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Theories of strings and higher dimensional extended objects, branes                          

- very promising in explaining the origin and interrelationship of the 

fundamental interactions, 

including gravity  

But there is a cloud:

- what is a geometric principle behind string and brane theories

and how to formulate them in a background independent way

xRggI 4d][ ∫ −=µν

?

- Strings, branes



Configuration space for infinite dimensional objetcs - branes

A brane can be considered as a point in infinite dimensional space

with coordinates
( )( )a MX X Xµ µ ξξ ≡ ≡

This includes classes of tangentially deformed branes which we can interpret

as physically different objects, not just reparametrizations.

Mathematically the surfaces on the left

and the right are the same.

Physically they are different. 

They are represented by

two different points in 

configuration space C

For the configuration space associated

with a brane we will also use the name
brane space M



4M

C C

‘Instantaneous’ brane configuration in M4 ‘Evolution’ of a brane configuration in M4

Representation in configuration space C

( )aX µ ξ

MX ( )MX τ

4M

( , )aX µ ξ τ



Action in the brane space  M

(1/2)[ ] d ( )M M N

MNI X X Xτ ρ= ∫ ɺ ɺ

( ) (( )) , MX X XM µ ξ µµ ξ ξ≡ ≡≡

Short hand notation

More explicit notation

If metric is given by

then the corresponding equations of motion are precisely those of a Dirac-Nambu-Goto brane!

In this theory we assume that the metric above is just one particular chose

amongst many other possible metrics that are solution to the Einstein equations

in the configuration space.

For more details see:
M. Pavšič:  The Landscape of theoretical Physics (Kluwer, 2001), gr-qc/0610061 ;

hep-th/0311060

det ,ab ab a bf f f X X gµ ν
µν≡ ≡ ∂ ∂

2X X X gµ ν
µν≡ɺ ɺ ɺ

( )( ) ( ) ( )

( )

1

)

/

(

2

d[ ] X XI X α ξ α ξ β ξ
α ξ β ξτ ρ ′ ′′

′ ′′= ∫ ɺ ɺ



4

[ ] d | |I g x g Rµν = ∫

'[ ] |I Xµ φ ν φρ ρ( ) ( ) = |∫D R

We have taken the brane space M seriously as an arena for physics.

The arena itself is also a part of the dynamical system, it is not prescribed in advance.

The theory is thus background independent. It is based on the geometric
principle which has its roots in the brane spaceM

There is no pre-existing space and metric: they appear dynamically as solutions 

to the equations of motion.

( , )A Aφ φ τ ξ≡ =



Finite dimensional description of extended objects

Instead of infinitely many degrees of freedom associated with an extended object,

we may consider  a finite number of degrees of freedom.

The Earth has a huge (practically infinite) number of degree of

freedom. And yet, when describing the motion of the Earth around

the Sun,  we neglect them all, except for the coordinates

of  the centre of mass.



Strings and branes have infinitely many degrees of freedom.

But at first approximation we can consider just the centre of mass.

4M

( )aX µ ξ

X µ

Next approximation is in considering the holographic coordinates of the

oriented area enclosed by the string.

1x

2x

12x

23x
13x

3x



We may go further and search for eventual thickness of the object.

If the string has finite thickness, i.e., if actually it is not a string, but a 2-brane,

then there exist the corresponding volume degrees of freedom.

4M

( )aX µ ξ

X µ 123X

In general, for an extended object in M4, we have 16 coordinates 

1... , 0,1,2,3,4rMx x rµ µ≡ =

They are the projections of r-dimensional volumes (areas) onto the coordinate planes.

Oriented r-volumes can be elegantly described by Clifford algebra.



