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2.1. INTRODUCTION TO GEOMETRIC
CALCULUS BASED ON CLIFFORD
ALGEBRA

We have seen that point particles move in some kind of space. In non
relativistic physics the space is 3-dimensional and Euclidean, while in the
theory of relativity space has 4-dimensions and pseudo-Euclidean signa-
ture, and is called spacetime. Moreover, in general relativity spacetime is
curved, which provides gravitation. If spacetime has even more dimensions
—as in Kaluza—Klein theories— then such a higher-dimensional gravitation
contains 4-dimensional gravity and Yang-Mills fields (including the fields
associated with electromagnetic, weak, and strong forces). Since physics
happens to take place in a certain space which has the role of a stage or
arena, it is desirable to understand its geometric properties as deeply as
possible.

Let V,, be a continuous space of arbitrary dimension n. To every point
of V,, we can ascribe n parameters x#, p = 1,2, ...,n, which are also called
coordinates. Like house numbers they can be freely chosen, and once being
fixed they specify points of the space?.

When considering points of a space we ask ourselves what are the dis-
tances between the points. The distance between two infinitesimally sepa-
rated points is given by

ds® = g, dat dz”. (2.1)

Actually, this is the square of the distance, and g, (x) is the metric tensor.
The quantity ds? is invariant with respect to general coordinate transfor-
mations z# — x'* = fF(z).

Let us now consider the square root of the distance. Obviously it is
V/ GuwdxH dz”. But the latter expression is not linear in dz#. We would like
to define an object which is linear in dz* and whose square is eq. (2.1). Let
such object be given by the expression

dr =dazte, (2.2)
It must satisfy
dz? = eye, datda” = (epe, + epey) datda” = gy, da da¥ = ds®, (2.3)
from which it follows that

%(euev +even) = G (2.4)

2See Sec. 6.2, in which the subtleties related to specification of spacetime points are discussed.
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The quantities e* so introduced are a new kind of number, called Clifford
numbers. They do not commute, but satisfy eq. (2.4) which is a charac-
teristic of Clifford algebra.

In order to understand what is the meaning of the object dz introduced
in (2.2) let us study some of its properties. For the sake of avoiding use of
differentials let us write (2.2) in the form

de  dz#

— = —¢,, 2.5

dr dr " (25)
where 7 is an arbitrary parameter invariant under general coordinate trans-
formations. Denoting dz/d7 = a, daz*/dT = a*, eq. (2.5) becomes

a=a'e,. (2.6)
Suppose we have two such objects a and b. Then
(a+b)? = a® + ab+ ba + b (2.7)

and
2(ab+ ba) = 3(euen + epey)al't’ = gy ab’. (2.8)

The last equation algebraically corresponds to the inner product of two
vectors with components a* and b”. Therefore we denote

a-b=%(ab+ ba). (2.9)

From (2.7)—(2.8) we have that the sum a + b is an object whose square
is also a scalar.
What about the antisymmetric combinations? We have

1
é(ab —ba) = 3(a"b” — a"b")ey e, (2.10)

This is nothing but the outer product of the vectors. Therefore we denote
it as
aAb=3(ab— ba) (2.11)

In 3-space this is related to the familiar vector product a x b which is the
dual of a A b.

The object a = a*'e,, is thus nothing but a vector: a* are its components
and e are n linearly independent basic vectors of V,,. Obviously, if one
changes parametrization, ¢ or dzr remains the same. Since under a general
coordinate transformation the components a* and dz* do change, e, should
also change in such a way that the vectors a and dz remain invariant.

An important lesson we have learnt so far is that
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the “square root” of the distance is a vector;
vectors are Clifford numbers;

vectors are objects which, like distance, are invariant under general co-
ordinate transformations.

Box 2.1: Can we add apples and oranges?

When I asked my daughter, then ten years old, how much is 3 apples
and 2 oranges plus 1 apple and 1 orange, she immediately replied
“4 apples and 3 oranges”. If a child has no problems with adding
apples and oranges, it might indicate that contrary to the common
wisdom, often taught at school, such an addition has mathematical
sense after all. The best example that this is indeed the case is
complex numbers. Here instead of ‘apples’ we have real and, instead
of ‘oranges’, imaginary numbers. The sum of a real and imaginary
number is a complex number, and summation of complex numbers
is a mathematically well defined operation. Analogously, in Clifford
algebra we can sum Clifford numbers of different degrees. In other
words, summation of scalar, vectors, bivectors, etc., is a well defined
operation.

The basic operation in Clifford algebra is

the Clifford product ab. It

can be decomposed into the symmetric part a - b (defined in (2.9) and the
antisymmetric part a A b (defined in (2.11)):

ab=a-b+aNb (2.12)

We have seen that a - b is a scalar. On the contrary, eq. (2.10) shows that
a A b is not a scalar. Decomposing the product e,e, according to (2.12),

epey =¢€y-e, ey, Ney =gu +egNey,

we can rewrite (2.10) as

1
aNb= §(a“b” —a"b)e, Ney, (2.13)

which shows that a A b is a new type of geometric object, called bivector,
which is neither a scalar nor a vector.
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The geometric product (2.12) is thus the sum of a scalar and a bivector.
The reader who has problems with such a sum is advised to read Box 2.1.

A wector is an algebraic representation of direction in a space V; it is
associated with an oriented line.

A bivector is an algebraic representation of an oriented plane.

This suggests a generalization to trivectors, quadrivectors, etc. It is
convenient to introduce the name r-vector and call r its degree:

O-vector s scalar
1-vector a vector
2-vector alb bivector
3-vector aNbAc trivector
r-vector Ar=a1 Nag A ... Aay multivector

In a space of finite dimension this cannot continue indefinitely: an n-
vector is the highest r-vector in V,, and an (n+ 1)-vector is identically zero.
An r-vector A, represents an oriented r-volume (or r-direction) in V;,.

Multivectors A, are elements of the Clifford algebra C,, of V,,. An element
of C,, will be called a Clifford number. Clifford numbers can be multiplied
amongst themselves and the results are Clifford numbers of mixed degrees,
as indicated in the basic equation (2.12). The theory of multivectors, based
on Clifford algebra, was developed by Hestenes [22]. In Box 2.2 some
useful formulas are displayed without proofs.

Let ey, e, ..., e, be linearly independent vectors, and a, of, a®?2, ...
scalar coefficients. A generic Clifford number can then be written as

. 1 . 1 ..
A=a+a'e + a1 a't?e; Nej, + - alttme; AN Ne, . (2.14)

Since it is a superposition of multivectors of all possible grades it will
be called polyvector.> Another name, also often used in the literature, is
Clifford aggregate. These mathematical objects have far reaching geometrical
and physical implications which will be discussed and explored to some
extent in the rest of the book.

3Following a suggestion by Pezzaglia [23] I call a generic Clifford number polyvector and re-
serve the name multivector for an r-vector, since the latter name is already widely used for the
corresponding object in the calculus of differential forms.
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Box 2.2: Some useful basic equations

For a vector a and an r-vector A, the inner and the outer product
are defined according to

a-Ar =1(ad, — (-1)"Aa) = —(-1)"A, - q, (2.15)

ahAr =1(ady + (-1)"4ra) = (-1)" 4, Na. (2.16)

The inner product has symmetry opposite to that of the outer pro-
duct, therefore the signs in front of the second terms in the above
equations are different.

Combining (2.15) and (2.16) we find

aA, =a-A.+aNA,. (2.17)

For A, = aj ANasA...Na, eq. (2.15) can be evaluated to give the useful
expansion

T
a-(aN...Na,) = Z(—l)k+1(a-ak)a1 A.ap—1Nagiq A...ap. (2.18)
k=1

In particular,
a-(bAc)=(a-b)c—(a-c)b. (2.19)

It is very convenient to introduce, besides the basic vectors e, an-
other set of basic vectors e¢” by the condition

ey-€’ =0,". (2.20)
Each e* is a linear combination of e,:
et = ghe,, (2.21)

from which we have
9" g = 6,7 (2.22)

and
g =et e’ = L(ete’ +evet). (2.23)
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2.2. ALGEBRA OF SPACETIME

In spacetime we have 4 linearly independent vectors e,, p = 0,1,2,3.
Let us consider flat spacetime. It is then convenient to take orthonormal
basis vectors v,

Y Vv = Nuv, (224)
where 7, is the diagonal metric tensor with signature (4 - - -).

