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2.1. INTRODUCTION TO GEOMETRIC
CALCULUS BASED ON CLIFFORD
ALGEBRA

We have seen that point particles move in some kind of space. In non
relativistic physics the space is 3-dimensional and Euclidean, while in the
theory of relativity space has 4-dimensions and pseudo-Euclidean signa-
ture, and is called spacetime. Moreover, in general relativity spacetime is
curved, which provides gravitation. If spacetime has even more dimensions
—as in Kaluza–Klein theories— then such a higher-dimensional gravitation
contains 4-dimensional gravity and Yang–Mills fields (including the fields
associated with electromagnetic, weak, and strong forces). Since physics
happens to take place in a certain space which has the role of a stage or
arena, it is desirable to understand its geometric properties as deeply as
possible.

Let Vn be a continuous space of arbitrary dimension n. To every point
of Vn we can ascribe n parameters xµ, µ = 1, 2, ..., n, which are also called
coordinates. Like house numbers they can be freely chosen, and once being
fixed they specify points of the space2.

When considering points of a space we ask ourselves what are the dis-
tances between the points. The distance between two infinitesimally sepa-
rated points is given by

ds2 = gµν dx
µ dxν . (2.1)

Actually, this is the square of the distance, and gµν(x) is the metric tensor.
The quantity ds2 is invariant with respect to general coordinate transfor-
mations xµ → x′µ = fµ(x).

Let us now consider the square root of the distance. Obviously it is√
gµνdxµ dxν . But the latter expression is not linear in dxµ. We would like

to define an object which is linear in dxµ and whose square is eq. (2.1). Let
such object be given by the expression

dx = dxµ eµ (2.2)

It must satisfy

dx2 = eµeν dx
µdxν = 1

2(eµeν + eνeµ) dx
µdxν = gµν dx

µ dxν = ds2, (2.3)

from which it follows that

1
2(eµeν + eνeµ) = gµν (2.4)

2See Sec. 6.2, in which the subtleties related to specification of spacetime points are discussed.
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The quantities eµ so introduced are a new kind of number, called Clifford
numbers. They do not commute, but satisfy eq. (2.4) which is a charac-
teristic of Clifford algebra.

In order to understand what is the meaning of the object dx introduced
in (2.2) let us study some of its properties. For the sake of avoiding use of
differentials let us write (2.2) in the form

dx

dτ
=

dxµ

dτ
eµ , (2.5)

where τ is an arbitrary parameter invariant under general coordinate trans-
formations. Denoting dx/dτ ≡ a, dxµ/dτ = aµ, eq. (2.5) becomes

a = aµeµ . (2.6)

Suppose we have two such objects a and b. Then

(a+ b)2 = a2 + ab+ ba+ b2 (2.7)

and
1
2(ab+ ba) = 1

2(eµeν + eνeµ)a
µbν = gµνa

µbν . (2.8)

The last equation algebraically corresponds to the inner product of two
vectors with components aµ and bν . Therefore we denote

a · b ≡ 1
2(ab+ ba). (2.9)

From (2.7)–(2.8) we have that the sum a + b is an object whose square
is also a scalar.

What about the antisymmetric combinations? We have

1

2
(ab− ba) = 1

2(a
µbν − aνbµ)eµeν (2.10)

This is nothing but the outer product of the vectors. Therefore we denote
it as

a ∧ b ≡ 1
2(ab− ba) (2.11)

In 3-space this is related to the familiar vector product a × b which is the
dual of a ∧ b.

The object a = aµeµ is thus nothing but a vector : aµ are its components
and eµ are n linearly independent basic vectors of Vn. Obviously, if one
changes parametrization, a or dx remains the same. Since under a general
coordinate transformation the components aµ and dxµ do change, eµ should
also change in such a way that the vectors a and dx remain invariant.

An important lesson we have learnt so far is that
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the “square root” of the distance is a vector;

vectors are Clifford numbers;

vectors are objects which, like distance, are invariant under general co-
ordinate transformations.

Box 2.1: Can we add apples and oranges?

When I asked my daughter, then ten years old, how much is 3 apples
and 2 oranges plus 1 apple and 1 orange, she immediately replied
“4 apples and 3 oranges”. If a child has no problems with adding
apples and oranges, it might indicate that contrary to the common
wisdom, often taught at school, such an addition has mathematical
sense after all. The best example that this is indeed the case is
complex numbers. Here instead of ‘apples’ we have real and, instead
of ‘oranges’, imaginary numbers. The sum of a real and imaginary
number is a complex number, and summation of complex numbers
is a mathematically well defined operation. Analogously, in Clifford
algebra we can sum Clifford numbers of different degrees. In other
words, summation of scalar, vectors, bivectors, etc., is a well defined
operation.

The basic operation in Clifford algebra is the Clifford product ab. It
can be decomposed into the symmetric part a · b (defined in (2.9) and the
antisymmetric part a ∧ b (defined in (2.11)):

ab = a · b+ a ∧ b (2.12)

We have seen that a · b is a scalar. On the contrary, eq. (2.10) shows that
a ∧ b is not a scalar. Decomposing the product eµeν according to (2.12),

eµeν = eµ · eν + eµ ∧ eν = gµν + eµ ∧ eν ,

we can rewrite (2.10) as

a ∧ b = 1

2
(aµbν − aνbµ) eµ ∧ eν , (2.13)

which shows that a ∧ b is a new type of geometric object, called bivector,
which is neither a scalar nor a vector.
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The geometric product (2.12) is thus the sum of a scalar and a bivector.
The reader who has problems with such a sum is advised to read Box 2.1.

A vector is an algebraic representation of direction in a space Vn; it is
associated with an oriented line.

A bivector is an algebraic representation of an oriented plane.
This suggests a generalization to trivectors, quadrivectors, etc. It is

convenient to introduce the name r-vector and call r its degree:

0-vector
1-vector
2-vector
3-vector

.

.

.
r-vector

s
a

a ∧ b
a ∧ b ∧ c

.

.

.
Ar = a1 ∧ a2 ∧ ... ∧ ar

scalar
vector
bivector
trivector

.

.

.
multivector

In a space of finite dimension this cannot continue indefinitely: an n-
vector is the highest r-vector in Vn and an (n+1)-vector is identically zero.
An r-vector Ar represents an oriented r-volume (or r-direction) in Vn.

Multivectors Ar are elements of the Clifford algebra Cn of Vn. An element
of Cn will be called a Clifford number. Clifford numbers can be multiplied
amongst themselves and the results are Clifford numbers of mixed degrees,
as indicated in the basic equation (2.12). The theory of multivectors, based
on Clifford algebra, was developed by Hestenes [22]. In Box 2.2 some
useful formulas are displayed without proofs.

Let e1, e2, ..., en be linearly independent vectors, and α, αi, αi1i2 , ...
scalar coefficients. A generic Clifford number can then be written as

A = α+ αiei +
1

2!
αi1i2 ei1 ∧ ei2 + ...

1

n!
αi1...inei1 ∧ ... ∧ ein . (2.14)

Since it is a superposition of multivectors of all possible grades it will
be called polyvector.3 Another name, also often used in the literature, is
Clifford aggregate.These mathematical objects have far reaching geometrical
and physical implications which will be discussed and explored to some
extent in the rest of the book.

3Following a suggestion by Pezzaglia [23] I call a generic Clifford number polyvector and re-
serve the name multivector for an r-vector, since the latter name is already widely used for the
corresponding object in the calculus of differential forms.
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Box 2.2: Some useful basic equations

For a vector a and an r-vector Ar the inner and the outer product
are defined according to

a ·Ar ≡ 1
2 (aAr − (−1)rAra) = −(−1)rAr · a, (2.15)

a ∧Ar = 1
2 (aAr + (−1)rAra) = (−1)rAr ∧ a. (2.16)

The inner product has symmetry opposite to that of the outer pro-
duct, therefore the signs in front of the second terms in the above
equations are different.
Combining (2.15) and (2.16) we find

aAr = a ·Ar + a ∧Ar. (2.17)

For Ar = a1∧a2∧ ...∧ar eq. (2.15) can be evaluated to give the useful
expansion

a · (a1∧ ...∧ar) =
r∑

k=1

(−1)k+1(a ·ak)a1∧ ...ak−1∧ak+1∧ ...ar. (2.18)

In particular,
a · (b ∧ c) = (a · b)c− (a · c)b. (2.19)

It is very convenient to introduce, besides the basic vectors eµ, an-
other set of basic vectors eν by the condition

eµ · eν = δµ
ν . (2.20)

Each eµ is a linear combination of eν :

eµ = gµνeν , (2.21)

from which we have
gµαgαν = δµ

ν (2.22)

and
gµν = eµ · eν = 1

2(e
µeν + eνeµ). (2.23)
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2.2. ALGEBRA OF SPACETIME

In spacetime we have 4 linearly independent vectors eµ, µ = 0, 1, 2, 3.
Let us consider flat spacetime. It is then convenient to take orthonormal
basis vectors γµ

γµ · γν = ηµν , (2.24)

where ηµν is the diagonal metric tensor with signature (+ - - -).

The Clifford algebra in V4 is called the Dirac algebra. Writing γµν ≡
γµ ∧ γν for a basis bivector, γµνρ ≡ γµ ∧ γν ∧ γρ for a basis trivector, and
γµνρσ ≡ γµ∧γν∧γρ∧γσ for a basis quadrivector we can express an arbitrary
number of the Dirac algebra as

D =
∑

r

Dr = d+ dµγµ +
1

2!
dµνγµν +

1

3!
dµνργµνρ +

1

4!
dµνρσγµνρσ , (2.25)

where d, dµ, dµν , ... are scalar coefficients.