1 2 1 2

1
d d d d d d

2

a b ab

a b a be e e eξ ξ ξ ξ ξΣ = ∧ = ∧ = ∧

1
d d

2

1
d ( )

2

1

2

1

2

B B

B

ab

a b

ab

a b a b

X X X

X X p X X

µν µ ν
µ ν µ ν

µ ν ν µ
µ ν

γ γ ξ γ γ

ξ γ γ

Σ Σ

Σ

=Σ ≡ ∧ ∂ ∂ ∧

= ∂ ∂ − ∂ ∧

∫ ∫

∫

1 2 2 1d d d d dab a b a b

a ae X µ
µ

ξ ξ ξ ξ ξ

γ

= −

= ∂

1
[ ] d ( )

2 B

ab

a b a bX B X X X Xµν µ ν ν µξ
Σ

= ∂ ∂ − ∂ ∂∫

1

2
[ ] d

B

X X
X B s X X

s s

ν
µν µ

µ
ν ∂ ∂

= − ∂ ∂ 
∫�

( )aX µ ξ

Mapping : 

X µν

X µν

dΣ

B



Instead of the usual relativity formulated in spacetime in which the interval is

we are studying the theory in which the interval is extended to

the space of r-volumes (called Clifford space):

2d d ds x xµ ν
µνη=

2d d dM N

MNS G x x= 1...d d , 0,1,2,3,4rMx x rµ µ≡ =

Coordinates of Clifford space can be used to model extended objects.

They are a generalization of the concept of center of mass.

Instead of describing an extended object in ``full detail’’, we

can describe them in terms of the center of mass, area and

volume coordinates. 

In particular, extended object can be a fundamental string or brane.



Metric

2 2 ‡d | d | d *d d d d dM N M

MN MS X X X x x G x x≡ ≡ = ≡

‡ ‡

0MN M N M NG γ γ γ γ= ∗ ≡〈 〉

Quadratic form in C-space

where

1 2

1 2

...

... 0,1,2,d 3,4d d ,r

r

M

MX x rx µ µ µ
µ µ µγ γ == ≡

Signature: (8,8)+ + + + + + + +− − − − − − − −

In flat C-space:

1 2 1 2... ...
r rµ µ µ µ µ µγ γ γ γ= ∧ ∧ ∧

at every point ∈ E C

1 2 2 1

‡( ... ) ...
r rµ µ µ µ µ µγ γ γ γ γ γ=

Reversion



Dynamics

Action:

Generalization of ordinary relativity

Equations of motion:

These equations imply area (volume)

motion

Metric:
Diagonal metric

Signature: (8,8)

The above dynamics holds for tensionless branes.

For the branes with tension one has to introduce

curved Clifford space. 

1/ 2( )M N

MNI d X Xτ η= ∫ ɺ ɺ

2

2

d
0

d

M
M X

X
τ

≡ =ɺɺ

+ + + + + + + +− − − − − − − −

MNη



C-space is a straightforward generalization of  spacetime manifold M .

Choosing  a point         of            , 

the tangent space at         is the vector space P

1,3Vµγ ∈
1,3V

Generators of Clifford algebra

M P
 P

Choosing  a point          as the origin ,  vectors        , 

0
 P 1,3( )|x T Mµ

µγ =∈ ℝ

0
 P

0
 P

0
 P

can be put into one-to one correspondence

with other point            of  a region  P B M⊆
1,3 M↔ℝ are then coordinates of xµ  P

Position in M is described

by vector

|x xµ µγ≡

0
 P

 P

x

0

0
 P

1,3( )T M V=
 P



Choosing  a point          as the origin , polyvectors , 

0
 E

8,8| ( ) ~M

Mx T Cγ ∈ ℝ

0
 E

0
 E

0
 E

can be put in one-to one correspondence

with other point            of a  region  E CΩ⊆

8,8 C↔ℝ are then coordinates of Mx E

Choosing  a point         of            , 

the tangent space at       is the Clifford algebra  E

1 2 1,3... r M Clµµ µγ γ≡ ∈

1,3Cl

Basis elements of Clifford algebra

C E
 E

Isomorphic as 

a vector space

0
 E

Position in C is described

by a polyvector

|M

MX x γ≡

0
 E

 E
X

0

1,3( )T C Cl=
 E



Curved Clifford space
Coordinate basis

1 ... nM µ µγ γ≡ Depends on position 

No longer defined as wedge

product

|M

MX x γ=

Orthonormal basis

1 2 1 2... ...
n nA a a a a a aγ γ γ γ γ= = ∧ ∧ ∧

C-space vielbein

A

M M Aeγ γ=

0
 E

0
 E

 E

1
...