The Clifford algebra in Vj is called the Dirac algebra. Writing v, =
Yu N\ Y for a basis bivector, v, = vu A7 A7, for a basis trivector, and
Yuvpo = YuNYw NYp Ao for a basis quadrivector we can express an arbitrary
number of the Dirac algebra as

1 4 1 v 1 1%
D=> D,=d+d"y, + o1 @V + 57 @ Vg + 35 P Yo (2:25)
- ! ! !
where d, d*, d"¥, ... are scalar coefficients.
Let us introduce

Y5 =Y A7 A2 A3 = Y0717273 v =—1, (2.26)

which is the unit element of 4-dimensional volume and is called a pseu-
doscalar. Using the relations

Yuvpo = V5€uvpo (227)
Yuvp = 'Y,uupa"YP s (228)

where €,,,0 is the totally antisymmetric tensor and introducing the new
coeflicients

n
M1l

d, Vi=d', T"=Lldv,

dHvro

@~

Cy d""Pe 0 P= €uvpo 1 (2.29)

Ly

we can rewrite D of eq. (2.25) as the sum of scalar, vector, bivector, pseu-
dovector and pseudoscalar parts:

D =84 Vv, + T, + Clysvy, + Ps. (2.30)
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POLYVECTOR FIELDS

A polyvector may depend on spacetime points. Let A = A(x) be an
r-vector field. Then one can define the gradient operator according to

9=~ , (2.31)

where 9, is the usual partial derivative. The gradient operator 0 can act
on any r-vector field. Using (2.17) we have

OA=0-A+0NA. (2.32)

Example. Let A =a = a,v” be a 1-vector field. Then

aCL = ’y“au(aV’yy) = ’y‘u : 'YV 8#(1” + 'Y'u /\ ’yyaual/
= Ouat + 3(9uay — Bpa )y A (2.33)

The simple expression da thus contains a scalar and a bivector part, the
former being the usual divergence and the latter the usual curl of a vector
field.

Maxwell equations. We shall now demonstrate by a concrete physical
example the usefulness of Clifford algebra. Let us consider the electromag-
netic field which, in the language of Clifford algebra, is a bivector field F'.
The source of the field is the electromagnetic current j which is a 1-vector
field. Maxwell’s equations read

OF = —4rj. (2.34)

The grade of the gradient operator 0 is 1. Therefore we can use the relation
(2.32) and we find that eq. (2.34) becomes

0-F+0ANF =—4rj, (2.35)

which is equivalent to
0-F = —4njy, (2.36)
ONF =0, (2.37)

since the first term on the left of eq. (2.35) is a vector and the second term
is a bivector. This results from the general relation (2.35 ). It can also be
explicitly demonstrated. Expanding

F=L1F"~y, Ay, (2.38)
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3= 3" (2.39)

we have

0-F = 7% (%Flw'}’u ANyy) = %')’a : ('Yu A Yy ) Oa M

= 2O ) — () ) OaFH = 8, FM 5y, (2.40)

ONF = 9% Ay Ay 0aF™ = 1e%,,, 0aF™ 457" | (2.41)

where we have used (2.19) and eqs.(2.27), (2.28). From the above consider-
ations it then follows that the compact equation (2.34) is equivalent to the
usual tensor form of Maxwell equations

O, F" = —Agjt | (2.42)

€ yp O FH = 0. (2.43)

Applying the gradient operator 0 to the left and to the right side of
eq. (2.34) we have
0*F = —4r 0j. (2.44)

Since > =0-0+0AN0 =0 -0 is a scalar operator, O°F is a bivector. The
right hand side of eq. (2.44) gives

dj=0-j+0Nj. (2.45)

Equating the terms of the same grade on the left and the right hand side
of eq. (2.44) we obtain
O*F = —4m O A j, (2.46)

§-j=0. (2.47)

The last equation expresses the conservation of the electromagnetic current.

Motion of a charged particle. In this example we wish to go a step
forward. Our aim is not only to describe how a charged particle moves
in an electromagnetic field, but also include a particle’ s(classical) spin.
Therefore, following Pezzaglia [23], we define the momentum polyvector P
as the vector momentum p plus the bivector spin angular momentum S,

P=p+5, (2.48)
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or in components
P = ply, + 35" v, A (2.49)

We also assume that the condition p,S*” = 0 is satisfied. The latter con-
dition ensures the spin to be a simple bivector, which is purely space-like
in the rest frame of the particle. The polyvector equation of motion is
. dP e
P = _

= =5 P.F], (2.50)

where [P, F| = PF — FP. The vector and bivector parts of eq. (2.50) are

p= % Fp”, (2.51)
SH = %(F%SW — Y, 8%, (2.52)

These are just the equations of motion for linear momentum and spin,
respectively.

2.3. PHYSICAL QUANTITIES AS
POLYVECTORS

The compact equations at the end of the last section suggest a general-
ization that every physical quantity is a polyvector. We shall explore such
an assumption and see how far we can come.

In 4-dimensional spacetime the momentum polyvector is

P =p+ple, + S"e e, + ese, + mes (2.53)
and the velocity polyvector is
X =6+ dte, +aeye, + Elese, + ses (2.54)
where e, are four basis vectors satisfying
€u €y =N, (2.55)

and e5; = egejeqes is the pseudoscalar. For the purposes which will become
clear later we now use the symbols e, e5 instead of 7, and ~s.

We associate with each particle the velocity polyvector X and its con-
jugate momentum polyvector P. These quantities are generalizations of
the point particle 4-velocity & and its conjugate momentum p. Besides a
vector part we now include the scalar part ¢, the bivector part &*”e,e,, the
pseudovector part 5“656# and the pseudoscalar part ses into the definition
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of the particle’s velocity, and analogously for the particle’s momentum. We
would now like to derive the equations of motion which will tell us how
those quantities depend on the evolution parameter 7. For simplicity we
consider a free particle.

Let the action be a straightforward generalization of the first order or
phase space action (1.11) of the usual constrained point particle relativistic
theory:

1 ) )
I1X, PN = 3 /dT (PX +XP—AP?-K?)), (2.56)

where ) is a scalar Lagrange multiplier and K a polyvector constant?:
K?=kr*+ kue, + K'eyue, + Klese, + k’es. (2.57)

It is a generalization of particle’s mass squared. In the usual, unconstrained,
theory, mass squared was a scalar constant, but here we admit that, in
principle, mass squared is a polyvector. Let us now insert the explicit
expressions (2.53),(2.54) and (2.57) into the Lagrangian

4
L=4(PX+XP- P~ K%)= (L),, (2.58)
r=0
and evaluate the corresponding multivector parts (L),. Using
epNey Nep N es = €5 €upo (2.59)
enNey Nep,=(egNey Nep Neg)e? = es€upre’ (2.60)
enNey=—2(epNey Aep Aeg)(e” Ne¥) = —2es eupoe’ Neg,  (2.61)

we obtain

(LYo = po—ms+p,at +7ruf“ + S PTN 4610

A
— §(u2 + plp 4wt —m? —28MS,, — k), (2.62)

<L>1 = [dpa + :U'-i'o' - (épS,u,u + Wpd'uy)euupa} e’

— Mo — S 1P eppo — 3ko)e” (2.63)

4The scalar part is not restricted to positive values, but for later convenience we write it as k2,

on the understanding that x2 can be positive, negative or zero.
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(L)2 =
33 — €Y 4 88 4 M )epupo + 6Spo + pipe + 2,0k | € A e
)\ 1% 174
5 (" + mS*™ ) eppo + 21150 — Kpo| €’ Ne7 (2.64)

(L)s = [dw”+ufg+(S“”at'p—i—d“”pp)ew,p"—A(/m”%—S””p”eWp”—%Fag)} ese” |
(2.65)

A
(L)y = [md + ps — % SH 6P € pe — 5(2um + S SP7 €00 — kZ)] es.
(2.66)
The equations of motion are obtained for each pure grade multivector