Let us introduce

γ5 ≡ γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ0γ1γ2γ3 , γ25 = −1, (2.26)

which is the unit element of 4-dimensional volume and is called a pseu-
doscalar. Using the relations

γµνρσ = γ5εµνρσ , (2.27)

γµνρ = γµνρσγ
ρ , (2.28)

where εµνρσ is the totally antisymmetric tensor and introducing the new
coefficients

S ≡ d , V µ ≡ dµ , Tµν ≡ 1
2d

µν ,

Cσ ≡
1

3!
dµνρεµνρσ , P ≡ 1

4!
dµνρσεµνρσ , (2.29)

we can rewrite D of eq. (2.25) as the sum of scalar, vector, bivector, pseu-
dovector and pseudoscalar parts:

D = S + V µγµ + Tµνγµν + Cµγ5γµ + Pγ5. (2.30)
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POLYVECTOR FIELDS

A polyvector may depend on spacetime points. Let A = A(x) be an
r-vector field. Then one can define the gradient operator according to

∂ = γµ∂µ , (2.31)

where ∂µ is the usual partial derivative. The gradient operator ∂ can act
on any r-vector field. Using (2.17) we have

∂A = ∂ ·A+ ∂ ∧A. (2.32)

Example. Let A = a = aνγ
ν be a 1-vector field. Then

∂a = γµ∂µ(aνγ
ν) = γµ · γν ∂µaν + γµ ∧ γν∂µaν

= ∂µa
µ + 1

2(∂µaν − ∂νaµ)γµ ∧ γν . (2.33)

The simple expression ∂a thus contains a scalar and a bivector part, the
former being the usual divergence and the latter the usual curl of a vector
field.

Maxwell equations. We shall now demonstrate by a concrete physical
example the usefulness of Clifford algebra. Let us consider the electromag-
netic field which, in the language of Clifford algebra, is a bivector field F .
The source of the field is the electromagnetic current j which is a 1-vector
field. Maxwell’s equations read

∂F = −4πj. (2.34)

The grade of the gradient operator ∂ is 1. Therefore we can use the relation
(2.32) and we find that eq. (2.34) becomes

∂ · F + ∂ ∧ F = −4πj, (2.35)

which is equivalent to

∂ · F = −4πj, (2.36)

∂ ∧ F = 0, (2.37)

since the first term on the left of eq. (2.35) is a vector and the second term
is a bivector. This results from the general relation (2.35 ). It can also be
explicitly demonstrated. Expanding

F = 1
2F

µν γµ ∧ γν , (2.38)
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j = jµγµ , (2.39)

we have

∂ · F = γα∂α · (12Fµνγµ ∧ γν) = 1
2γ

α · (γµ ∧ γν)∂αFµν

= 1
2 ((γ

α · γµ)γν − (γα · γν)γµ) ∂αFµν = ∂µF
µν γν , (2.40)

∂ ∧ F = 1
2γ

α ∧ γµ ∧ γν ∂αFµν = 1
2ε
α
µνρ ∂αF

µνγ5γ
ρ , (2.41)

where we have used (2.19) and eqs.(2.27), (2.28). From the above consider-
ations it then follows that the compact equation (2.34) is equivalent to the
usual tensor form of Maxwell equations

∂νF
µν = −4πjµ , (2.42)

εαµνρ ∂αF
µν = 0. (2.43)

Applying the gradient operator ∂ to the left and to the right side of
eq. (2.34) we have

∂2F = −4π ∂j. (2.44)

Since ∂2 = ∂ · ∂ + ∂ ∧ ∂ = ∂ · ∂ is a scalar operator, ∂2F is a bivector. The
right hand side of eq. (2.44) gives

∂j = ∂ · j + ∂ ∧ j. (2.45)

Equating the terms of the same grade on the left and the right hand side
of eq. (2.44) we obtain

∂2F = −4π ∂ ∧ j, (2.46)

∂ · j = 0. (2.47)

The last equation expresses the conservation of the electromagnetic current.

Motion of a charged particle. In this example we wish to go a step
forward. Our aim is not only to describe how a charged particle moves
in an electromagnetic field, but also include a particle’ s(classical) spin.
Therefore, following Pezzaglia [23], we define the momentum polyvector P
as the vector momentum p plus the bivector spin angular momentum S,

P = p+ S, (2.48)
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or in components
P = pµγµ +

1
2S

µν γµ ∧ γν . (2.49)

We also assume that the condition pµS
µν = 0 is satisfied. The latter con-

dition ensures the spin to be a simple bivector, which is purely space-like
in the rest frame of the particle. The polyvector equation of motion is

Ṗ ≡ dP

dτ
=

e

2m
[P, F ], (2.50)

where [P, F ] ≡ PF − FP . The vector and bivector parts of eq. (2.50) are

ṗµ =
e

m
Fµνp

ν , (2.51)

Ṡµν =
e

2m
(FµαS

αν − F ναSαµ). (2.52)

These are just the equations of motion for linear momentum and spin,
respectively.

2.3. PHYSICAL QUANTITIES AS
POLYVECTORS

The compact equations at the end of the last section suggest a general-
ization that every physical quantity is a polyvector. We shall explore such
an assumption and see how far we can come.

In 4-dimensional spacetime the momentum polyvector is

P = µ+ pµeµ + Sµνeµeν + πµe5eµ +me5 , (2.53)

and the velocity polyvector is

Ẋ = σ̇ + ẋµeµ + α̇µνeµeν + ξ̇µe5eµ + ṡe5 , (2.54)

where eµ are four basis vectors satisfying

eµ · eν = ηµν , (2.55)

and e5 ≡ e0e1e2e3 is the pseudoscalar. For the purposes which will become
clear later we now use the symbols eµ, e5 instead of γµ and γ5.

We associate with each particle the velocity polyvector Ẋ and its con-
jugate momentum polyvector P . These quantities are generalizations of
the point particle 4-velocity ẋ and its conjugate momentum p. Besides a
vector part we now include the scalar part σ̇, the bivector part α̇µνeµeν , the

pseudovector part ξ̇µe5eµ and the pseudoscalar part ṡe5 into the definition
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of the particle’s velocity, and analogously for the particle’s momentum. We
would now like to derive the equations of motion which will tell us how
those quantities depend on the evolution parameter τ . For simplicity we
consider a free particle.

Let the action be a straightforward generalization of the first order or
phase space action (1.11) of the usual constrained point particle relativistic
theory:

I[X,P, λ] =
1

2

∫
dτ
(
PẊ + ẊP − λ(P 2 −K2)

)
, (2.56)

where λ is a scalar Lagrange multiplier and K a polyvector constant4:

K2 = κ2 + kµeµ +Kµνeµeν +Kµe5eµ + k2e5. (2.57)

It is a generalization of particle’s mass squared. In the usual, unconstrained,
theory, mass squared was a scalar constant, but here we admit that, in
principle, mass squared is a polyvector. Let us now insert the explicit
expressions (2.53),(2.54) and (2.57) into the Lagrangian

L = 1
2

(
PẊ + ẊP − λ(P 2 −K2)

)
=

4∑

r=0

〈L〉r , (2.58)

and evaluate the corresponding multivector parts 〈L〉r. Using

eµ ∧ eν ∧ eρ ∧ eσ = e5 εµνρσ , (2.59)

eµ ∧ eν ∧ eρ = (eµ ∧ eν ∧ eρ ∧ eσ)eσ = e5 εµνρσe
σ , (2.60)

eµ ∧ eν = −1
2(eµ ∧ eν ∧ eρ ∧ eσ)(eρ ∧ eσ) = −1

2e5 εµνρσe
ρ ∧ eσ , (2.61)

we obtain

〈L〉0 = µσ̇−mṡ+pµẋµ+πµξ̇µ+Sµνα̇ρσηµσηνρ

− λ
2
(µ2 + pµpµ + πµπµ −m2 − 2SµνSµν − κ2) , (2.62)

〈L〉1 =
[
σ̇pσ + µẋσ − (ξ̇ρSµν + πρα̇µν)εµνρσ

]
eσ

−λ(µpσ − Sµνπρεµνρσ − 1
2kσ)e

σ , (2.63)

4The scalar part is not restricted to positive values, but for later convenience we write it as κ2,
on the understanding that κ2 can be positive, negative or zero.
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〈L〉2 =[
1
2(π

µẋν − pµξ̇ν + ṡSµν +mα̇µν)εµνρσ + σ̇Sρσ + µα̇ρσ + 2Sρνα̇
ν
σ

]
eρ ∧ eσ

−λ
2
[(πµpν +mSµν)εµνρσ + 2µSρσ −Kρσ] e

ρ ∧ eσ , (2.64)

〈L〉3 =
[
σ̇πσ+µξ̇σ+(Sµν ẋρ+α̇µνpρ)εµνρ

σ−λ(µπσ+Sµνpρεµνρσ− 1
2κσ)

]
e5e

σ ,

(2.65)

〈L〉4 =
[
mσ̇ + µṡ− 1

2 S
µν α̇ρσεµνρσ −

λ

2
(2µm+ SµνSρσεµνρσ − k2)

]
e5.