rM µ µγ γ γ= ∧ ∧

A

M M Aeγ γ=

Definite gradeIndefinite grade

‡

A B ABγ γ η∗ =

‡

M M MNgγ γ∗ =

Metric of the tangent space spanned by

Metric of Clifford space

Aγ

This may hold at point        

but not at  point
0
 E

 E



Derivative

M M

J

M N MN J

B

M A A M B

x

φ
φ

γ γ

γ γ

∂
∂ =

∂
∂ =Γ

∂ = −Ω

Scalar

Connection for a coordinate frame field

Connection for orthonormal frame field

φ

Derivative of a (poly)vector field 

( ) ( ) DN N N K N

M N M MK N M NA A A Aγ γ γ∂ = ∂ +Γ ≡

Covariant derivative

1 21 1 2 ...
( , , ,..., )

n

N

M

M

A

s x x x
µ µ µµ µ µ

∂

∂ ∂ ∂ ∂
∂ =

∂ ∂ ∂ ∂

Partial derivative

Other symbols used in the literature , , , 
M MM M Dγ γ∇ ∇□

MM γ∂ ≡ ∂



Reciprocal basis elements ,M Aγ γ

( ) , ( )M M A A

N N B Bγ γ δ γ γ δ∗ = ∗ =‡ ‡

Curvature of C-space

[ , ] K

M N J MNJ K

K K K R K R K

MNJ M NJ N MJ NJ MR MJ NR

R

R

γ γ∂ ∂ =

=∂ Γ −∂ Γ +Γ Γ −Γ Γ

or:

[ , ]

( )

B

M N A MNA B

B B B C B C B

MNA M A N N A M A N C M A N C M

R

R

γ γ∂ ∂ =

=− ∂ Ω −∂ Ω + Ω Ω −Ω Ω



On the General Relativity in C-space

Concept of spacetime should be replaced by that of C-space.

Spacetime is just a start.

From its basis we can build a larger space – C-space.

Also physical!

It has 16 dimensions – therefore its can serve as a

realization of Kaluza-Klein theory!

Kaluza-Klein theory without extra dimensions

1/2 16[ , ] d ( ) d
16

M M N

MN MNI X G X X G x R
κ

τ
π

= +∫ ∫ɺ ɺ

22 2

1 d
0

d

M M J K

JKX X X

XX Xτ
  Γ

+ = 
 

ɺ ɺ ɺ

ɺɺ ɺ

1 ( )

2
8 d ( ( ))MN MN C M NR G R x X X Xπ κ τ δ τ− = −∫ ɺ ɺ

Action

Geodesic equation

Einstein’s equation



Good features of C-space

- No need for extra dimensions of spacetime.

The extra degrees of freedom are in Clifford space,

generated by a basis in         .

- No need to compactify the “extra dimensions”.

The extra dimensions of C-space, namely 

, , ,s x x xµν µνρ µνρσ

sample the extended objects. They are physical.

- The number of components , ,
M

G Mµ µ µ≠ fixed,

is 12.  The same as the number of the gauge fields in the

Standard model.

1,3V



The generalized Dirac equation in C-space

A

Aγφ=Φ

Spinors as members of left ideals of Clifford algebra

Polyvector valued field

1,2,.., .,16A Aγ = Orthonormal basis  of C-space

Aφ Complex valued scalar components

Another basis

A

A
ψ ξΦ= =Ψ
ɶ

ɶ
1,2,3,4; 1,2,3,, 4L

iiA
iαξ αξ ≡ =∈ =ɶ I

L

iI is the i-th  left ideal;

Its elements are spanned by
A iPγ

1
(1 )(1 )
4

1
(1 )
4

i

A

i A i B

i A BB i Ci C

P a b

a b c

γ γ

γ γγ γγ γ

= +

= + + =

+

+

, ,i i ia b c complex numbers,

such that:

