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In the (z,y) representation the vacuum state (z,y|0) = qpo(x,y) satisfies

A
o (Voo + o) =0, = (Veu+ oo thl@y)) =0,
V2 \/_ 3 V2 Vw 3
(3.15)
which comes straightforwardly from (3.13). A solution which is in agree-

ment with the probability interpretation,

Yo = expl—du(e? + ) (3.16)

is normalized according to [ dz dy = 1.

We see that our particle is localized around the origin. The excited states
obtained by applying cL, CL to the vacuum state are also localized. This is in
agreement with the property that also according to the classical equations
of motion (3.2), the particle is localized in the vicinity of the origin. All

states |1) have positive norm. For instance,

(0lccl0) = (Offe,/110) = (0/0) = [ Ydwdy = 1.

3.2. HARMONIC OSCILLATOR IN
d-DIMENSIONAL PSEUDO-EUCLIDEAN
SPACE

Extending (3.1) to arbitrary dimension it is convenient to use the com-
pact (covariant) index notation

1
L= E:i:“a'cu T (3.17)

where for arbitrary vector A* the quadratic form is A*#A, = n,, A*A”. The
metric tensor 7, has signature (+ + +... — — — ...). The Hamiltonian is

H = iptp, + Jw’sts, (3.18)

Conventionally one introduces

at = — (\/Ex“ + %p”) , aht = 7 (\/73“ — Tp“) (3.19)

In terms of a#, a*! the Hamiltonian reads

H= 2(a‘”La + auatt). (3.20)
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Upon quantization we have
[z#,p,] = 6", or [z#,p"] = in"” (3.21)

and
[a*,al] = 6", or [ak,aT] = n. (3.22)

b %4

We shall now discuss two possible definitions of the vacuum state. The
first possibility is the one usually assumed, whilst the second possibility
[44, 45] is the one I am going to adopt.

Possibility I. The vacuum state can be defined according to
at0) =0 (3.23)
and the Hamiltonian, normal ordered with respect to the vacuum definition
(3.23), becomes, after using (3.22),
ut d uv
H=wla a“+§ , d=n"nu. (3.24)

Its eigenvalues are all positive and there is the non-vanishing zero point
energy wd/2. In the = representation the vacuum state is

d/2
o = (2%) exp[—swztz,) (3.25)

It is a solution of the Schrodinger equation —208,1 + (w?/2)z T 10 =
Eypy with positive Ey = w(% + % + ....). The state 1y as well as excited
states can not be normalized to 1. Actually, there exist negative norm
states. For instance, if 73® = —1, then

(0[a*a’T10) = (0][a®, a’T]|0) = —(0]0).

Possibility II. Let us split a = (a®,a®), where the indices «, @ refer
to the components with positive and negative signature, respectively, and
define the vacuum according to'

a®l0) =0, a®t|0) = 0. (3.26)

IEquivalently, one can define annihilation and creation operators in terms of z# and the canon-
ically conjugate momentum p, = nu,p” according to c* = (1/v/2)(v/wz* + (i/v/w)pu) and
et = (1/V2)(Vwzt — (i//w)py), satisfying [c#,c*T] = §#¥. The vacuum is then defined as
c#|0) = 0. This is just the higher-dimensional generalization of ¢z, ¢y (eq.(3.8),(3.9) and the
vacuum definition (3.13).
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Using (3.22) we obtain the normal ordered Hamiltonian with respect to the
vacuum definition (3.26)

T _

H=w (a"‘Taa + 2 + aga® — %) ) (3.27)
where §,* = r and 63® = s. If the number of positive and negative signa-
ture components is the same, i.e., r = s, then the Hamiltonian (3.27) has
vanishing zero point energy:

H = w(a®aq + aga®). (3.28)

Its eigenvalues are positive or negative, depending on which components
(positive or negative signature) are excited. In the z-representation the
vacuum state (3.26) is

d/2
o = (%) exp[—swd,,ztz"], (3.29)

where the Kronecker symbol §,, has the values +1 or 0. It is a solution
of the Schrédinger equation —%8“(9“1#0 + (w? [2)z*x1po = Eotpo with Eg =
w(% + % + .. — % — % — ...). One can also easily verify that there are no
negative norm states.

Comparing Possibility I with Possibility II we observe that the former
has positive energy vacuum invariant under pseudo-Euclidean rotations,
whilst the latter has the vacuum invariant under Euclidean rotations and
having vanishing energy (when r = s). In other words, we have: either
(i) non-vanishing energy and pseudo-Euclidean invariance or (ii) vanishing
energy and Euclidean invariance of the vacuum state. In the case (ii) the
vacuum state 1y changes under the pseudo-Euclidean rotations, but its
energy remains zero.

The invariance group of our Hamiltonian (3.18) and the corresponding
Schrodinger equation consists of pseudo-rotations. Though a solution of
the Schrodinger equation changes under a pseudo-rotation, the theory is
covariant under the pseudo-rotations, in the sense that the set of all possible
solutions does not change under the pseudo-rotations. Namely, the solution
1o (z") of the Schrodinger equation

—30"0 o () + (W /2)a 1o (z") = O (3.30)
in a pseudo-rotated frame S’ is

9 @/2
Po(x') = - exp[— swu ' z"). (3.31)
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If observed from the frame S the latter solution reads

! 27Td/2 1 w PpTV 0
Po(z) = o xexp — 5wl LF yzP LY s 2°], (3.32)

where z'* = L#,2”. One finds that 1{(z) as well as 9y(z) (eq. (3.29)) are
solutions of the Schrodinger equation in S and they both have the same
vanishing energy. In general, in a given reference frame we have thus a
degeneracy of solutions with the same energy [44]. This is so also in the
case of excited states.

In principle it seem more natural to adopt Possibility II, because the
classically energy of our harmonic oscillator is nothing but a quadratic form
E = %(p“pu + w%“mu), which in the case of a metric of pseudo-Euclidean
signature can be positive, negative, or zero.

3.3. A SYSTEM OF SCALAR FIELDS

Suppose we have a system of two scalar fields described by the action?
1=} [ @0 (0,01 0" — m®6 — 0,60 0 + m*63). (3.33)

This action differs from the usual action for a charged field in the sign of
the ¢9 term. It is a field generalization of our action for the point particle
harmonic oscillator in 2-dimensional pseudo-Euclidean space.

The canonical momenta are

™ = ¢, Ty = — o (3.34)
satisfying
(3160, m ()] =i (x— %), [pa(x), ma(x)] = i6*(x —x).  (3.35)
The Hamiltonian is

H = /d3x (] + m’¢] — by O’y — w5 — M5 + Biga0'hs).  (3.36)

We use the spacetime metric with signature (+ — ——) so that —0;¢1 0°¢;
= (V)?, i = 1,2,3. Using the expansion (w = (m? + k?)'/?)
d’k 1 —ikz | (1) pike
b = / oy (e (e + o] (k)e™), (3.37)

2Here, for the sake of demonstration, I am using the formalism of the conventional field theory,
though in my opinion a better formalism involves an invariant evolution parameter, as discussed
in Sec. 1.4



