
system can be considered as a superposition of a certain set of basis states.
It can be described by the wave function which enables calculation of the
probability to observe a definite quantum state upon measurement. The lat-
ter state is just one amongst the states belonging to the set of basis states,
and the latter set itself is determined by the measurement situation. Such
a probability or statistical interpretation of quantum mechanics was unac-
ceptable for Einstein, who said that “God does not play dice”. And yet
everything points to him having been wrong. So far no experiment, no mat-
ter how sophisticated, has disproved the probability interpretation, whilst
many experiments have eliminated various rival interpretations which as-
sume the existence of some “hidden variables” supposedly responsible for
the unpredictable behavior of quantum systems.
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* * *

We thus have two very successful theories, general relativity on the one
hand, and quantum mechanics on the other, which so far have not been
falsified by any experiment. What is then more natural than to unify
those two theories into a single theory? And yet such a unification has
not yet been successfully achieved. The difficulties are conceptual as well
as mathematical and technical. As it appears now, final success will not
be possible without a change of paradigm. Some of the basic principles
the two theories rest on will have to be changed or suitably generalized.
Certain significant moves in this direction have already been made. In the
following I will briefly, and in a simplified way, discuss some of those, in my
opinion, very important approaches. Then I will indicate how those seem-
ingly unconnected directions of research lead towards a possible solution of
the problem of quantum gravity, and hence towards an even more profound
understanding of the universe and the role of an intelligent observer in it.

Before continuing, let me point out that some epochs in history are more
ready for changes, other less. The solution of a certain basic scientific
problem or a significantly improved insight into the nature of Nature is
nearly always a big shock for those who have been used to thinking in the
old terms, and therefore do their best to resist the changes, while regretfully
they do not always use the methods of scientific argument and logic only.
Copernicus did not publish his discoveries until coming close to his death,
and he had reason for having done so. The idea that the whole Earth,
together with the oceans, mountains, cities, rivers, is moving around the
Sun, was too much indeed! Just as were Wegener’s theory about the relative
motions of the continents, Darwin’s theory about the origin and evolution of
the species, and many other revolutionary theories. I think that we could
already have learned something from the history of science and be now
slightly more prudent while judging new ideas and proposals. At least the
“arguments” that a certain idea is much too fantastic or in disagreement
with common sense should perhaps not be used so readily. The history of
science has taught us so many times that many successful ideas were just
such, namely at first sight crazy, therefore in the future we should avoid
such a “criterion” of judging the novelties and rather rely less on emotional,
and more on scientific criteria. The essence of the latter is a cold, strictly
rational investigation of the consequences of the proposed hypotheses and
verification of the consequences by experiments. However, it is necessary to
have in mind that a final elaboration of a successful theory takes time. Many
researchers may participate in the development and every contribution is
merely a piece of the whole. Today it is often stressed that a good theory
has to able to incorporate all the known phenomena and predict new ones,
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not yet discovered. This is, of course, true, but it holds for a finished
theory, and not for the single contributions of scientists who enabled the
development of the theory.

In 1957 the American physicist Hugh Everett [107] successfully defended
his PhD thesis and published a paper in which he proposed that all the
possibilities, implicit in the wave function, actually exist. In other words,
all the possible universes incorporated in the wave function actually exist,
together with all the possible observers which are part of those universes. In
addition to that, Everett developed the concept of relative state. Namely,
if a given physical system consists of two mutually interacting subsystems,
then each of them can be described by a wave function which is relative to
the possible states of the other subsystem. As one subsystem we can take,
for example, an intelligent observer, and as the other subsystem the rest
of the universe. The wave function of the remaining universe is relative to
the possible states of the observer. The quantum mechanical correlation,
also known under the name “entanglement”, is established amongst the
possible quantum states of the observer and the possible quantum states
of the remaining universe. As an example let us consider an observer who
measures the radioactive gamma decay of a low activity source with short
life time. A Geiger counter which detects the particles (in our example
these are photons, namely gamma rays) coming from the source will then
make only single sounds, e.g., one per hour. Imagine now that we have
isolated a single atom containing the nucleus of our radioactive source. At
a given moment the wave function is a superposition of two quantum states:
the state with photon emission and the state without the photon emission.
The essence of Everett’s thesis (for many still unacceptable today) lies in
assuming that the states of the Geiger counter, namely the state with the
sound and the state without the sound, also enter the superposition. More-
over, even the states of the observer, i.e., the state in which the observer
has heard the sound and the state in which the observer has not heard the
sound, enter the superposition. In this example the quantum correlation
manifests itself in the following. To the state in which the observer became
aware2 that he has heard the sound there corresponds the state in which
the detector has detected a photon, and to the latter state, in turn, there
correspond the state in which the excited nucleus has emitted the photon.
And similarly, to the state in which the observer has not heard the sound,
there corresponds the state in which the detector has not detected and the

2In this example we are using a male observer and the source of gamma rays. In some other
example we could use a female observer and laser beams instead. In fact, throughout the book I
am using female or male observers interchangely for doing experiments for my illustrations. So
I avoid using rather cumbersome (especially if frequently repeated) “he or she”, but use “he” or
“she” instead. When necessary, “he” may stand for a generic observer. Similarly for “she”.
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source has not emitted a photon. Each of those two chains of events be-
longs to a different universe: in one universe the decay has happened and
the observer has perceived it, whilst in the other universe at the given mo-
ment there was no decay and the observer has not perceived the decay. The
total wave function of the universe is a superposition of those two chains of
events. In any of the chains, from the point of view of the observer, there
is no superposition.

The Everett interpretation of quantum mechanics was strongly supported
by John Archibald Wheeler [109]. Somewhat later he was joined by many
others, among them also Bryce DeWitt who gave the name “many worlds
interpretation”, that is, the interpretation with many worlds or universes.
Today the majority of physicists is still opposed to the Everett interpreta-
tion, but it is becoming increasingly popular amongst cosmologists.

Later on, Wheeler distanced himself from the Everett interpretation and
developed his own theory, in which he put the quantum principle as the
basis on which rests the creation and the functioning of the universe [111].
The observer is promoted to the participator, who not only perceives, but is
actively involved in, the development of the universe. He illustrated his idea
as follows. We all know the game “twenty questions”. Person A thinks of
an object or a concept—and person B poses questions to which the answer
is yes or no. Wheeler slightly changed the rules of the game, so that A
may decide what the object is after B asks the first question. After the
second question A may change the idea and choose another object, but
such that it is in agreement with his first answer. This continues from
question to question. The object is never completely determined, but is
only determined within the set of possible objects which are in agreement
with the questions posed (and the answers obtained) so far. However,
with every new question the set of possible objects is narrowed, and at the
end it may happen that only one object remains. The player who asked
questions, with the very choice of her questions, has herself determined
the set of possible answers and thus the set of possible objects. In some
way reality is also determined by the question we ask it. The observer
observes the universe by performing various measurements or experiments.
With the very choice of experiment she determines what the set of possible
results of measurement is, and hence what the set of possible universes at
a given moment is. The observer is thus involved in the very creation of
the universe she belongs to. In my opinion Wheeler’s approach is not in
disagreement with Everett’s, but completes it, just as it also completes the
commonly accepted interpretation of quantum mechanics.

Nowadays a strong and influential supporter of the Everett interpretation
is an Oxford professor David Deutsch. In his book The Fabric of Reality
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[112] he developed the concept of multiverse, which includes all possible
universes that are admitted by a wave function. In a 1991 Physical Review
article [113] he proved that the paradoxes of so called time machines can
be resolved by means of the Everett interpretation of quantum mechanics.
Many theoretical physicists study in detail some special kinds of solutions
to the Einstein equation, amongst them the best known are wormwholes
[114]. These are special, topologically non-trivial, configurations of space-
time which under certain conditions allow for causal loops. Therefore such
solutions are called time machines. A particle which enters a time machine
will go back in time and meet itself in the past. Such a situation is normally
considered paradoxical and the problem is how to avoid it. On the one hand,
if we believe the Einstein equations such time machines are indeed possi-
ble. On the other hand, they are in conflict with the principle of causality,
according to which it is impossible to influence the past. Some researchers,
therefore, have developed a hypothesis of a self-consistent arrangement of
events which prevents a particle from meeting itself in the past; the time
machine may exist and a particle may enter it and travel back into the
past, but there is no means by which it can arrive at a point in spacetime
at which it had already been. Others, with Stephen Hawking as the leader,
on the contrary, are proving that quantum mechanics forbids the forma-
tion of time machines, since the quantum fluctuations in the region of the
supposed formation of a time machine are so strong that they prevent the
formation of the time machine. However, Deutsch has shown that, exactly
because of quantum mechanics and the Everett interpretation, causal loops
are not paradoxical at all! Namely, a particle never travels a well defined
trajectory, but its quantum mechanical motion is spread around an average
trajectory. According to the Everett interpretation this means that there
exist many copies of the particle, and hence many universes which dis-
tinguish between themselves by the slightly different positions the particle
occupies in each and every of those universes. If a particle travels in a time
machine and meets its copy in the past, the result of such a collision will be
quantum mechanically undetermined within the range of spreading of the
wave function. To every possible pair of directions to which the two parti-
cles can recoil after the collision there corresponds a different universe. We
have a causal paradox only if we assume the existence of a single universe.
Then the collision of a particle with its own copy in the past necessarily
changes the initial history, which is the essence of the causal paradox. But
if we assume that a set of universes exists, then there also exists a set of
histories, and hence a journey of a particle into the past does not imply
any paradox at all. A similar resolution [115] of the causal paradox has
also been proposed for tachyons. Tachyons are so far unobserved particles
moving with a speed faster than light . The equations of relativity in prin-
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ciple admit not only the existence of bradyons (moving slower than light)
and photons (moving with the speed of light), but also of tachyons. But
tachyons appear problematic in several respects3, mainly because they al-
low for the formation of causal loops. This is one of the main arguments
employed against the possibility that tachyons could be found in nature.
However, the latter argument no longer holds after assuming the validity of
the Everett interpretation of quantum mechanics, since then causal loops
are not paradoxical, and in fact are not “loops” at all.

We have arrived at the following conclusion. If we take seriously the equa-
tions of general relativity, then we have also to take seriously their solutions.
Amongst the solutions there are also such configurations of spacetime which
allow for the formation of causal loops. We have mentioned wormholes. Be-
sides, there also exists the well known Gödel solution for spacetime around
a rotating mass. If such solutions are in fact realized in nature, then we
have to deal with time machines and such experimental situations, which
enables us to test the Everett interpretation of quantum mechanics. In this
respect the Everett interpretation distinguishes itself from the other inter-
pretations, including the conventional Copenhagen interpretation. In the
other experimental situations known so far the Everett interpretation gives
the same predictions about the behavior of physical systems as the rival
interpretations (including the Copenhagen interpretation).

* * *

Life, as we know it, requires the fulfilment of certain strict conditions.
It can develop only within a restricted temperature interval, and this can
be realized only on a planet which is at just the right distance from a star
with just the right activity and sufficiently long life time. If the fundamen-
tal constants determining the strength of the gravitational, electromagnetic,
weak and strong forces were slightly different those conditions would not
have been met, the universe would be different to the extent that a life
of our kind would not be possible in it. In physics so far no a reliable
principle or law has been discovered according to which the values of the
fundamental constant could be determined. Just the contrary, all values
of those constants are possible in principle. The fact that they are “cho-
sen” just as they are, has been attempted to be explained by the so called
anthropic principle [116]. According to that principle there exists a funda-
mental relationship between the values of the fundamental constants and
our existence; our existence in the universe conditions the values of those

3Some more discussion about tachyons is provided in Sec. 13.1.



The landscape of theoretical physics: a global view 311

constants. Namely, the world must be such that we the observers can exist
in it and observe it. However, by this we have not explained much, since the
question remains, why is the universe just such that it enables our life. Here
we can again help ourselves by employing the Everett interpretation which
says that everything which physically can happen actually does happen—
in some universe. The physical reality consists of a collection of universes.
There exist all sorts of universes, with various values of the fundamental
constants. In a vast majority of the universes life is not possible, but in few
of them life is, nevertheless, possible, and in some universes life actually
develops. In one such universe we live. We could say as well that “in one
of those universes we live”. The small probability of the occurrence of life
is not a problem at all. It is sufficient that the emergence of life is possible,
and in some universes life would have actually developed. Hence in the
Everett interpretation the anthropic principle is automatically contained.