(L), separately. That is, when varying the polyvector action I, we vary
each of its r-vector parts separately. From the scalar part (L)y we obtain

op o — =0, (2.67)
om —$+Am =0, (2.68)
s =0 (2.69)
do =0, (2.70)
opy - it — \pt =0, (2.71)
om, EH — At =0, (2.72)
ozt =0 (2.73)
ser 7, =0, (2.74)
s Sy =0, (2.75)
58S G — ASH =0, (2.76)

From the r-vector parts (L), for r = 1, 2, 3, 4 we obtain the same set
of equations (2.67)—(2.76). Each individual equation results from varying a
different variable in (L)g, (L)1, etc.. Thus, for instance, the u-equation of
motion (2.67) from (L)o is the same as the p, equation from (L); and the
same as the m-equation from (L), and similarly for all the other equations
(2.67)—(2.76). Thus, as far as the variables u, m, s, o, py, Ty, S, £ and
oM are considered, the higher grade parts (L), of the Lagrangian L contains
the same information about the equations of motion. The difference occurs
if we consider the Lagrange multiplier \. Then every r-vector part of L
gives a different equation of motion:

I{L)o
o\

0: u? + p'p, + mhm, — m? — 28" S, — K2 =0,(2.77)
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8<8L)\>1 = 0 pme— S r e — Ly =0, (2.78)
a<81;>2 = 0 (T 4 mS*)eupo + 21Sps — Ky =0, (2.79)
8§3€\>3 = 0 e SP PP + Lk = 0, (2.80)
8<8L)\>4 = 0 2um et SMS e, — K =0, (2.81)

The above equations represent constraints among the dynamical variables.
Since our Lagrangian is not a scalar but a polyvector, we obtain more than
one constraint.

Let us rewrite egs.(2.80),(2.78) in the forms

Ko 1

To — 24 - n S €pwpo (2.82)
ko L _p
pa - ﬂ == ;S s euypoﬂ (283)

We see from (2.82) that the vector momentum p, and its pseudovector
partner 7, are related in such a way that 7, — k,/2u behaves as the well
known Pauli-Lubanski spin pseudo vector. A similar relation (2.83) holds
if we interchange p, and .

Squaring relations (2.82), (2.83) we find

Ko o K7 2 o v 4 vV QUo

(Mo — ﬂ)(ﬂ B ﬂ) - ?pap Sy S + Fpup 5" Sve , (2.84)
kU o k;U 2 o v 4 v loa

(s = 3207 = 5) = = T SyuS 4 S (285)

From (2.82), (2.83) we also have
Ko kcr
To — 5 pO:Oa <p0'__>7r020 286
( 2#) 2u (280)

Additional interesting equations which follow from (2.82), (2.83) are

4 1 3 S QM) _ i VQHO G  — K“P’%p i kP P
P Pp + 'u2 uv ,UJ2 bub vo = 4,U2 + 2% (pp + TR )a
(2.87)
2 4 k,kP 1
', (1 + E SWS’“’> — ? T’ SHS,e = — 4’)7 + ﬂ(ppkp + mpkP).

(2.88)
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Contracting (2.82), (2.83) by €*12%3% we can express S*¥ in terms of p”
and w7

pyo H nvpo ( _&) - _ H Hvpo ( _k_0> 2
S DT e"Plp, | To o o P, | po o) (2.89)

provided that we assume the following extra condition:
S*p, =0, S, =0. (2.90)

Then for positive p°p, it follows from (2.84) that (7, — ko /2u)? is negative,
i.e., Ty — Ko /21 are components of a space-like (pseudo-) vector. Similarly,
it follows from (2.85) that when 77, is negative, (p, — ko /2u)? is positive,
so that p, —ky /2 is a time-like vector. Altogether we thus have that p,, &k,
are time-like and 7,, K, are space-like. Inserting (2.89) into the remaining
constraint (2.81) and taking into account the condition (2.90) we obtain

2mpu — k% = 0. (2.91)

The polyvector action (2.56) is thus shown to represent a very interesting
classical dynamical system with spin. The interactions could be included
by generalizing the minimal coupling prescription. Gravitational interaction
is included by generalizing (2.55) to

€u€v = Guv » (2'92)

where g,,, () is the spacetime metric tensor. A gauge interaction is included
by introducing a polyvector gauge field A, a polyvector coupling constant
G, and assume an action of the kind

I[X,P,\] = /dT [PX+XP— A ((P— G x A)? —KQH . (2.93)

where ‘x> means the scalar product between Clifford numbers, so that
G x A = (GA)o. The polyvector equations of motion can be elegantly
obtained by using the Hestenes formalism for multivector derivatives. We
shall not go into details here, but merely sketch a plausible result,

II=AG+0xA,P], II=P—-G+A, (2.94)

which is a generalized Lorentz force equation of motion, a more particular
case of which is given in (2.50).

After this short digression let us return to our free particle case. One
question immediately arises, namely, what is the physical meaning of the
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polyvector mass squared K2. Literally this means that a particle is char-
acterized not only by a scalar and/or a pseudoscalar mass squared, but
also by a vector, bivector and pseudovector mass squared. To a particle
are thus associated a constant vector, 2-vector, and 3-vector which point
into fixed directions in spacetime, regardless of the direction of particle’s
motion. For a given particle the Lorentz symmetry is thus broken, since
there exists a preferred direction in spacetime. This cannot be true at the
fundamental level. Therefore the occurrence of the polyvector K2 in the
action must be a result of a more fundamental dynamical principle, pre-
sumably an action in a higher-dimensional spacetime without such a fixed
term K?2. It is well known that the scalar mass term in 4-dimensions can be
considered as coming from a massless action in 5 or more dimensions. Sim-
ilarly, also the 1-vector, 2-vector, and 3-vector terms of K2 can come from
a higher-dimensional action without a K2-term. Thus in 5-dimensions:

(i) the scalar constraint will contain the term pApa = p“pu+p5p5, and
the constant —p°ps takes the role of the scalar mass term in 4-dimensions;

(ii) the vector constraint will contain a term like P4pcS ABeC A B =
0,1,2,3,5, containing the term P,,,5* e®* (which, since Py, = eummrﬂ,
corresponds to the term S “”Wpeu,,poe") plus an extra term Ps,,,5°%¢® which
corresponds to the term k%e,,.

In a similar manner we can generate the 2-vector term K, and the
3-vector term k., from 5-dimensions.

The polyvector mass term K? in our 4-dimensional action (2.93) is arbi-
trary in principle. Let us find out what happens if we set K2 = 0. Then,
in the presence of the condition (2.90), egs. (2.87) or (2.88) imply

S SH = — 5 (2.95)
that is S, < 0. On the other hand S,,S"" in the presence of the
condition (2.90) can only be positive (or zero), as can be straightforwardly
verified. In 4-dimensional spacetime S, S*” were to be negative only if in
the particle’s rest frame the spin components S were different from zero
which would be the case if (2.90) would not hold.

Let us assume that K2 = 0 and that condition (2.90) does hold. Then
the constraints (2.78)-(2.81) have a solution®

S =0, 7*=0, pu=0. (2.96)

5This holds even if we keep 2 different from zero, but take vanishing values for k2, Ky, ky and
K.
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The only remaining constraint is thus
P'pu—m* =0, (2.97)
and the polyvector action (2.56) is simply
IIX, PN = I[s,m,a" pu, A

A
= /dT [—mé +pudt = 5 (0P — m?)|,  (2.98)
in which the mass m is a dynamical variable conjugate to s. In the action
(2.98) mass is thus just a pseudoscalar component of the polymomentum

P =ple, +mes, (2.99)
and § is a pseudoscalar component of the velocity polyvector
X = ite, + ses. (2.100)

Other components of the polyvectors X and P (such as S 7t u), when
K? =0 (or more weakly, when K? = x?2), are automatically eliminated by
the constraints (2.77)-(2.81).