(2.66)

The equations of motion are obtained for each pure grade multivector
〈L〉r separately. That is, when varying the polyvector action I, we vary
each of its r-vector parts separately. From the scalar part 〈L〉0 we obtain

δµ : σ̇ − λµ = 0, (2.67)

δm : −ṡ+ λm = 0, (2.68)

δs : ṁ = 0 (2.69)

δσ : µ̇ = 0, (2.70)

δpµ : ẋµ − λpµ = 0, (2.71)

δπµ : ξ̇µ − λπµ = 0, (2.72)

δxµ : ṗµ = 0 (2.73)

δξµ : π̇µ = 0, (2.74)

δαµν : Ṡµν = 0, (2.75)

δSµν : α̇µν − λSµν = 0. (2.76)

From the r-vector parts 〈L〉r for r = 1, 2, 3, 4 we obtain the same set
of equations (2.67)–(2.76). Each individual equation results from varying a
different variable in 〈L〉0, 〈L〉1, etc.. Thus, for instance, the µ-equation of
motion (2.67) from 〈L〉0 is the same as the pµ equation from 〈L〉1 and the
same as the m-equation from 〈L〉4, and similarly for all the other equations
(2.67)–(2.76). Thus, as far as the variables µ, m, s, σ, pµ, πµ, Sµν , ξ

µν and
αµν are considered, the higher grade parts 〈L〉r of the Lagrangian L contains
the same information about the equations of motion. The difference occurs
if we consider the Lagrange multiplier λ. Then every r-vector part of L
gives a different equation of motion:

∂〈L〉0
∂λ

= 0 : µ2 + pµpµ + πµπµ −m2 − 2SµνSµν − κ2 = 0,(2.77)



Point particles and Clifford algebra 65

∂〈L〉1
∂λ

= 0 : µπσ − Sµνπρεµνρσ − 1
2kσ = 0, (2.78)

∂〈L〉2
∂λ

= 0 : (πµπν +mSµν)εµνρσ + 2µSρσ −Kρσ = 0, (2.79)

∂〈L〉3
∂λ

= 0 : µπσ + Sµνpρεµνρσ +
1
2κσ = 0, (2.80)

∂〈L〉4
∂λ

= 0 : 2µm+ SµνSρσεµνρσ − k2 = 0. (2.81)

The above equations represent constraints among the dynamical variables.
Since our Lagrangian is not a scalar but a polyvector, we obtain more than
one constraint.

Let us rewrite eqs.(2.80),(2.78) in the forms

πσ −
κσ
2µ

= − 1

µ
Sµνpρεµνρσ , (2.82)

pσ −
kσ
2µ

=
1

µ
Sµνπρεµνρσ. (2.83)

We see from (2.82) that the vector momentum pµ and its pseudovector
partner πµ are related in such a way that πµ − κµ/2µ behaves as the well
known Pauli-Lubanski spin pseudo vector. A similar relation (2.83) holds
if we interchange pµ and πµ.

Squaring relations (2.82), (2.83) we find

(πσ −
κσ
2µ

)(πσ − κσ

2µ
) = − 2

µ2
pσp

σ SµνS
µν +

4

µ2
pµp

νSµσSνσ , (2.84)

(pσ −
kσ
2µ

)(pσ − kσ

2µ
) = − 2

µ2
πσπ

σ SµνS
µν +

4

µ2
πµπ

νSµσSνσ. (2.85)

From (2.82), (2.83) we also have

(
πσ −

κσ
2µ

)
pσ = 0 ,

(
pσ −

kσ
2µ

)
πσ = 0. (2.86)

Additional interesting equations which follow from (2.82), (2.83) are

pρpρ

(
1 +

2

µ2
SµνS

µν
)
− 4

µ2
pµp

νSµσSνσ = − κρκ
ρ

4µ2
+

1

2µ
(pρk

ρ + πρκ
ρ),

(2.87)

πρπρ

(
1 +

2

µ2
SµνS

µν
)
− 4

µ2
πµπ

νSµσSνσ = − kρk
ρ

4µ2
+

1

2µ
(pρk

ρ + πρκ
ρ).

(2.88)
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Contracting (2.82), (2.83) by εα1α2α3σ we can express Sµν in terms of pρ

and πσ

Sµν =
µ

2pαpα
εµνρσpρ

(
πσ −

κσ
2µ

)
= − µ

2παπα
εµνρσπρ

(
pσ −

kσ
2µ

)
, (2.89)

provided that we assume the following extra condition:

Sµνpν = 0 , Sµνπν = 0. (2.90)

Then for positive pσpσ it follows from (2.84) that (πσ−κσ/2µ)2 is negative,
i.e., πσ − κσ/2µ are components of a space-like (pseudo-) vector. Similarly,
it follows from (2.85) that when πσπσ is negative, (pσ−kσ/2µ)2 is positive,
so that pσ−kσ/2µ is a time-like vector. Altogether we thus have that pσ, kσ
are time-like and πσ, κσ are space-like. Inserting (2.89) into the remaining
constraint (2.81) and taking into account the condition (2.90) we obtain

2mµ− k2 = 0. (2.91)

The polyvector action (2.56) is thus shown to represent a very interesting
classical dynamical system with spin. The interactions could be included
by generalizing the minimal coupling prescription. Gravitational interaction
is included by generalizing (2.55) to

eµ · eν = gµν , (2.92)

where gµν(x) is the spacetime metric tensor. A gauge interaction is included
by introducing a polyvector gauge field A, a polyvector coupling constant
G, and assume an action of the kind

I[X,P, λ] = 1
2

∫
dτ
[
PẊ + ẊP − λ

(
(P −G ? A)2 −K2

)]
, (2.93)

where ‘?’ means the scalar product between Clifford numbers, so that
G ? A ≡ 〈GA〉0. The polyvector equations of motion can be elegantly
obtained by using the Hestenes formalism for multivector derivatives. We
shall not go into details here, but merely sketch a plausible result,

Π̇ = λ[G ? ∂XA,P ] , Π ≡ P −G ? A , (2.94)

which is a generalized Lorentz force equation of motion, a more particular
case of which is given in (2.50).

After this short digression let us return to our free particle case. One
question immediately arises, namely, what is the physical meaning of the
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polyvector mass squared K2. Literally this means that a particle is char-
acterized not only by a scalar and/or a pseudoscalar mass squared, but
also by a vector, bivector and pseudovector mass squared. To a particle
are thus associated a constant vector, 2-vector, and 3-vector which point
into fixed directions in spacetime, regardless of the direction of particle’s
motion. For a given particle the Lorentz symmetry is thus broken, since
there exists a preferred direction in spacetime. This cannot be true at the
fundamental level. Therefore the occurrence of the polyvector K2 in the
action must be a result of a more fundamental dynamical principle, pre-
sumably an action in a higher-dimensional spacetime without such a fixed
term K2. It is well known that the scalar mass term in 4-dimensions can be
considered as coming from a massless action in 5 or more dimensions. Sim-
ilarly, also the 1-vector, 2-vector, and 3-vector terms of K2 can come from
a higher-dimensional action without a K2-term. Thus in 5-dimensions:

(i) the scalar constraint will contain the term pApA = pµpµ+p
5p5, and

the constant −p5p5 takes the role of the scalar mass term in 4-dimensions;
(ii) the vector constraint will contain a term like PABCS

ABeC , A,B =
0, 1, 2, 3, 5, containing the term PµναS

µνeα (which, since Pµνα = εµναβπ
β ,

corresponds to the term Sµνπρεµνρσe
σ) plus an extra term P5ναS

5αeα which
corresponds to the term kαeα.

In a similar manner we can generate the 2-vector term Kµν and the
3-vector term κσ from 5-dimensions.

The polyvector mass term K2 in our 4-dimensional action (2.93) is arbi-
trary in principle. Let us find out what happens if we set K2 = 0. Then,
in the presence of the condition (2.90), eqs. (2.87) or (2.88) imply

SµνS
µν = −µ

2

2
, (2.95)

that is SµνS
µν < 0. On the other hand SµνS

µν in the presence of the
condition (2.90) can only be positive (or zero), as can be straightforwardly
verified. In 4-dimensional spacetime SµνS

µν were to be negative only if in
the particle’s rest frame the spin components S0r were different from zero
which would be the case if (2.90) would not hold.

Let us assume that K2 = 0 and that condition (2.90) does hold. Then
the constraints (2.78)–(2.81) have a solution5

Sµν = 0 , πµ = 0 , µ = 0. (2.96)

5This holds even if we keep κ2 different from zero, but take vanishing values for k2, κµ, kµ and
Kµν .
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The only remaining constraint is thus

pµpµ −m2 = 0, (2.97)

and the polyvector action (2.56) is simply

I[X,P, λ] = I[s,m, xµ, pµ, λ]

=

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2)

]
, (2.98)

in which the mass m is a dynamical variable conjugate to s. In the action
(2.98) mass is thus just a pseudoscalar component of the polymomentum

P = pµeµ +me5 , (2.99)

and ṡ is a pseudoscalar component of the velocity polyvector

Ẋ = ẋµeµ + ṡe5. (2.100)

Other components of the polyvectors Ẋ and P (such as Sµν , πµ, µ), when
K2 = 0 (or more weakly, when K2 = κ2), are automatically eliminated by
the constraints (2.77)–(2.81).

