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Chapter 4

GENERAL PRINCIPLES OF MEMBRANE

KINEMATICS AND DYNAMICS

We are now going to extend our system. Instead of point particles
we shall consider strings and higher-dimensional membranes. These ob-
jects are nowadays amongst the hottest topics in fundamental theoretical
physics. Many people are convinced that strings and accompanying higher-
dimensional membranes provide a clue to unify physics [51]. In spite of
many spectacular successes in unifying gravity with other interactions, there
still remain open problems. Amongst the most serious is perhaps the prob-
lem of a geometrical principle behind string theory [52]. The approach
pursued in this book aims to shed some more light on just that problem.
We shall pay much attention to the treatment of membranes as points in an
infinite-dimensional space, called membrane spaceM. When pursuing such
an approach the researchers usually try to build in right from the beginning
a complication which arises from reparametrization invariance (called also
diffeomorphism invariance). Namely, the same n-dimensional membrane
can be represented by different sets of parametric equations xµ = Xµ(ξa),
where functionsXµ map a membrane’s parameters (also called coordinates)
ξa, a = 1, 2, ..., n, into spacetime coordinates xµ, µ = 0, 1, 2, ..., N − 1. The
problem is then what are coordinates of the membrane spaceM? If there
were no complication caused by reparametrization invariance, then the
Xµ(ξa) would be coordinates of M-space. But because of reparametriza-
tion invariance such a mapping from a point in M (a membrane) to its
coordinates Xµ(ξ) is one-to-many. So far there is no problem: a point in
any space can be represented by many different possible sets of coordinates,
and all those different sets are related by coordinate transformations or dif-
feomorphisms. Since the latter transformations refer to the same point they
are called passive coordinate transformations or passive diffeomorphisms.
The problem occurs when one brings into the game active diffeomorphisms

107



108 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

which refer to different points of the space in question. In the case of
membrane space M active diffeomorphisms would imply the existence of
tangentially deformed membranes. But such objects are not present in a
relativistic theory of membranes, described by the minimal surface action
which is invariant under reparametrizations of ξa.

The approach pursued here is the following. We shall assume that at the
kinematic level such tangentially deformed membranes do exist [53]. When
considering dynamics it may happen that a certain action and its equa-
tions of motion exclude tangential motions within the membrane. This is
precisely what happens with membranes obeying the relativistic minimal
surface action. But the latter dynamical principle is not the most general
one. We can extend it according to geometric calculus based on Clifford
algebra. We have done so in Chapter 2 for point particles, and now we
shall see how the procedure can be generalized to membranes of arbitrary
dimension. And we shall find a remarkable result that the polyvector gen-
eralization of the membrane action allows for tangential motions of mem-
branes. Because of the presence of an extra pseudoscalar variable entering
the polyvector action, the membrane variables Xµ(ξ) and the correspond-
ing momenta become unconstrained; tangentially deformed membranes are
thus present not only at the kinematic, but also at the dynamical level. In
other words, such a generalized dynamical principle allows for tangentially
deformed membranes.

In the following sections I shall put the above description into a more
precise form. But in the spirit of this book I will not attempt to achieve
complete mathematical rigor, because for most readers this would be at
the expense of seeing the main outline of my proposal of how to formulate
membrane’s theory

4.1. MEMBRANE SPACE M

The basic kinematically possible objects of the theory we are going to
discuss are n-dimensional, arbitrarily deformable, and hence unconstrained,
membranes Vn living in an N -dimensional space VN . The dimensions n
and N , as well as the corresponding signatures, are left unspecified at this
stage. An unconstrained membrane Vn is represented by the embedding
functions Xµ(ξa), µ = 0, 1, 2, ..., N − 1, where ξa, a = 0, 1, 2, ..., n − 1, are
local parameters (coordinates) on Vn. The set of all possible membranes Vn,
with n fixed, forms an infinite-dimensional spaceM. A membrane Vn can
be considered as a point inM parametrized by coordinates Xµ(ξa) ≡ Xµ(ξ)

which bear a discrete index µ and n continuous indices ξa. To the discrete
index µ we can ascribe arbitrary numbers: instead of µ = 0, 1, 2, ..., N − 1
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we may set µ′ = 1, 2, ..., N or µ′ = 2, 5, 3, 1, ..., etc.. In general,

µ′ = f(µ), (4.1)

where f is a transformation. Analogously, a continuous index ξa can be
given arbitrary continuous values. Instead of ξa we may take ξ′a which are
functions of ξa :

ξ′a = fa(ξ). (4.2)

As far as we consider, respectively, µ and ξa as a discrete and a con-
tinuous index of coordinates Xµ(ξ) in the infinite-dimensional space M,
reparametrization of ξa is analogous to a renumbering of µ. Both kinds of
transformations, (4.1) and (4.2), refer to the same point of the spaceM;
they are passive transformations. For instance, under the action of (4.2)
we have

X ′µ(ξ′) = X ′µ (f(ξ)) = Xµ(ξ) (4.3)

which says that the same point Vn can be described either by functions
Xµ(ξ) or X ′µ(ξ) (where we may write X ′µ(ξ) instead of X ′µ(ξ′) since ξ′ is
a running parameter and can be renamed as ξ).

Then there also exist the active transformations, which transform one
point of the space M into another. Given a parametrization of ξa and a
numbering of µ, a point Vn of M with coordinates Xµ(ξ) can be trans-
formed into another point V ′n with coordinates X ′µ(ξ). Parameters ξa are
now considered as “body fixed”, so that distinct functions Xµ(ξ), X ′µ(ξ)
represent distinct points Vn, V ′n ofM. Physically these are distinct mem-
branes which may be deformed one with respect to the other. Such a
membrane is unconstrained, since all coordinates Xµ(ξ) are necessary for
its description [53]–[55]. In order to distinguish an unconstrained mem-
brane Vn from the corresponding mathematical manifold Vn we use different
symbols Vn and Vn.

It may happen, in particular, that two distinct membranes Vn and V ′n
both lie on the same mathematical surface Vn, and yet they are physically
distinct objects, represented by different points inM.

The concept of an unconstrained membrane can be illustrated by imagin-
ing a rubber sheet spanning a surface V2. The sheet can be deformed from
one configuration (let me call it V2) into another configuration V ′2 in such
a way that both configurations V2, V ′2 are spanning the same surface V2.
The configurations V2, V ′2 are described by functions X i(ξ1, ξ2), X ′i(ξ1, ξ2)
(i = 1, 2, 3), respectively. The latter functions, from the mathematical point
of view, both represent the same surface V2, and can be transformed one
into the other by a reparametrization of ξ1, ξ2. But from the physical point
of view, X i(ξ1, ξ2) and X ′i(ξ1, ξ2) represent two different configurations of
the rubber sheet (Fig. 4.1).
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Figure 4.1. Examples of tangentially deformed membranes. Mathematically the surfaces
on the right are the same as those on the left, but physically they are different.

The reasoning presented in the last few paragraphs implies that, since
our membranes are assumed to be arbitrarily deformable, different functions
Xµ(ξ) can always represent physically different membranes. This justifies
use of the coordinates Xµ(ξ) for the description of points in M. Later,
when we consider a membrane’s kinematics and dynamics we shall admit
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τ -dependence of coordinates Xµ(ξ). In this section all expressions refer to
a fixed value of τ , therefore we omit it from the notation.

In analogy with the finite-dimensional case we can introduce the distance
d` in our infinite-dimensional spaceM :

d`2 =

∫
dξ dζρµν(ξ, ζ) dX

µ(ξ) dXν(ζ)

= ρµ(ξ)ν(ζ) dX
µ(ξ) dXν(ζ) = dXµ(ξ)dXµ(ξ), (4.4)

where ρµν(ξ, ζ) = ρµ(ξ)ν(ζ) is the metric in M. In eq. (4.4) we use a no-
tation, similar to one that is usually used when dealing with more evolved
functional expressions [56], [57]. In order to distinguish continuous indices
from discrete indices, the former are written within parentheses. When we
write µ(ξ) as a subscript or superscript this denotes a pair of indices µ and
(ξ) (and not that µ is a function of ξ). We also use the convention that
summation is performed over repeated indices (such as a, b) and integration
over repeated continuous indices (such as (ξ), (ζ)).