From a certain point of view this is very good, since our analysis of
the polyvector action (2.56) has driven us close to the conventional point
particle theory, with the exception that mass is now a dynamical variable.
This reminds us of the Stueckelberg point particle theory [2]-[15] in which
mass is a constant of motion. This will be discussed in the next section. We
have here demonstrated in a very elegant and natural way that the Clifford
algebra generalization of the classical point particle in four dimensions tells
us that a fixed mass term in the action cannot be considered as fundamental.
This is not so obvious for the scalar (or pseudoscalar) part of the polyvector
mass squared term K2, but becomes dramatically obvious for the 1-vector,
2-vector and 4-vector parts, because they imply a preferred direction in
spacetime, and such a preferred direction cannot be fundamental if the
theory is to be Lorentz covariant.

This is a very important point and I would like to rephrase it. We start
with the well known relativistic constrained action

I[z",pu, A = /dT (pux'“ — %(p2 - 52)> . (2.101)

Faced with the existence of the geometric calculus based on Clifford algebra,
it is natural to generalize this action to polyvectors. Concerning the fixed
mass constant k2 it is natural to replace it by a fixed polyvector or to
discard it. If we discard it we find that mass is nevertheless present, because
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now momentum is a polyvector and as such it contains a pseudoscalar part
mes. If we keep the fixed mass term then we must also keep, in principle, its
higher grade parts, but this is in conflict with Lorentz covariance. Therefore
the fixed mass term in the action is not fundamental but comes, for instance,
from higher dimensions. Since, without the K? term, in the presence of
the condition $**p, = 0 we cannot have classical spin in four dimensions
(eq. (2.95) is inconsistent), this points to the existence of higher dimensions.
Spacetime must have more than four dimensions, where we expect that the
constraint P2 = 0 (without a fixed polyvector mass squared term K) allows
for nonvanishing classical spin.

The “fundamental” classical action is thus a polyvector action in higher
dimensions without a fixed mass term. Interactions are associated with the
metric of V. Reduction to four dimensions gives us gravity plus gauge
interactions, such as the electromagnetic and Yang—Mills interactions, and
also the classical spin which is associated with the bivector dynamical de-
grees of freedom sitting on the particle, for instance the particle’s finite
extension, magnetic moment, and similar.

There is a very well known problem with Kaluza—Klein theory, since in
four dimensions a charged particle’s mass cannot be smaller that the Planck
mass. Namely, when reducing from five to four dimensions mass is given
by ptp, = m? + ﬁ%, where m is the 5-dimensional mass. Since ps has the
role of electric charge e, the latter relation is problematic for the electron:
in the units in which 7 = ¢ = G = 1 the charge e is of the order of the
Planck mass, so ptp,, is also of the same order of magnitude. There is no
generally accepted mechanism for solving such a problem. In the polyvector
generalization of the theory, the scalar constraint is (2.77) and in five or
more dimensions it assumes an even more complicated form. The terms
in the constraint have different signs, and the 4-dimensional mass p#p, is
not necessarily of the order of the Planck mass: there is a lot of room to
“make” it small.

All those considerations clearly illustrate why the polyvector generaliza-
tion of the point particle theory is of great physical interest.

2.4. THE UNCONSTRAINED ACTION
FROM THE POLYVECTOR ACTION

FREE PARTICLE

In the previous section we have found that when the polyvector fixed
mass squared K2 is zero then a possible solution of the equations of motion
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satisfies (2.96) and the generic action (2.56) simplifies to

A
I[s,m,az", py, A = /dT [—ms' + pudt — §(p“pu —m?)|. (2.102)

At this point let us observe that a similar action, with a scalar variable
s, has been considered by DeWitt [25] and Rovelli [26]. They associate the
variable s with the clock carried by the particle. We shall say more about
that in Sec. 6.2.

We are now going to show that the latter action is equivalent to the
Stueckelberg action discussed in Chapter 1.

The equations of motion resulting from (2.102) are

s =0, (2.103)
sm §—Am =0, (2.104)
oxt Pu =0, (2.105)
opy o* — Apt =,0 (2.106)

oA "oy —m? =0. (2.107)

(2.108)

We see that in this dynamical system mass m is one of the dynamical
variables; it is canonically conjugate to the variable s. From the equations
of motion we easily read out that s is the proper time. Namely, from (2.104),
(2.106) and (2.107) we have

H dxt
=t o 2.1
pr=r=mea, (2.109)
P =Xm2=43?, ie ds® = datdz,,. (2.110)
Using eq. (2.104) we find that
D P ms 1d(ms)
— M . 2.111
Mt n 2 2 dr (2.111)
The action (2.102) then becomes
B 1d(ms) A
I= /dT <§ o Tt =5 pu) : (2.112)

where A\ should be no more considered as a quantity to be varied, but it is
now fixed: A\ = A(7). The total derivative in (2.112) can be omitted, and
the action is simply

. A
Izt pu] = /dT(pua:” - 5]7#]7#)‘ (2.113)
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This is just the Stueckelberg action (1.36) with k2 = 0. The equations of
motion derived from (2.113) are

it — Apt =0, (2.114)

Pu=0. (2.115)

From (2.115) it follows that p,p! is a constant of motion. Denoting the
latter constant of motion as m and using (2.114) we obtain that momentum
can be written as
T dat
p'=m Nz =m- ds = dz'dx,, , (2.116)

which is the same as in eq. (2.109). The equations of motion for z* and p,,
derived from the Stueckelberg action (2.99) are the same as the equations
of motion derived from the action (2.102). A generic Clifford algebra action
(2.56) thus leads directly to the Stueckleberg action.

The above analysis can be easily repeated for a more general case where
the scalar constant x? is different from zero, so that instead of (2.98) or
(2.102) we have

I[s,m,z" pu, A = /dT {—mé’ + puit — %(p“pu —m? — HZ)] . (2.117)

Then instead of (2.113) we obtain

I[z", p,) = /dT <pujz“ — % (P'pu — /-@2)> . (2.118)

The corresponding Hamiltonian is

A
H=2 0"y~ w2, (2.119)

and in the quantized theory the Schrodinger equation reads

A
Zg_:/_’ =3 (P — KA. (2.120)

Alternatively, in the action (2.102) or (2.117) we can first eliminate A by
the equation of motion (2.104). So we obtain

ms

. $
I[s,m,az”,pu]:/dT{ 5 + pudt — —

S| (2121)
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The equations of motion are

o d (plpy—K? .
’ 2 dr ( 2m - e (2.122)
1 1 1 2 " 2 2
om =gt o 5 (= k) =0 = ppu—mt— k=0, (2123)
Sz pu=0, (2.124)
: " dat
opy it — =0 = pr="0 S (2.125)
m S ds

Then we can choose a “solution” for s(7), write §/m = A, and omit the first
term, since in view of (2.122) it is a total derivative. So again we obtain
the Stueckelberg action (2.118).

The action that we started from, e.g., (2.121) or (2.102) has a constraint
on the variables z*, s or on the p,, m, but the action (2.118) which we
arrived at contains only the variables z#, p, and has no constraint.

In the action (2.121) we can use the relation § = ds/dr and write it as

dxt 1
Ifm, py, 2" = /ds [—% + Dy - —(p'pu — /€2):| ) (2.126)

ds  2m

The evolution parameter is now s, and again variation with respect to m
gives the constraint pp, — m? — k? = 0. Eliminating m from the action
(2.126) by the the latter constraint, written in the form

m = \/prp, — K> (2.127)

we obtain the unconstrained action

dat
I[z",p,) = [ ds <pu¥ —\/PHPu — /12> , (2.128)

which is also equivalent to the original action (2.117). The Hamiltonian
corresponding to (2.128) is

dat
H =pu=———L=/p'pu— . (2.129)

Such a Hamiltonian is not very practical for quantization, since the Schrodin-
ger equation contains the square root of operators

oY 5
i = PPy — K21 (2.130)
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In order to perform the quantization properly one has to start directly from
the original polyvector action (2.56). This will be discussed in Sec. 2.5.
However, in the approximation® p,p* < —k? eq. (2.128) becomes

dz* 1
I[.%"u',pu] ~ /dS <pug — ﬁpﬂpu —V —HQ) (2131)

which is again the Stueckelberg action, but with 1/v/—k? = A. It is very
interesting that on the one hand the Stueckelberg action arises exactly from
the polyvector action, and on the other hand it arises as an approximation.