2

i iP P= idempotent

( )MxΦ

Φ depends on

position in C-space



For instance, the basis of the first left ideal is:

1

11 1 0 12 0124

1

21 13 1 13 013 23 0234

1

31 3 1 3 03 123 01234

1

41 1 1 1 01 2 024

(1 )

( )

( )

( )

P i i

P i i

P i i

P i i

ξ γ γ γ

ξ γ γ γ γ γ

ξ γ γ γ γ γ

ξ γ γ γ γ γ

= = + + +

=− = − − + +

=− = − + − +

=− = − + + −

1

0 12 0124

1

2 0 12 0124

1

3 0 12 0124

1

4 0 12 124

1

0

(1 )

(1 )

(1 )

(1 )

P i i

P i i

P i i

P i i

γ γ γ

γ γ γ

γ γ γ

γ γ γ

= + + +

= + − −

= − + −

= − − +

An example

In short:

1

0 124
(1 )(1 )iP iγ γ= ± ±



More explicitly

1 2 3 4

1 2 3 4

A i

iA

α α α α α
α α α α αψ ξ ψ ξ ψ ξ ψ ξ ψ ξ ψ ξΨ= = = + + +

ɶ

ɶ

The sum of four independent 4-components spinors,

each in a different left minimal ideal
L

iI

Metric
‡ ‡

0
A B A B ABGγ γ γ γ∗ = = 1111

‡

0

‡ 1
B BA A AB

Z
n

ξ ξ ξ ξ∗ = =ɶ ɶ ɶ ɶ ɶ ɶ 1111

In local orthormal basis

In generalized spinor basis

Instead of the operation              we introduce

the operation             analogous to trace:
0

S

0

, ,...

S

S

S S S S

n

A n A

AB BA ABC BCA

=

=

= =

1111

Cyclic property

‡

B BA AS
Zξ ξ =ɶ ɶ ɶ ɶ

‡
‡ , A A

B B BA ABS
S

A A A Aξ ξ ξ ξ≡ =
ɶ ɶ

ɶ ɶ ɶ ɶ ɶɶ

Matrix elements of an arbitrary Clifford number A :

( )XΨ = Ψ

Position in C-space



Generalized spinor metric:

‡

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

BA ABS

ij

Z

z zαβ

ξ ξ

   
   
   = = ⊗
   − −
   − −   

ɶ ɶ ɶ ɶ

Aγ
‡

( ) ( )A A i

A A j AB B
S

α
βξ γ ξ γ δ γ= =

ɶ ɶ

ɶ ɶ

‡

( ) ( )A A i

a a j aB B
S

α
βξ γ ξ γ δ γ= =

ɶ ɶ

ɶ ɶ

‡

( )a a
S

α α
β βγ ξ γ ξ=

Usual Dirac

matrices

1α αξ ξ≡

( )0 0

‡

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S

z
αα

β αββ
ξ γ ξ γ

 
 
 = = =
 −
 − 

In particular:

Quadratic form:

( )( )
* *‡ A B i j

i jABS
Z zα β

α βψ ψ ψ ψΨ Ψ = =
ɶ ɶ

ɶ ɶ

Matrix elements of the basis Clifford numbers        :

are orthonormal basis 

1-vectors of 
1,3V

aγ



Distinction between the derivative of geometric objects  and corresponding matrices

‡
A

M
S

A AM B
ξ γ ξ∂ = ∂
ɶ

ɶγγγγ

‡

‡

( )

( )