* * *

It is typical for general relativity that it deals merely with the intrinsic
properties of spacetime, such as its metric and the intrinsic curvature. It
disregards how spacetime looks “from the outside”. The practitioners of
general relativity are not interested in an eventual existence of an embed-
ding space in which our spacetime is immersed. At the same time, para-
doxically, whenever they wish to illustrate various solutions of the Einstein
equations they actually draw spacetime as being embedded in a higher-
dimensional space. Actually they draw spacetime as a 2-dimensional sur-
face in 3-dimensional space. If they had known how to do it they would have
drawn it as a 4-dimensional surface in a higher-dimensional space, but since
this is not possible4 they help themselves by suppressing two dimensions of
spacetime.

How can we talk at all about a fourth, fifth, or even higher dimension,
if we are unable to perceive them. For a description of a point in a three
dimensional space we need three numbers, i.e., coordinates. In order to
describe its motion, that is the trajectories, we need three equations. There
is an isomorphism between the algebraic equations and geometric objects,
for instance curves in space. This we can generalize, and instead of three
equations take four or more equations; we then talk about four- or higher-
dimensional spaces.

Instead of considering the embedding of spacetime in a higher-dimensional
space merely as a usefull tool for the illustration of Einstein’s equations,

4By using suitable projection techniques this might be in fact possible, but such drawings would
not be understandable to an untrained person.
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some physicists take the embedding space seriously as an “arena” in which
lives the 4-dimensional surface representing spacetime. Distribution of mat-
ter on this surface is determined by the distribution of matter in the em-
bedding space5. The motion of the latter surface (actually the motion of a
3-brane which sweeps a 4-dimensional surface, called a worldsheet) can be
considered as being a classical motion, which means that the surface and
its position in the embedding space are well determined at every moment.
However, such a classical description does not correspond to the reality. The
motion of the 3-brane has to obey the laws of quantum mechanics, hence
a generic state of the brane is represented by a wave function. The latter
function in general does not represent a certain well determined brane’s
worldsheet, but is “spread” over various worldsheets. More precisely, a
wave function is, in general, a superposition of the particular wave func-
tions, every one of them representing some well defined worldsheet. Such
a view automatically implies that our spacetime worldsheet is not the only
possible one, but that there exist other possible worldsheets which repre-
sent other possible universes, with different configurations of geometry and
matter, and thus with different possible observers. But they all stay in a
quantum mechanical superposition! How can we then reconcile this with the
fact that at the macroscopic level we observe a well determined spacetime,
with a well determined matter configuration? We again employ the Ev-
erett interpretation. According to Everett all those spacetime worldsheets
together with the corresponding observers, which enter the superposition,
are not merely possible, but they actually exist in the multiverse. Relative
to every one of those observers the wave function represents a state with
a well determined universe, of course up to the accuracy with which the
observer monitors the rest of his universe. This is the “objective” point
of view. From a “subjective” point of view the situation looks as follows.
If I “measure” the position of a single atom in my surroundings, then the
positions of all the other atoms, say in a crystal, will be irrevocably de-
termined forever and I shall never observe a superposition of that crystal.
Moreover, since the crystal is in the interaction with its surroundings and
indirectly also with the entire universe, I shall never be able to observe a
superposition of the universe, at least not at the macroscopic level6. Of

5In Chapter 8 we have developed a model in which our spacetime surface is a worldsheet of a
brane. Assuming that there are many other similar branes of various dimensionality which can
intersect our world brane we obtain, as a result of the intersection, the matter on our world brane
in the form of point particles, strings, 2-branes and 3-branes (i.e., space filling branes). All those
other branes together with our world brane form the matter in the embedding space. Moreover,
we have shown that the embedding space is actually identified with all those branes. Without
the branes there is no embedding space.
6In fact, I measure the position of an atom in a crystal by the very act of looking at it. So my
universe actually is no longer in such a macroscopic superposition after the moment I looked at it
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course, a superposition of the universe at the microscopic level remains,
but is reduced every time we perform a corresponding measurement.

According to the conventional Copenhagen interpretation of quantum
mechanics it is uncertain which of the possible universes will be realized
after a measurement of a variable. According to the Everett interpreta-
tion, however, all those universes actually exist. This is an ‘objective’ point
of view. By introducing the concept of relative wave function Everett ex-
plains that from a “subjective” point of view it is uncertain in which of
those universes the observer will happen to “find himself”. In this respect
the Everett interpretation coincides with the Copenhagen interpretation.
The questions “what universe?” and “which universe?” are intertwined in
the Everett interpretation, depending on whether we look at it from an
“objective” or a “subjective” point of view.

* * *

The quantum theory of the spacetime worldsheet in an embedding space,
outlined in rough contours in this chapter, is in my opinion one of the most
promising candidates for the quantum description of gravity. In its future
development it will be necessary to include the other interactions, such as
the electromagnetic, weak and strong interactions. This could be achieved
by following the Kaluza–Klein idea and extend the dimensionality of the
spacetime sheet from four to more dimensions. Also fermions could be in-
cluded by performing a supersymmetric generalization of the theory, that is
by extending the description to the anticommuting Grassmann coordinates,
or perhaps by taking a polyvector generalization of the theory.

(or even touched it) for the first time. Relative to me the universe certainly was in a superposition
(and consequently I was not aware of anything) before my embryo started to evolve, and will
be again in a superposition after my death. The latter metaphor attempts to illustrate that a
conscious observer and the corresponding definite macroscopic universe are in a tight relationship.





Chapter 12

NOBODY REALLY UNDERSTANDS

QUANTUM MECHANICS

Quantum mechanics is a theory about the relative information that subsystems have
about each other, and this is a complete description about the world

—Carlo Rovelli

The motto from a famous sentence by Feynman [117] will guide us
through this chapter. There are many interpretations of quantum me-
chanics (QM) described in some excellent books and articles. No consensus
about which one is “valid”, if any, has been established so far. My feeling is
that each interpretation has its own merits and elucidates certain aspects
of QM. Let me briefly discuss the essential points (as I see them) of the
three main interpretations1.

Conventional (Copenhagen) interpretation. The wave function ψ
evolves according to a certain evolution law (the Schrödinger equation). ψ
carries the information about possible outcomes of a measurement process.
Whenever a measurement is performed the wave function collapses into
one of its eigenstates. The absolute square of the scalar product of ψ
with its eigenfunctions are the probabilities (or probability densities) of
the occurrence of these particular eigenvalues in the measurement process
[120, 121].

Collapse or the reduction of the wave function occurs in an ob-
server’s mind. In order to explain how the collapse, which is extraneous

1Among modern variants of the interpretations let me mention the relational quantum mechanics

of Rovelli [118], and the many mind interpretation of Butterfield [119]
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to the Schrödinger evolution of ψ, happens at all, one needs something more.
If one postulates that the collapse occurs in a (say, macroscopic) measur-
ing apparatus the problem is not solved at all, since also the interaction
of our original system (described by ψ) with the measuring apparatus is
governed by the Schrödinger evolution for the combined system–apparatus
wave function. Therefore also the measuring apparatus is in a state which is
a superposition of different eigenstates corresponding to different results of
measurement2. This is true even if the result of measurement is registered
by a magnetic tape, or punched tape, etc. . A conscious observer has to look
at the result of measurement; only at that moment is it decided which of
various possibilities actually occurs [122]. Meanwhile, the tape has been in
a state which is a superposition of states corresponding to the eigenvalues
in question.

Everett, Wheeler, Graham many worlds interpretation. Various
quantum possibilities actually occur, but in different branches of the world
[107, 109, 110]. Every time a measurement is performed the observed world
splits into several (often many) worlds corresponding to different eigenval-
ues of the measured quantities. All those worlds coexist in a higher universe,
the multiverse. In the multiverse there exists a (sufficiently complicated)
subsystem (e.g., an automaton) with memory sequences. To a particular
branching path there corresponds a particular memory sequence in the au-
tomaton, and vice versa, to a particular memory sequence there belongs a
particular branching path. No collapse of the wave function is needed. All
one needs is to decide which of the possible memory sequences is the one
to follow. (My interpretation is that there is no collapse in the multiverse,
whilst a particular memory sequence or stream of consciousness experiences
the collapse at each branching point.) A particular memory sequence in the
automaton actually defines a possible life history of an observer (e.g., a hu-
man being). Various well known paradoxes like that of Einstein–Podolsky–
Rosen, which are concerned with correlated, non-interacting systems, or
that of Schrödinger’s cat, etc., are easily investigated and clarified in this
scheme [107].

Even if apparently non-related the previous three interpretations in fact
illuminate QM each from its own point of view. In order to introduce the
reader to my way of looking at the situation I am now going to describe
some of my earlier ideas. Although not being the final word I have to say
about QM, these rough ideas might provide a conceptual background which
will facilitate understanding the more advanced discussion (which will also

2For a more detailed description of such a superposition and its duration see the section on
decoherence.
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take into account the modern decoherence approach) provided later in this
chapter. A common denominator to the three views of QM discussed above
we find in the assumption that a 3-dimensional simultaneity hypersurface
Σ moves in a higher-dimensional space of real events3. Those events which
are intersected by a certain Σ-motion are observed by a corresponding ob-
server. Hence we no longer have a conflict between realism and idealism.
There exists a certain physical reality, i.e., the world of events in a higher-
dimensional space. In this higher universe there exist many 4-dimensional
worlds corresponding to different quantum possibilities (see also Wheeler
[123]). A particular observer, or, better, his mind chooses by an act of
free will one particular Σ-surface, in the next moment another Σ-surface,
etc. . A sequence of Σ-surfaces describes a 4-dimensional world4. A conse-
quence of the act of free choice which happens in a particular mind is the
wave function reduction (or collapse). Before the observation the mind has
certain information about various possible outcomes of measurement; this
information is incorporated in a certain wave function. Once the measure-
ment is performed (a measurement procedure terminates in one’s mind),
one of the possible outcomes has become the actual outcome; the term ac-
tual is relative to a particular stream of consciousness (or memory sequence
in Everett’s sense). Other possible outcomes are actual relative to the other
possible streams of consciousness.

So, which of the possible quantum outcomes will happen is–as I assume–
indeed decided by mind (as Wigner had already advocated). But this fact
does not require from us to accept an idealistic or even solipsistic interpre-
tation of the world, namely that the external worlds is merely an illusion
of a mind. The duty of mind is merely a choice of a path in a higher-
dimensional space, i.e., a choice of a sequence of Σ-hypersurfaces (the three
dimensional “nows”). But various possible sequences exist independently
of a mind; they are real and embedded in a timeless higher-dimensional
world.

However, a strict realism alone, independent of mind or consciousness is
also no more acceptable. There does not exist a motion of a real external
object. The external “physical” world is a static, higher-dimensional struc-
ture of events. One gets a dynamical (external) 4-dimensional world by
postulating the existence of a new entity, a mind, with the property of mo-
ving the simultaneity surface Σ into any permissible direction in the higher
space. This act of Σ-motion must be separately postulated; a consequence

3We shall be more specific about what the “higher-dimensional space” is later. It can be either
the usual higher-dimensional configuration space, or, if we adopt the brane world model then
there also exists an infinite-dimensional membrane spaceM. The points ofM-space correspond
to the “coordinate” basis vectors of a Hilbert space which span an arbitrary brane state.
4This is elaborated in Sec. 10.1.
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of this motion is the subjective experience that the (3-dimensional) external
world is continuously changing. The change of the (3-dimensional) external
world is in fact an illusion; what really changes with time is an observer’s
mind, while the external world —which is more than (3+1)-dimensional)—
is real and static (or timeless).

Let us stress: only the change of an external (3-dimensional) world is an
illusion, not the existence of an external world as such. Here one must be
careful to distinguish between the concept of time as a coordinate (which
enters the equations of special and general relativity) and the concept of
time as a subjective experience of change or becoming. Unfortunately we
often use the same word ‘time’ when speaking about the two different con-
cepts5.