PARTICLE IN A FIXED BACKGROUND FIELD

Let us now consider the action (2.117) and modify it so that it will remain
covariant under the transformation
d¢

L L'=L+ =L 2.132
- +d7” (2.132)

where
¢ = ¢(s,zt) (2.133)

For this purpose we have to introduce the gauge fields A, and V which
transform according to

eAj, = eA, + Ou0, (2.134)
0¢
/ —_—
eV' = eV —i——as. (2.135)

The covariant action is then
I= /dT [—mé + pudt — %(Wﬂw“ —u? =K%, (2.136)
where we have introduced the kinetic momentum
Ty = pu — €Ay (2.137)
and its pseudoscalar counterpart
p=m+eV. (2.138)

The symbol ‘u’ here should not be confused with the same symbol used in
Sec. 2.3 for a completely different quantity.

SRemember that k2 comes from the scalar part of the polyvector mass squared term (2.57) and
that it was a matter of our convention of writing it in the form 2. We could have used another
symbol without square, e.g., «, and then it would be manifestly clear that « can be negative.
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From (2.136) we derive the following equations of motion:

ozt 7, = eF,a" — se <% - 8MV> , (2.139)
s
0A,
L = —g? —9,V), 2.14

s L x e( P 9] V> (2.140)
opy ATy, =Ty, (2.141)
(2.142)

om 5= M. (2.143)

These equations of motion are the same as those from the Stueckelberg
action (2.147).
From (2.140) and (2.143) we have

0A,
Js

A d 1
—ms+ Spt = —%E(,us) +esV — —ei” (

5 5 - ayv) s, (2.144)

Inserting the latter expression into the action (2.136) we obtain

d A
I= /dT l—% Eilf) + pudt — 5(7#‘7@ — K?) +esV

L (aA” - ayv) 3], (2.145)

2 0s

which is analogous to eq.(2.112). However, in general /i is now not zero,
and as a result we cannot separate the variables m, s into a total derivative
term as we did in (2.117).

Let us consider a particular case when the background fields A,,, V' satisfy

DA,
_ —0. 2.14
Fl=0. 0V =0 (2.146)

Then the last term in (2.145) vanishes; in addition we may set V = 0.
Omitting the total derivative term, eq. (2.145) becomes

Mol = [ s [p o = S, - )] | (2.147)
ds 2
where A = A/$ is now fixed. This is precisely the Stueckelberg action
in the presence of a fixed electromagnetic field, and s corresponds to the
Stueckelberg Lorentz invariant parameter .
However, when we gauged the free particle Stueckelberg action we ob-
tained in general a 7-dependent gauge field A, and also a scalar field V.
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We shall now see that such a general gauged Stueckelberg action is an ap-
proximation to the action (2.136). For this purpose we shall repeat the
procedure of egs. (2.121)—(2.128). Eliminating A from the action (2.136) by
using the equation of motion (2.143) we obtain an equivalent action

Iz", py,s,m| = /dT [—mé + putt — 2i(7r“7r# — - /{2)] (2.148)
o

whose variation with respect to m again gives the constraint 7#m, — u?—
k? = 0. From (2.148), using (2.138) we have

[ . ] 2 . ,U,S
I = /dT _pux“— ﬂ(ﬂ"wﬂ—m ) +esV — 7}

= /dT [pudc“ - é(ﬂ“ﬂ — k)2 4 eéV}

Q
—
(o
\]

Pudt — —$V—R%+ esV] (2.149)
L 2y —

Thus

da# 1
Iz", p,) = /d [pu . 2\/: —V—K2+ eV} (2.150)
The last step in eq. (2.149) is valid under the approximation 7#m, < —K2,
where we assume —x2 > 0. In (2.150) we indeed obtain an action which is
equivalent to the gauged Stueckelberg action (2.147) if we make the corre-
spondence 1v/—k2 — A. The constant terms —v/—x2 in (2.150) and Ax2/2
in eq. (2.147) have no influence on the equations of motion.

We have thus found a very interesting relation between the Clifford al-
gebra polyvector action and the Stueckelberg action in the presence of an
electromagnetic and pseudoscalar field. If the electromagnetic field A, does
not depend on the pseudoscalar parameter s and if there is no force owed to
the pseudoscalar field V, then the kinetic momentum squared 7#m, is a con-
stant of motion, and the gauged Clifford algebra action (2.136) is exactly
equivalent to the Stueckelberg action. In the presence of a pseudoscalar
force, i.e., when 0,V # 0 and/or when 0A,/0s # 0, the action (2.136)
is approximately equivalent to the gauged Stueckelberg action (2.147) if
the kinetic momentum squared 7w#7, is much smaller than the scalar mass

constant squared —K2.

2.5. QUANTIZATION OF THE
POLYVECTOR ACTION

We have assumed that a point particle’s classical motion is governed by
the polyvector action (2.56). Variation of this action with respect to A gives
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the polyvector constraint
P? - K?=0. (2.151)

In the quantized theory the position and momentum polyvectors X =
X7e; and P = P’ej, where ey = (1,eu,epen, €56y, €5) , p < v, become the
operators

X =X"ey, P=Pley;, (2.152)
satisfying
(X7, Px] =6k . (2.153)

Using the explicit expressions like (2.53),(2.54) the above equations imply

G,i) =i, [#" D)) =id",, [&", Sap]=i0"0s, (2.154)

(€1 7] = io"y, | [8,10] =i (2.155)

In a particular representation in which X7 are diagonal, the momentum
polyvector operator is represented by the multivector derivative (see Sec.
6.1).

~ 0
Py=—i— 2.1
J Z@XJ ( 56)
Explicitly, the later relation means
. .0 ) .0 g .0 . .0 . .0
m=—i— = —i— =—i—, M, =—t=—, M= —i—.
9o BT Tlggn 0 P T Tlgqm 0 T Tlgen Bs
(2.157)

Let us assume that a quantum state can be represented by a polyvector-
valued wave function ®(X) of the position polyvector X. A possible phys-
ical state is a solution to the equation

(P? - K*)® =0, (2.158)

which replaces the classical constraint (2.151).
When K? = k2 = 0 eq. (2.158) becomes

P2 = 0. (2.159)

Amongst the set of functions ®(X) there are some such that satisfy

P =0. (2.160)
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Let us now consider a special case where ® has definite values of the
operators fi, Sy, f,:

N

pe=0, 5,6=0, #,®=0 (2.161)
Then
Po = (pte, + mes)P = 0. (2.162)
or
(0" —m)® =0, (2.163)
where
Yu = €5€u, V5 = V0V1)273 = €pe1e2e3 = es. (2.164)

When & is an eigenstate of m with definite value m, i.e., when m¢p = m®,
then eq. (2.163) becomes the familiar Dirac equation

(Puy" —m)® = 0. (2.165)

A polyvector wave function which satisfies eq. (2.165) is a spinor. We
have arrived at the very interesting result that spinors can be represented
by particular polyvector wave functions.

3-dimensional case

To illustrate this let us consider the 3-dimensional space V3. Basis vectors
are o1, 0y, o3 and they satisfy the Pauli algebra

;05 = %(O’Z’Jj —i—UjJZ') = (52']' R 1,7 =1,2,3. (2.166)

The unit pseudoscalar
010203 = I (2.167)

commutes with all elements of the Pauli algebra and its square is 12 = —1.
It behaves as the ordinary imaginary unit 7. Therefore, in 3-space, we may
identify the imaginary unit ¢ with the unit pseudoscalar I.

An arbitrary polyvector in V3 can be written in the form

d =+ adlo; +iflo; +if = P’ + dlo; (2.168)

where ®°, ®! are formally complex numbers.
We can decompose [22]:

®=>0i(1+03)+P5(1—03) =D, +D_, (2.169)
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where ® € 7, and ®_ € Z_ are independent minimal left ideals (see Box
3.2).

Box 3.2: Definition of ideal

A left ideal Z7, in an algebra C' is a set of elements such that if a € 7y,
and ¢ € C, then ca € Zy. If a € Iy, b € Iy, then (a +b) € Zp,. A
right ideal Zp is defined similarly except that ac € Zg. A left (right)
minimal ideal is a left (right) ideal which contains no other ideals but
itself and the null ideal.