The tensor calculus in M [54, 55] is analogous to that in a finite-
dimensional space. The differential of coordinates dXµ(ξ) ≡ dXµ(ξ) is
a vector in M. The coordinates Xµ(ξ) can be transformed into new coor-
dinates X ′µ(ξ) which are functionals of Xµ(ξ) :

X ′µ(ξ) = F µ(ξ)[X]. (4.5)

The transformation (4.5) is very important. It says that if functions Xµ(ξ)
represent a membrane Vn then any other functions X ′µ(ξ) obtained from
Xµ(ξ) by a functional transformation also represent the same membrane
Vn. In particular, under a reparametrization of ξa the functions Xµ(ξ)
change into new functions; a reparametrization thus manifests itself as a
special functional transformation which belongs to a subclass of the general
functional transformations (4.5).

Under a general coordinate transformation (4.5) a generic vector Aµ(ξ) ≡
Aµ(ξ) transforms as1

Aµ(ξ) =
∂X ′µ(ξ)

∂Xν(ζ)
Aν(ζ) ≡

∫
dζ
δX ′µ(ξ)
δXν(ζ)

Aν(ζ) (4.6)

where δ/δXµ(ξ) denotes the functional derivative (see Box 4.1). Similar
transformations hold for a covariant vector Aµ(ξ), a tensor Bµ(ξ)ν(ζ), etc..

1A similar formalism, but for a specific type of the functional transformations (4.5), namely the
reparametrizations which functionally depend on string coordinates, was developed by Bardakci
[56]



112 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

Indices are lowered and raised, respectively, by ρµ(ξ)ν(ζ) and ρµ(ξ)ν(ζ), the
latter being the inverse metric tensor satisfying

ρµ(ξ)α(η)ρα(η)ν(ζ) = δµ(ξ)ν(ζ). (4.7)

Box 4.1: Functional derivative

Let Xµ(ξ) be a function of ξ ≡ ξa. The functional derivative of a
functional F [Xµ(ξ)] is defined according to

δF

δXν(ξ′)
= lim

ε→0

F [Xµ(ξ) + εδ(ξ − ξ′)δµν ]− F [Xµ(ξ)]

ε
(4.8)

Examples

1) F = Xµ(ξ)

δF

δXν(ξ)
= δ(ξ − ξ′)δµν

2) F = ∂aX
µ(ξ)

δF

δXν(ξ)
= ∂aδ(ξ − ξ′)δµν

3) F = λ(ξ) ∂aX
µ(ξ)

δF

δXν(ξ)
= λ(ξ)

δ∂aX
µ(ξ)

δXν(ξ′)(
in general

δ

δXν(ξ′)
(λ(ξ)F [X]) = λ(ξ)

δF

δXν(ξ)

)

4) F = ∂aX
µ(ξ)∂bXµ(ξ)

δF

δXν(ξ)
= ∂aδ(ξ − ξ′)∂bXν + ∂bδ(ξ − ξ′)∂aXν
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A suitable choice of the metric — assuring the invariance of the line
element (4.4) under the transformations (4.2) and (4.5) — is, for instance,

ρµ(ξ)ν(ζ) =
√
|f |α gµνδ(ξ − ζ), (4.9)

where f ≡ det fab is the determinant of the induced metric

fab ≡ ∂aXα∂bX
β gαβ (4.10)

on the sheet Vn, gµν is the metric tensor of the embedding space VN , and
α an arbitrary function of ξa.

With the metric (4.9) the line element (4.4) becomes

d`2 =

∫
dξ
√
|f |α gµν dXµ(ξ)dXν(ξ). (4.11)

Rewriting the abstract formulas back into the usual notation, with explicit
integration, we have

Aµ(ξ) = Aµ(ξ), (4.12)

Aµ(ξ) = ρµ(ξ)ν(ζ)A
ν(ζ)

=

∫
dζ ρµν(ξ, ζ)A

ν(ξ) =
√
|f |α gµνAν(ξ). (4.13)

The inverse metric is

ρµ(ξ)ν(ζ) =
1

α
√
|f | g

µνδ(ξ − ζ). (4.14)

Indeed, from (4.7), (4.9) and (4.14) we obtain

δµ(ξ)ν(ζ) =

∫
dη gµσgνσ δ(ξ − η)δ(ζ − η) = δµνδ(ξ − ζ). (4.15)

The invariant volume element (measure) of our membrane space M is
[58]

DX = (Det ρµν(ξ, ζ))
1/2
∏

ξ,µ

dXµ(ξ). (4.16)

Here Det denotes a continuum determinant taken over ξ, ζ as well as over
µ, ν. In the case of the diagonal metric (4.9) we have

DX =
∏

ξ,µ

(√
|f |α |g|

)1/2

dXµ(ξ) (4.17)
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As can be done in a finite-dimensional space, we can now also define the
covariant derivative in M. For a scalar functional A[X(ξ)] the covariant
functional derivative coincides with the ordinary functional derivative:

A;µ(ξ) =
δA

δXµ(ξ)
≡ A,µ(ξ). (4.18)

But in general a geometric object in M is a tensor of arbitrary rank,
Aµ1(ξ1)µ2(ξ2)...ν1(ζ1)ν2(ζ2)..., which is a functional of Xµ(ξ), and its covariant

derivative contains the affinity Γ
µ(ξ)
ν(ζ)σ(η) composed of the metric (4.9) [54,

55]. For instance, for a vector we have

Aµ(ξ);ν(ζ) = Aµ(ξ),ν(ζ) + Γ
µ(ξ)
ν(ζ)σ(η)A

σ(η). (4.19)

Let the alternative notations for ordinary and covariant functional deriva-
tive be analogous to those used in a finite-dimensional space:

δ

δXµ(ξ)
≡ ∂

∂Xµ(ξ)
≡ ∂µ(ξ) ,

D

DXµ(ξ)
≡ D

DXµ(ξ)
≡ Dµ(ξ). (4.20)

4.2. MEMBRANE DYNAMICS

In the previous section I have considered arbitrary deformable mem-
branes as kinematically possible objects of a membrane theory. A mem-
brane, in general, is not static, but is assumed to move in an embedding
space VN . The parameter of evolution (“time”) will be denoted τ . Kine-
matically every continuous trajectory Xµ(τ, ξa) ≡ Xµ(ξ)(τ) is possible in
principle. A particular dynamical theory then selects which amongst those
kinematically possible membranes and trajectories are also dynamically
possible. In this section I am going to describe the theory in which a dy-
namically possible trajectory Xµ(ξ)(τ) is a geodesic in the membrane space
M.

MEMBRANE THEORY AS A FREE FALL IN
M-SPACE

LetXα(ξ) be τ -dependent coordinates of a point inM-space and ρα(ξ′)β(ξ′′)
an arbitrary fixed metric inM. From the point of view of a finite-dimensional
space VN the symbol Xα(ξ) ≡ Xα(ξ) represents an n-dimensional membrane
embedded in VN . We assume that every dynamically possible trajectory



General principles of membrane kinematics and dynamics 115

Xα(ξ)(τ) satisfies the variational principle given by the action

I[Xα(ξ)] =

∫
dτ ′

(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)
)1/2

. (4.21)

This is just the action for a geodesic inM-space.
The equation of motion is obtained if we functionally differentiate (4.21)

with respect to Xα(ξ)(τ):

δI

δXµ(ξ)(τ)
=

∫
dτ ′

1

µ1/2
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′′) d

dτ ′
δ(τ − τ ′)δ(ξ)(ξ

′)

+
1

2

∫
dτ ′

1

µ1/2

(
δ

δXµ(ξ)(τ)
ρα(ξ′)β(ξ′′)

)
Ẋα(ξ′′)Ẋβ(ξ′′) = 0, (4.22)

where
µ ≡ ρα(ξ′)β(ξ′′)Ẋα(ξ′)Ẋβ(ξ′′) (4.23)

and
δ(ξ)

(ξ′) ≡ δ(ξ − ξ′). (4.24)

The integration over τ in the first term of eq. (4.22) can be easily performed
and eq. (4.22) becomes

δI

δXµ(ξ)(τ)
= − d

dτ

(
ρα(ξ′)µ(ξ)Ẋ

α(ξ′)

µ1/2

)

+
1

2

∫
dτ ′

1

µ1/2

(
δ

δXµ(ξ)(τ)
ρα(ξ′)β(ξ′′)

)
Ẋα(ξ′)Ẋβ(ξ′′) = 0.