One might object that we are introducing a kind of metaphysical or
non physical object —mind or consciousness— into the theory, and that
a physical theory should be based on observable quantities only. I reply:
how can one dismiss mind and consciousness as something non-observable
or irrelevant to nature, when, on the contrary, our own consciousness is the
most obvious and directly observable of all things in nature; it is through
our consciousness that we have contacts with the external world (see also
Wigner [122]).

12.1. THE ‘I’ INTUITIVELY UNDERSTANDS
QUANTUM MECHANICS

If we think in a really relaxed way and unbiased with preconcepts, we re-
alize the obvious, that the wave function is consciousness. In the following
I will elaborate this a little. But before continuing let me say something
about the role of extensive verbal explanations and discussions, especially
in our attempts to clarify the meaning of quantum mechanics. My point is
that we actually need as much such discussion as possible, in order to de-
velop our inner, intuitive, perception of what quantum mechanics is about.
In the case of Newtonian (classical) mechanics we already have such an
intuitive perception. We have been developing our perception since we are
born. Every child intuitively understands how objects move and what the
consequences are of his actions, for instance what happens if he throws a
ball. Imagine our embarrassment, if, since our birth, we had no direct con-
tact with the physical environment, but we had nevertheless been indirectly
taught about the existence of such an environment. The precise situation

5One of the goals of the present book is to formalize such a distinction; see the previous three
parts of the book.
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is not important for the argument, just imagine that we are born in a space
ship on a journey to a nearby galaxy, and remain fixed in our beds with
eyes closed all the time and learning only by listening. Even if not seeing
and touching the objects around us, we would eventually nevertheless learn
indirectly about the functioning of the physical world, and perhaps even
master Newtonian mechanics. We might have become very good at solving
all sorts of mechanical problem, and thus be real experts in using rigorous
techniques. We might even be able to perform experiments by telling the
computer to “throw” a stone and then to tell us about what has happened.
And yet such an expertise would not help us much in understanding what
is behind all the theory and “experiments” we master so well. Of course,
what is needed is a direct contact with the environment we model so well.
In the absence of such a direct contact, however, it will be indispensable for
us to discuss as much as possible the functioning of the physical environ-
ment and the meaning of the theory we master so well. Only then would
we have developed to a certain extent an intuition, although indirect, about
the physical environment.

An analogous situation, of course, should be true for quantum mechanics.
The role of extensive verbalization when we try to understand quantum
mechanics can now be more appreciated. We have to read, discuss, and
think about quantum mechanics as much as we are interested. When many
people are doing so the process will eventually crystallize into a very clear
and obvious picture. At the moment we see only some parts of the picture.
I am now going to say something about how I see my part of the picture.

Everything we know about the world we know through consciousness. We
are describing the world by a wave function. Certain simple phenomena can
be described by a simple wave function which we can treat mathematically.
In general, however, phenomena are so involved that a mathematical treat-
ment is not possible, and yet conceptually we can still talk about the wave
function. The latter is our information about the world. Information does
not exist per se, information is relative to consciousness [124]. Conscious-
ness has information about something. This could be pushed to its extreme
and it be asserted that information is consciousness, especially when infor-
mation refers to itself (self-referential information). On the other hand, a
wave function is information (which is at least a certain very important
aspect of wave function). Hence we may conclude that a wave function has
a very close relation with consciousness. In the strongest version we cannot
help but conclude that a wave function should in fact be identified with
consciousness. Namely, if, on the one hand, the wave function is everything
I can know about the world, and, on the other, the content of my conscious-
ness is everything I can know about the world, then consciousness is a wave
function. In certain particular cases the content of my consciousness can
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be very clear: after having prepared an experiment I know that an electron
is localized in a given box. This situation can be described precisely by
means of a mathematical object, namely, the wave function. If I open the
box then I know that the electron is no longer localized within the box, but
can be anywhere around the box. Precisely how the probability of finding
it in some place evolves with time I can calculate by means of quantum me-
chanics. Instead of an electron in a box we can consider electrons around
an atomic nucleus. We can consider not one, but many atoms. Very soon
we can no longer do maths and quantum mechanical calculation, but the
fact remains that our knowledge about the world is encoded in the wave
function. We do not know any longer a precise mathematical expression for
the wave function, but we still have a perception of the wave function. The
very fact that we see definite macroscopic objects around us is a signal of
its existence: so we know that the atoms of the objects are localized at the
locations of the object. Concerning single atoms, we know that electrons
are localized in a well defined way around the nuclei, etc. . Everything I
know about the external world is encoded in the wave function. However,
consciousness is more than that. It also knows about its internal states,
about the memories of past events, about its thoughts, etc. . It is, indeed, a
very involved self-referential information system. I cannot touch upon such
aspects of consciousness here, but the interesting reader will profit from
reading some good works [125, 126].

The wave function of an isolated system evolves freely according to the
Schrödinger evolution. After the system interacts with its surroundings,
the system and its surroundings then become entangled and they are in a
quantum mechanical superposition. However, there is, in principle, a causal
connection with my brain. For a distant system it takes some time until
the information about the interaction reaches me. The collapse of the wave
function happens at the moment when the information arrives in my brain.
Contrary to what we often read, the collapse of the wave function does not
spread with infinite speed from the place of interaction to the observer.
There is no collapse until the signal reaches my brain. Information about
the interaction need not be explicit, as it usually is when we perform a
controlled experiment, e.g., with laser beams. Information can be implicit,
hidden in the many degrees of freedom of my environment, and yet the col-
lapse happens, since my brain is coupled to the environment. But why do I
experience the collapse of the wave function? Why does the wave function
not remain in a superposition? The collapse occurs because the information
about the content of my consciousness about the measured system cannot
be in superposition. Information about an external degree of freedom can
be in superposition. Information about the degrees of freedom which are
the carriers of the very same information cannot remain in a superposi-
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tion. This would be a logical paradox, or the Gödel knot [125, 126]: it is
resolved by the collapse of the wave function. My consciousness “jumps”
into one of the possible universes, each one containing a different state of
the measured system and my different knowledge about the measurement
result. However, from the viewpoint of an external observer no collapse has
happened until the information has arrived in his brain. Relative to him
the measured system and my brain have both remained in a superposition.

In order to illustrate the situation it is now a good point to provide a
specific example.

A single electron plane wave hits the screen. Suppose an electron
described by a wide wave packet hits a screen. Before hitting the screen the
electron’s position was undetermined within the wave packet’s localization.
What happens after the collision with the screen? If we perform strictly
quantum mechanical calculations by taking into account the interaction of
the electron with the material in the screen we find that the location of the
traces the interaction has left within the screen is also undetermined. This
means that the screen is in a superposition of the states having a “spot” at
different places of the screen. Suppose now that an observer O looks at the
screen. Photons reflected from the screen bear the information about the
position of the spot. They are, according to quantum mechanical calcula-
tions, in a superposition. The same is true for an observer who looks at the
screen. His eyes’ retinas are in a superposition of the states corresponding
to different positions of the spot, and the signal in the nerves from the
retina is in a superposition as well. Finally, the signal reaches the visual
center in the observer’s brain, which is also in the superposition. Before
the observer has looked at the screen the latter has been in a superposition
state. After having looked, the screen state is still in a superposition, but at
the same time there is also a superposition of the brain states representing
different states of consciousness of the observer O.

Read carefully again: different brain (quantum mechanical) states rep-
resent different consciousness states. And what is the content of those
consciousness state? Precisely the information about the location of the
spot on the screen. But the latter information is, in fact, the wave function
of the screen, more precisely the collapsed wave function. So we have a di-
rect piece of evidence about the relation between the wave function about
an external state and a conscious state. The external state is relative to the
brain state, and the latter state in turn represents a state of consciousness.
At this point it is economical to identify the relative “external” state with
the corresponding consciousness state.

Relative to the observerO’s consciousness states there is no superposition
of the screen states. “Subjectively”, a collapse of the wave function has
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occurred relative to the observer’s consciousness state, but “objectively”
there is no collapse.

The term objective implies that there should exist an “objective” wave
function of the universe which never collapses. We now ask “is such a
concept of an objective, universal, wave function indeed necessary?” Or,
put it differently, what is “the universal wave function”? Everett himself
introduced the concept of the relative wave function, i.e., the wave function
which is relative to another wave function. In my opinion the relative
wave function suffices, and there is no such a thing as an objective or
universal wave function. This will become more clear after continuing with
our discussion.

Now let us investigate how I experience the situation described above.
Before I measure the position of the electron, it was in a superposition
state. Before I had any contact with the screen, the observer O, or their
environment, they were altogether in a superposition state. After looking
at the screen, or after communicating with the observer O, there was no
longer superposition relative to my consciousness. However, relative to
another observer O′ the combined state of the screen S, O, and my brain
can remain in superposition until O′ himself gets in contact with me, O,
S, or the environment of S, O, and me. A little more thought in such a
direction should convince everybody that a wave function is always relative
to something, or, better, to somebody. There can be no “objective” wave
function.

If I contemplate the electron wave packet hitting the screen I know that
the wave packet implies the existence of the multiverse, but I also know,
after looking at the screen, that I have found myself in one of those many
universes. I also know that according to some other observer my brain
state can be a superposition. But I do not know how my brain state could
objectively be a superposition. Who, then is this objective observer? Just
think hard enough about this and you will start to realize that there can be
no objective wave function, and if so, then a wave function, being always
relative to someone’s consciousness, can in fact be identified with some-
one’s consciousness. The phrase “wave function is relative to someone’s
consciousness” could be replaced by “wave function is (someone’s) con-
sciousness”. All the problems with quantum mechanics, also the difficulties
concerning the Everett interpretation, then disappear at once.

I shall, of course, elaborate this a little bit more in due course. At the
moment let me say again that the difficulties concerning the understanding
of QM can be avoided if we consider a wave function as a measure of the
information an observer has about the world. A wave function, in a sense,
is consciousness. We do not yet control all the variables which are relevant
to consciousness. But we already understand some of those variables, and
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we are able to define them strictly by employing mathematics: for instance,
those variables of the consciousness which are responsible for the perception
of physical experiments by which we measure quantum observables, such
as a particle’s position, spin, etc. .

12.2. DECOHERENCE

Since the seminal work by Zurek [127] and Zeh [128] it has becomes
very clear why a macroscopic system cannot be in a superposition state. A
system S which we study is normally coupled to its environment E. As a
consequence S no longer behaves as a quantum system. More precisely, the
partial wave function of S relative to E is no longer a superposition of S’s
eigenstates. The combined system SE, however, still behaves as a quantum
system, and is in a superposition state. Zurek and Zeh have demonstrated
this by employing the description with density matrices.

The density matrix. A quantum state is a vector |ψ〉 in Hilbert space.
The projection of a generic state onto the position eigenstates |x〉 is the
wave function

ψ(x) ≡ 〈x|ψ〉. (12.1)

Instead of |ψ〉 we can take the product

|ψ〉〈ψ| = ρ̂ , (12.2)

which is called the density operator. The description of a quantum system
by means of |ψ〉 is equivalent to description by means of ρ̂.

Taking the case of a single particle we can form the sandwich

〈x|ρ̂|x′〉 ≡ ρ(x, x′) = 〈x|ψ〉〈ψ|x′〉 = ψ(x)ψ∗(x′). (12.3)

This is the density matrix in the coordinate representation. Its diagonal
elements

〈x|ρ̂|x〉 = ρ(x, x) ≡ ρ(x) = |ψ(x)|2 (12.4)

form the probability density of finding the particle at the position x. How-
ever, the off-diagonal elements are also different from zero, and they are
responsible for interference phenomena. If somehow the off-diagonal terms
vanish, then the interference also vanishes.