From a certain point of view this is very good, since our analysis of
the polyvector action (2.56) has driven us close to the conventional point
particle theory, with the exception that mass is now a dynamical variable.
This reminds us of the Stueckelberg point particle theory [2]–[15] in which
mass is a constant of motion. This will be discussed in the next section. We
have here demonstrated in a very elegant and natural way that the Clifford
algebra generalization of the classical point particle in four dimensions tells
us that a fixed mass term in the action cannot be considered as fundamental.
This is not so obvious for the scalar (or pseudoscalar) part of the polyvector
mass squared term K2, but becomes dramatically obvious for the 1-vector,
2-vector and 4-vector parts, because they imply a preferred direction in
spacetime, and such a preferred direction cannot be fundamental if the
theory is to be Lorentz covariant.

This is a very important point and I would like to rephrase it. We start
with the well known relativistic constrained action

I[xµ, pµ, λ] =

∫
dτ

(
pµẋ

µ − λ

2
(p2 − κ2)

)
. (2.101)

Faced with the existence of the geometric calculus based on Clifford algebra,
it is natural to generalize this action to polyvectors. Concerning the fixed
mass constant κ2 it is natural to replace it by a fixed polyvector or to
discard it. If we discard it we find that mass is nevertheless present, because
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now momentum is a polyvector and as such it contains a pseudoscalar part
me5. If we keep the fixed mass term then we must also keep, in principle, its
higher grade parts, but this is in conflict with Lorentz covariance. Therefore
the fixed mass term in the action is not fundamental but comes, for instance,
from higher dimensions. Since, without the K2 term, in the presence of
the condition Sµνpν = 0 we cannot have classical spin in four dimensions
(eq. (2.95) is inconsistent), this points to the existence of higher dimensions.
Spacetime must have more than four dimensions, where we expect that the
constraint P 2 = 0 (without a fixed polyvector mass squared term K) allows
for nonvanishing classical spin.

The “fundamental” classical action is thus a polyvector action in higher
dimensions without a fixed mass term. Interactions are associated with the
metric of VN . Reduction to four dimensions gives us gravity plus gauge
interactions, such as the electromagnetic and Yang–Mills interactions, and
also the classical spin which is associated with the bivector dynamical de-
grees of freedom sitting on the particle, for instance the particle’s finite
extension, magnetic moment, and similar.

There is a very well known problem with Kaluza–Klein theory, since in
four dimensions a charged particle’s mass cannot be smaller that the Planck
mass. Namely, when reducing from five to four dimensions mass is given
by pµpµ = m̂2 + p̂25, where m̂ is the 5-dimensional mass. Since p̂5 has the
role of electric charge e, the latter relation is problematic for the electron:
in the units in which h̄ = c = G = 1 the charge e is of the order of the
Planck mass, so pµpµ is also of the same order of magnitude. There is no
generally accepted mechanism for solving such a problem. In the polyvector
generalization of the theory, the scalar constraint is (2.77) and in five or
more dimensions it assumes an even more complicated form. The terms
in the constraint have different signs, and the 4-dimensional mass pµpµ is
not necessarily of the order of the Planck mass: there is a lot of room to
“make” it small.

All those considerations clearly illustrate why the polyvector generaliza-
tion of the point particle theory is of great physical interest.

2.4. THE UNCONSTRAINED ACTION
FROM THE POLYVECTOR ACTION

FREE PARTICLE

In the previous section we have found that when the polyvector fixed
mass squared K2 is zero then a possible solution of the equations of motion
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satisfies (2.96) and the generic action (2.56) simplifies to

I[s,m, xµ, pµ, λ] =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2)

]
. (2.102)

At this point let us observe that a similar action, with a scalar variable
s, has been considered by DeWitt [25] and Rovelli [26]. They associate the
variable s with the clock carried by the particle. We shall say more about
that in Sec. 6.2.

We are now going to show that the latter action is equivalent to the
Stueckelberg action discussed in Chapter 1.

The equations of motion resulting from (2.102) are

δs : ṁ = 0, (2.103)

δm : ṡ− λm = 0, (2.104)

δxµ : ṗµ = 0, (2.105)

δpµ : ẋµ − λpµ =, 0 (2.106)

δλ : pµpµ −m2 = 0. (2.107)

(2.108)

We see that in this dynamical system mass m is one of the dynamical
variables; it is canonically conjugate to the variable s. From the equations
of motion we easily read out that s is the proper time. Namely, from (2.104),
(2.106) and (2.107) we have

pµ =
ẋµ

λ
= m

dxµ

ds
, (2.109)

ṡ2 = λ2m2 = ẋ2 , i.e ds2 = dxµdxµ. (2.110)

Using eq. (2.104) we find that

−mṡ+ λ

2
κ2 = −mṡ

2
= − 1

2

d(ms)

dτ
. (2.111)

The action (2.102) then becomes

I =

∫
dτ

(
1

2

d(ms)

dτ
+ pµẋ

µ − λ

2
pµpµ

)
, (2.112)

where λ should be no more considered as a quantity to be varied, but it is
now fixed: λ = Λ(τ). The total derivative in (2.112) can be omitted, and
the action is simply

I[xµ, pµ] =

∫
dτ(pµẋ

µ − Λ

2
pµpµ). (2.113)
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This is just the Stueckelberg action (1.36) with κ2 = 0. The equations of
motion derived from (2.113) are

ẋµ − Λpµ = 0, (2.114)

ṗµ = 0. (2.115)

From (2.115) it follows that pµp
µ is a constant of motion. Denoting the

latter constant of motion as m and using (2.114) we obtain that momentum
can be written as

pµ = m
ẋµ√
ẋν ẋν

= m
dxµ

ds
, ds = dxµdxµ , (2.116)

which is the same as in eq. (2.109). The equations of motion for xµ and pµ
derived from the Stueckelberg action (2.99) are the same as the equations
of motion derived from the action (2.102). A generic Clifford algebra action
(2.56) thus leads directly to the Stueckleberg action.

The above analysis can be easily repeated for a more general case where
the scalar constant κ2 is different from zero, so that instead of (2.98) or
(2.102) we have

I[s,m, xµ, pµ, λ] =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(pµpµ −m2 − κ2)

]
. (2.117)

Then instead of (2.113) we obtain

I[xµ, pµ] =

∫
dτ

(
pµẋ

µ − Λ

2
(pµpµ − κ2)

)
. (2.118)

The corresponding Hamiltonian is

H =
Λ

2
(pµpµ − κ2), (2.119)

and in the quantized theory the Schrödinger equation reads

i
∂ψ

∂τ
=

Λ

2
(pµpµ − κ2)ψ. (2.120)

Alternatively, in the action (2.102) or (2.117) we can first eliminate λ by
the equation of motion (2.104). So we obtain

I[s,m, xµ, pµ] =

∫
dτ

[
−mṡ

2
+ pµẋ

µ − ṡ

2m
(pµpµ − κ2)

]
. (2.121)
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The equations of motion are

δs : −ṁ
2
− d

dτ

(
pµpµ − κ2

2m

)
= 0 ⇒ ṁ = 0, (2.122)

δm : −1

2
+

1

2m2
(pµpµ − κ2) = 0 ⇒ pµpµ −m2 − κ2 = 0, (2.123)

δxµ : ṗµ = 0, (2.124)

δpµ : ẋµ − ṡ

m
pµ = 0 ⇒ pµ =

mẋµ

ṡ
= m

dxµ

ds
. (2.125)

Then we can choose a “solution” for s(τ), write ṡ/m = Λ, and omit the first
term, since in view of (2.122) it is a total derivative. So again we obtain
the Stueckelberg action (2.118).

The action that we started from, e.g., (2.121) or (2.102) has a constraint
on the variables xµ, s or on the pµ, m, but the action (2.118) which we
arrived at contains only the variables xµ, pµ and has no constraint.

In the action (2.121) we can use the relation ṡ = ds/dτ and write it as

I[m, pµ, x
µ] =

∫
ds

[
−m

2
+ pµ

dxµ

ds
− 1

2m
(pµpµ − κ2)

]
. (2.126)

The evolution parameter is now s, and again variation with respect to m
gives the constraint pµpµ −m2 − κ2 = 0. Eliminating m from the action
(2.126) by the the latter constraint, written in the form

m =
√
pµpµ − κ2 (2.127)

we obtain the unconstrained action

I[xµ, pµ] =

∫
ds

(
pµ

dxµ

ds
−
√
pµpµ − κ2

)
, (2.128)

which is also equivalent to the original action (2.117). The Hamiltonian
corresponding to (2.128) is

H = pµ
dxµ

ds
− L =

√
pµpµ − κ2 . (2.129)

Such a Hamiltonian is not very practical for quantization, since the Schrödin-
ger equation contains the square root of operators

i
∂ψ

∂s
=
√
pµpµ − κ2 ψ. (2.130)
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In order to perform the quantization properly one has to start directly from
the original polyvector action (2.56). This will be discussed in Sec. 2.5.

However, in the approximation6 pµp
µ ¿ −κ2 eq. (2.128) becomes

I[xµ, pµ] ≈
∫

ds

(
pµ

dxµ

ds
− 1

2
√
−κ2

pµpµ −
√
−κ2

)
(2.131)

which is again the Stueckelberg action, but with 1/
√
−κ2 = Λ. It is very

interesting that on the one hand the Stueckelberg action arises exactly from
the polyvector action, and on the other hand it arises as an approximation.