A basis in Z is given by two polyvectors

Uy = %(1 + 03) , Ug = (1 — 0'3)0‘1 , (2.170)
which satisfy
o3u; = up, o1ul = ug , ooul = tug ,
o3Us = —Us , o1u = U1 , Oolly = —iuUq. (2.171)

These are precisely the well known relations for basis spinors. Thus we
have arrived at the very profound result that the polyvectors w1, us behave
as basis spinors.

Similarly, a basis in Z is given by

1 1
V] = 5(1 +03)O'1 , U = 5(1 — 0'3) (2.172)
and satisfies
o3V = v, o1v1 = V2, oV = V2,
O3V = —V9 , o1V = V1 , o9V = —iv7. (2.173)

A polyvector ® can be written in spinor basis as
= 0luy + Pluy + Loy + D%y, (2.174)
where

oL = o'+ 9%, ol =9 ip?
P = o' +ie?, 92 =9"- 9° (2.175)
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Eq. (2.174) is an alternative expansion of a polyvector. We can expand the
same polyvector ® either according to (2.168) or according to (2.174).
Introducing the matrices

Uy v @ ol ol
gab:(u; U;) @b:(ﬂ ¢2> (2.176)

we can write (2.174) as

o = D¢, (2.177)

Thus a polyvector can be represented as a matriz ®®. The decomposition
(2.169) then reads

O =0y +P_ = (PP + dP)g,, (2.178)

where o 0
Y = (ﬂ 0) , (2.179)
P = (0 q);—) : (2.180)

0 @2

From (2.177) we can directly calculate the matrix elements ®?°. We only
need to introduce the new elements £ which satisfy

% a)s = 6%.8%. (2.181)

(€
The superscript T means Hermitian conjugation [22]. If

A=As+ Ay + A+ Ap (2.182)

is a Pauli number, then

At = Ag+ Ay — A — Ap. (2.183)
This means that the order of basis vectors o; in the expansion of Af is
reversed. Thus uJ{ = wui, but ug = 1(1 + 03)01. Since (u§u1)5 = 1

UTUQ s = l, it is convenient to introduce uTl = 2u; and uT2 = 2us9 so that
(uy 5
(uTlul)g =1, (UTQUQ)S = 1. If we define similar relations for vy, vo then we
obtain (2.181).

From (2.177) and (2.181) we have

Tab

o = (1), . (2.184)
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Here the subscript I means invariant part, i.e., scalar plus pseudoscalar
part (remember that pseudoscalar unit has here the role of imaginary unit
and that ® are thus complex numbers).

The relation (2.184) tells us how from an arbitrary polyvector ® (i.e., a
Clifford number) can we obtain its matriz representation ®°.

® in (2.184) is an arbitrary Clifford number. In particular, ® may be
any of the basis vectors o;.

Ezample ® = o1:

ot = (¢'oy); = (ul'o1)r = (1 +03)01), =0,

¢ = (1)) = (v'01); = (1 - 03)on01), = 1,

e = (¢"01); = (o) = (1 + o3)ouon); = 1,

o2 = (%01); = (W01); = (1 — 03)01); = 0. (2.185)
Therefore

(01)® = ((1) é) : (2.186)

Similarly we obtain from (2.184) when ® = oy and ® = o3, respectively,

that ,
(az)“"z(o. _OZ) , (03)ab=(é _01). (2.187)

i
So we have obtained the matrix representation of the basis vectors o;.

Actually (2.186), (2.187) are the well known Pauli matrices.
When ® = u; and ® = ugy, respectively, we obtain

(u1)®? = ((1) 8) ; (ug)™ = <(1) 8) (2.188)

which are a matrix representation of the basis spinors u; and us.
Similarly we find

(v1)® = (8 (1)) C () = (8 (1)) (2.189)

In general a spinoris a superposition
¥ =¢luy + ¢ ug (2.190)

and its matrix representation is

(s (i; 8) . (2.191)
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Another independent spinor is
X =x'vi + x’v2, (2.192)

with matrix representation
0 1
Y — (0 ;22) (2.193)

If we multiply a spinor ¢ from the left by any element R of the Pauli
algebra we obtain another spinor

Y = Rip — (;ﬁg 8) (2.194)

which is an element of the same minimal left ideal. Therefore, if only
multiplication from the left is considered, a spinor can be considered as a
column matrix

W — (Zj;) . (2.195)

This is just the common representation of spinors. But it is not general
enough to be valid for all the interesting situations which occur in the
Clifford algebra.

We have thus arrived at a very important finding. Spinors are just par-
ticular Clifford numbers: they belong to a left or right minimal ideal. For
instance, a generic spinor is

1
¥ = plu; + Y%y with % = @2 8) . (2.196)
A conjugate spinor is
1% 2%
Pt =l + 2 ul with  (9%)" = (wo T/’O > (2.197)

and it is an element of a minimal right ideal.

4-dimensional case

The above considerations can be generalized to 4 or more dimensions.
Thus

¥ 0 0 0
1
0 0 0
¥ = ug + ¥lug + P us + Piug — 52 P (2.198)
3 0 0 0
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and

w*O w*l w*Q ,¢*3
0 0 0 0
0 0 0 0
0 0 0 0

where ug, u1, ua, us are four basis spinors in spacetime, and %, ¢!, 12, 43
are complex scalar coefficients.

In 3-space the pseudoscalar unit can play the role of the imaginary unit i.
This is not the case of the 4-space Vy, since e5 = egeqese3 does not commute
with all elements of the Clifford algebra in V4. Here the approaches taken by
different authors differ. A straightforward possibility [37] is just to use the
complex Clifford algebra with complex coefficients of expansion in terms of
multivectors. Other authors prefer to consider real Clifford algebra C and
ascribe the role of the imaginary unit ¢ to an element of C which commutes
with all other elements of C and whose square is —1. Others [22, 36] explore
the possibility of using a non-commuting element as a substitute for the
imaginary unit. I am not going to review all those various approaches, but
I shall simply assume that the expansion coefficients are in general complex
numbers. In Sec. 7.2 I explore the possibility that such complex numbers
which occur in the quantized theory originate from the Clifford algebra
description of the (2 x n)-dimensional phase space (z*, p,). In such a way
we still conform to the idea that complex numbers are nothing but special
Clifford numbers.

A Clifford number ¢ expanded according to (2.198) is an element of a
left minimal ideal if the four elements ug, w1, uo, us satisfy

Cuy = Coaug + Crpur + Cozug + Cspug (2.200)

for an arbitrary Clifford number C. General properties of u) were investi-
gated by Teitler [37]. In particular, he found the following representation
for uy:

up = (1—e +ie? —ie?),
wp = —eBug = L(—el® 4 018 4 23 _ g023)
uy = —ietug = H(—ie® —ie® + e 4 M%),
ug = —ielug = j(—ie' —ie®" — e — &), (2.201)
from which we have
6OUQ = —Up,
61’LL0 = ’L'U3 ,
€2U(] = —-us,

Sug = ius. (2.202)
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Using the representation (2.201) we can calculate from (2.200) the matrix
elements €y of any Clifford number. For the spacetime basis vectors e/ =
(€, e'), i =1,2,3, we obtain

-1 0 : 0 o'
60:<0 1>, e’=(wi 0), (2.203)

which is one of the standard matrix representations of e/ (the Dirac matri-
ces).

If a spinor is multiplied from the left by an arbitrary Clifford number, it
remains a spinor. But if is multiplied from the right, it in general transforms
into another Clifford number which is no more a spinor. Scalars, vectors,
bivectors, etc., and spinors can be reshuffled by the elements of Clifford
algebra: scalars, vectors, etc., can be transformed into spinors, and vice
Versa.

Quantum states are assumed to be represented by polyvector wave func-
tions (i.e., Clifford numbers). If the latter are pure scalars, vectors, bivec-
tors, pseudovectors, pseudovectors, and pseudoscalars they describe bosons.
If, on the contrary, wave functions are spinors, then they describe fermions.
Within Clifford algebra we have thus transformations which change bosons
into fermions! It remains to be investigated whether this kind of “super-
symmetry” is related to the well known supersymmetry.