(4.25)
Some exercises with such a variation are performed in Box 4.2, where we
use the notation ∂µ(τ,ξ) ≡ δ/δXµ(τ, ξ).

If the expression for the metric ρα(ξ′)β(ξ′′) does not contain the velocity

Ẋµ, then eq. (4.25) further simplifies to

− d

dτ

(
Ẋµ(ξ)

)
+

1

2
∂µ(ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = 0. (4.26)

This can be written also in the form

dẊµ(ξ)

dτ
+ Γµ(ξ)α(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = 0, (4.27)

which is a straightforward generalization of the usual geodesic equation
from a finite-dimensional space to an infinite-dimensionalM-space.

The metric ρα(ξ′)β(ξ′′) is arbitrary fixed background metric of M-space.
Choice of the latter metric determines, from the point of view of the em-
bedding space VN , a particular membrane theory. But from the viewpoint



116 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

Box 4.2: Excercises with variations and functional derivatives

1) I[Xµ(τ)] =
1

2

∫
dτ ′ Ẋµ(τ ′)Ẋν(τ ′)ηµν

δI

δXα(τ)
=

∫
dτ ′ Ẋµ(τ ′)

δẊν(τ ′)
δXα(τ)

ηµν

=

∫
dτ ′ Ẋα(τ

′)
d

dτ ′
δ(τ − τ ′) = − d

dτ ′
Ẋα

2) I[Xµ(τ, ξ)] =
1

2

∫
dτ ′dξ′

√
|f(ξ′)| Ẋµ(τ ′, ξ′)Ẋν(τ ′, ξ′)ηµν

δI

δXα(τ, ξ)
=

1

2

∫
dτ ′ dξ′

δ
√
|f(τ ′, ξ′)|

δXα(τ ′, ξ′)
Ẋ2(τ ′, ξ′)

+
1

2

∫
dτ ′ dξ′

√
|f(τ ′, ξ′)|2Ẋµ δẊν

δẊα(τ, ξ)
ηµν

=
1

2

∫
dτ ′dξ′

√
|f(τ ′, ξ′)|∂′aXα∂

′
aδ(ξ − ξ′)δ(τ − τ ′)Ẋ2(τ ′, ξ′)

+

∫
dτ ′dξ′

√
|f(τ ′, ξ′)|Ẋα(τ

′, ξ′)
d

dτ ′
δ(τ − τ ′)δ(ξ − ξ′)

= −1

2
∂a

(√
|f |∂aXα Ẋ

2
)
− d

dτ

(√
|f |Ẋα

)

3) I =

∫
dτ ′ (ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) +K)

δI

δXµ(ξ)(τ)
=

1

2

∫
dτ ′
[
∂µ(τ,ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)

+2ρα(ξ′)β(ξ′′)
d

dτ ′
δ(τ − τ ′)δ(ξ − ξ′)δµαẊβ(ξ′′) + ∂µ(τ,ξ)K

]

= − d

dτ
(ρµ(ξ)β(ξ′′)Ẋ

β(ξ′′))+
1

2

∫
dτ ′
[
∂µ(τ,ξ)ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)+∂µ(τ,ξ)K

]

(continued)
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Box 4.2 (continued)

a) ρα(ξ′)β(ξ′′) =
κ
√
|f(ξ′)|
λ(ξ′)

δ(ξ′ − ξ′′)ηαβ , K =

∫
dξ
√
|f |κλ

δI

δXµ(ξ)(τ)
= − d

dτ

(
κ
√
|f |
λ

Ẋµ

)
− 1

2
∂a

(
κ
√
|f |∂aXµ Ẋ

2

λ

)

−1

2
∂a(κ

√
|f |∂aXµ λ)

δI

λ(ξ)
= 0 ⇒ λ2 = ẊαẊα

⇒ d

dτ

(
κ
√
|f |√
Ẋ2

Ẋµ

)
+ ∂a(κ

√
|f |∂aXµ

√
Ẋ2) = 0

b) ρα(ξ′)β(ξ′′) =
κ
√
|f(ξ′)|√
Ẋ2(ξ′)

δ(ξ′−ξ′′)ηαβ , K =

∫
dξ
√
|f |κ

√
Ẋ2

∂µ(τ,ξ)ρα(ξ′)β(ξ′′) = κ
δ
√
|f(τ ′, ξ′)|

δXµ(τ, ξ)

1√
Ẋ2(τ ′, ξ′)

ηαβδ(ξ
′ − ξ′′)

+κ
√
|f(τ ′, ξ′)| δ

δXµ(τ, ξ)

(
1√

Ẋ2(τ ′, ξ′)

)
ηαβδ(ξ

′ − ξ′′)

= κ
√
|f(τ ′, ξ′)| ∂′aXµ

∂′aδ(ξ − ξ′)δ(τ − τ ′)√
Ẋ2

ηαβ δ(ξ
′ − ξ′′)

−κ
√
|f(τ ′, ξ′)| Ẋµ(ξ

′)

Ẋ2(ξ′))3/2
δ(ξ − ξ′)δ(ξ′ − ξ′′) d

dτ ′
δ(τ − τ ′)ηαβ

∫
dτ ′

δρα(ξ′)β(ξ′′)

δXµ(ξ)(τ)
Ẋα(ξ′)Ẋβ(ξ′′)

= −κ ∂a(
√
|f |∂aXµ

√
Ẋ2) + κ

d

dτ

(√
|f | Ẋµ√

Ẋ2

)

∫
dτ ′

δK

δXµ(ξ)(τ)
= −κ ∂a(

√
|f |∂aXµ

√
Ẋ2)− κ d

dτ

(√
|f | Ẋµ√

Ẋ2

)
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of M-space there is just one membrane theory in a background metric
ρα(ξ′)β(ξ′′) which is an arbitrary functional of Xµ(ξ)(τ).

Suppose now that the metric is given by the following expression:

ρα(ξ′)β(ξ′′) = κ

√
|f(ξ′)|√
Ẋ2(ξ′)

δ(ξ′ − ξ′′)ηαβ , (4.28)

where Ẋ2(ξ′) ≡ Ẋµ(ξ′)Ẋµ(ξ
′), and κ is a constant. If we insert the latter

expression into the equation of geodesic (4.22) and take into account the
prescriptions of Boxes 4.1 and 4.2, we immediately obtain the following
equations of motion:

d

dτ

(
1

µ1/2

√
|f |√
Ẋ2

Ẋµ

)
+

1

µ1/2
∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.29)

The latter equation can be written as

µ1/2
d

dτ

(
1

µ1/2

) √
|f |√
Ẋ2

Ẋµ +
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
+ ∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0.

(4.30)

If we multiply this by Ẋµ and assume that
√
|f |
√
Ẋ2 6= 0 we obtain

1

2

dµ

dτ
=

1
√
|f |
√
Ẋ2

[
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
Ẋµ + ∂a(

√
|f |∂aXµ

√
Ẋ2)Ẋµ

]

=
1

√
|f |
√
Ẋ2

[
d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
Ẋµ −

√
|f |
√
Ẋ2∂aXµ∂aẊ

µ

]

=
1

√
|f |
√
Ẋ2

[√
Ẋ2

d
√
|f |

dτ
+
√
|f | d

dτ

(
Ẋµ√
Ẋ2

)
Ẋµ

−
√
Ẋ2

d

dτ

√
|f |
]

= 0. (4.31)

In the above calculation we have used the relations

d
√
|f |

dτ
=
∂
√
|f |

∂fab
ḟab =

√
|f | fab∂aẊµ∂bXµ =

√
|f | ∂aXµ∂aẊ

µ (4.32)

and
Ẋµ√
Ẋ2

Ẋµ

√
Ẋ2

= 1 ⇒ d

dτ

(
Ẋµ√
Ẋ2

)
Ẋµ = 0. (4.33)
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We have thus seen that the equations of motion (4.29) automatically
imply

dµ

dτ
= 0 or

d
√
µ

dτ
= 0 , µ 6= 0. (4.34)

Therefore, instead of (4.29) we can write

d

dτ

(√
|f |√
Ẋ2

Ẋµ

)
+ ∂a

(√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.35)

This is precisely the equation of motion of the Dirac-Nambu-Goto mem-
brane of arbitrary dimension. The latter objects are nowadays known as
p-branes, and they include point particles (0-branes) and strings (1-branes).
It is very interesting that the conventional theory of p-branes is just a par-
ticular case —with the metric (4.28)— of the membrane dynamics given by
the action (4.21).