A A

A A AB B
S

A A

M M MB B
S

ξ γ ξ γ

ξ γ ξ γ

= =

= =

ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ

γγγγ

γγγγ

J

M N MN Jγ γ∂ =Γ

B

M M BA A
ξ ξ∂ =Γ

ɶ

ɶ ɶ ɶ

A A B

M M B
ξ ξ∂ = − Γ
ɶ ɶ ɶ

ɶ

M N M N N M JM

J

N∂ = − + Γ+γ γ γγ γ γγ γ γγ γ γ γγγγΓ ΓΓ ΓΓ ΓΓ Γ

M A M A A A JM

B

M∂ = − + −Ωγ γ γγ γ γγ γ γγ γ γ γγγγΓ ΓΓ ΓΓ ΓΓ Γ

‡
A

M
S

N NM B
ξ γ ξ∂ = ∂
ɶ

ɶγγγγ

Spin connection

[ , ]ρ
µν ρµ ν ν µ∂ − Γ =γγγγγγγγ γγγγ ΓΓΓΓ

A special case

This is the usual relation

Bold denotes

matrices



Extending the Dirac equation to curved Clifford space

0M

Mγ∂Ψ≡ ∂ Ψ= M.P. 1999

M

Mγ∂ ≡ ∂

It is convenient to redefine the Clifford algebra

basis:

Instead of { } { }
1...

, 1, 2,...,
rA a a r nγ γ= =

we have
{ } ( ){ }

1

1 / 2

... , 1,2,...,
r

r r

A a ai r nγ γ−= =

For n = 4 

Then:
‡ ‡ ‡, ,A A M Mγ γ γ γ= = ∂ =∂

{ } { }
1 1 2 1 2 3 1 2 3 4

1, , , ,A a a a a a a a a a ai iγ γ γ γ γ= − −

0∂∂Ψ= Klein-Gordon equation in C-space.

(Particular forms were considered by

Pezzaglia 1997 and Castro 2000)

( )XΨ = Ψ

Position in C-space

|M

MX x γ≡
0
 E



2ˆ 0P Ψ=

Ordering ambiguity resolved

scalar field( )xφ φ=

ˆ M

MP iγ−= ∂

Because momentum operator is defined geometrically, there is no order ambiguity.

An illustration

2ˆ 0p φ =

p̂ i i µ
µγ∂ =− − ∂=

1
( ) D D ( | | ) 0

| |
g g g

g

µ ν µν µν
µ ν µ ν µ νφ γ γ φ φ φ∂∂ = ∂ ∂ = = ∂ ∂ =

momentum operator in 4D

| | ' ( ) ( , ')x p x i x x xµ
µγ δ〈 〉 = − ∂

*' | | | | 'x p x x p x〈 〉 = 〈 〉

Matrix elements of the vector

momentum operator in

curved space satisfy the

Hermiticity condition
2| | ' ( )( ) ( , ')x p x i i x xµ ν

µ νγ γ δ〈 〉 = − ∂ − ∂



0M

Mγ∂Ψ≡ ∂ Ψ=

B

M M BA A
ξ ξ∂ =Γ

ɶ

ɶ ɶ ɶ

( ) 0M A A B

M M B A
γ ψ ψ ξ∂ +Γ =

ɶ ɶ ɶ

ɶ ɶ

‡

( )C M M C

A A
S

ξ γ ξ γ≡
ɶ ɶ

ɶ ɶ

( ) ( ) 0M C A A B

M M BA
γ ψ ψ∂ +Γ =

ɶ ɶ ɶ ɶ

ɶ ɶ

( ) ,M M A A

M MB B
γ = Γ

ɶ ɶ

ɶ ɶγγγγ = Γ   = Γ   = Γ   = Γ   

( ) 0M

M M ψ∂ + =γγγγ ΓΓΓΓ

Generalized spin connection

matrices

Geometric form

Matrix form

A

A
ψ ξΨ =
ɶ

ɶ

Basis spinors

1,2,3,...,16A=ɶ



Yang-Mills gauge field as the spin connection in C-space

Generators of local rotations in C-space:

if,

if0 ,

A B

AB BA

A B

A B

γ γ
Σ =−Σ

=
=

<



Generic local transformation in C-space:

' R SΨ = Ψ
1 1

4 4,
AB AB

AB AB

R e S e
α βΣ Σ

= =

Particular cases:

( )

1(i) '

ii '

(iii) '

R R

R

R

−Ψ = Ψ

Ψ = Ψ

Ψ =Ψ

, ' 'A A

A A
ψ ξ ψ ξΨ= Ψ =
ɶ ɶ

ɶ ɶ

' 'A A A B

BA A A
R S Uψ ξ ψ ξ ψ ξΨ = = =

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

' ' ,

'