2.6. ON THE SECOND QUANTIZATION OF
THE POLYVECTOR ACTION

If we first quantize the polyvector action (2.117) we obtain the wave
equation
(PP —m? — k%) =0, (2.204)

where

Py = —0/0x" =0, ,m = —i0/0s,

and k is a fixed constant. The latter wave equation can be derived from
the action

2
I[¢] = %/ds A4z p(—0"0), + % — K)o
2
- %/dsddx <8u¢6“¢— (%‘f) _ /-;2(;52), (2.205)

where in the last step we have omitted the surface and the total derivative
terms.
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The canonical momentum is

o _
- 00¢/s  Os

(s, )

(2.206)
and the Hamiltonian is

/dd (7r 9% _ ) _ %/ddx (=2 — 8,001 + K26%). (2.207)
If instead of one field ¢ there are two fields ¢1, ¢o we have

2
I[¢1, ¢o] = /dedx [au¢la“¢1 - (fﬁ) — K23

" 0p2\* 5.0
+ ﬁygbga ¢2 — E — KR (;52 . (2208)
The canonical momenta are
oL 8(;51 oL _%
T 9041 /s . 9s 0 2T 00¢a)s  Os (2.209)

and the Hamiltonian is

H{¢1, ¢2, 1, o] Z/ddx ( %4‘772% —L)

~1 / Al (—1? — 0,10% 1 + K262

— 75 — 020" P + K2P3). (2.210)
Introducing the complex fields
¢ = ¢1+ig2, T =Ty + iTy
OF = ¢1—idy, = m — img (2.211)
we have
/ ds d’z (‘W 0 _ 5,600 — 2¢*¢) (2.212)
and

Hip,¢* 7, 7" /dd -7 — Nd)*@“(ﬁ—{—/{ ¢ P). (2.213)

Comparing the latter Hamiltonian with the one of the Stueckelberg field
theory (1.161), we see that it is the same, except for the additional term
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—7*m which is absent in the Stueckelberg field theory. We see also that
the theory described by (2.212) and (2.213) has the same structure as the
conventional field theory, except for the number of dimensions. In the
conventional theory we have time ¢ and three space-like coordinates
i = 1,2,3, while here we have s and four or more coordinates z*, one of
them being time-like.

As the non-relativistic field theory is an approximation to the relativistic
field theory, so the field theory derived from the Stueckelberg action is an
approximation to the field theory derived from the polyvector action.

On the other hand, at the classical level (as we have seen in Sec. 2.4)
Stueckelberg action, in the absence of interaction, arises exactly from the
polyvector action. Even in the presence of the electromagnetic interaction
both actions are equivalent, since they give the same equations of motion.
However, the field theory based on the latter action differs from the field
theory based on the former action by the term 7*m in the Hamiltonian
(2.213). While at the classical level Stueckelberg and the polyvector action
are equivalent, at the first and the second quantized level differences arise
which need further investigation.

Second quantization then goes along the usual lines: ¢; and 7; becomes
operators satisfying the equal s commutation relations:

[6i(s,2),8i(s,2)] =0, [mi(s,2),m;(s,2')] =0,
[¢i(s,x),m(s,2")] = i6;;6(x — a'). (2.214)
The field equations are then just the Heisenberg equations
7 = i[m;, HJ. (2.215)

We shall not proceed here with formal development, since it is in many
respects just a repetition of the procedure expounded in Sec. 1.4. But we
shall make some remarks. First of all it is important to bear in mind that
the usual arguments about causality, unitarity, negative energy, etc., do not
apply anymore, and must all be worked out again. Second, whilst in the
conventional quantum field theory the evolution parameter is a time-like
coordinate x° = ¢, in the field theory based on (2.212), (2.213) the evo-
lution parameter is the pseudoscalar variable s. In even-dimensions it is
invariant with respect to the Poincaré and the general coordinate trans-
formations of x*, including the inversions. And what is very nice here is
that the (pseudo)scalar parameter s naturally arises from the straightfor-
ward polyvector extension of the conventional reparametrization invariant
theory.

Instead of the Heisenberg picture we can use the Schrodinger picture and
the coordinate representation in which the operators ¢;(0,x) = ¢;(z) are
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diagonal, i.e., they are just ordinary functions. The momentum operator is
represented by functional derivative’

1)
d¢j(x)

mp = —i (2.216)

A state |¥) is represented by a wave functional V[p(x)] = (¢(x)|¥) and
satisfies the Schrodinger equation

oV

Uy HY (2.217)
in which the evolution parameter is s. Of course s is invariant under the
Lorentz transformations, and H contains all four components of the 4-
momentum. Equation (2.217) is just like the Stueckelberg equation, the
difference being that ¥ is now not a wave function, but a wave functional.

We started from the constrained polyvector action (2.117). Performing
the first quantization we obtained the wave equation (2.204) which follows
from the action (2.205) for the field ¢(s,z*). The latter action is uncon-
strained. Therefore we can straightforwardly quantize it, and thus perform
the second quantization. The state vector |¥) in the Schrédinger picture
evolves in s which is a Lorentz invariant evolution parameter. |¥) can be
represented by a wave functional W[s, ¢(x)] which satisfied the functional
Schrodinger equation. Whilst upon the first quantization the equation of
motion for the field ¢(s,z*) contains the second order derivative with re-
spect to s, upon the second quantization only the first order s-derivative
remains in the equation of motion for the state functional ¥[s, ¢(x)].

An analogous procedure is undertaken in the usual approach to quantum
field theory (see, e.g., [38]), with the difference that the evolution parameter
becomes one of the space time coordinates, namely 2 = t. When trying to
quantize the gravitational field it turns out that the evolution parameter ¢
does not occur at all in the Wheeler-DeWitt equation! This is the well
known problem of time in quantum gravity. We anticipate that a sort of
polyvector generalization of the Einstein—Hilbert action should be taken,
which would contain the scalar or pseudoscalar parameter s, and retain it
in the generalized Wheeler-DeWitt equation. Some important research in
that direction has been pioneered by Greensite and Carlini [39]

7A detailed discussion of the Schrédinger representation in field theory is to be found in ref. [38].
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2.7. SOME FURTHER IMPORTANT
CONSEQUENCES OF CLIFFORD
ALGEBRA

RELATIVITY OF SIGNATURE

In previous sections we have seen how Clifford algebra can be used in the
formulation of the point particle classical and quantum theory. The metric
of spacetime was assumed, as usually, to have the Minkowski signature,
and we have used the choice (+ — ——). We are now going to find out that
within Clifford algebra the signature is a matter of choice of basis vectors
amongst available Clifford numbers.

Suppose we have a 4-dimensional space V; with signature (+ + + +).
Let e,, 1 =0,1,2,3, be basis vectors satisfying

ey ey = %(eue,, +evey) = 0u (2.218)

where d,, is the Euclidean signature of V4. The vectors e, can be used
as generators of Clifford algebra C over Vy with a generic Clifford number
(also called polyvector or Clifford aggregate) expanded in term of e; =

(Leuaeuuaeuuauem/aﬁ), p<r<al 0,
A=dale;=a+ ale, +a'e,e, + at e e eq + a“”o‘ﬁeueyeaeg. (2.219)

Let us consider the set of four Clifford numbers (eq, e;eg), i = 1,2, 3, and
denote them as
€0 = "o,
eeo = Vi (2.220)
The Clifford numbers v, u = 0, 1,2, 3, satisfy

30w + 1) = v (2.221)

where 7, = diag(1, —1, -1, —1) is the Minkowski tensor. We see that the
7u behave as basis vectors in a 4-dimensional space Vi3 with signature
(+ — ——). We can form a Clifford aggregate

a=aly, (2.222)

which has the properties of a vector in Vi 3. From the point of view of the
space V4 the same object « is a linear combination of a vector and bivector:

a = aley + ale;ep. (2.223)

We may use v, as generators of the Clifford algebra C; 3 defined over
the pseudo-Euclidean space Vi3. The basis elements of Ci3 are v; =
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(1, %, Vs Yuvas Yuvas)s With p < v < a < . A generic Clifford aggre-
gate in C; 3 is given by

B = bJ’YJ = b+ by, + 0y 4+ B e + b“”aﬁvuvuya'yg. (2.224)