PARTICLE IN A FIXED BACKGROUND FIELD
Let us now consider the action (2.117) and modify it so that it will remain

covariant under the transformation

L→ L′ = L+
dφ

dτ
, (2.132)

where
φ = φ(s, xµ) (2.133)

For this purpose we have to introduce the gauge fields Aµ and V which
transform according to

eA′µ = eAµ + ∂µφ, (2.134)

eV ′ = eV +
∂φ

∂s
. (2.135)

The covariant action is then

I =

∫
dτ

[
−mṡ+ pµẋ

µ − λ

2
(πµπ

µ − µ2 − κ2)
]
, (2.136)

where we have introduced the kinetic momentum

πµ = pµ − eAµ (2.137)

and its pseudoscalar counterpart

µ = m+ eV. (2.138)

The symbol ‘µ’ here should not be confused with the same symbol used in
Sec. 2.3 for a completely different quantity.

6Remember that κ2 comes from the scalar part of the polyvector mass squared term (2.57) and
that it was a matter of our convention of writing it in the form κ2. We could have used another
symbol without square, e.g., α, and then it would be manifestly clear that α can be negative.
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From (2.136) we derive the following equations of motion:

δxµ : π̇µ = eFµν ẋ
ν − ṡe

(
∂Aµ
∂s
− ∂µV

)
, (2.139)

δs : µ̇ = −ẋνe
(
∂Aν
∂s
− ∂νV

)
, (2.140)

δpµ : λπµ = ẋµ , (2.141)

(2.142)

δm : ṡ = λµ. (2.143)

These equations of motion are the same as those from the Stueckelberg
action (2.147).

From (2.140) and (2.143) we have

−mṡ+ λ

2
µ2 = −1

2

d

dτ
(µs) + eṡV − 1

2
eẋν

(
∂Aν
∂s
− ∂νV

)
s. (2.144)

Inserting the latter expression into the action (2.136) we obtain

I =

∫
dτ

[
−1

2

d(µs)

dτ
+ pµẋ

µ − λ

2
(πµπµ − κ2) + eṡV

−1

2
eẋν

(
∂Aν
∂s
− ∂νV

)
s

]
, (2.145)

which is analogous to eq. (2.112). However, in general µ̇ is now not zero,
and as a result we cannot separate the variables m, s into a total derivative
term as we did in (2.117).

Let us consider a particular case when the background fields Aµ, V satisfy

∂Aµ
∂s

= 0 , ∂µV = 0 . (2.146)

Then the last term in (2.145) vanishes; in addition we may set V = 0.
Omitting the total derivative term, eq. (2.145) becomes

I[xµ, pµ] =

∫
ds

[
pµ

dxµ

ds
− Λ

2
(πµπµ − κ2)

]
, (2.147)

where Λ = λ/ṡ is now fixed. This is precisely the Stueckelberg action
in the presence of a fixed electromagnetic field, and s corresponds to the
Stueckelberg Lorentz invariant parameter τ .

However, when we gauged the free particle Stueckelberg action we ob-
tained in general a τ -dependent gauge field Aµ and also a scalar field V .
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We shall now see that such a general gauged Stueckelberg action is an ap-
proximation to the action (2.136). For this purpose we shall repeat the
procedure of eqs. (2.121)–(2.128). Eliminating λ from the action (2.136) by
using the equation of motion (2.143) we obtain an equivalent action

I[xµ, pµ, s,m] =

∫
dτ

[
−mṡ+ pµẋ

µ − ṡ

2µ
(πµπµ − µ2 − κ2)

]
(2.148)

whose variation with respect to m again gives the constraint πµπµ − µ2 −
κ2 = 0. From (2.148), using (2.138) we have

I =

∫
dτ

[
pµẋ

µ − ṡ

2µ
(πµπµ − κ2) + eṡV − µṡ

2

]

=

∫
dτ
[
pµẋ

µ − ṡ(πµπµ − κ2)1/2 + eṡV
]

≈
∫

dτ

[
pµẋ

µ − ṡ

2
√
−κ2

πµπµ − ṡ
√
−κ2 + eṡV

]
. (2.149)

Thus

I[xµ, pµ] =

∫
ds

[
pµ

dxµ

ds
− 1

2
√
−κ2

πµπµ −
√
−κ2 + eV

]
. (2.150)

The last step in eq. (2.149) is valid under the approximation πµπµ ¿ −κ2,
where we assume −κ2 > 0. In (2.150) we indeed obtain an action which is
equivalent to the gauged Stueckelberg action (2.147) if we make the corre-
spondence 1

√
−κ2 → Λ. The constant terms −

√
−κ2 in (2.150) and Λκ2/2

in eq. (2.147) have no influence on the equations of motion.
We have thus found a very interesting relation between the Clifford al-

gebra polyvector action and the Stueckelberg action in the presence of an
electromagnetic and pseudoscalar field. If the electromagnetic field Aµ does
not depend on the pseudoscalar parameter s and if there is no force owed to
the pseudoscalar field V , then the kinetic momentum squared πµπµ is a con-
stant of motion, and the gauged Clifford algebra action (2.136) is exactly
equivalent to the Stueckelberg action. In the presence of a pseudoscalar
force, i.e., when ∂µV 6= 0 and/or when ∂Aµ/∂s 6= 0, the action (2.136)
is approximately equivalent to the gauged Stueckelberg action (2.147) if
the kinetic momentum squared πµπµ is much smaller than the scalar mass
constant squared −κ2.

2.5. QUANTIZATION OF THE
POLYVECTOR ACTION

We have assumed that a point particle’s classical motion is governed by
the polyvector action (2.56). Variation of this action with respect to λ gives
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the polyvector constraint
P 2 −K2 = 0. (2.151)

In the quantized theory the position and momentum polyvectors X =
XJeJ and P = P JeJ , where eJ = (1, eµ, eµeν , e5eµ, e5) , µ < ν, become the
operators

X̂ = X̂JeJ , P̂ = P̂ JeJ ; , (2.152)

satisfying
[X̂J , P̂K ] = iδJK . (2.153)

Using the explicit expressions like (2.53),(2.54) the above equations imply

[σ̂, µ̂] = i , [x̂µ, p̂ν ] = iδµν , [α̂µν , Ŝα,β ] = iδµναβ , (2.154)

[ξ̂µ, π̂ν ] = iδµν , [ŝ, m̂] = i. (2.155)

In a particular representation in which X̂J are diagonal, the momentum
polyvector operator is represented by the multivector derivative (see Sec.
6.1).

P̂J = −i ∂

∂XJ
(2.156)

Explicitly, the later relation means

m̂ = −i ∂
∂σ

, p̂µ = −i ∂

∂xµ
, Ŝµν = −i ∂

∂αµν
, π̂µ = −i ∂

∂ξµ
, m̂ = −i ∂

∂s
.

(2.157)

Let us assume that a quantum state can be represented by a polyvector-
valued wave function Φ(X) of the position polyvector X. A possible phys-
ical state is a solution to the equation

(P̂ 2 −K2)Φ = 0, (2.158)

which replaces the classical constraint (2.151).
When K2 = κ2 = 0 eq. (2.158) becomes

P̂ 2Φ = 0. (2.159)

Amongst the set of functions Φ(X) there are some such that satisfy

P̂Φ = 0. (2.160)



Point particles and Clifford algebra 77

Let us now consider a special case where Φ has definite values of the
operators µ̂, Ŝµν , π̂µ:

µ̂Φ = 0 , ŜµνΦ = 0 , π̂µΦ = 0 (2.161)

Then

P̂Φ = (p̂µeµ + m̂e5)Φ = 0. (2.162)

or

(p̂µγµ − m̂)Φ = 0, (2.163)

where

γµ ≡ e5eµ , γ5 = γ0γ1γ2γ3 = e0e1e2e3 = e5. (2.164)

When Φ is an eigenstate of m̂ with definite value m, i.e., when m̂φ = mΦ,
then eq. (2.163) becomes the familiar Dirac equation

(p̂µγ
µ −m)Φ = 0. (2.165)

A polyvector wave function which satisfies eq. (2.165) is a spinor. We
have arrived at the very interesting result that spinors can be represented
by particular polyvector wave functions.

3-dimensional case

To illustrate this let us consider the 3-dimensional space V3. Basis vectors
are σ1, σ2, σ3 and they satisfy the Pauli algebra

σi · σj ≡ 1
2(σiσj + σjσi) = δij , i, j = 1, 2, 3. (2.166)

The unit pseudoscalar

σ1σ2σ3 ≡ I (2.167)

commutes with all elements of the Pauli algebra and its square is I2 = −1.
It behaves as the ordinary imaginary unit i. Therefore, in 3-space, we may
identify the imaginary unit i with the unit pseudoscalar I.

An arbitrary polyvector in V3 can be written in the form

Φ = α0 + αiσi + iβiσi + iβ = Φ0 +Φiσi , (2.168)

where Φ0, Φi are formally complex numbers.
We can decompose [22]:

Φ = Φ1
2(1 + σ3) + Φ1

2(1− σ3) = Φ+ +Φ− , (2.169)
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where Φ ∈ I+ and Φ− ∈ I− are independent minimal left ideals (see Box
3.2).

Box 3.2: Definition of ideal

A left ideal IL in an algebra C is a set of elements such that if a ∈ IL
and c ∈ C, then ca ∈ IL. If a ∈ IL, b ∈ IL, then (a + b) ∈ IL. A
right ideal IR is defined similarly except that ac ∈ IR. A left (right)
minimal ideal is a left (right) ideal which contains no other ideals but
itself and the null ideal.