A A B

B
Uψ ψ ψ ψ

ψ ψ

=

=U U

ɶ ɶ ɶ

ɶ

16x16 matrix

Columns with 16 elements



( )
( )

( )

‡ ‡

‡ ‡ ‡

( )

( )

'
S S

S

B C

C

B

C

R S

R S

R S U U

U U R S

γ δ γ δ

γ α β δ
α β

αβγ αβ δ γδ
α β αβ

γδ γ δ
α βαβ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ψ ψ ψ

Ψ = Ψ

= Ψ

= = =

≡ =

= ⊗ T
U R S

ɶɶ

ɶ

ɶ

ɶ

The transformation matrix is

the direct product of the

matrices corresponding to left

and right transformations

From the invariance of the quadratic form
‡ ‡

' '
S S

Ψ Ψ = Ψ Ψ

it follows
‡ ‡1, 1R R S S= =



Transformation of the (generalized) spin connection

From
' ' M

Mγ∂ Ψ =∂Ψ ∂≡ ∂

we find
'B B C D D B

MD DMA A MC A
U U U UΓ = Γ + ∂

ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

i.e.
1 1'M M M

− −= + ∂U U U UΓ ΓΓ ΓΓ ΓΓ Γ

MΓΓΓΓ transforms as 

a non abelian gauge field

Passive transformation

Active transformation

' ' 'A A C C

A A A C
Uψ ξ ψ ξ ψ ξΨ = = =

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

' C

A A C
Uξ ξ=
ɶ

ɶ ɶ ɶ'C C A

A
Uψ ψ=
ɶ ɶ

ɶ

D' ' DA A B

M MB
Uψ ψ⇒ =

ɶ ɶ ɶ

ɶ

D' ' ' ' 'A A A B

M M M B
ψ ψ ψ= ∂ +Γ

ɶ ɶ ɶ ɶ

ɶ

D A A A B

M M M B
ψ ψ ψ= ∂ +Γ
ɶ ɶ ɶ ɶ

ɶ

Quantities with bold symbols

are matrices



Action

2 ‡ 2‡[ , ] | | | | * D
n nM B M A

M MB A
I d x G i d x G iγ ψ ξ γ ξ ψΨ Ψ = Ψ ∂ Ψ =∫ ∫

ɶɶ

ɶ ɶ

‡ ‡[ ', ' ] [ , ]
S S

I IΨ Ψ = Ψ Ψ
Scalar part is invariant under:

1

‡

4

1

4

‡

exp[

'

]

exp[ ]

, 1, 1

AB

AB

AB

AB

R

R

R R

S

S S S

α

β

Ψ

= Σ

= Σ

= Ψ = =

0
S

Iδ =

'( ) ( )

'( ') ( ) M

M

X X

X X x

δ

δ δ δ

Ψ=Ψ −Ψ

Ψ=Ψ −Ψ = Ψ+∂ Ψ

0M

M S
G∂ =

† †( )M M M N

NG i xγ δ γ δ= Ψ Ψ − Ψ ∂ Ψ

‡ ‡1

4
( ) ( )M M AB A JK

J K K J

B M

AB ABG i i x xγ α β γ= Ψ Σ Ψ +ΨΣ − Ψ ∂ − ∂ Ψε

Generators of those transformations in C-space are on the same 

footing as the spin and orbital angular momentum 4D spacetime



Physical content of the spin connection in C-space

We can write

1

4

AB A

M M AB M AA γΓ = Ω Σ =

1

4
,

A AA CD

CD A M MCD CD
Af fγΣ = = Ω

MΓ contain:

(i) The spin connection of 4-dim. gravity

(4) 1
[ , ] , , 0,1,2,3

8

ab

a b a bµ µ γ γΓ = Ω =

(ii) Yang-Mills fields describing other interaction

, ( , )A

A
A A A

A

µ γ µ

µ

=

≠

``Internal’’ index; assumes 12 values,

the same as the 

number of gauge fields

in the standard model

gauge field

(iii) Antisymmetric potentials

( , , , )o

M MA A A A A Aµ µν µνρ µνρσ≡ = o scalar component

(iv) Non abelian generalization of the antisymmetric potentials
...