Consider, now, a state |ψ〉 describing a spin 1
2 particle coupled to a

detector:
|ψ〉 =

∑

i

αi|i〉〈di| , (12.5)
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where
|i〉 = |12〉, | − 1

2〉 (12.6)

are spin states, and
|di〉 = |d1/2〉, |d−1/2〉 (12.7)

are the detector states.
The density operator is

|ψ〉〈ψ| =
∑

ij

αiα
∗
j |i〉|di〉〈j|〈dj |. (12.8)

It can be represented in some set of basis states |m〉 which are rotated
relative to |i〉:

|m〉 =
∑

k

|k〉〈k|m〉 , |dm〉 =
∑

dk

|dk〉〈dk|dm〉 (12.9)

We then obtain the density matrix

〈dm,m|ψ〉〈ψ|n, dn〉 =
∑

ij

αiα
∗
J〈dm,m|i, di〉〈j, dj |n, dn〉. (12.10)

which has non-zero off diagonal elements. Therefore the combined system
particle–detector behaves quantum mechanically.

Let us now introduce yet another system, namely, the environment. After
interacting with the environment the evolution brings the system to the
state

|ψ〉 =
∑

i

αi|i〉|di〉|Ei〉 , (12.11)

where
|Ei〉 = |E1/2〉 , |E−1/2〉 (12.12)

are the environment states after the interaction with the particle–detector
system.

The density operator is

|ψ〉〈ψ| =
∑

ij

αiα
∗
j |i〉|di〉|Ei〉〈j|〈dj |〈Ej | (12.13)

The combined system particle–detector–environment is also in a superposi-
tion state. The density matrix has-non zero off-diagonal elements.

Whilst the degrees of freedom of the particle and the detector are under
the control of an observer, those of the environment are not. The observer
cannot distinguish |E1/2〉 from |E−1/2〉, therefore he cannot know the total
density matrix. We can define the reduced density operator which takes into
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account the observer’s ignorance of |Ei〉. This is achieved by summing over
the environmental degrees of freedom:

∑

k

〈Ek|ψ〉〈ψ|Ek〉 =
∑

i

|αi|2|i〉|di〉〈i|〈di|. (12.14)

We see that the reduced density operator, when represented as a matrix in
the states |i〉, has only the diagonal terms different from zero. This property
is preserved under rotations of the states |i〉.

We can paraphrase this as follows. With respect to the environment the
density matrix is diagonal. Not only with respect to the environment, but
with respect to any system, the density matrix is diagonal. This has al-
ready been studied by Everett [107], who introduced the concept of relative
state. The reduced density matrix indeed describes the relative state. In the
above specific case the state of the system particle–detector is relative to the
environment. Since the observer is also a part of the environment the state
of the system particle–detector is relative to the observer. The observer
cannot see a superposition (12.5), since very soon the system evolves into
the state (12.11), where |Ei〉 includes the observer as well. After the inter-
action with environment the system particle–detector loses the interference
properties and behaves as a classical system. However, the total system
particle–detector–environment remains in a superposition, but nobody who
is coupled to the environment can observe such a superposition after the
interaction reaches him. This happens very soon on the Earth, but it may
take some time for an observer in space.

The famous Schrödinger’s cat experiment [129] can now be easily clari-
fied. In order to demonstrate that the probability interpretation of quan-
tum mechanics leads to paradoxes Schrödinger envisaged a box in which
a macroscopic object —a cat— is linked to a quantum system, such as a
low activity radioactive source. At every moment the source is in a super-
position of the state in which a photon has been emitted and the state in
which no photon has been emitted. The photons are detected by a Geiger
counter connected to a device which triggers the release of a poisonous
gas. Schrödinger considered the situation as paradoxical, as the cat should
remain in a superposition state, until somebody looks into the box. Ac-
cording to our preceding discussion, however, the cat could have remained
in a superposition only if completely isolated from the environment. This
is normally not the case, therefore the cat remains in a superposition for
a very short time, thereafter the combined system cat–environment is in a
superposition state. The environment includes me as well. But I cannot be
in a superposition, therefore my consciousness jumps into one of the two
branches of the superposition (i.e., the cat alive and the cat dead). This
happens even before I look into the box. Even before I look into the box it
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is already decided into which of the two branches my consciousness resides.
This is so because I am coupled to the environment, to which also the cat
is coupled. Hence, I am already experiencing one of the branches. My con-
sciousness, or, better subconsciousness, has already decided to choose one
of the branches, even before I became aware of the cat’s state by obtaining
the relevant information (e.g., by looking into the box). What counts here
is that the necessary information is available in principle: it is implicit in
the environmental degrees of freedom. The latter are different if the cat is
alive or dead.

12.3. ON THE PROBLEM OF BASIS IN THE
EVERETT INTERPRETATION

One often encounters an objection against the Everett interpretation of
quantum mechanics that is known under a name such as “the problem
of basis”. In a discussion group on internet (Sci.Phys., 5 Nov.,1994) I
have found a very lucid discussion by Ron Maimon (Harvard University,
Cambridge, MA) which I quote below.

It’s been about half a year since I read Bell’s analysis, and I don’t have it
handy. I will write down what I remember as being the main point of his analysis
and demonstrate why it is incorrect.

Bell claims that Everett is introducing a new and arbitrary assumption into
quantum mechanics in order to establish collapse, namely the “pointer basis”.
His claim is that it is highly arbitrary in what way you split up the universe into
a macroscopic superposition and the way to do it is in no way determined by
quantum mechanics. For example, if I have an electron in a spin eigenstate, say
|+〉 then I measure it with a device which has a pointer, the pointer should (if it
is a good device) be put into an eigenstate of its position operator.

This means that if we have a pointer which swings left when the electron has
spin up, it should be put into the state “pointer on the left” if the electron was in
the state |+〉. If it similarly swings right when the electron is in the state |−〉 then
if the electron is in the state |−〉 the pointer should end up in the state “pointer
on the right”.

Now, says Bell, if we have the state (1/
√
2)(|+〉+ |−〉) then the pointer should

end up in the state (1/
√
2)(|right〉+ |left〉). According to Bell, Everett says that

this is to be interpreted as two universes, distinct and non interacting, one in
which the pointer is in the state “right” and one in which the pointer is in the
state ”left”.

But aha! says Bell, this is where that snaky devil Everett gets in an ex-
tra hypothesis! We don’t have to consider the state 1/

√
2(|right〉 + |left〉) as a

superposition—I mean it is a state in its own right. Why not say that there has
been no split at all, or that the split is into two universes, one in which the pointer
is in the state

a1|right〉+ a2|left〉 (12.15)
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and one where it is in the state

b1|right〉+ b2|left〉 (12.16)

So long as a1 + b1 = a2 + b2 = 1/
√
2 this is allowed. Then if we split the universe

along these lines we again get those eerie macroscopic superpositions.
In other words, Everett’s unnatural assumption is that the splitting of the

universes occurs along the eigenstates of the pointer position operator. Different
eigenstates of the pointer correspond to different universes, and this is arbitrary,
unnatural, and just plain ugly.

Hence Everett is just as bad as anyone else.
Well this is WRONG.
The reason is that (as many people have mentioned) there is no split of the

universe in the Everett interpretation. The state

1√
2
(|right〉+ |left〉) (12.17)

is no more of a pair of universe than the state 1/
√
2(|+〉 + |−〉) of spin for the

electron.
Then how comes we never see eerie superpositions of position eigenstates?
Why is it that the “pointer basis” just happens to coincide with him or her self.

This is the “state of mind” basis. The different states of this basis are different
brain configurations that correspond to different states of mind, or configurations
of thoughts.

Any human being, when thrown into a superposition of state of mind will split
into several people, each of which has a different thought. Where before there
was only one path of mind, after there are several paths. These paths all have the
same memories up until the time of the experiment, and these all believe different
events have occurred. This is the basis along which the universe subjectively seems
to split.

There is a problem with this however—what guarantees that eigenstates of my
state of mind are the same as eigenstates of the pointer position. If this wasn’t
the case, then a definite state of mind would correspond to an eerie neither here
nor there configuration of the pointer.

The answer is, NOTHING. It is perfectly possible to construct a computer
with sensors that respond to certain configurations by changing the internal state,
and these configurations are not necessarily eigenstates of position of a needle.
They might be closer to eigenstates of momentum of the needle. Such a computer
wouldn’t see weird neither-here-nor-there needles, it would just “sense” momenta,
and won’t be able to say to a very high accuracy where the needle is.

So why are the eigenstates of our thoughts the same as the position eigenstates
of the needle?

They aren’t!
They are only very approximately position eigenstates of the needle.
This can be seen by the fact that when we look at a needle it doesn’t start

to jump around erratically, it sort of moves on a smooth trajectory. This means
that when we look at a needle, we don’t “collapse” it into a position eigenstate,
we only “collapse it into an approximate position eigenstate. In Everett’s lan-
guage, we are becoming correlated with a state that is neither an eigenstate of
the pointer’s position, nor its momentum, but approximately an eigenstate of
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both, constrained by the uncertainty principle. This means that we don’t have
such absurdly accurate eyes that can see the location of a pointer with superhigh
accuracy.

If we were determining the exact position of the needle, we would have gamma
ray sensor for eyes and these gamma rays would have enough energy to visibly
jolt the needle whenever we looked at it.

In order to determine exactly what state we are correlated with, or if you like,
the world (subjectively) collapses to, you have to understand the mechanism of
our vision.

A light photon bouncing off a needle in a superposition

1√
2
(|right〉+ |left〉) (12.18)

will bounce into a superposition of the states |1〉 or |2〉 corresponding to the
direction it will get from either state. The same photon may then interact with
our eyes. The way it does this is to impinge upon a certain place in our retina,
and this place is highly sensitive to the direction of the photon’s propagation.
The response of the pigments in our eyes is both highly localized in position
(within the radius of a cell) and in momentum (the width of the aperture of our
pupil determines the maximal resolution of our eyes). So it is not surprising that
our pigment excitation states become correlated with approximate position and
approximate momentum eigenstates of the needle. Hence we see what we see.

If we had good enough mathematical understanding of our eye we could say
in the Everett interpretation exactly what state we seem to collapse the needle
into. Even lacking such information it is easy to see that we will put it in a state
resembling such states where Newton’s laws are seen to hold, and macroscopic
reality emerges.

A similar reasoning holds for other information channels that connect the
outside world with our brane (e.g., ears, touch, smell, taste). The problem
of choice of basis in the Everett interpretation is thus nicely clarified by the
above quotation from Ron Maimon.

12.4. BRANE WORLD AND BRAIN WORLD

Let us now consider the model in which our world is a 3-brane moving
in a higher-dimensional space. How does it move? According to the laws of
quantum mechanics. A brane is described by a wave packet and the latter
is a solution of the Schrödinger equation. This was more precisely discussed
in Part III. Now I will outline the main ideas and concepts. An example of
a wave packet is sketched in Fig. 12.1.

If the brane self-intersects we obtain matter on the brane (see Sec. 8.3).
When the brane moves it sweeps a surface of one dimension more. A 3-
brane sweeps a 4-dimensional surface, called a world sheet or a spacetime
sheet.
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We have seen in Sec. 10.2 that instead of considering a 3-brane we can
consider a 4-brane. The latter brane is assumed to be a possible spacetime
sheet (and thus has three space-like and one time-like intrinsic dimensions).
Moreover, it is assumed that the 4-brane is subjected to dynamics along an
invariant evolution parameter τ . It is one of the main messages of this book
to point out that such a dynamics naturally arises within the description
of geometry and physics based on Clifford algebra. Then a scalar and
a pseudoscalar parameter appear naturally, and evolution proceeds with
respect to such a parameter.
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VN

Figure 12.1. An illustration of a wave packet describing a 3-brane. Within the effective
region of localization any brane configuration is possible. The wavy lines indicate such
possible configurations.

A 4-brane state is represented by a wave packet localized around an
average 4-surface (Fig. 12.2)

It can be even more sharply localized within a region P , as shown in Fig.
10.2 or Fig. 12.3. (For convenience we repeat Fig. 10.3.)