A basis in I+ is given by two polyvectors

u1 =
1
2(1 + σ3) , u2 = (1− σ3)σ1 , (2.170)

which satisfy

σ3u1 = u1 , σ1u1 = u2 , σ2u1 = iu2 ,

σ3u2 = −u2 , σ1u2 = u1 , σ2u2 = −iu1. (2.171)

These are precisely the well known relations for basis spinors. Thus we
have arrived at the very profound result that the polyvectors u1, u2 behave
as basis spinors.

Similarly, a basis in I+ is given by

v1 =
1
2(1 + σ3)σ1 , v2 =

1
2(1− σ3) (2.172)

and satisfies

σ3v1 = v1 , σ1v1 = v2 , σ2v1 = iv2 ,

σ3v2 = −v2 , σ1v2 = v1 , σ2v2 = −iv1. (2.173)

A polyvector Φ can be written in spinor basis as

Φ = Φ1
+u1 +Φ2

+u2 +Φ1
−v1 +Φ2

−v2 , (2.174)

where

Φ1
+ = Φ0 + Φ3 , Φ1

− = Φ1 − iΦ2

Φ2
+ = Φ1 + iΦ2 , Φ2

− = Φ0 − Φ3 (2.175)
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Eq. (2.174) is an alternative expansion of a polyvector. We can expand the
same polyvector Φ either according to (2.168) or according to (2.174).

Introducing the matrices

ξab =

(
u1 v1
u2 v2

)
, Φab =

(
Φ1
+ Φ1

−
Φ2
+ Φ2

−

)
(2.176)

we can write (2.174) as

Φ = Φabξab. (2.177)

Thus a polyvector can be represented as amatrix Φab. The decomposition
(2.169) then reads

Φ = Φ+ +Φ− = (Φab+ +Φab− )ξab , (2.178)

where

Φab+ =

(
Φ1
+ 0

Φ2
+ 0

)
, (2.179)

Φab− =

(
0 Φ1

−
0 Φ2

−

)
. (2.180)

From (2.177) we can directly calculate the matrix elements Φab. We only
need to introduce the new elements ξ†ab which satisfy

(ξ†
ab
ξcd)S = δacδ

b
d. (2.181)

The superscript † means Hermitian conjugation [22]. If

A = AS +AV +AB +AP (2.182)

is a Pauli number, then

A† = AS +AV −AB −AP . (2.183)

This means that the order of basis vectors σi in the expansion of A† is

reversed. Thus u†1 = u1, but u†2 = 1
2(1 + σ3)σ1. Since (u†1u1)S = 1

2 ,

(u†2u2)S = 1
2 , it is convenient to introduce u†

1
= 2u1 and u†

2
= 2u2 so that

(u†
1
u1)S = 1, (u†

2
u2)S = 1. If we define similar relations for v1, v2 then we

obtain (2.181).
From (2.177) and (2.181) we have

Φab = (ξ†
ab
Φ)I . (2.184)
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Here the subscript I means invariant part, i.e., scalar plus pseudoscalar
part (remember that pseudoscalar unit has here the role of imaginary unit
and that Φab are thus complex numbers).

The relation (2.184) tells us how from an arbitrary polyvector Φ (i.e., a
Clifford number) can we obtain its matrix representation Φab.

Φ in (2.184) is an arbitrary Clifford number. In particular, Φ may be
any of the basis vectors σi.

Example Φ = σ1:

Φ11 = (ξ†
11
σ1)I = (u†

1
σ1)I = ((1 + σ3)σ1)I = 0,

Φ12 = (ξ†
12
σ1)I = (v†

1
σ1)I = ((1− σ3)σ1σ1)I = 1,

Φ21 = (ξ†
21
σ1)I = (u†

2
σ1)I = ((1 + σ3)σ1σ1)I = 1,

Φ22 = (ξ†
22
σ1)I = (v†

2
σ1)I = ((1− σ3)σ1)I = 0. (2.185)

Therefore

(σ1)
ab =

(
0 1
1 0

)
. (2.186)

Similarly we obtain from (2.184) when Φ = σ2 and Φ = σ3, respectively,
that

(σ2)
ab =

(
0 −i
i 0

)
, (σ3)

ab =

(
1 0
0 −1

)
. (2.187)

So we have obtained the matrix representation of the basis vectors σi.
Actually (2.186), (2.187) are the well known Pauli matrices.

When Φ = u1 and Φ = u2, respectively, we obtain

(u1)
ab =

(
1 0
0 0

)
, (u2)

ab =

(
0 0
1 0

)
(2.188)

which are a matrix representation of the basis spinors u1 and u2.
Similarly we find

(v1)
ab =

(
0 1
0 0

)
, (v2)

ab =

(
0 0
0 1

)
(2.189)

In general a spinor is a superposition

ψ = ψ1u1 + ψ2u2 , (2.190)

and its matrix representation is

ψ →
(
ψ1 0
ψ2 0

)
. (2.191)
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Another independent spinor is

χ = χ1v1 + χ2v2 , (2.192)

with matrix representation

χ→
(
0 χ1

0 χ2

)
. (2.193)

If we multiply a spinor ψ from the left by any element R of the Pauli
algebra we obtain another spinor

ψ′ = Rψ →
(
ψ′1 0
ψ′2 0

)
(2.194)

which is an element of the same minimal left ideal. Therefore, if only
multiplication from the left is considered, a spinor can be considered as a
column matrix

ψ →
(
ψ1

ψ2

)
. (2.195)

This is just the common representation of spinors. But it is not general
enough to be valid for all the interesting situations which occur in the
Clifford algebra.

We have thus arrived at a very important finding. Spinors are just par-
ticular Clifford numbers: they belong to a left or right minimal ideal. For
instance, a generic spinor is

ψ = ψ1u1 + ψ2u2 with Φab =

(
ψ1 0
ψ2 0

)
. (2.196)

A conjugate spinor is

ψ† = ψ1∗u†1 + ψ2∗u†2 with (Φab)
∗
=

(
ψ1∗ ψ2∗

0 0

)
(2.197)

and it is an element of a minimal right ideal.

4-dimensional case

The above considerations can be generalized to 4 or more dimensions.
Thus

ψ = ψ0u0 + ψ1u1 + ψ2u2 + ψ3u3 →




ψ0 0 0 0
ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0


 (2.198)
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and

ψ† = ψ∗0u†0+ψ
∗1u†1+ψ

∗2u†2+ψ
∗3u†3 →




ψ∗0 ψ∗1 ψ∗2 ψ∗3

0 0 0 0
0 0 0 0
0 0 0 0


 , (2.199)

where u0, u1, u2, u3 are four basis spinors in spacetime, and ψ0, ψ1, ψ2, ψ3

are complex scalar coefficients.
In 3-space the pseudoscalar unit can play the role of the imaginary unit i.

This is not the case of the 4-space V4, since e5 = e0e1e2e3 does not commute
with all elements of the Clifford algebra in V4. Here the approaches taken by
different authors differ. A straightforward possibility [37] is just to use the
complex Clifford algebra with complex coefficients of expansion in terms of
multivectors. Other authors prefer to consider real Clifford algebra C and
ascribe the role of the imaginary unit i to an element of C which commutes
with all other elements of C and whose square is −1. Others [22, 36] explore
the possibility of using a non-commuting element as a substitute for the
imaginary unit. I am not going to review all those various approaches, but
I shall simply assume that the expansion coefficients are in general complex
numbers. In Sec. 7.2 I explore the possibility that such complex numbers
which occur in the quantized theory originate from the Clifford algebra
description of the (2× n)-dimensional phase space (xµ, pµ). In such a way
we still conform to the idea that complex numbers are nothing but special
Clifford numbers.

A Clifford number ψ expanded according to (2.198) is an element of a
left minimal ideal if the four elements u0, u1, u2, u3 satisfy

Cuλ = C0λu0 + C1λu1 + C2λu2 + C3λu3 (2.200)

for an arbitrary Clifford number C. General properties of uλ were investi-
gated by Teitler [37]. In particular, he found the following representation
for uλ:

u0 = 1
4(1− e0 + ie12 − ie012),

u1 = −e13u0 = 1
4(−e13 + e013 + ie23 − ie023),

u2 = −ie3u0 = 1
4(−ie3 − ie03 + e123 + e0123),

u3 = −ie1u0 = 1
4(−ie1 − ie01 − e2 − e02), (2.201)

from which we have

e0u0 = −u0 ,
e1u0 = iu3 ,

e2u0 = −u3 ,
e3u0 = iu2. (2.202)
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Using the representation (2.201) we can calculate from (2.200) the matrix
elements Cρλ of any Clifford number. For the spacetime basis vectors eµ ≡
(e0, ei), i = 1, 2, 3, we obtain

e0 =

(−1 0
0 1

)
, ei =

(
0 iσi

iσi 0

)
, (2.203)

which is one of the standard matrix representations of eµ (the Dirac matri-
ces).

If a spinor is multiplied from the left by an arbitrary Clifford number, it
remains a spinor. But if is multiplied from the right, it in general transforms
into another Clifford number which is no more a spinor. Scalars, vectors,
bivectors, etc., and spinors can be reshuffled by the elements of Clifford
algebra: scalars, vectors, etc., can be transformed into spinors, and vice
versa.

Quantum states are assumed to be represented by polyvector wave func-
tions (i.e., Clifford numbers). If the latter are pure scalars, vectors, bivec-
tors, pseudovectors, pseudovectors, and pseudoscalars they describe bosons.
If, on the contrary, wave functions are spinors, then they describe fermions.
Within Clifford algebra we have thus transformations which change bosons
into fermions! It remains to be investigated whether this kind of “super-
symmetry” is related to the well known supersymmetry.