AAµν



Splitting of the C-space Dirac equation

( ) 0M

M M ψ∂ + =γγγγ ΓΓΓΓ

( , ) ,M M Mµ µ= ≠

( ) ( ) 0[ ]M

M M

µ
µ µ ψ∂ + + ∂ + =γ γγ γγ γγ γΓ ΓΓ ΓΓ ΓΓ Γ

gravity plus other

gauge fields

mass term

1

4
, , 1,2,...,16AB

AB A Bµ µΓ = Ω Σ =

Contains 4-dimensional gravity plus other

gauge fields

The extra term has the role of mass in 4-dimensions,

if         is an eigenstate of the operator                     . ψ ( )M

M M
∂ +γγγγ ΓΓΓΓ

Signature of C-space  (8 ,8 )+ −

Signature of the ``internal space’’ (7 , 5 )+ −

Therefore: possible cancellations of positive and negative

contributions

Mass can be small !

It is not automatically of 

the Planck scale order.

‡
A A

M B S M B
ξ ξ〈 Γ 〉 = Γ →
ɶ ɶ

ɶ MΓΓΓΓ

Notice the difference

Bold denotes

matrices



Curvature

[ , ] B

M M MNA A
Rξ∂ ∂ =

ɶ

ɶ ɶ

B B B B C B C

MN M N N M M N N MA A A C A C A
R =∂ Γ −∂ Γ +Γ Γ −Γ Γ

ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

‡
A A

M M MB B
S

ξ ξΓ =Γ ≡
ɶ ɶ

ɶ ɶ ΓΓΓΓ

[ , ]MN M N N M M N=∂ −∂ +R Γ Γ Γ ΓΓ Γ Γ ΓΓ Γ Γ ΓΓ Γ Γ Γ matrix notation

[ , ]

A

M M A

C

A B AB C

A

cγ γ γ

=

=

ΓΓΓΓ γγγγ

A

MN MN AF=R γγγγ

A A A B C A

MN M N N M M N BCF A A A A c=∂ − ∂ + Yang-Mills fields

Kinetic term for gauge fields:

2[ ] | | ( )
nA A MN

M MN AI A dx G R F Fα β= +∫



Conserved charges and isometries

Curved Clifford space

K isometries given in terms of Killing fields

1,2,...,

1, 2,...

,

,16

M

M Kk

M

kα α γ α= =

=satisfying 
0N M M ND k D kα α+ =

Particular coordinate system in which:

0,1, 2,3;0, 0,Mk k Mα µ α µ µ== ≠ ≠

,

a a

MM A

MN M A A

M MN N

e eg g
G e

g g e e

µµν µ

ν µ

  
 = =      

where:
0, , 0A A Ma

M MMe e ke WWα α α
µµ µ= ∂ ==

Inserting this into the spin connection, we obtain:

], [[ ,]

1

2
,

MN M N M N N M M N
k kk kWα α α

µ
α

µ
α=∂ −= ∂Ω

YM fields           occur in C-space vielbein and connection.W α
µ

This index denotes

extra dimensions

of C-space



Conserved charges and isometries

Curved Clifford space

K isometries given in terms of Killing fields

1,2,...,

1, 2,...