All these were mathematical possibilities. We have a Hilbert space of
4-brane kinematic states. We also have the Schrödinger equation which a
dynamically possible state has to satisfy. As a dynamically possible state
we obtain a wave packet. A wave packet can be localized in a number of
possible ways, and one is that of Fig. 10.3, i.e., localization within a region
P . How do we interpret such a localization of a wave packet? What does
it mean physically that a wave packet is localized within a 4-dimensional
region (i.e., it is localized in 3-space and at “time” t ≡ x0)? This means that
the 4-brane configuration is better known within P than elsewhere. Since
the 4-brane represents spacetime and matter (remember that the 4-brane’s
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self-intersections yield matter on the 4-brane), such a localized wave packet
tells us that spacetime and matter configuration are better known within
P than elsewhere. Now recall when, according to quantum mechanics, a
matter configuration (for instance a particle’s position) is better known
than otherwise. It is better known after a suitable measurement. But we
have also seen that a measurement procedure terminates in one’s brain,
where it is decided —relative to the brain state— about the outcome of
the measurement. Hence the 4-brane wave packet is localized within P ,
because an observer has measured the 4-brane’s configuration. Therefore
the wave packet (the wave function) is relative to that observer.

B

VN

Figure 12.2. A 4-brane wave packet localized within an effective boundary B. A wavy
line represents a possible 4-brane.

The 4-brane configuration after the measurement is not well known at
every position on the 4-brane, but only at the positions within P , i.e.,
within a certain 3-space region and within a certain (narrow) interval of
the coordinate x0. Such a 4-brane configuration (encompassing a matter
configuration as well) can be very involved. It can be involved to the ex-
tent that it forms the structure of an observer’s brain contemplating the
“external” world by means of sense organs (eyes, ears, etc.).

We have arrived at a very important observation. A wave packet localized
within P can represent the brain structure of an observer O and his sense
organs, and also the surrounding world ! Both the observer and the sur-
rounding world are represented by a single (very complicated) wave packet.
Such a wave packet represents the observer’s knowledge about his brain’s
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state and the corresponding surrounding world—all together. It represents
the observer’s consciousness! This is the most obvious conclusion; without
explicitly adopting it, the whole picture about the meaning of QM remains
foggy.

One can now ask, “does not the 4-brane wave packet represent the brain
structure of another observer O′ too?” Of course it does, but not as com-
pletely as the structure of O. By “brain” structure I mean here also the
content of the brain’s thought processes. The thought processes of O′ are
not known very well to O. In contrast, his own thought processes are very
well known to O, at the first person level of perception. Therefore, the
4-brane wave packet is well localized within O’s head and around it.

Such a wave packet is relative to O. There exists, of course, another
possible wave packet which is relative to the observer O′, and is localized
around O′’s head.

VN

P

B

Figure 12.3. Illustration of a wave packet with a region of sharp localization P .

Different initial conditions for a wave function mean different initial con-
ditions for consciousness. A wave function can be localized in another
person’s head: my body can be in a superposition state with respect to
that person (at least for a certain time allowed by decoherence). If I say
(following the Everett interpretation) that there are many Matejs writing
this page, I have in mind a wave function relative to another observer. Rel-
ative to me the wave function is such that I am writing these words right
now. In fact, I am identical with the latter wave function. Therefore at
the basic level of perception I intuitively understand quantum mechanics.
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An ‘I’ intuitively understands quantum mechanics. After clarifying this I
think that I have acquired a deeper understanding of quantum mechanics.
The same, I hope, holds for the careful reader. I hope, indeed, that after
reading these pages the reader will understand quantum mechanics, not
only at the lowest, intuitive, level, but also at a higher cognitive level of
perception. An ultimate understanding, however, of what is really behind
quantum mechanics and consciousness will probably never be reached by
us, and according to the Gödel incompletness theorem [125, 126] is even
not possible.

Box 12.1: Human language and multiversea

In the proposed brane world model spacetime, together with mat-
ter, is represented by a 4-dimensional self-intersecting surface V4. An
observer associated with a V4 distinguishes present, past, and future
events. Because of the quantum principle an observer is, in fact,
associated not with a definite V4, but with a corresponding wave
function. The latter takes into account all possible V4s entering the
superposition.

We see that within the conceptual scheme of the proposed brane
world model all the principal tenses of human language —present,
past, future tenses, and conditional— are taken into account. In
our human conversations we naturally talk not only about the actual
events (present, past, future), but also about possible events, i.e.,
those which could have occurred (conditional). According to Piaget
[135] a child acquires the ability of formal logical thinking, which
includes use of alternatives and conditional, only at an advanced stage
in his mental development. Reasoning in terms of possible events is a
sign that an individual has achieved the highest stage on the Piaget
ladder of conceptual development.

Now, since the emergence of quantum mechanics, even in physics,
we are used to talking about possible events which are incorporated
in the wave function. According to the Everett interpretation of
quantum mechanics as elaborated by Deutsch, those possible events
(or better states) constitute the multiverse.

aThis idea was earlier discussed in ref. [88]. Later it was also mentioned by Deutsch
[112].
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12.5. FINAL DISCUSSION ON QUANTUM
MECHANICS, AND CONCLUSION

In classical mechanics different initial conditions give different possible
trajectories of a dynamical system. Differential equations of motion tell us
only what is a possible set of solutions, and say nothing about which one is
actually realized. Selection of a particular trajectory (by specifying initial
conditions) is an ad hoc procedure.

The property of classical mechanics admitting many possible trajectories
is further developed by Hamilton–Jacobi theory. The latter theory naturally
suggests its generalization—quantum mechanics. In quantum mechanics
different possible trajectories, or better, a particle’s positions, are described
by means of a wave function satisfying the Schrödinger equation of motion.

In quantum mechanics different initial conditions give different possible
wave functions. In order to make discussion more concrete it turns out to
be convenient to employ a brane world model in which spacetime together
with matter in it is described by a self-intersecting 4-dimensional sheet,
a worldsheet V4. According to QM such a sheet is not definite, but is
described by a wave function6. It is spread around an average spacetime
sheet, and is more sharply localized around a 3-dimensional hypersurface
Σ on V4. Not all the points on Σ are equally well localized. Some points
are more sharply localized within a region P (Fig. 10.3), which can be a
region around an observer on V4. Such a wave function then evolves in an
invariant evolution parameter τ , so that the region of sharp localization P
moves on V4.

Different possible wave functions are localized around different observers.
QM is a mechanics of consciousness. Differently localized wave functions
give different possible consciousnesses and corresponding universes (worlds).

My brain and body can be a part of somebody’s else consciousness. The
wave function relative to an observer O′ can encompass my body and my
brain states. Relative to O′ my brain states can be in a superposition (at
least until decoherence becomes effective). Relative to O′ there are many
Matejs, all in a superposition state. Relative to me, there is always one
Matej only. All the others are already out of my reach because the wave
function has collapsed.

According to Everett a wave function never does collapse. Collapse is
subjective for an observer. My point is that subjectivity is the essence of
wave function. A wave function is always relative to some observer, and
hence is subjective. So there is indeed collapse, call it subjective, if you

6For simplicity we call it a ‘wave function’, but in fact it is a wave functional—a functional of
the worldsheet embedding functions ηa(xµ).



334 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

wish. Relative to me a wave function is collapsing all the time: whenever
the information (direct or indirect—through the environmental degrees of
freedom) about the outcome of measurement reaches me.

There is no collapse7 if I contemplate other observers performing their
experiments.

Let us now consider, assuming the brane world description, a wave packet
of the form given in Fig. 12.2. There is no region of sharp localization for
such a wave packet. It contains a superposition of all the observers and
worlds within an effective boundary B. Is this then the universal wave
function? If so, why is it not spread a little bit more, or shaped slightly
differently? The answer can only make sense if we assume that such a wave
function is relative to a super-observer OS who resides in the embedding
space VN . The universe of the observer OS is VN , and the wave packet of
Fig. 12.2 is a part of the wave function, relative to OS , describing OS ’s
consciousness and the corresponding universe.

To be frank, we have to admit that the wave packet itself, as illustrated
in Fig. 10.3, is relative to a super-observer OS . In order to be specific
in describing our universe and a conscious observer O we have mentally
placed ourselves in the position of an observer OS outside our universe, and
envisaged how OS would have described the evolution of the consciousness
states of O and the universe belonging to O. The wave packet, relative
to OS , representing O and his world could be so detailed that the super-
observer OS would have identified himself with the observer O and his
world, similarly as we identify ourselves with a hero of a novel or a movie.

At a given value of the evolution parameter τ the wave packet represents
in detail the state of the observer O’s brain and the belonging world. With
evolution the wave packet spreads. At a later value of τ the wave packet
might spread to the extent that it no longer represents a well defined state
of O’s brain. Hence, after a while, such a wave packet could no longer
represent O’s consciousness state, but a superposition of O’s consciousness
states. This makes sense relative to some other observer O′, but not relative
to O. From the viewpoint of O the wave packet which describes O’s brain
state cannot be in a superposition. Otherwise O would not be conscious.
Therefore when the evolving wave packet spreads too much, it collapses rel-
ative to O into one of the well defined brain states representing well defined
states of O’s consciousness . Relative to another observer O′, however, no
collapse need happen until decoherence becomes effective.

7There is no collapse until decoherence becomes effective. If I am very far from an observer
O′, e.g., on Mars, then O′ and the states of his measurement apparatus are in a superposition
relative to me for a rather long time.
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If the spreading wave packet would not collapse from time to time, the
observer could not be conscious. The quantum states that represent O’s
consciousness are given in terms of certain basis states. The same wave
packet can be also expanded in terms of some other set of basis states,
but those states need not represent (or support) consciousness states. This
explains why collapse happens with respect to a certain basis, and not with
respect to some other basis.

We have the following model. An observer’s consciousness and the world
to which he belongs are defined as being represented by an evolving wave
packet. At every moment τ the wave packet says which universes (≡ con-
sciousness state + world belonged to) are at disposal. A fundamental postu-
late is that from the first person viewpoint the observer (his consciousness)
necessarily finds himself in one of the available universes implicit in the
spreading wave packet. During the observer’s life his body and brain re-
tain a well preserved structure, which poses strict constraints on the set of
possible universes: a universe has to encompass one of the available con-
sciousness states of O and the “external” worlds coupled to those brain
states. This continues until O’s death. At the moment of O’s death O’s
brain no longer supports consciousness states. O’s body and brain no longer
impose constraints on possible universes. The set of available universes in-
creases dramatically: every possible world and observer are in principle
available! If we retain the fundamental postulate, and I see no logical rea-
son why not to retain it, then the consciousness has to find itself in one of
the many available universes. Consciousness jumps into one of the avail-
able universes and continues to evolve. When I am dead I find myself born
again! In fact, every time my wave packets spreads too much, I am dead;
such a spread wave packet cannot represent my consciousness. But I am
immediately “reborn”, since I find myself in one of the “branches” of the
wave packet, representing my definite consciousness state and a definite
“external” world.

A skeptical reader might think that I have gone too far with my dis-
cussion. To answer this I wish to recall how improbable otherwise is the
fact that I exist. (From the viewpoint of the reader ‘I’ refers to himself,
of course.) Had things gone slightly differently, for instance if my parents
had not met each other, I would not have been born, and my consciousness
would not not have existed. Thinking along such lines, the fact that I exist
is an incredible accident!. Everything before my birth had to happen just
in the way it did, in order to enable the emergence of my existence. Not
only my parents, but also my grandparents had to meet each other, and so
on back in time until the first organisms evolved on the Earth! And the
fact that my parents had become acquainted was not sufficient, since any
slightly different course of their life together would have led to the birth
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not of me, but of my brother or sister (who do not exist in this world).
Any sufficiently deep reasoning in such a direction leads to an unavoidable
conclusion that (i) the multiverse in the Everett–Wheeler–DeWitt–Deutsch
sense indeed exist, and (ii) consciousness is associated (or identified) with
the wave function which is relative to a sufficiently complicated information
processing system (e.g., an observer’s brain), and evolves according to (a)
the Schrödinger evolution and (b) experiences collapse at every measure-
ment situation. In an extreme situation (death) available quantum states
(worlds) can include those far away from the states (the worlds) I have
experienced so far. My wave function (consciousness) then collapses into
one of those states (worlds), and I start experiencing the evolution of my
wave functions representing my life in such a “new world”.

All this could, of course, be put on a more rigorous footing, by providing
precise definitions of the terms used. However, I think that before attempt-
ing to start a discussion on more solid ground a certain amount of heuristic
discussion, expounding ideas and concepts, is necessary.