2.6. ON THE SECOND QUANTIZATION OF
THE POLYVECTOR ACTION

If we first quantize the polyvector action (2.117) we obtain the wave
equation

(p̂µp̂µ − m̂2 − κ2)φ = 0, (2.204)

where
p̂µ = −∂/∂xµ ≡ ∂µ , m̂ = −i∂/∂s ,

and κ is a fixed constant. The latter wave equation can be derived from
the action

I[φ] = 1
2

∫
ds ddxφ(−∂µ∂µ +

∂2

∂s2
− κ2)φ

=
1

2

∫
ds ddx

(
∂µφ∂

µφ−
(
∂φ

∂s

)2

− κ2φ2
)
, (2.205)

where in the last step we have omitted the surface and the total derivative
terms.
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The canonical momentum is

π(s, x) =
∂L

∂∂φ/s
= −∂φ

∂s
(2.206)

and the Hamiltonian is

H[φ, π] =

∫
ddx

(
π
∂φ

∂s
− L

)
= 1

2

∫
ddx (−π2 − ∂µφ∂µφ+ κ2φ2). (2.207)

If instead of one field φ there are two fields φ1, φ2 we have

I[φ1, φ2] =

∫
ds ddx

[
∂µφ1∂

µφ1 −
(
∂φ1
∂s

)2

− κ2φ21

+ ∂µφ2∂
µφ2 −

(
∂φ2
∂s

)2

− κ2φ22
]
. (2.208)

The canonical momenta are

π1 =
∂L

∂∂φ1/s
= −∂φ1

∂s
, π2 =

∂L
∂∂φ2/s

= −∂φ2
∂s

(2.209)

and the Hamiltonian is

H[φ1, φ2, π1, π2] =

∫
ddx

(
π1
∂φ1
∂s

+ π2
∂φ2
∂s
− L

)

= 1
2

∫
ddx (−π21 − ∂µφ1∂µφ1 + κ2φ21

− π22 − ∂µφ2∂µφ2 + κ2φ22). (2.210)

Introducing the complex fields

φ = φ1 + iφ2 , π = π1 + iπ2

φ∗ = φ1 − iφ2 , π∗ = π1 − iπ2 (2.211)

we have

I[φ, φ∗] = 1
2

∫
ds ddx

(
∂φ∗

∂s

∂φ

∂s
− ∂µφ∗∂µφ− κ2φ∗φ

)
(2.212)

and

H[φ, φ∗, π, π∗] = 1
2

∫
ddx(−π∗π − ∂µφ∗∂µφ+ κ2φ∗φ). (2.213)

Comparing the latter Hamiltonian with the one of the Stueckelberg field
theory (1.161), we see that it is the same, except for the additional term
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−π∗π which is absent in the Stueckelberg field theory. We see also that
the theory described by (2.212) and (2.213) has the same structure as the
conventional field theory, except for the number of dimensions. In the
conventional theory we have time t and three space-like coordinates xi,
i = 1, 2, 3, while here we have s and four or more coordinates xµ, one of
them being time-like.

As the non-relativistic field theory is an approximation to the relativistic
field theory, so the field theory derived from the Stueckelberg action is an
approximation to the field theory derived from the polyvector action.

On the other hand, at the classical level (as we have seen in Sec. 2.4)
Stueckelberg action, in the absence of interaction, arises exactly from the
polyvector action. Even in the presence of the electromagnetic interaction
both actions are equivalent, since they give the same equations of motion.
However, the field theory based on the latter action differs from the field
theory based on the former action by the term π∗π in the Hamiltonian
(2.213). While at the classical level Stueckelberg and the polyvector action
are equivalent, at the first and the second quantized level differences arise
which need further investigation.

Second quantization then goes along the usual lines: φi and πi becomes
operators satisfying the equal s commutation relations:

[φi(s, x), φj(s, x
′)] = 0 , [πi(s, x), πj(s, x

′)] = 0 ,

[φi(s, x), πj(s, x
′)] = iδijδ(x− x′). (2.214)

The field equations are then just the Heisenberg equations

π̇i = i[πi, H]. (2.215)

We shall not proceed here with formal development, since it is in many
respects just a repetition of the procedure expounded in Sec. 1.4. But we
shall make some remarks. First of all it is important to bear in mind that
the usual arguments about causality, unitarity, negative energy, etc., do not
apply anymore, and must all be worked out again. Second, whilst in the
conventional quantum field theory the evolution parameter is a time-like
coordinate x0 ≡ t, in the field theory based on (2.212), (2.213) the evo-
lution parameter is the pseudoscalar variable s. In even-dimensions it is
invariant with respect to the Poincaré and the general coordinate trans-
formations of xµ, including the inversions. And what is very nice here is
that the (pseudo)scalar parameter s naturally arises from the straightfor-
ward polyvector extension of the conventional reparametrization invariant
theory.

Instead of the Heisenberg picture we can use the Schrödinger picture and
the coordinate representation in which the operators φi(0, x) ≡ φi(x) are
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diagonal, i.e., they are just ordinary functions. The momentum operator is
represented by functional derivative7

πj = −i
δ

δφj(x)
. (2.216)

A state |Ψ〉 is represented by a wave functional Ψ[φ(x)] = 〈φ(x)|Ψ〉 and
satisfies the Schrödinger equation

i
∂Ψ

∂s
= HΨ (2.217)

in which the evolution parameter is s. Of course s is invariant under the
Lorentz transformations, and H contains all four components of the 4-
momentum. Equation (2.217) is just like the Stueckelberg equation, the
difference being that Ψ is now not a wave function, but a wave functional.

We started from the constrained polyvector action (2.117). Performing
the first quantization we obtained the wave equation (2.204) which follows
from the action (2.205) for the field φ(s, xµ). The latter action is uncon-
strained. Therefore we can straightforwardly quantize it, and thus perform
the second quantization. The state vector |Ψ〉 in the Schrödinger picture
evolves in s which is a Lorentz invariant evolution parameter. |Ψ〉 can be
represented by a wave functional Ψ[s, φ(x)] which satisfied the functional
Schrödinger equation. Whilst upon the first quantization the equation of
motion for the field φ(s, xµ) contains the second order derivative with re-
spect to s, upon the second quantization only the first order s-derivative
remains in the equation of motion for the state functional Ψ[s, φ(x)].

An analogous procedure is undertaken in the usual approach to quantum
field theory (see, e.g., [38]), with the difference that the evolution parameter
becomes one of the space time coordinates, namely x0 ≡ t. When trying to
quantize the gravitational field it turns out that the evolution parameter t
does not occur at all in the Wheeler–DeWitt equation! This is the well
known problem of time in quantum gravity. We anticipate that a sort of
polyvector generalization of the Einstein–Hilbert action should be taken,
which would contain the scalar or pseudoscalar parameter s, and retain it
in the generalized Wheeler–DeWitt equation. Some important research in
that direction has been pioneered by Greensite and Carlini [39]

7A detailed discussion of the Schrödinger representation in field theory is to be found in ref. [38].
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2.7. SOME FURTHER IMPORTANT
CONSEQUENCES OF CLIFFORD
ALGEBRA

RELATIVITY OF SIGNATURE
In previous sections we have seen how Clifford algebra can be used in the

formulation of the point particle classical and quantum theory. The metric
of spacetime was assumed, as usually, to have the Minkowski signature,
and we have used the choice (+−−−). We are now going to find out that
within Clifford algebra the signature is a matter of choice of basis vectors
amongst available Clifford numbers.

Suppose we have a 4-dimensional space V4 with signature (+ + + +).
Let eµ, µ = 0, 1, 2, 3, be basis vectors satisfying

eµ · eν ≡ 1
2(eµeν + eνeµ) = δµν , (2.218)

where δµν is the Euclidean signature of V4. The vectors eµ can be used
as generators of Clifford algebra C over V4 with a generic Clifford number
(also called polyvector or Clifford aggregate) expanded in term of eJ =
(1, eµ, eµν , eµνα, eµναβ), µ < ν < α < β,

A = aJeJ = a+ aµeµ + aµνeµeν + aµναeµeνeα + aµναβeµeνeαeβ . (2.219)

Let us consider the set of four Clifford numbers (e0, eie0), i = 1, 2, 3, and
denote them as

e0 ≡ γ0,

eie0 ≡ γi. (2.220)

The Clifford numbers γµ, µ = 0, 1, 2, 3, satisfy

1
2(γµγν + γνγµ) = ηµν , (2.221)

where ηµν = diag(1,−1,−1,−1) is the Minkowski tensor. We see that the
γµ behave as basis vectors in a 4-dimensional space V1,3 with signature
(+−−−). We can form a Clifford aggregate

α = αµγµ (2.222)

which has the properties of a vector in V1,3. From the point of view of the
space V4 the same object α is a linear combination of a vector and bivector:

α = α0e0 + αieie0. (2.223)

We may use γµ as generators of the Clifford algebra C1,3 defined over
the pseudo-Euclidean space V1,3. The basis elements of C1,3 are γJ =
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(1, γµ, γµν , γµνα, γµναβ), with µ < ν < α < β. A generic Clifford aggre-
gate in C1,3 is given by

B = bJγJ = b+ bµγµ + bµνγµγν + bµναγµγνγα + bµναβγµγνγαγβ. (2.224)

With suitable choice of the coefficients bJ = (b, bµ, bµν , bµνα, bµναβ) we have
that B of eq. (2.224) is equal to A of eq.(2.219). Thus the same number A
can be described either within C4 or within C1,3. The expansions (2.224)
and (2.219) exhaust all possible numbers of the Clifford algebras C1,3 and
C4. The algebra C1,3 is isomorphic to the algebra C4, and actually they are
just two different representations of the same set of Clifford numbers (also
being called polyvectors or Clifford aggregates).