The action (4.21) is by definition invariant under reparametrizations of
ξa. In general, it is not invariant under reparametrization of the evolution
parameter τ . If the expression for the metric ρα(ξ′)β(ξ′′) does not contain

the velocity Ẋµ then the invariance of (4.21) under reparametrizations of τ
is obvious. On the contrary, if ρα(ξ′)β(ξ′′) contains Ẋ

µ then the action (4.21)
is not invariant under reparametrizations of τ . For instance, if ρα(ξ′)β(ξ′′)
is given by eq. (4.28), then, as we have seen, the equation of motion auto-
matically contains the relation

d

dτ

(
Ẋµ(ξ)Ẋµ(ξ)

)
≡ d

dτ

∫
dξ κ

√
|f |
√
Ẋ2 = 0. (4.36)

The latter relation is nothing but a gauge fixing relation, where by “gauge”
we mean here a choice of parameter τ . The action (4.21), which in the case
of the metric (4.28) is not reparametrization invariant, contains the gauge
fixing term. The latter term is not added separately to the action, but is
implicit by the exponent 1

2 of the expression Ẋµ(ξ)Ẋµ(ξ).

In general the exponent in the Lagrangian is not necessarily 1
2 , but can

be arbitrary:

I[Xα(ξ)] =

∫
dτ
(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′)
)a
. (4.37)

For the metric (4.28) the corresponding equation of motion is

d

dτ

(
aµa−1

κ
√
|f |√
Ẋ2

Ẋµ

)
+ aµa−1∂a

(
κ
√
|f |
√
Ẋ2∂aXµ

)
= 0. (4.38)

For any a which is different from 1 we obtain a gauge fixing relation which
is equivalent to (4.34), and the same equation of motion (4.35). When
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a = 1 we obtain directly the equation of motion (4.35), and no gauge fixing
relation (4.34). For a = 1 and the metric (4.28) the action (4.37) is invariant
under reparametrizations of τ .

We shall now focus our attention to the action

I[Xα(ξ)] =

∫
dτ ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′) =

∫
dτ dξ κ

√
|f |
√
Ẋ2 (4.39)

with the metric (4.28). It is invariant under the transformations

τ → τ ′ = τ ′(τ), (4.40)

ξa → ξ′a = ξ′a(ξa) (4.41)

in which τ and ξa do not mix.
Invariance of the action (4.39) under reparametrizations (4.40) of the evo-

lution parameter τ implies the existence of a constraint among the canonical
momenta pµ(ξ) and coordinates Xµ(ξ). Momenta are given by

pµ(ξ) =
∂L

∂Ẋµ(ξ)
= 2ρµ(ξ)ν(ξ′)Ẋ

ν(ξ′) +
∂ρα(ξ′)β(ξ′′)

∂Ẋµ(ξ)
Ẋα(ξ′)Ẋβ(ξ′′)

=
κ
√
|f |√
Ẋ2

Ẋµ. (4.42)

By distinsguishing covariant and contravariant components one finds

pµ(ξ) = Ẋµ(ξ) , pµ(ξ) = Ẋµ(ξ). (4.43)

We define
pµ(ξ) ≡ pµ(ξ) ≡ pµ , Ẋµ(ξ) ≡ Ẋµ(ξ) ≡ Ẋµ. (4.44)

Here pµ and Ẋµ have the meaning of the usual finite dimensional vectors
whose components are lowered raised by the finite-dimensional metric ten-
sor gµν and its inverse gµν :

pµ = gµνpν , Ẋµ = gµνẊ
ν (4.45)

Eq.(4.42) implies
pµpµ − κ2|f | = 0 (4.46)

which is satisfied at every ξa.

Multiplying (4.46) by
√
Ẋ2/(κ

√
|f | ) and integrating over ξ we have

1

2

∫
dξ

√
Ẋ2

κ
√
|f | (p

µpµ − κ2|f |) = pµ(ξ)Ẋ
µ(ξ) − L = H = 0 (4.47)
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where L =
∫
dξ κ

√
|f |
√
Ẋ2.

We see that the Hamiltonian belonging to our action (4.39) is identically
zero. This is a well known consequence of the reparametrization invariance
(4.40). The relation (4.46) is a constraint at ξa and the Hamiltonian (4.47)
is a linear superposition of the constraints at all possible ξa.

An action which is equivalent to (4.39) is

I[Xµ(ξ), λ] =
1

2

∫
dτdξ κ

√
|f |
(
ẊµẊµ

λ
+ λ

)
, (4.48)

where λ is a Lagrange multiplier.
In the compact notation ofM-space eq. (4.48) reads

I[Xµ(ξ), λ] =
1

2

∫
dτ
(
ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) +K
)
, (4.49)

where

K = K[Xµ(ξ), λ] =

∫
dξκ

√
|f |λ (4.50)

and

ρα(ξ′)β(ξ′′) = ρα(ξ′)β(ξ′′)[X
µ(ξ), λ] =

κ
√
|f(ξ′)|
λ(ξ′)

δ(ξ′ − ξ′′)ηαβ . (4.51)

Variation of (4.49) with respect to Xµ(ξ)(τ) and λ gives

δI

δXµ(ξ)(τ)
= − d

dτ

(
κ
√
|f |
λ

Ẋµ

)

−1

2
∂a

(
κ
√
|f |∂aXµ

(√
Ẋ2

λ
+ λ

))
= 0, (4.52)

δI

δλ(τ, ξ)
= −Ẋ

µẊµ

λ2
+ 1 = 0. (4.53)

The system of equations (4.52), (4.53) is equivalent to (4.35). This is in
agreement with the property that after inserting the λ “equation of motion”
(4.53) into the action (4.48) one obtains the action (4.39) which directly
leads to the equation of motion (4.35).

The invariance of the action (4.48) under reparametrizations (4.40) of
the evolution parameter τ is assured if λ transforms according to

λ→ λ′ =
dτ ′

dτ
λ. (4.54)

This is in agreement with the relations (4.53) which says that

λ = (ẊµẊµ)
1/2.
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Box 4.3: Conservation of the constraint

Since the Hamiltonian H =
∫
dξλH in eq. (4.67) is zero for any

λ, it follows that the Hamiltonian density

H[Xµ, pµ] =
1

2κ

(
pµp

µ

√
|f | − κ

2
√
|f |
)

(4.55)

vanishes for any ξa. The requirement that the constraint (6.1) is
conserved in τ can be written as

Ḣ = {H, H} = 0, (4.56)

which is satisfied if
{H(ξ),H(ξ′)} = 0. (4.57)

That the Poisson bracket (4.57) indeed vanishes can be found
as follows. Let us work in the language of the Hamilton–Jacobi func-
tional S[Xµ(ξ)], in which one considers the momentum vector field
pµ(ξ) to be a function of position Xµ(ξ) inM-space, i.e., a functional
of Xµ(ξ) given by

pµ(ξ) = pµ(ξ)(X
µ(ξ)) ≡ pµ[Xµ(ξ)] =

δS

δXµ(ξ)
. (4.58)

Therefore H[Xµ(ξ), pµ(ξ)] is a functional of Xµ(ξ). Since H = 0, it
follows that its functional derivative also vanishes:

dH
dXµ(ξ)

=
∂H

∂Xµ(ξ)
+

∂H
∂pν(ξ′)

∂pν(ξ′)

∂Xµ(ξ)

≡ δH
δXµ(ξ)

+

∫
dξ′

δH
δpν(ξ′)

δpν(ξ
′)

δXµ(ξ)
= 0. (4.59)

Using (4.59) and (4.58) we have

{H(ξ),H(ξ′)} =
∫

dξ′′
(

δH(ξ)
δXµ(ξ′′)

δH(ξ′)
δpµ(ξ′′)

− δH(ξ′)
δXµ(ξ′′)

δH(ξ)
δpµ(ξ′′)

)

= −
∫

dξ′′ dξ′′′
δH(ξ)
δpν(ξ′′′)

δH(ξ′)
δpµ(ξ′′)

(
δpν(ξ

′′′)
δXµ(ξ′′)

− δpµ(ξ
′′′)

δXµ(ξ′′)

)
= 0.