A reader might still be puzzled at this point, since, according to the
conventional viewpoint, in Everett’s many worlds interpretation of quantum
mechanics there is no collapse of the wave function. To understand why
I am talking both about the many worlds interpretation (the multiverse)
and collapse one has to recall that according to Everett and his followers
collapse is a subjective event. Precisely that! Collapse of the wave function
is a subjective event for an observer, but such also is the wave function itself.
The wave function is always relative and thus subjective. Even the Everett
“universal” wave function has to be relative to some (super-) observer.

In order to strengthen the argument that (my) consciousness is not nec-
essarily restricted to being localized just in my brain, imagine the following
example which might indeed be realized in a not so remote future. Suppose
that my brain is connected to another person’s brain in such a way that
I can directly experience her perceptions. So I can experience what she
sees, hears, touches, etc. . Suppose that the information channel is so per-
fect that I can also experience her thoughts and even her memories. After
experiencing her life in such a way for a long enough time my personality
would become split between my brain and her brain. The wave function
representing my consciousness would be localized not only in my brain but
also in her brain. After long time my consciousness would become com-
pletely identified with her life experience; at that moment my body could
die, but my consciousness would have continued to experience the life of
her body.

The above example is a variant of the following thought experiment which
is often discussed. Namely, one could gradually install into my brain small
electronic or bioelectronic devices which would resume the functioning of my
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brain components. If the process of installation is slow enough my biological
brain can thus be replaced by an electronic brain, and I would not have
noticed much difference concerning my consciousness and my experience of
‘I’.

Such examples (and many others which can be easily envisaged by the
reader) of the transfer of consciousness from one physical system to another
clearly illustrate the idea that (my) consciousness, although currently as-
sociated (localized) in my brain, could in fact be localized in some other
brain too. Accepting this, there is no longer a psychological barrier to ac-
cepting the idea that the wave function (of the universe) is actually closely
related, or even identified, with the consciousness of an observer who is
part of that universe. After becoming habituated with such, at first sight
perhaps strange, wild, or even crazy ideas, one necessarily starts to realize
that quantum mechanics is not so mysterious after all. It is a mechanics of
consciousness.

With quantum mechanics the evolution of science has again united two
pieces, matter and mind, which have been put apart by the famous Carte-
sian cut. By separating mind from matter8 —so that the natural sciences
have disregarded the question of mind and consciousness— Decartes set the
ground for the unprecedented development of physics and other natural sci-
ences. The development has finally led in the 20th century to the discovery
of quantum mechanics, which cannot be fully understood without bringing
mind and consciousness into the game.

8There is an amusing play of words[130]:

What is matter? — Never mind!

What is mind? — No matter!





Chapter 13

FINAL DISCUSSION

We are now at the concluding chapter of this book. I have discussed
many different topics related to fundamental theoretical physics. My em-
phasis has been on the exposition of ideas and concepts rather than on
their further development and applications. However, even the formula-
tion of the basic principles has often required quite involved formalism and
mathematics. I expect that that has been stimulating to mathematically
oriented readers, whilst others could have skipped the difficult passages,
since the ideas and concepts can be grasped to certain extent also by read-
ing many non-technical descriptions, especially in Part IV. In the following
few sections I will discuss some remaining open questions, without trying
to provide precisely formulated answers.

13.1. WHAT IS WRONG WITH TACHYONS?

In spite of many stimulating works [131] tachyons nowadays have pre-
dominantly the status of impossible particles. Such an impossibility has its
roots in the current mainstream theoretical constructions, especially quan-
tum field theory and special relativity. Not only that tachyons are generally
considered as violating causality (a sort of the “grandfather paradox”) [18],
there are also some other well known problems. It is often taken for granted
that the existence of tachyons, which may have negative energies, destabi-
lizes the vacuum and thus renders the theory unreasonable. Moreover, when
one tries to solve a relativistic equation for tachyons, e.g., the Klein–Gordon
equation, one finds that (i) localized tachyon disturbances are subluminal,
and (ii) superluminal disturbances are non-local, and supposedly cannot be
used for information transmission.

339
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There is now a number of works [132], experimental and theoretical,
which point out that the superluminal disturbances (case (ii)) are X-shaped
and hence, in a sense, localized after all. Therefore they could indeed be
used to send information faster than light.

Moreover, by using the Stueckelberg generalization of the Klein–Gordon
equation, discussed at length in this book, the question of tachyon localiza-
tion and its speed acquires a new perspective. The tachyon’s speed is no
longer defined with respect to the coordinate time x0 ≡ t, but with respect
to the invariant evolution parameter τ . Also the problem of negative energy
and vacuum destabilization has to be reformulated and reexamined within
the new theory. According to my experience with such a Stueckelberg-like
quantum field theory, the vacuum is not unstable in the case of tachyons,
on the contrary, tachyons are necessary for the consistency of the theory.

Finally, concerning causality, by adopting the Everett interpretation of
quantum mechanics, transmission of information into the past or future, is
not paradoxical at all! A signal that reaches an observer in the past, merely
“splits” the universe into two branches: in one branch no tachyon signal is
detected and the course of history is “normal”, whilst in the other branch
the tachyonic signal is observed, and hence the course of history is altered.
This was discussed at length by Deutsch [113] in an example where not
tachyon signals, but ordinary matter was supposed sent into the past by
means of time machines, such as wormholes1.

My conclusion is that tachyons are indeed theoretically possible; actually
they are predicted by the Stueckelberg theory [133]. Their discovery and
usage for information transmission will dramatically extend our perception
of the world by providing us with a window into the multiverse.

13.2. IS THE ELECTRON INDEED AN
EVENT MOVING IN SPACETIME?

First let me make it clear that by “point-like object moving in spacetime”
I mean precisely the particle described by the Stueckelberg action (Chapter
1). In that description a particle is considered as being an “event” in
spacetime, i.e., an object localized not only in 3-space, but also in the time
coordinate x0 ≡ t. We have developed a classical and quantum theory
of the relativistic dynamics of such objects. That theory was just a first
step, in fact an idealization—a studying example. Later we generalized the
Stueckelberg theory to extended objects (strings and membranes of any

1Although Deutsch nicely explains why traveling into the past is not paradoxical from the mul-
tiverse point of view, he nevertheless maintains the view that tachyons are impossible.
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dimension) and assumed that in reality physical objects are extended. We
assumed that a generic membrane need not be space-like. It can be time-
like as well. For instance, a string may extend into a time-like direction, or
into a space-like direction.

6

-

x0

x1

time-like string

space-like stringV1

V1

Figure 13.1. Illustration of a time-like and a space-like string. They both move in τ ,
and the picture is taken at a fixed value of τ (which is an invariant evolution parameter).

If we calculate —at fixed τ— the electromagnetic interaction between
two time-like strings we find that it is just that of the familiar Maxwell
theory. A string is an extended object, is described by embedding functions
Xµ(u), and can be considered as a collection of point-like objects (the
Stueckelberg particles), each one being specified by a value of the parameter
u. The electromagnetic interaction between the time-like strings is of the
Maxwell type, and can be obtained by summing the contributions of all
the Stueckelberg particles constituting the string. A pre-Maxwell field is
a function of the parameter u (telling us which Stueckelberg particle); the
integration over u gives the corresponding Maxwell field2. The latter field
does not depend on the string parameter u, but it still depends on the
evolution parameter τ .

2In the literature [7] Maxwell fields are obtained by considering not strings, but point-like Stueck-
elberg particles, and by integrating the corresponding pre-Maxwell fields over the evolution pa-
rameter τ . Such a procedure is called concatenation, and is in fact a sort of averaging over
τ .



342 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

Between the time-like strings we thus obtain the Maxwell interaction,
more precisely, a generalized Maxwell interaction since it depends on τ .

The first and the second quantized theory of the Stueckelberg particle
(Chapter 1) is in fact an example for study. In order to apply it to the elec-
tron the theory has to be generalized to strings, more precisely, to time-like
strings. Namely, the electromagnetic properties of electrons clearly indi-
cate that electrons cannot be point-like Stueckelberg particles, but rather
time-like strings, obeying the generalized Stueckelberg theory (the uncon-
strained theory of strings, a particular case of the unconstrained theory of
membranes of any dimension discussed in Chapter 4). The wave function
ψ(τ, xµ) is generalized to the string wave functional ψ[τ,Xµ(u)]. A state of
an electron can be represented by ψ which is a functional of the time-like
string Xµ(u), and evolves in τ .

The conventional field theory of the electron is expected to be a specific
case when ψ[τ,Xµ(u)] is stationary in τ . More generally, for a membrane
of any dimension we have obtained the theory of conventional p-branes as a
particular case, when the membrane wave functional is stationary in τ (see
Sec. 7.1).

13.3. IS OUR WORLD INDEED A SINGLE
HUGE 4-DIMENSIONAL MEMBRANE?

At first sight it may seem strange that the whole universe could be a
4-dimensional membrane. The quantum principle resolves the problem: at
every scale it is undetermined what the membrane is. Besides that, in
quantum field theory there is not only one membrane, but a system of
(many) membranes. The intersections or self-intersections amongst those
membranes behave as bosonic sources (matter). In the case of supermem-
branes the intersections presumably behave as fermionic sources (matter).
A single membrane can be very small, and also closed. Many such small
membranes of various dimensionalities can constitute a large 4-dimensional
membrane of the size of the universe .

The universe is thus a system of intersecting and self-intersecting mem-
branes of various dimensions. Compactification of the embedding space is
not necessary. The wave functional can be localized around some average
(centroid) 4-dimensional membrane. The latter membrane is our classical
spacetime. The Einstein gravity described by the action Ieff =

∫ √|g|d4xR
is an approximation valid at the scale of the solar system. At larger scales
the effect of embedding becomes significant and the effective action deviates
from the Einstein–Hilbert action.
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Figure 13.2. A system of many small membranes of various dimensionalities constitutes
a large membrane at the macroscopic scale.

In short, the picture that our universe is a big 4-dimensional membrane is
merely an idealization: the universe on average (the “expectation value”).
Actually the universe is a system of many membranes, described by a many
membranes wave functionals f [η1, η2, ...] forming a generic state of the uni-
verse

|A〉 =
[∫

f [η]Φ†[η]Dη +
∫
f [η1, η2]Φ

†[η1]Φ
†[η2]D η1Dη2 (13.1)

+

∫
f [η1, η2, η3]Φ

†[η1]Φ
†[η2]Φ

†[η3]D η1Dη2Dη3 + ...

]
|0〉,

where φ†[η] is the creation operator for a membrane η ≡ ηa(xµ).

13.4. HOW MANY DIMENSIONS ARE
THERE?

In an important paper entitled Space–time dimension from a variational
principle [134] D. Hochberg and J.T. Wheeler generalize the concept of
coordinates and dimension. Instead of coordinates xµ with a discrete set of
indices µ = 1, 2, ..., n they take a set of coordinates

xµ → x(z), (13.2)

where z is a continuous real index. They also introduce a weight function
ρ(z) and define the dimension p as

p =

∫
ρ(z) dz. (13.3)
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In general ρ(z) is an arbitrary function of z. In particular, it may favor a
certain subset of z-values. For instance, when

ρ(z) =
n∑

µ=1

δ(z − zµ) (13.4)

the weight favors a set of discrete values zµ. We then have

p =

∫ n∑

µ=1

δ(z − zµ) dz = n. (13.5)

A space of a discrete set of dimensions µ = 1, 2, ..., n is thus a particular
case of a more general space which has a continuous set of dimensions z.

A problem then arises of what is ρ(z). It should not be considered as a
fixed function, given once for all, but has to arise dynamically as a conse-
quence of a chosen solution to certain dynamical equations. Formulation
of a theory in which dimensions are not a priori discrete and their number
fixed remains one of the open problems for the future. A first step has been
made in [134], but a generalization to membranes is still lacking.

13.5. WILL IT EVER BE POSSIBLE TO
FIND SOLUTIONS TO THE
CLASSICAL AND QUANTUM BRANE
EQUATIONS OF MOTION AND MAKE
PREDICTIONS?