As an alternative to (2.220) we can choose

e0e3 ≡ γ̃0,

ei ≡ γ̃i, (2.225)

from which we have
1
2(γ̃µγ̃ν + γ̃ν γ̃µ) = η̃µν (2.226)

with η̃µν = diag(−1, 1, 1, 1). Obviously γ̃µ are basis vectors of a pseudo-

Euclidean space Ṽ1,3 and they generate the Clifford algebra over Ṽ1,3 which
is yet another representation of the same set of objects (i.e., polyvectors).

But the spaces V4, V1,3 and Ṽ1,3 are not the same and they span different
subsets of polyvectors. In a similar way we can obtain spaces with signa-
tures (+−++), (++−+), (+++−), (−+−−), (−−+−), (−−−+) and
corresponding higher dimensional analogs. But we cannot obtain signatures
of the type (+ + −−), (+ − +−), etc. In order to obtain such signatures
we proceed as follows.

4-space. First we observe that the bivector Ī = e3e4 satisfies Ī2 = −1,
commutes with e1, e2 and anticommutes with e3, e4. So we obtain that the
set of Clifford numbers γµ = (e1Ī , e2Ī , e3, e3) satisfies

γµ · γν = η̄µν , (2.227)

where η̄ = diag(−1,−1, 1, 1).
8-space. Let eA be basis vectors of 8-dimensional vector space with

signature (+ + + + + + + +). Let us decompose

eA = (eµ, eµ̄) , µ = 0, 1, 2, 3,

µ̄ = 0̄, 1̄, 2̄, 3̄. (2.228)

The inner product of two basis vectors

eA · eB = δAB, (2.229)
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then splits into the following set of equations:

eµ · eν = δµν ,

eµ̄ · eν̄ = δµ̄ν̄ ,

eµ · eν̄ = 0. (2.230)

The number Ī = e0̄e1̄e2̄e3̄ has the properties

Ī2 = 1,

Īeµ = eµĪ ,

Īeµ̄ = −eµ̄Ī . (2.231)

The set of numbers

γµ = eµ ,

γµ̄ = eµ̄Ī (2.232)

satisfies

γµ · γν = δµν ,

γµ̄ · γν̄ = −δµ̄ν̄ ,
γµ · γµ̄ = 0. (2.233)

The numbers (γµ, γµ̄) thus form a set of basis vectors of a vector space V4,4
with signature (+ + ++−−−−).

10-space. Let eA = (eµ, eµ̄), µ = 1, 2, 3, 4, 5; µ̄ = 1̄, 2̄, 3̄, 4̄, 5̄ be basis
vectors of a 10-dimensional Euclidean space V10 with signature (+ + + ....).
We introduce Ī = e1̄e2̄e3̄e4̄e5̄ which satisfies

Ī2 = 1 ,

eµĪ = −Īeµ ,
eµ̄Ī = Īeµ̄. (2.234)

Then the Clifford numbers

γµ = eµĪ ,

γµ̄ = eµ (2.235)

satisfy

γµ · γν = −δµν ,
γµ̄ · γν̄ = δµ̄ν̄ ,

γµ · γµ̄ = 0. (2.236)
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The set γA = (γµ, γµ̄) therefore spans the vector space of signature (− −
−−−+++++).

The examples above demonstrate how vector spaces of various signatures
are obtained within a given set of polyvectors. Namely, vector spaces of dif-
ferent signature are different subsets of polyvectors within the same Clifford
algebra.

This has important physical implications. We have argued that physical
quantities are polyvectors (Clifford numbers or Clifford aggregates). Phys-
ical space is then not simply a vector space (e.g., Minkowski space), but a
space of polyvectors. The latter is a pandimensional continuum P [23] of
points, lines, planes, volumes, etc., altogether. Minkowski space is then just
a subspace with pseudo-Euclidean signature. Other subspaces with other
signatures also exist within the pandimensional continuum P and they all
have physical significance. If we describe a particle as moving in Minkowski
spacetime V1,3 we consider only certain physical aspects of the object con-
sidered. We have omitted its other physical properties like spin, charge,
magnetic moment, etc.. We can as well describe the same object as moving
in an Euclidean space V4. Again such a description would reflect only a
part of the underlying physical situation described by Clifford algebra.

GRASSMAN NUMBERS FROM CLIFFORD
NUMBERS

In Sec. 2.5 we have seen that certain Clifford aggregates are spinors.
Now we shall find out that also Grassmann (anticommuting) numbers are
Clifford aggregates. As an example let us consider 8-dimensional space V4,4
with signature (+−−−−+++) spanned by basis vectors γA = (γµ, γµ̄).
The numbers

θµ = 1
2(γµ + γµ̄),

θ†µ = 1
2(γµ − γµ̄) (2.237)

satisfy

{θµ, θν} = {θ†µ, θ†ν} = 0 , (2.238)

{θµ, θ†ν} = ηµν , (2.239)

where {A,B} ≡ AB+BA. From (2.238) we read out that θµ anticommute
among themselves and are thus Grassmann numbers. Similarly θ†µ form a

set of Grassmann numbers. But, because of (2.239), θµ and θ†µ altogether
do not form a set of Grassmann numbers. They form yet another set of
basis elements which generate Clifford algebra.
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A Clifford number in V4,4 can be expanded as

C = c+ cA1γA1 + cA1A2γA1γA2 + ...+ cA1A2...A8γA1γA2 ...γA8 . (2.240)

Using (2.237), the same Clifford number C can be expanded in terms of θµ,
θ†µ:

C = c + aµθµ + aµνθµθν + aµναθµθνθα + aµναβθµθνθαθβ

+ āµθ†µ + āµνθ†µθ
†
ν + āµναθ†µθ

†
νθ
†
α + āµναβθ†µθ

†
νθ
†
αθ
†
β

+ (mixed terms like θ†µθν , etc.) (2.241)

where the coefficients aµ, aµν , ..., āµ, āµν ... are linear combinations of coef-
ficients cAi , cAiAj ,...

In a particular case, coefficients c, āµ, āµν , etc., can be zero and our
Clifford number is then a Grassmann number in 4-space:

ξ = aµθµ + aµνθµθν + aµναθµθνθα + aµναβθµθνθαθβ . (2.242)

Grassmann numbers expanded according to (2.242), or analogous expres-
sions in dimensions other than 4, are much used in contemporary theoret-
ical physics. Recognition that Grassmann numbers can be considered as
particular numbers within a more general set of numbers, namely Clifford
numbers (or polyvectors), leads in my opinion to further progress in un-
derstanding and development of the currently fashionable supersymmetric
theories, including superstrings, D-branes and M -theory.

We have seen that a Clifford number C in 8-dimensional space can be
expanded in terms of the basis vectors (γµ, γµ̄) or (θµ, θ

†
µ). Besides that,

one can expand C also in terms of (γµ, θµ):

C = c + bµγµ + bµνγµγν + bµναγµγνγα + bµναβγµγνγαγβ

+ βµθµ + βµνθµθν + βµναθµθνθα + βµναβθµθνθαθβ

+ (mixed terms such as θµγν , etc.). (2.243)

The basic vectors γµ span the familiar 4-dimensional spacetime, while θµ
span an extra space, often called Grassmann space. Usually it is stated
that besides four spacetime coordinates xµ there are also four extra Grass-
mann coordinates θµ and their conjugates θ†µ or θ̄µ = γ0θ

†
µ. This should be

contrasted with the picture above in which θµ are basis vectors of an extra
space, and not coordinates.
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2.8. THE POLYVECTOR ACTION AND
DE WITT–ROVELLI MATERIAL
REFERENCE SYSTEM

Following an argument by Einstein [42], that points of spacetime are
not a priori distinguishable, DeWitt [25] introduced a concept of reference
fluid. Spacetime points are then defined with respect to the reference fluid.
The idea that we can localize points by means of some matter has been
further elaborated by Rovelli [26]. As a starting model he considers a
reference system consisting of a single particle and a clock attached to
it. Besides the particle coordinate variables Xµ(τ) there is also the clock
variable T (τ), attached to the particle, which grows monotonically along
the particle trajectory. Rovelli then assumes the following action for the
variables Xµ(τ), T (τ):

I[Xµ, T ] = m

∫
dτ

(
dXµ

dτ

dXµ

dτ
− 1

ω2

(
dT

dτ

)2
)1/2

. (2.244)

If we make replacement m→ κ and T/ω → s the latter action reads

I[Xµ, s] =

∫
dτκ

(
ẊµẊµ − ṡ2

)1/2
. (2.245)

If, on the other hand, we start from the polyvector action (2.117) and
eliminate m, pµ, λ by using the equations of motion, we again obtain the
action (2.245). Thus the pseudoscalar variable s(τ) entering the polyvector
action may be identified with Rovelli’s clock variable. Although Rovelli
starts with a single particle and clock, he later fills space with these objects.
We shall return to Rovelli’s reference systems when we discuss extended
objects.