(4.60)
(continued)
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Box 4.3 (continued)

Conservation of the constraint (4.55) is thus shown to be automati-
cally sastisfied.

On the other hand, we can calculate the Poisson bracket (4.57) by
using the explicit expression (4.55). So we obtain

{H(ξ),H(ξ′)} =

−
√
|f(ξ)|√
|f(ξ′)| ∂aδ(ξ−ξ

′)pµ(ξ
′)∂aXµ(ξ)+

√
|f(ξ′)|√
|f(ξ)| ∂

′
aδ(ξ−ξ′)pµ(ξ)∂′aXµ(ξ′)

= − (pµ(ξ)∂aXµ(ξ) + pµ(ξ
′)∂′aXµ(ξ′)

)
∂aδ(ξ − ξ′) = 0, (4.61)

where we have used the relation

F (ξ′)∂aδ(ξ − ξ′) = ∂a
[
F (ξ′)δ(ξ − ξ′)] = ∂a

[
F (ξ)δ(ξ − ξ′)]

= F (ξ)∂aδ(ξ − ξ′) + ∂aF (ξ)δ(ξ − ξ′). (4.62)

Multiplying (4.61) by an arbitrary “test” function φ(ξ ′) and integrat-
ing over ξ′ we obtain

2pµ∂
aXµ∂aφ+ ∂a(pµ∂

aXµ)φ = 0. (4.63)

Since φ and ∂aφ can be taken as independent at any point ξa, it
follows that

pµ∂aX
µ = 0. (4.64)

The “momentum” constraints (4.64) are thus shown to be automat-
ically satisfied as a consequence of the conservation of the “Hamilto-
nian” constraint (4.55). This procedure was been discovered in ref.
[59]. Here I have only adjusted it to the case of membrane theory.

If we calculate the Hamiltonian belonging to (4.49) we find

H = (pµ(ξ)Ẋ
µ(ξ) − L) = 1

2(pµ(ξ)p
µ(ξ) −K) ≡ 0, (4.65)

where the canonical momentum is

pµ(ξ) =
∂L

∂Ẋµ(ξ)
=
κ
√
|f |
λ

Ẋµ . (4.66)

Explicitly (4.65) reads

H =
1

2

∫
dξ

λ

κ
√
|f |(p

µpµ − κ2|f |) ≡ 0. (4.67)
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The Lagrange multiplier λ is arbitrary. The choice of λ determines the
choice of parameter τ . Therefore (4.67) holds for every λ, which can only
be satisfied if we have

pµpµ − κ2|f | = 0 (4.68)

at every point ξa on the membrane. Eq. (4.68) is a constraint at ξa, and
altogether there are infinitely many constraints.

In Box 4.3 it is shown that the constraint (4.68) is conserved in τ and
that as a consequence we have

pµ∂aX
µ = 0. (4.69)

The latter equation is yet are another set of constraints2 which are satisfied
at any point ξa of the membrane manifold Vn

First order form of the action. Having the constraints (4.68), (4.69)
one can easily write the first order, or phase space action,

I[Xµ, pµ, λ, λ
a] =

∫
dτ dξ

(
pµẊ

µ − λ

2κ
√
|f |(p

µpµ − κ2|f |)− λapµ∂aXµ

)
,

(4.70)
where λ and λa are Lagrange multipliers.

The equations of motion are

δXµ : ṗµ + ∂a

(
κλ
√
|f |∂aXµ − λapµ

)
= 0, (4.71)

δpµ : Ẋµ − λ

κ
√
|f | pµ − λ

a∂aX
µ = 0, (4.72)

δλ : pµpµ − κ2|f | = 0, (4.73)

δλa : pµ∂aX
µ = 0. (4.74)

Eqs. (4.72)–(4.74) can be cast into the following form:

pµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ), (4.75)

λ2 = (Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ) (4.76)

2Something similar happens in canonical gravity. Moncrief and Teitelboim [59] have shown
that if one imposes the Hamiltonian constraint on the Hamilton functional then the momentum
constraints are automatically satisfied.
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λa = Ẋµ∂aXµ. (4.77)

Inserting the last three equations into the phase space action (4.70) we
have

I[Xµ] = κ

∫
dτ dξ

√
|f |

[
ẊµẊν(ηµν − ∂aXµ∂aXν)

]1/2
. (4.78)

The vector Ẋ(ηµν − ∂aXµ∂aXν) is normal to the membrane Vn; its scalar

product with tangent vectors ∂aX
µ is identically zero. The form ẊµẊν(ηµν−

∂aXµ∂aXν) can be considered as a 1-dimensional metric, equal to its de-
terminant, on a line which is orthogonal to Vn. The product

fẊµẊν(ηµν − ∂aXµ∂aXν) = det ∂AX
µ∂BXµ (4.79)

is equal to the determinant of the induced metric ∂AX
µ∂BXµ on the (n+1)-

dimensional surface Xµ(φA), φA = (τ, ξa), swept by our membrane Vn. The
action (4.78) is then the minimal surface action for the (n+1)-dimensional
worldsheet Vn+1:

I[Xµ] = κ

∫
dn+1φ (det ∂AX

µ∂BXµ)
1/2. (4.80)

This is the conventional Dirac–Nambu–Goto action, and (4.70) is one of its
equivalent forms.

We have shown that from the point of view ofM-space a membrane of
any dimension is just a point moving along a geodesic inM. The metric of
M-space is taken to be an arbitrary fixed background metric. For a special
choice of the metric we obtain the conventional p-brane theory. The latter
theory is thus shown to be a particular case of the more general theory,
based on the concept ofM-space.

Another form of the action is obtained if in (4.70) we use the replacement

pµ =
κ
√
|f |
λ

(Ẋµ − λa∂aXµ) (4.81)

which follows from “the equation of motion” (4.72). Then instead of (4.70)
we obtain the action

I[Xµ, λ, λa] =
κ

2

∫
dτ dnξ

√
|f |

(
(Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ)

λ
+ λ

)
.

(4.82)
If we choose a gauge such that λa = 0, then (4.82) coincides with the action
(4.48) considered before.
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The analogy with the point particle. The action (4.82), and espec-
ially (4.48), looks like the well known Howe–Tucker action [31] for a point
particle, apart from the integration over coordinates ξa of a space-like hy-
persurface Σ on the worldsheet Vn+1. Indeed, a worldsheet can be con-
sidered as a continuum collection or a bundle of worldlines Xµ(τ, ξa), and
(4.82) is an action for such a bundle. Individual worldlines are distinguished
by the values of parameters ξa.

We have found a very interesting inter-relationship between various con-
cepts:

1) membrane as a “point particle” moving along a geodesic in an infinite-
dimensional membrane spaceM;

2) worldsheet swept by a membrane as a minimal surface in a finite-
dimensional embedding space VN ;

3) worldsheet as a bundle of worldlines swept by point particles moving
in VN .

MEMBRANE THEORY AS A MINIMAL SURFACE
IN AN EMBEDDING SPACE

In the previous section we have considered a membrane as a point in an
infinite-dimensional membrane space M. Now let us change our point of
view and consider a membrane as a surface in a finite-dimensional embed-
ding space VD When moving, a p-dimensional membrane sweeps a (d =
p+ 1)-dimensional surface which I shall call a worldsheet3. What is an ac-
tion which determines the membrane dynamics, i.e., a possible worldsheet?
Again the analogy with the point particle provides a clue. Since a point
particle sweeps a worldline whose action is the minimal length action, it is
natural to postulate that a membrane’s worldsheet satisfies the minimal
surface action:

I[Xµ] = κ

∫
ddφ (det ∂AX

µ∂BXµ)
1/2. (4.83)

This action, called also the Dirac–Nambu–Goto action, is invariant under
reparametrizations of the worldsheet coordinates φA, A = 0, 1, 2, ..., d −
1. Consequently the dynamical variables Xµ, µ = 0, 1, 2, ..., D, and the
corresponding momenta are subjected to d primary constraints.