My answer is YES. Only it will be indispensable to employ the full power
of computers. Consider the equation of a minimal surface

DµD
µηa = 0. (13.6)

Choosing a gauge ηµ = xµ the above equation becomes

DµD
µηā = 0, (13.7)

where ηā(x), ā = n+1, n+2, ..., N , are the transverse embedding functions.
What are solutions to the equation (13.7)? We shall write a general

solution as
ηā(x) = Surf ā(xµ, α), (13.8)

where α is a set of parameters. But what is Surf ā? It is defined as a general
solution to the set of second order non-linear differential equations (13.7).
Yes, but what are its numerical values, what are the graphs for various
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choices of parameters α ? Well, ask a computer! A computer program is
required which, at a press of button will give you the required answer on
the display. Fine, but this is not an exact solution.

Consider again what you mean by an exact solution. Suppose we have
studied a dynamical system and found that its equation of motion is

ẍ+ ω2x = 0. (13.9)

What is the general solution to the second order differential equation (13.9)?
That is easy, it is

x(t) = A sinωt+B cosωt ≡ Osc(t, A,B, ω), (13.10)

where A, B are arbitrary parameters. Yes, but what are the numerical val-
ues of Osc(t, A,B, ω), what do the graphs for various choices of A, B, ω look
like? This is something we all know from school. We used to look up the
tables, but nowadays we obtain the answer easily by computer or calcula-
tor. There is a number of algorithms which enable us to compute sinωt and
cosωt to arbitrary precision. Similarly for solutions to other second order
differential equations, like ẍ− ω2x = 0, etc. . If so, why do we not develop
algorithms for computing Surf ā? Once the algorithm is installed in the
computer we could treat Surf ā in an analogous way as Osc(t, A,B, ω) (i.e.,
as sinωt and cosωt). Similarly we could develop algorithms for computing
numerical values and plotting the graphs corresponding to the solutions
of other differential equations of motion describing various classical and
quantum dynamical systems of branes and their generalizations. Once we
can simply visualize a solution as a graph, easily obtained by means of a
suitable computer program, it is not so difficult to derive predictions of
various competing theories and to propose strategies for their experimental
verification.

13.6. HAVE WE FOUND A UNIFYING
PRINCIPLE?

We have discussed numerous ideas, theories, techniques and approaches
related to fundamental theoretical physics. Can we claim that we have
found a unifying principle, according to which we could formulate a final
theory, incorporating all the fundamental interactions, including gravity?
No, we cannot. If anything, we have found a sort of meta-principle, accord-
ing to which, in principle, there is no limit to the process of understanding
the Nature. A final observer can never completely understand and describe
reality. Whenever we may temporarily have an impression of understand-
ing the relationship between gravity and quantum theory, some new exper-
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iments and theoretical ideas will soon surpass it. In this book I have aimed,
amongst other things, to point out how rich and vast is the arsenal of con-
ceptual, theoretical, and technical possibilities. And there seems to be no
limit to the numerous ways in which our theoretical constructions could be
generalized and extended in a nontrivial and elegant way. No doubt there
is also no limit to surprises that cleverly and ingeniously designed experi-
ments can and will bring us. Theory and experiment will feed each other
and bring us towards greater and greater progress. And this is a reason
why we insist on our road of scientific investigation, in spite of being aware
that we shall never come to the end, and never grasp the whole landscape.

And yet, at the current stage of our progress a nice picture is starting to
emerge before our eyes. We have found that there is much more to geometry
than it is usually believed. By fully employing the powerful language of
Clifford algebra we have arrived at a very rich geometrical structure which
offers an elegant formulation of current fundamental theories in a unified
way, and also provides a natural generalization. I sincerely hope that I have
succeeded in showing the careful reader, if nothing more, at least a glimpse
of that magnificent picture without which, in my opinion, there can be no
full insight into contemporary fundamental theoretical physics.



Appendix A
The dilatationally invariant system of units

That an electron here has the same mass as an electron there is also a triviality
or a miracle. It is a triviality in quantum electrodynamics because it is assumed
rather than derived. However, it is a miracle on any view that regards the universe
as being from time to time “reprocessed”.

—Charles W. Misner, Kip S. Thorne and John Archibald Wheeler1

We shall show how all the equations of physics can be cast in the system
of units in which h̄ = c = G = 4πε0 = 1. In spite of its usefulness for all
sorts of calculations such a sytem of units is completely unknown.

Many authors of modern theoretical works use the system of units in
which either h̄ = c = 1 or c = G = 1, etc. . This significantly simplifies
equations and calculations, since various inessential h̄3, c2, etc., are no
longer present in formal expressions. But I have never seen the use of the
next step, namely the units in which “all” fundamental constant are 1, that
is h̄ = c = G = 4πε0 = 1. Let us call such a system the dilatationally
invariant system of units, briefly, the system D. It is introduced with the
aid of the fine structure constant α, the Planck mass MP, the Planck time
TP and the Planck length LP by setting h̄ = c = G = 4πε0 = 1 in the
usual MKSA expression for these quantities (Table A.1). That is, in the
system D all quantities are expressed relative to the Planck units, which
are dimensionless; the unit is 1. For practical reasons sometimes we will
formally add the symbol D: so there holds 1 = 1D. With the aid of the
formulas in Table A.1 we obtain the relation between the units MKSA and
the units D (Table A.2).

1See ref. [136]
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Table A.1. Physical constants in two systems of units

Description Symbol MKSA D

Planck’s constant/2π h̄ 1.0545887× 10−34 Js 1
Speed of light c 2.99792458× 108ms−1 1
Gravitational constant G 6.6720× 10−11kg−1m3s−2 1
Dielectric constant of vacuum ε0 8.8541876× 10−12kg−1A2s4m−3 1

4π

Induction constant of vacuum µ0 1.2566371× 10−6kgm s−2A−2 4π

Electron’s charge e 1.6021892×As α1/2

Electron’s mass me 9.109534× 10−31 kg κ0α
1/2

Boltzman constant kB 1.380622× 10−23 J/oK 1

Fine structure constant α = 1/137.03604
‘Fundamental scale’ κ0 = 0.489800× 10−21

e = α1/2(4πε0h̄c)
1/2 MP = (h̄c/G)1/2 TP = (h̄G/c5)1/2 LP = (h̄G/c3)1/2

Let us now investigate more closely the system D. The Planck length is
just the Compton wavelength of a particle with the Planck mass MP

LP =
h̄

MPc
(system MKSA), LP =

1

MP
=MP = 1 (system D) (A.1)

In addition to MP and LP we can introduce

M = α1/2MP , L = α1/2LP. (A.2)

In the system D it is
e =M = L = α1/2. (A.3)

The length L is the classical radius that a particle with massM and charge
e would have:

L =
e2

4πε0Mc2
(system MKSA), L =

e2

M
(system D). (A.4)

The classical radius of electron (a particle with the mass me and the charge
e) is

rc =
e2

4πε0mec2
(system MKSA), rc =

e2

me
(system D). (A.5)

From (A.4) and (A.5) we have in consequence of (A.1) and Table A.1

rc
L

=
M

me
=

e

me
(4πε0G)

−1/2 ≡ κ−10 (A.6)

Therefore
me = κ0M = κ0α

1/2 = κ0e (system D). (A.7)
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The ratio L/rc represents the scale of the electron’s classical radius relative
to the length L. As a consequence of (A.4)–(A.7) we have rc = κ−10 e.

Table A.2. Translation between units D and units MKSA

1D = (h̄c/G)1/2 = 2.1768269× 10−8 kg

1D = (h̄G/c5)1/2 = 5.3903605× 10−44 s

1D = (h̄G/c3)1/2 = 1.6159894× 10−35 m

1D = (4πε0h̄c)
1/2 = α−1/2e = 1.8755619× 10−18 As

1D = c3(4πε0/G)
1/2 = 3.4794723× 1025 A

1D = c2(4πε0G)
−1/2 = 1.0431195× 1027 V

1D = c2(h̄c/G)1/2 = 1.9564344× 109 J
1D = 1.41702× 1032 0K

At this point let us observe that the fundamental constants h̄, c, G and
ε as well as the quantities LP, MP, TP, L, M , e, are by definition invariant
under dilatations. The effect of a dilatation on various physical quantities,
such as the spacetime coordinates xµ, mass m, 4-momentum pµ, 4-force f

µ,
and 4-acceleration aµ is [137]–[139]:

xµ → x′µ = ρxµ,

pµ → p′µ = ρ−1pµ,

m → m′ = ρ−1m,

fµ → f ′µ = ρ−2fµ,

aµ → a′µ = ρ−1aµ. (A.8)

Instead of the inhomogeneous coordinates xµ one can introduce [137]–
[139] the homogeneous coordinates x̃µ = κxµ which are invariant under
dilatations provided that the quantity κ transforms as

κ→ κ′ = ρ−1κ. (A.9)

For instance, if initially x0 = 1 sec, then after applying a dilatation, say
by the factor ρ = 3, we have x′0 = 3 sec, κ = 1

3 , x̃
′0 = x̃0 = 1 sec. The

quantity κ is the scale of the quantity xµ relative to the corresponding
invariant quantity x̃µ.

If we write a given equation we can check its consistency by comparing
the dimension of its left hand and right hand side. In the MKSA system the
dimensional control is in checking the powers of meters, kilograms, seconds
and ampères on both sides of the equation. In the system D one has to
verify that both sides transform under dilatations as the same power of
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Table A.3. Some basic equations in the two systems of units

Description Symbol MKSA D

Electric force between two electrons Fe e2

4πε0r2
e2

r2

Electric force between two electrons
at the distance rc

Fe e2

4πε0r2c
κ20

Gravitational force between two
electrons at the distance rc

FG κ−2Gm2
e

r2c
κ−2κ40

Ratio between electric and gravita-
tional force

Fe
FG

e2

4πε0Gm2
e

κ2κ−20

Bohr radius a0 4πε0h̄
2

mee2
κ−10 e−3

Potential energy of electron at the
distance a0 from the centre

Ec e2

4πε0a0
κ0e

5

Rydberg constant Ry mee
4

2(4πε0h̄)2
1

2
κ0e

5

ρ. For instance, eq. (A.7) is consistent, since [me] = ρ−1, [κ0] = ρ−1 and
[e] = 1, where [A] denotes the dimension of a generic quantity A.

In Table A.3 some well known equations are written in both systems
of units. They are all covariant under dilatations. Taking G invariant,
the equation F = Gm2/r2 is not dilatationally covariant, as one can di-
rectly check from (A.8). The same is true for the Einstein equations
Gµν = −8πGT µν with T µν = (ρ + p)uµuν − p gµν , from which the New-
tonian gravitation equation is derivable. Usually this non-covariance is
interpreted as the fact that the gravitational coupling constant G is not
dimensionless. One can avoid this difficulty by using the homogeneous co-
ordinates x̃µ and express the Einstein tensor Gµν , the rest mass density ρ
and all other relevant quantities in terms of these homogeneous coordinates
[139, 140]. Then the Einstein equations become G̃µν = −8πGT̃µν with

T̃µν = (ρ̃ + p̃)ũµũν − p̃ g̃µν , where the quantities with tildes are invariant
under dilatations. If the homogeneous Einstein equations are written back
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in terms of the inhomogeneous quantities, we have Gµν = −8πGκ−2Tµν ,
which is covariant with respect to dilatations. If we choose κ = 1 then the
equations for this particular choice correspond to the usual Einstein equa-
tions, and we may use either the MKSA system or the D system. Further
discussion of this interesting and important subject would go beyond the
scope of this book. More about the dilatationally and conformally covariant
theories the reader will find in refs. [137]–[141].