With suitable choice of the coefficients b7 = (b, b, b*, b, b5 we have
that B of eq. (2.224) is equal to A of eq.(2.219). Thus the same number A
can be described either within C4 or within C; 3. The expansions (2.224)
and (2.219) exhaust all possible numbers of the Clifford algebras C; 3 and
C4. The algebra Cy 3 is isomorphic to the algebra C4, and actually they are
just two different representations of the same set of Clifford numbers (also
being called polyvectors or Clifford aggregates).
As an alternative to (2.220) we can choose

eoes = Yo,
e = A (2.225)
from which we have
3G + o) = v (2.226)

with 7,, = diag(—1,1,1,1). Obviously 4, are basis vectors of a pseudo-
Fuclidean space 171,3 and they generate the Clifford algebra over 17173 which
is yet another representation of the same set of objects (i.e., polyvectors).
But the spaces V4, V13 and ‘7173 are not the same and they span different
subsets of polyvectors. In a similar way we can obtain spaces with signa-
tures (+ —4++), (++—+), (++4+-), (=+—), (= —+-), (= ——+) and
corresponding higher dimensional analogs. But we cannot obtain signatures
of the type (+ 4+ ——), (+ — +—), etc. In order to obtain such signatures
we proceed as follows.

4-space. First we observe that the bivector I = esey satisfies I? = —1,
commutes with ey, eg and anticommutes with ez, e4. So we obtain that the
set of Clifford numbers v, = (e1/, e21, e3, e3) satisfies

Vo Vo = Nuv (2.227)

where 77 = diag(—1,—1,1,1).
8-space. Let e4 be basis vectors of 8-dimensional vector space with
signature (+ + + + + + + +). Let us decompose

eA:(e,Lueﬁ>7 noo= 07172737
i o= 0,1,2,3. (2.228)

The inner product of two basis vectors

eA-ep = 0AB, (2.229)
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then splits into the following set of equations:

.ey
.el_/

- ey

The number I = egejeses has the properties

89

5#1/ ’

5/117 )

0. (2.230)
L
eud,
—enl (2.231)
€u

enl (2.232)
5;“/ ’

_5;]5 )

0. (2.233)

The numbers (., vz) thus form a set of basis vectors of a vector space Vj 4

72
Te,
Ieﬂ
The set of numbers
Yu
Yo
satisfies
TR
Vi - Vo
Tu Vi
with signature (+ ++ 4+ — — ——).
10-space.

Let eq = (ey,ep), b =1,2,3,4,5; i = 1,2,3,4,5 be basis

vectors of a 10-dimensional Euclidean space Vio with signature (+ + + ....).

Then the Clifford numbers

satisfy

T -
Y-
T -

L,
—Ie, ,
Iej. (2.234)
el ,
ey (2.235)
5,ulz )
5/217 )
0. (2.236)
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The set ya4 = (v, vu) therefore spans the vector space of signature (— —
—— =+ ++++).

The examples above demonstrate how vector spaces of various signatures
are obtained within a given set of polyvectors. Namely, vector spaces of dif-
ferent signature are different subsets of polyvectors within the same Clifford
algebra.

This has important physical implications. We have argued that physical
quantities are polyvectors (Clifford numbers or Clifford aggregates). Phys-
ical space is then not simply a vector space (e.g., Minkowski space), but a
space of polyvectors. The latter is a pandimensional continuum P [23] of
points, lines, planes, volumes, etc., altogether. Minkowski space is then just
a subspace with pseudo-Euclidean signature. Other subspaces with other
signatures also exist within the pandimensional continuum P and they all
have physical significance. If we describe a particle as moving in Minkowski
spacetime V; 3 we consider only certain physical aspects of the object con-
sidered. We have omitted its other physical properties like spin, charge,
magnetic moment, etc.. We can as well describe the same object as moving
in an Fuclidean space V4. Again such a description would reflect only a
part of the underlying physical situation described by Clifford algebra.

GRASSMAN NUMBERS FROM CLIFFORD
NUMBERS

In Sec. 2.5 we have seen that certain Clifford aggregates are spinors.
Now we shall find out that also Grassmann (anticommuting) numbers are
Clifford aggregates. As an example let us consider 8-dimensional space Vj 4
with signature (+ — — — — 4+ ++) spanned by basis vectors 4 = (Y4, V)
The numbers

9# %(7# + ’7/7«)’
0l = 3(u—m) (2.237)
satisfy
{0,,6,} = {0,605} =0, (2.238)
{6,100} = nuw (2.239)

where {A, B} = AB+ BA. From (2.238) we read out that 6, anticommute
among themselves and are thus Grassmann numbers. Similarly GL form a
set of Grassmann numbers. But, because of (2.239), 6,, and GL altogether
do not form a set of Grassmann numbers. They form yet another set of
basis elements which generate Clifford algebra.
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A Clifford number in V4 can be expanded as

A1A2 AlAQ.

C=c+ cAl’yA1 +c YA, YAy, + ...+ ¢C "AB’yAlfyAQ...fyAg. (2.240)

Using (2.237), the same Clifford number C' can be expanded in terms of 6,,,
o1 :
"

C=c + a0,+a"0,0,+a"0,0,0, + a"0,0,0.05
+ @, +amolof + ameololel + arerel ol o,
+ (mixed terms like HLGZ,, etc.) (2.241)
where the coefficients a*, a*”, ...,a*,a"”... are linear combinations of coef-

ficients ¢, ¢Aidi ...

In a particular case, coefficients ¢, a*, a*¥, etc., can be zero and our
Clifford number is then a Grassmann number in 4-space:

€= a0, + a" 0,0, + a"0,0,0, + a"*P0,0,0.,05. (2.242)

Grassmann numbers expanded according to (2.242), or analogous expres-
sions in dimensions other than 4, are much used in contemporary theoret-
ical physics. Recognition that Grassmann numbers can be considered as
particular numbers within a more general set of numbers, namely Clifford
numbers (or polyvectors), leads in my opinion to further progress in un-
derstanding and development of the currently fashionable supersymmetric
theories, including superstrings, D-branes and M -theory.

We have seen that a Clifford number C' in 8-dimensional space can be
expanded in terms of the basis vectors (v,,vz) or (6., GL) Besides that,
one can expand C also in terms of (7y,,8,):

C=c + b+ "% + V7 Ya + VP70
+ B0, + 50,0, + 3"0,0,0, + 3'*P0,0,0,05
+ (mixed terms such as 6,7, etc.). (2.243)

The basic vectors 7, span the familiar 4-dimensional spacetime, while 6,
span an extra space, often called Grassmann space. Usually it is stated
that besides four spacetime coordinates x* there are also four extra Grass-
mann coordinates 6, and their conjugates HL or éu = VOGL- This should be
contrasted with the picture above in which 6, are basis vectors of an extra
space, and not coordinates.
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2.8. THE POLYVECTOR ACTION AND
DE WITT-ROVELLI MATERIAL
REFERENCE SYSTEM

Following an argument by Einstein [42], that points of spacetime are
not a priori distinguishable, DeWitt [25] introduced a concept of reference
fluid. Spacetime points are then defined with respect to the reference fluid.
The idea that we can localize points by means of some matter has been
further elaborated by Rovelli [26]. As a starting model he considers a
reference system consisting of a single particle and a clock attached to
it. Besides the particle coordinate variables X#(7) there is also the clock
variable T'(7), attached to the particle, which grows monotonically along
the particle trajectory. Rovelli then assumes the following action for the
variables X*(1), T(T):

dx*dX, 1 (dT)2>1/2. (2.244)

H = el AU
I[x#, 1 m/dT<dT dr w? \ dr

If we make replacement m — k and T'/w — s the latter action reads
N 1/2
I[X", 5] = / drr (X1X, - 52) ? (2.245)

If, on the other hand, we start from the polyvector action (2.117) and
eliminate m, p,, A by using the equations of motion, we again obtain the
action (2.245). Thus the pseudoscalar variable s(T) entering the polyvector
action may be identified with Rovelli’s clock wvariable. Although Rovelli
starts with a single particle and clock, he later fills space with these objects.
We shall return to Rovelli’s reference systems when we discuss extended
objects.