Another suitable form of the action (equivalent to (4.83)) is the Howe–
Tucker action [31] generalized to a membrane of arbitrary dimension p

3In the literature on p-branes such a surface is often called ”world volume” and sometimes world
surface.
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(p-brane):

I[Xµ, γAB] =
κ0
2

∫ √
|γ|(γAB∂AXµ∂BXµ + 2− d). (4.84)

Besides the variables Xµ(φ), µ = 0, 1, 2, ..., D−1, which denote the position
of a d-dimensional (d = p + 1) worldsheet Vd in the embedding spacetime
VD, the above action also contains the auxiliary variables γAB (with the
role of Lagrange multipliers) which have to be varied independently from
Xµ.

By varying (4.84) with respect to γAB we arrive at the equation for the
induced metric on a worldsheet:

γAB = ∂AX
µ∂BXµ. (4.85)

Inserting (4.85) into (4.84) we obtain the Dirac–Nambu–Goto action (4.83).
In eq. (4.84) the γAB are the Lagrange multipliers, but they are not all

independent. The number of worldsheet constraints is d, which is also the
number of independent Lagrange multipliers. In order to separate out of
γAB the independent multipliers we proceed as follows. Let Σ be a space-
like hypersurface on the worldsheet, and nA the normal vector field to Σ.
Then the worldsheet metric tensor can be written as

γAB =
nAnB

n2
+ γ̄AB , γAB =

nAnB
n2

+ γ̄AB , (4.86)

where γ̄AB is projection tensor, satisfying

γ̄ABnB = 0, γ̄ABn
B = 0. (4.87)

It projects any vector into the hypersurface to which na is the normal. For
instance, using (4.86) we can introduce the tangent derivatives

∂̄AX
µ = γ̄ BA ∂BX

µ = γA
B∂BX

µ − nAn
B

n2
∂BX

µ. (4.88)

An arbitrary derivative ∂AX
µ is thus decomposed into a normal and tan-

gential part (relative to Σ):

∂AX
µ = nA∂X

µ + ∂̄AX
µ , (4.89)

where

∂Xµ ≡ nA∂AX
µ

n2
, nA∂̄AX

µ = 0. (4.90)

Details about using and keeping the d-dimensional covariant notation as far
as possible are given in ref. [61]. Here, following ref. [62], I shall present a
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shorter and more transparent procedure, but without the covariant notation
in d-dimensions.

Let us take such a class of coordinate systems in which covariant com-
ponents of normal vectors are

nA = (1, 0, 0, ..., 0). (4.91)

From eqs. (4.86) and (4.91) we have

n2 = γABn
AnB = γABnAnB = n0 = γ00, (4.92)

γ̄00 = 0 , γ̄0a = 0, (4.93)

and

γ00 =
1

n0
+ γ̄ab

nanb

(n0)2
, (4.94)

γ0a = − γ̄abn
b

n0
, (4.95)

γab = γ̄ab, (4.96)

γ00 = n0, (4.97)

γ0a = na, (4.98)

γab = γ̄ab +
nanb

n0
, a, b = 1, 2, ..., p. (4.99)

The decomposition (4.89) then becomes

∂0X
µ = ∂Xµ + ∂̄0X

µ, (4.100)

∂aX
µ = ∂̄aX

µ, (4.101)

where

∂Xµ = Ẋµ +
na∂aX

µ

n0
, Ẋµ ≡ ∂0Xµ ≡ ∂Xµ

∂ξ0
, ∂aX

µ ≡ ∂xµ

∂ξa
, (4.102)

∂̄0X
µ = −n

a∂aX
µ

n0
. (4.103)
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The nA = (n0, na) can have the role of d independent Lagrange multipliers.
We can now rewrite our action in terms of n0, na, and γ̄ab (instead of γAB).
We insert (4.97)–(4.99) into (4.84) and take into account that

|γ| = γ̄

n0
, (4.104)

where γ = det γAB is the determinant of the worldsheet metric and γ̄ =
det γ̄ab the determinant of the metric γ̄ab = γab , a, b = 1, 2, ..., p on the
hypersurface Σ.

So our action (4.84) after using (4.97)–(4.99) becomes

[Xµ, nA, γ̄ab] =
κ0
2

∫
ddφ

√
γ̄√
n0

×
(
n0ẊµẊµ + 2naẊµ∂aXµ + (γ̄ab +

nanb

n0
)∂aX

µ∂bXµ + 2− d
)
. (4.105)

Variation of the latter action with respect to γ̄ab gives the expression for
the induced metric on the surface Σ :

γ̄ab = ∂aX
µ∂bXµ , γ̄abγ̄ab = d− 1. (4.106)

We can eliminate γ̄ab from the action (4.105) by using the relation (4.106):

I[Xµ, na] =
κ0
2

∫
ddφ

√
|f |√
n0

(
1

n0
(n0Ẋµ + na∂aX

µ)(n0Ẋµ + nb∂bXµ) + 1

)
,

(4.107)
where

√
|f | ≡ det ∂aX

µ∂bXµ. The latter action is a functional of the world-
sheet variables Xµ and d independent Lagrange multipliers nA = (n0, na).
Varying (4.107) with respect to n0 and na we obtain the worldsheet con-
straints:

δn0 : (Ẋµ +
nb∂bX

µ

n0
)Ẋµ =

1

n0
, (4.108)

δna : (Ẋµ +
nb∂bX

µ

n0
)∂aXµ = 0. (4.109)

Using (4.102) the constraints can be written as

∂Xµ∂Xµ =
1

n0
, (4.110)

∂Xµ∂iXµ = 0. (4.111)
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The action (4.107) contains the expression for the normal derivative ∂Xµ

and can be written in the form

I =
κ0
2

∫
dτdpξ

√
|f |
(
∂Xµ∂Xµ

λ
+ λ

)
, λ ≡ 1√

n0
, (4.112)

where we have written ddφ = dτ dpξ, since φA = (τ, ξa) .
So we arrived at an action which looks like the well known Howe–Tucker

action for a point particle, except for the integration over a space-like
hypersurface Σ, parametrized by coordinates ξa, a = 1, 2, ..., p. Introducing
λa = −na/n0 the normal derivative can be written as ∂Xµ ≡ Ẋµ−λa∂aXµ.

Instead of n0, na we can take λ ≡ 1/
√
n0, λa ≡ −na/n0 as the Lagrange

multipliers. In eq. (4.112) we thus recognize the action (4.82).

MEMBRANE THEORY BASED ON THE
GEOMETRIC CALCULUS IN M-SPACE

We have seen that a membrane’s velocity Ẋµ(ξ) and momentum pµ(ξ) can
be considered as components of vectors in an infinite-dimensional membrane
space M in which every point can be parametrized by coordinates Xµ(ξ)

which represent a membrane. In analogy with the finite-dimensional case
considered in Chapter 2 we can introduce the concept of a vector in M
and a set of basis vectors eµ(ξ), such that any vector a can be expanded
according to

a = aµ(ξ)eµ(ξ). (4.113)

From the requirement that

a2 = aµ(ξ)eµ(ξ)a
ν(ξ′)eν(ξ′) = ρµ(ξ)ν(ξ′)a

µ(ξ)aν(ξ
′) (4.114)

we have

1

2
(eµ(ξ)eν(ξ′) + eν(ξ′)eµ(ξ)) ≡ eµ(ξ) · eν(ξ′) = ρµ(ξ)ν(ξ′). (4.115)

This is the definition of the inner product and eµ(ξ) are generators of Clifford
algebra inM-space.

A more complete elaboration of geometric calculus based on Clifford
algebra in M will be provided in Chapter 6. Here we just use (4.113),
(4.115) to extend the point particle polyvector action (2.56) toM-space.

We shall start from the first order action (4.70). First we rewrite the
latter action in terms of the compactM-space notation:

I[Xµ, pµ, λ, λ
a] =

∫
dτ

(
pµ(ξ)Ẋ

µ(ξ) − 1

2
(pµ(ξ)p

µ(ξ) −K)− λapµ(ξ)∂aXµ(ξ)
)
.

(4.116)
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In order to avoid introducing a new symbol, it is understood that the pro-
duct λapµ(ξ) denotes covariant components of an M-space vector. The
Lagrange multiplier λ is included in the metric ρµ(ξ)ν(ξ′).