Using the relations of Table A.2 all equations in the D system can be
transformed back into the MKSA system. Suppose we have an equation in
the D system:

a0 =
1

mee2
= κ−10 e−3 = κ−10 α−3/2 = κ−10 α−3/2D. (A.10)

We wish to know what form the latter equation assumes in the MKSA sys-
tem. Using the expression for the fine structure constant α = e2(4πε0h̄c)

−1

and eq. (A.6) we have

a0 =
e

me(4πε0G)1/2

(
e2

4πε0h̄c

)−3/2
D. (A.11)

If we put 1D = 1 then the right hand side of the latter equation is a
dimensionless quantity. If we wish to obtain a quantity of the dimension
of length we have to insert 1D = (h̄G/c3)1/2, which represents translation
from meters to the D units. So we obtain

a0 =
4πε0h̄

2

mee2
, (A.12)

which is the expression for Bohr’s radius.
Instead of rewriting equations from the D system in the MKSA system,

we can retain equations in the D system and perform all the algebraic and
numerical calculations in the D units. If we wish to know the numerical
results in terms of the MKSA units, we can use the numbers of Table A.2.
For example,

a0 = κ−10 e−3 = 2.04136× 1021 × 137.036043/2D. (A.13)

How much is this in meters? From Table A.2 we read 1 D = 1.615989−35 m.
Inserting this into (A.13) we have a0 = 0.529177× 10−10m which is indeed
the value of Bohr’s radius.

Equations in the D system are very simple in comparison with those in
the MKSA system. Algebraic calculations are much easier, since there are
no inessential factors like h̄2, c3, etc., which obsure legibility and clarity
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of equations. The transformation into the familiar MKSA units is quick
with the aid of Table A.2 (and modern pocket calculators, unknown in the
older times from which we inherit the major part of present day physics).
However, I do not propose to replace the international MKSA system with
the D system. I only wish to recall that most modern theoretical works do
not use the MKSA system and that it is often very tedious to obtain the
results in meters, seconds, kilograms and ampères. What I wish to point
out here is that even when the authors are using the units in which, for
example, h̄ = c = 1, or similar, we can easily transform their equations into
the units in which h̄ = c = G = 4πε0 = 1 and use Table A.2 to obtain the
numerical results in the MKSA system.

To sum up, besides the Planck length, Planck time and Planck mass,
which are composed of the fundamental constants h̄, c and G, we have
also introduced (see Table A.2) the corresponding electromagnetic quantity,
namely the charge EP = (4πε0h̄c)

1/2 (or, equivalently, the current and
the potential difference), by bringing into play the fundamental constant
ε0. We have then extended the Planck system of units [136] in which
c = h̄ = G = 1 to the system of units in which c = h̄ = G = 4πε0 = 1, in
order to incorporate all known sorts of physical quantities.

Finally, let me quote the beautiful paper by Levy-Leblond [142] in which
it is clearly stated that our progress in understanding the unity of nature
follows the direction of eliminating from theories various (inessential) nu-
merical constants with the improper name of “fundamental” constants. In
fact, those constants are merely the constants which result from our unnat-
ural choice of units, the choice due to our incomplete understanding of the
unified theory behind.
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in Conceptual problems of Quantum Mechanics, A. Ashtekar and J. Stachel, eds,
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[125] D.R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid (Penguin, Lon-
don, 1980); D. C. Denet and D. R. Hofstadter, eds., The Mind’s Eye (Penguin,
London, 1981)

[126] R. Rucker, Infinity and the Mind (Penguin, London, 1995)

[127] W.H. Zurek, Physical Review D 24, 1516 (1981); 26, 1862 (1982)

[128] H.D. Zeh, Foundations of Physics 1 69 (1970); E. Joos and H. D. Zeh, Zeitschrift
für Physik B 59, 223 (1985)

[129] E. Schrödinger, Naturwissenschaften 23, 807; 823; 844 (1935); see also J. Gribbin,
In Search of Schrödinger Cat (Wildwood House, London, 1984)

[130] H. Atmanspacher, Journal of Consciousness Studies 1, 168 (1994)

[131] J. P. Terletsky, Doklady Akadm. Nauk SSSR, 133, 329 (1960); M. P. Bilaniuk,
V. K. Deshpande and E.C. G. Sudarshan, American Journal of Physics 30, 718
(1962); E. Recami and R. Mignani, Rivista del Nuovo Cimento 4, 209 (1974); E.
Recami, Rivista del Nuovo Cimento 9, 1 (1986)

[132] E. Recami, Physica A 252, 586 (1998), and references therein

[133] J.R. Fanchi, Foundations of Physics 20, 189 (1990)

[134] D. Hochberg and J. T. Wheeler, Physical Review D 43, 2617 (1991)

[135] J. Piaget, The Origin of Inteligence in the Child (Routledge & Kegan Paul, Lon-
don, 1953)

[136] C.W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Freeman, San Fran-
cisco, 1973), p. 1215

[137] H.A. Kastrup, Annalen der Physik (Lpz.) 7, 388 (1962)

[138] A.O. Barut and R. B. Haugen, Annals of Physics 71, 519 (1972)
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Historical time, 286
Hole argument, 186
Holographic projections, 200
Howe–Tucker action, 126–127, 130, 274, 276
for point particle, 5

Ideal, 78
Imaginary unit
as a Clifford number, 223

Indefinite mass, 18, 33
Induced gravity, 271, 283–284
Induced metric, 250
on hypersurface, 129

Infinite-dimensional space, 107, 111
Inner product, 55, 58
in infinite-dimensional space, 178

Interaction
between the branes, 252

Interactive term
for a system of branes, 257

Intersection
of branes, 252

Intrinsic coordinates, 163
Invariant evolution parameter, 104
Invariant volume element

in membrane space, 113
Kaluza–Klein theory, 69
Kinematically possible objects, 114
Kinetic momentum, 73
for point particle, 13–14

Klein–Gordon equation, 6, 19
in curved spacetime, 25

Local Lorentz frame, 27
Localization
within a space like region, 291

Loop quantum gravity, 166, 202
Lorentz force, 14
Mach principle, 166
Many membrane universe, 161
Many worlds interpretation, 308, 316, 336
Mass
constant of motion, 11, 14
fixed, 4

Matter configurations
on the brane, 263

Matter sheet, 273
Maxwell equations, 60–61, 152
Measure in momentum space, 217
Membrane action
polyvector generalization of, 108
unconstrained, 142

Membrane configuration, 161, 181, 249
spacetime filling, 185

Membrane dynamics, 152
Membrane momentum, 139
Membrane space, 107–108, 130
as an arena for physics, 165

Membrane velocity, 139
Membrane
unconstrained, 203

Membranes
dynamically possible, 114
kinematically possible, 114
unconstrained, 108–109, 222

Metric
fixed, 145
of M-space, 113, 145

Minimal surface action, 272
‘momentum’ constraints, 123
Momentum operator, 288
for membrane, 207
for point particle, 16
in curved spacetime, 24

Momentum polyvector, 61–62
Momentum representation, 38
Momentum space, 37
Momentum
of the Stueckelberg field, 35

Motion
in 3-space, 5
in spacetime, 9, 18

Multi-particle states
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superposition of, 228
Multivector, 57
Multiverse, 309, 316, 322, 336, 340
Negative energies, 51
Negative energy density, 101
Negative frequencies, 51
n-form field, 192
Negative norm states, 51, 97
Negative signature fields, 101
Null strings, 219
Ordering ambiguity, 207
Outer product, 55, 58
in infinite-dimensional space, 178

Pandimensional continuum, 90, 103, 200
Parallel propagator
prototype of, 164

Parameter of evolution, 298
Parametrized quantum field theory, 52
Passive diffeomorphisms, 107
Passive transformations, 109
Path integral, 272, 275
Pauli algebra, 77
Pauli matrices, 80
Pauli–Lubanski pseudo-vector, 65
p-brane, 119, 188
Phase space action
for point particle, 12

Phase transformations, 41–42
Planck mass, 69
Planck units, 347
Point transformations, 22
Poisson brackets, 33–34, 95, 122
Polymomentum, 68
Polyvector action, 68, 133
for p-branes, 192
in M-space, 195

Polyvector constraint, 76
Polyvector field, 177
Polyvector, 62
in infinite-dimensional space, 178

Polyvectors, 57, 138
in M-space, 132, 197

Position operators
for membrane, 205

Position polyvector field, 177
Position vector field, 177
Predictability, 104
Probability amplitude, 275
Probability current, 18, 208, 210
Probability density, 17, 208, 210, 219
in 3-space, 18
in spacetime, 18

Problem of time, 86, 138, 284, 298
Product
of covariant derivatives, 30
of operators, 27, 29

Propagator, 280

Proto-metric, 183
Proto-vectors, 183
Pseudo-Euclidean signature, 90
Pseudoscalar, 59
Pseudovector, 59
Quantization of gravity, 271
Quantization of the p-brane
a geometric approach, 238

Quantized p-brane, 242
Quantum gravity, 293
Randall–Sundrum model, 264
Reduced action, 135, 137
Reduced density matrix, 325
Reference fluid, 165, 167, 186
Reference system, 165
Relative state, 307, 325
Relativity of signature, 87
Reparametrization invariance, 107
Reparametrizations, 111
Ricci scalar, 277
in M-space, 158
in spacetime, 185

Ricci tensor, 277
in M-space, 158, 181

Riemann tensor, 277
r-vector, 57
Scalar field
real, 229

Scalar fields
in curved spacetime, 277

Scalar product, 66, 177
Schild action, 136, 215
Schrödinger equation, 17, 23, 31, 35, 71,

208–209, 215, 235, 289
Schrödinger equation
for membrane
stationary, 210

in curved spacetime, 24
Schrödinger picture, 85
Schrödinger representation, 205
Schrödinger’s cat, 316, 325
Second quantization, 31
of the polyvector action, 83

Second quantized field, 280
Self-interaction, 258
Self-intersecting brane, 261, 263
Sharp localization, 297
Simultaneity surface, 285
Skeleton space, 164
Source term, 281
Spacetime polyvectors, 193
Spacetime sheet, 271–272, 284
centroid, 289
moving, 295

Spin angular momentum, 61
Spin foams, 202
Spin networks, 202
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Spin, 66
Spinor, 77–78
conjugate, 81

Spinors, 90, 202
Static membrane, 140
Stationary state, 210, 217
Stress–energy tensor, 33, 35, 50, 100, 191, 279
for dust of p-branes, 261
for dust of point particles, 261
for dust, 273
of an extended object, 254
of the membrane configuration, 187
of the point particle, 254

String, 103, 107
space-like, 341
time-like, 341

Stueckelberg action, 70–71, 73–74, 136
for point particle, 8

Stueckelberg field
quantization of, 235

Submanifold, 171
Superluminal disturbances, 339
System of many membranes, 155
System of two scalar fields, 99
System of units
dilatationally invariant, 347

System
of many branes, 257, 260
of many intersecting branes, 256

Tachyon, 14, 309–310, 339–340
Tangent vectors, 131, 171–172
Tangentially deformed membranes, 108
Target space, 156, 163, 195
Tensor calculus
in M-space, 111

Tensors
in membrane space, 114

Test brane, 260
Test membrane, 153
Tetrad, 170
The worldsheet spinors, 195
Time machines, 101, 103, 340
Time slice, 286, 293
Unconstrained action, 135
Unconstrained membrane, 284, 286

Unconstrained theory, 297
Unitarity, 51
Vacuum energy density, 93, 282
Vacuum expectation value
of the metric operator, 243

Vacuum state vector, 243
Vacuum state, 95, 97
Vacuum, 36, 46, 50, 100
Vector field, 174, 176
in M-space, 180
in curved space, 176
in spacetime, 185

Vector
in membrane space, 130
prototype of, 164

Vectors, 55
in curved spaces, 168

Velocity polyvector, 62, 68
Vierbein, 30
Volume element in M-space, 153
Warp drive, 101, 103
Wave function
complexe-valued, 226
of many particles, 37
polyvector valued, 76

Wave functional, 86, 215, 275, 289, 291, 296
packet, 289

Wave packet profile, 43, 228–229
Wave packet, 18, 26, 290, 296
Gaussian, 219, 221, 290
centre of, 291
for membrane, 217

Wedge product
in infinite-dimensional space, 178

Wheeler–DeWitt equation, 86
Wiggly membrane, 211, 284
World line
as an intersection, 295

World sheet polyvector, 194
World sheet, 125, 188
r-vector type, 200
generalized, 199

World surface, 188
World volume, 188
Wormholes, 101, 340
Zero point energy, 93, 103