,

,16

M

M Kk

M

kα α γ α= =

=satisfying 
0N M M ND k D kα α+ =

Particular coordinate system in which:

0,1, 2,3;0, 0,Mk k Mα µ α µ µ== ≠ ≠

,

a a

MM A

MN M A A

M MN N

e eg g
G e

g g e e

µµν µ

ν µ

  
 = =      

where:
0, , 0A A Ma

M MMe e ke WWα α α
µµ µ= ∂ ==

Inserting this into the spin connection, we obtain:

], [[ ,]

1

2
,

MN M N M N N M M N
k kk kWα α α

µ
α

µ
α=∂ −= ∂Ω

YM fields           occur in C-space vielbein and connection.W α
µ

Connection for local frame field:

From J

M N MN J

B

M A A M B

A

M M Ae

γ γ

γ γ

γ γ

∂ =Γ

∂ =−Ω

=
it follows

0C J C A C

N M NM J M A Ne e e∂ −Γ − Ω =

vanishing torsion

( )[ ] [ ] [ ]

1

2

A

BCM M AB C BC A CA BeΩ = ∆ −∆ +∆

[ ] ( )M N

AB C A B M NC N MCe e e e∆ ≡ ∂ − ∂



C-space Dirac equation:

( )1(4)

8
[ , ] ... ... 0a b M

ab M
q Wµ α α

µ µ µ ψ ∂ −Ω − + + ∂ + = γ γ γ γγ γ γ γγ γ γ γγ γ γ γ

conserved charges1

[ , ]8

M M N AB

M M N BA
q k k e eα α α= ∂ + Σ

``Internal orbital’’

contribution
``Internal spin’’

contribution

Terms with C-space

torsion are omitted

( )Mxψ ψ=
1,2,...,16

5,6,...,16

M

M

=

=

“Internal” index



Conclusion

- Spacetime can be elegantly described by means of 

which generate a Clifford algebra.

- Clifford algebra describes a geometry which goes beyond

spacetime: the ingredients are not only points, but also

2-areas, 3-volumes, 4-volumes and scalars.

All those objects together lead to the concept of a 16-dimensional

manifold, called Clifford space (C-space).

- It is quite possible that the arena for physics is not spacetime,

but Clifford space.

And the arena itself can become a part of the play, if we

assume that C-space is curved and dynamical.

- We have thus a higher dimensional curved differential manifold,

and yet we have not augmented the number of the basic four

dimensions. The ``extra dimensions’’ are related to the physical

degrees of freedom due to the extended nature of physical objects.

There is no need to compactify the 12-dimensional ``internal’’

part of C-space.

µγ



Conclusion

- Spacetime can be elegantly described by means of 
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- Clifford algebra describes a geometry which goes beyond
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2-areas, 3-volumes, 4-volumes and scalars.
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µγ

-The theory considered here is promising for the unification of

fundamental forces.

There are possible applications in string theory, 

astrophysics and cosmology.



What I was able to present here was just a tip of an iceberg.



What I was able to present here was just a tip of an iceberg.

More can be found in the literature: 

Hestenes, Crawford, Trayling and Baylis,

Chisholm and Farwell, and many others

Pezzaglia, Castro

M. Pavšič: The Landscape of Theoretical Physics: A Global View;

From Point Particles to the Brane World and Beyond,

in Search of a Unifying principle

(Kluwer Academic, 2001)

and some other related publications:

Class.Quant.Grav.20:2697-2714,2003, gr-qc/0111092 

Kaluza-Klein theory without extra dimensions: Curved Clifford space. 

Phys.Lett.B614:85-95,2005,  hep-th/0412255

Clifford space as a generalization of spacetime: Prospects for QFT of point 

particles and strings.     Found.Phys.35:1617-1642,2005, hep-th/0501222

Spin gauge theory of gravity in Clifford space: A Realization of Kaluza-Klein 

theory n 4- dimensional spacetime, Int.J.Mod.Phys.A21:5905-5956,2006,

gr-qc/0507053



• We consider a theory in which spacetime is replaced by a larger space,

namely the configuration space  associated with a system under consideration.

In particular, we consider the configuration space associated with branes – the brane space.

• A particular case of configuration space is Clifford space.

It is a subspace of the brane space.

• Since Clifford space has extra dimensions, its metric provides description

of additional interactions, beside the 4-dimensional gravity,

just as in Kaluza-Klein theories

• In this theory there is no need for extra dimensions of spacetime. The latter space

is a subspace of the Clifford space.

All dimensions of Clifford space  C are physical.

Therefore there is no need for a compactification of

the extra dimensions of C.

Summary