According to (4.113) we can write the momentum and velocity vectors
as

p = pµ(ξ)e
µ(ξ), (4.117)

Ẋ = Ẋµ(ξ)eµ(ξ), (4.118)

where
eµ(ξ) = ρµ(ξ)ν(ξ

′)eν(ξ′) (4.119)

and
eµ(ξ) · eν(ξ′) = δµ(ξ)ν(ξ′). (4.120)

The action (4.116) can be written as

I(X, p, λ, λa) =

∫
dτ

[
p · Ẋ − 1

2
(p2 −K)− λa∂aX · p

]
, (4.121)

where
∂aX = ∂aX

µ(ξ)eµ(ξ) (4.122)

are tangent vectors. We can omit the dot operation in (4.121) and write
the action

I(X, p, λ, λa) =

∫
dτ

[
pẊ − 1

2
(p2 −K)− λap ∂aX

]
(4.123)

which contains the scalar part and the bivector part. It is straightforward
to show that the bivector part contains the same information about the
equations of motion as the scalar part.

Besides the objects (4.113) which are 1-vectors inM we can also form 2-
vectors, 3-vectors, etc., according to the analogous procedures as explained
in Chapter 2. For instance, a 2-vector is

a ∧ b = aµ(ξ)bν(ξ
′)eµ(ξ) ∧ eνξ′), (4.124)

where eµ(ξ) ∧ eνξ′) are basis 2-vectors. Since the index µ(ξ) has the discrete
part µ and the continuous part (ξ), the wedge product

eµ(ξ1) ∧ eµ(ξ2) ∧ ... ∧ eµ(ξk) (4.125)

can have any number of terms with different values of ξ and the same value
of µ. The number of terms in the wedge product

eµ1(ξ) ∧ eµ2(ξ) ∧ ... ∧ eµk(ξ), (4.126)
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with the same value of ξ, but with different values of µ, is limited by the
number of discrete dimensions ofM-space. At fixed ξ the Clifford algebra
ofM-space behaves as the Clifford algebra of a finite-dimensional space.

Let us write the pseudoscalar unit of the finite-dimensional subspace Vn
ofM as

I(ξ) = eµ1(ξ) ∧ eµ2(ξ) ∧ ... ∧ eµn(ξ) (4.127)

A generic polyvector inM is a superposition

A = a0 + aµ(ξ)eµ(ξ) + aµ1(ξ1)µ2(ξ2)eµ1(ξ1) ∧ eµ2(ξ2) + ...

+ aµ1(ξ1)µ2(ξ2)...µk(ξk)eµ1(ξ1) ∧ eµ2(ξ2) ∧ ... ∧ eµk(ξk) + ... . (4.128)

As in the case of the point particle I shall follow the principle that the
most general physical quantities related to membranes, such as momentum
P and velocity Ẋ, are polyvectors inM-space. I invite the interested reader
to work out as an exercise (or perhaps as a research project) what physical
interpretation4 could be ascribed to all possible multivector terms of P and
Ẋ. For the finite-dimensional case I have already worked out in Chapter 2,
Sec 3, to certain extent such a physical interpretation. We have also seen
that at the classical level, momentum and velocity polyvectors which solve
the equations of motion can have all the multivector parts vanishing except
for the vector and pseudoscalar part. Let us assume a similar situation for
the membrane momentum and velocity:

P = P µ(ξ)eµ(ξ) +m(ξ)I(ξ), (4.129)

Ẋ = Ẋµ(ξ)eµ(ξ) + ṡ(ξ).I(ξ) (4.130)

In addition let us assume

∂aX = ∂aX
µ(ξ)eµ(ξ) + ∂as

(ξ)I(ξ). (4.131)

Let us assume the following general membrane action:

I(X,P, λ, λa) =

∫
dτ

[
PẊ − 1

2
(P 2 −K)− λa∂aX P

]
. (4.132)

On the one hand the latter action is a generalization of the action (4.121)
to arbitrary polyvectors Ẋ, P, λa∂aX. On the other hand, (4.132) is a

4As a hint the reader is advised to look at Secs. 6.3 and 7.2.
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generalization of the point particle polyvector action (2.56), where the
polyvectors in a finite-dimensional space Vn are replaced by polyvectors in
the infinite-dimensional spaceM.

Although the polyvectors in the action (4.132) are arbitrary in principle
(defined according to (4.128)), we shall from now on restrict our considera-
tion to a particular case in which the polyvectors are given by eqs. (4.129)-
(4.131). Rewriting the action action (4.132) in the component notation,
that is, by inserting (4.129)-(4.131) into (4.132) and by taking into account
(4.115), (4.120) and

eµ(ξ) · eν(ξ′) = ρµ(ξ)ν(ξ′) =
κ
√
|f |
λ

δ(ξ − ξ′)ηµν , (4.133)

I(ξ) · I(ξ′) = ρ(ξ)(ξ′) = −
κ
√
|f |
λ

δ(ξ − ξ′), (4.134)

I(ξ) · eν(ξ′) = 0, (4.135)

we obtain

〈I〉0 =
∫

dτ

[
pµ(ξ)Ẋ

µ(ξ) − ṡ(ξ)m(ξ) −
1

2
(pµ(ξ)pµ(ξ) +m(ξ)m(ξ) −K)

−λa(∂aXµ(ξ)pµ(ξ) − ∂as(ξ)m(ξ))

]
. (4.136)

By the way, let us observe that using (4.133), (4.134) we have

−K = −
∫

dξ κ
√
|f |λ = λ(ξ)λ(ξ) , λ(ξ) ≡ λ(ξ), (4.137)

which demonstrates that the term K can also be written in the elegant
tensor notation.

More explicitly, (4.136) can be written in the form

I[Xµ, s, pµ,m, λ, λ
a] =

∫
dτ dnξ

[
pµẊ

µ−mṡ− λ

2κ
√
|f |

(
pµpµ −m2 − κ2|f |

)

− λa(∂aXµpµ−∂a sm)

]
(4.138)

This is a generalization of the membrane action (4.70) considered in Sec.
4.2. Besides the coordinate variables Xµ(ξ) we have now an additional
variable s(ξ). Besides the momentum variables pµ(ξ) we also have the
variable m(ξ). We retain the same symbols pµ and m as in the case of
the point particle theory, with understanding that those variables are now
ξ-dependent densities of weight 1.
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The equations of motion derived from (4.138) are:

δs : −ṁ+ ∂a(λ
am) = 0, (4.139)

δXµ : ṗµ + ∂a

(
κλ
√
|f |∂aXµ − λapµ

)
= 0, (4.140)

δm : −ṡ+ λa∂as+
λ

κ
√
|f |m = 0, (4.141)

δpµ : Ẋµ − λa∂aXµ − λ

κ
√
|f | pµ = 0, (4.142)

δλ : pµpµ −m2 − κ2|f | = 0, (4.143)

δλa : ∂aX
µpµ − ∂asm = 0. (4.144)

Let us collect in the action those term which contain s and m and re-
express them by using the equations of motion (4.141). We obtain

−mṡ+ λ

2
√
|f | m

2 + λa∂asm = − λ

2κ
√
|f |m

2 (4.145)

Using again (4.141) and also (4.139) we have

− λ

2κ
√
|f |m

2 =
1

2
(−mṡ+ λa∂asm) =

1

2

(
−d(ms)

dτ
+ ∂a(λ

asm)

)
. (4.146)

Inserting (4.145) and (4.146) into the action (4.138) we obtain

I =

∫
dτ dnξ

[
−1

2

d

dτ
(ms) +

1

2
∂a(msλ

a)

+ pµẊ
µ− λ

2κ
√
|f |(p

µpµ−κ2|f |)−λa∂aXµpµ

]
. (4.147)

We see that the extra variables s, m occur only in the terms which are total
derivatives. Those terms have no influence on the equations of motion, and
can be omitted, so that

I[Xµ, pµ] =

∫
dτ dnξ

[
pµẊ

µ − λ

2κ
√
|f |(p

µpµ − κ2|f |)− λa∂aXµpµ

]
.

(4.148)
This action action looks like the action (4.70) considered in Sec 2.2. How-
ever, now λ and λa are no longer Lagrange multipliers. They should be
considered as fixed since they have already been “used” when forming the
terms −(d/dτ)(ms) and ∂a(msλa) in (4.147). Fixing of λ, λa means fixing
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the gauge, that is the choice of parameters τ and ξa. In (4.148) we have
thus obtained a reduced action which is a functional of the reduced number
of variables Xµ, pµ. All Xµ or all pµ are independent; there are no more
constraints.

However, a choice of gauge (the fixing of λ, λa) must be such that the
equations of motion derived from the reduced action are consistent with
the equations of motion derived from the original constrained action. In
our case we find that an admissible choice of gauge is given by

λ

κ
√
|f | = Λ , λa = Λa, (4.149)

where Λ, Λa are arbitrary fixed functions of τ, ξa. So we obtained the
following unconstrained action:

I[Xµ, pµ] =

∫
dτ dnξ

[
pµẊ

µ − Λ

2
(pµpµ − κ2|f |)− Λa∂aX

µpµ

]
. (4.150)

The fixed function Λ does not transform as a scalar under reparametriza-
tions of ξa, but a scalar density of weight −1, whereas Λa transforms as
a vector. Under reparametrizations of τ they are assumed to transform
according to Λ′ = (dτ/dτ ′)Λ and Λ′a = (dτ/dτ ′)Λa. The action (4.150)
is then covariant under reparametrizations of τ and ξa, i.e., it retains the
same form. However, it is not invariant (Λ and Λa in a new parametriza-
tion are different functions of the new parameters), therefore there are no
constraints.

Variation of the action (4.150) with respect to Xµ and pµ gives

δXµ : ṗµ + ∂a
(
Λκ2|f |∂aXµ − Λapµ

)
= 0, (4.151)

δpµ : Ẋµ − Λa∂aX
µ − Λpµ = 0. (4.152)

The latter equations of motion are indeed equal to the equations of motion
(4.140),(4.142) in which gauge is fixed according to (4.149).

Eliminating pµ in (4.150) by using eq (4.152), we obtain

I[Xµ] =
1

2
dτ dnξ

[
(Ẋµ − Λa∂aX

µ)(Ẋµ − Λb∂bX
µ)

Λ
+ Λκ2|f |

]
. (4.153)

If Λa = 0 this simplifies to

I[Xµ] =
1

2

∫
dτ dnξ

(
ẊµẊµ

Λ
+ Λκ2|f |

)
. (4.154)



136 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

In the static case, i.e., when Ẋµ = 0, we have

I[Xµ] =
1

2

∫
dτ dnξ Λκ2|f |, (4.155)

which is the well known Schild action [63].

Alternative form of theM-space metric. Let us now again consider
the action (4.136). Instead of (4.133), (4.134) let us now take the following
form of the metric:

ρµ(ξ)ν(ξ′) =
1

λ̃
δ(ξ − ξ′)ηµν , (4.156)

ρ(ξ)(ξ′) = −
1

λ̃
δ(ξ − ξ′) , (4.157)

and insert it into (4.136). Then we obtain the action

I[Xµ, s, pµ,m, λ
′, λa] = (4.158)

∫
dτ dnξ

[
−mṡ+ pµẊ

µ − λ̃

2
(pµpµ −m2 − κ2|f |)− λa(∂aXµpµ − ∂asm)

]
,

which is equivalent to (4.138). Namely, we can easily verify that the cor-
responding equations of motion are equivalent to the equations of motion
(4.139)–(4.144). From the action (4.158) we then obtain the unconstrained
action (4.150) by fixing λ̃ = Λ and λa = Λa.

We have again found (as in the case of a point particle) that the polyvec-
tor generalization of the action naturally contains “time” and evolution of
the membrane variables Xµ. Namely, in the theory there occurs an extra
variable s whose derivative ṡ with respect to the worldsheet parameter τ
is the pseudoscalar part of the velocity polyvector. This provides a mech-
anism of obtaining the Stueckelberg action from a more basic principle.

Alternative form of the constrained action. Let us again consider
the constrained action (4.138) which is a functional of the variables Xµ, s
and the canonical momenta pµ, m. We can use equation of motion (4.141)
in order to eliminate the Lagrange multipliers λ from the action. By doing
so we obtain

I =

∫
dτ dnξ

[
−m(ṡ− λa∂as) + pµ(Ẋ

µ − λa∂aXµ)

− ṡ− λa∂as
2m

(p2 −m2 − κ2|f |)
]
.

(4.159)
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We shall now prove that

ds

dτ
= ṡ− λa∂as and

dXµ

dτ
= Ẋµ − λa∂aXµ, (4.160)

where ṡ ≡ ∂s/∂τ and Ẋµ = ∂Xµ/∂τ are partial derivatives. The latter
relations follow from the definitions of the total derivatives

ds

dτ
=
∂s

∂τ
+

dξa

dτ
and

dXµ

dτ
=
∂Xµ

∂τ
+ ∂aX

µ dξa

dτ
, (4.161)

and the relation λa = −dξa/dτ , which comes from the momentum con-
straint pµ∂aX

µ = 0.
Inserting (4.160) into eq. (4.159) we obtain yet another equivalent clas-

sical action

I[Xµ, pµ,m] =

∫
ds dnξ

[
pµ

dXµ

ds
− m

2
− 1

2m
(p2 − κ2|f |)

]
, (4.162)

in which the variable s has disappeared from the Lagrangian, and it has
instead become the evolution parameter. Alternatively, if in the action
(4.159) we choose a gauge such that ṡ = 1, λa = 0, then we also obtain the
same action (4.162).

The variable m in (4.162) acquired the status of a Lagrange multiplier
leading to the constraint

δm : p2 − κ2|f | −m2 = 0. (4.163)

Using the constraint (4.163) we can eliminate m from the action (4.162)
and we obtain the following reduced action

I[Xµ, pµ] =

∫
ds dnξ

(
pµ

dXµ

ds
−
√
p2 − κ2|f |

)
(4.164)

which, of course, is unconstrained. It is straightforward to verify that the
equations of motion derived from the unconstrained action (4.164) are the
same as the ones derived from the original constrained action (4.138).

The extra variable s in the reparametrization invariant constrained action
(4.138), after performing reduction of variables by using the constraints, has
become the evolution parameter.

There is also a more direct derivation of the unconstrained action which
will be provided in the next section.

Conclusion. Geometric calculus based on Clifford algebra in a finite-
dimensional space can be generalized to the infinite-dimensional membrane
space M. Mathematical objects of such an algebra are Clifford numbers,
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also called Clifford aggregates, or polyvectors. It seems natural to assume
that physical quantities are in general polyvectors inM. Then, for instance,
the membrane velocity Ẋµ in general is not a vector, but a polyvector, and
hence it contains all other possible r-vector parts, including a scalar and a
pseudoscalar part. As a preliminary step I have considered here a model in
which velocity is the sum of a vector and a pseudoscalar. The pseudoscalar
component is ṡ, i.e., the derivative of an extra variable s. Altogether we thus
have the variables Xµ and s, and the corresponding canonically conjugate
momenta pµ and m. The polyvector action is reparametrization invariant,
and as a consequence there are constraints on those variables. Therefore
we are free to choose appropriate number of extra relations which eliminate
the redundancy of variables. We may choose relations such that we get rid
of the extra variables s and m, but then the remaining variables Xµ, pµ
are unconstrained, and they evolve in the evolution parameter τ which, by
choice of a gauge, can be made proportional to s.

Our model with the polyvector action thus allows for dynamics in space-
time. It resolves the old problem of the conflict between our experience of
the passage of time on the one hand, and the fact that the theory of relati-
vity seems incapable of describing the flow of time at all: past, present and
future coexist in a four- (or higher-dimensional) “block” spacetime, with
objects corresponding to worldlines (or worldsheets) within this block. And
what, in my opinion, is very nice, the resolution is not a result of an ad
hoc procedure, but is a necessary consequence of the existence of Clifford
algebra as a general tool for the description of the geometry of spacetime!

Moreover, when we shall also consider dynamics of spacetime itself, we
shall find out that the above model with the polyvector action, when suit-
ably generalized, will provide a natural resolution of the notorious “problem
of time” in quantum gravity.

4.3. MORE ABOUT THE
INTERCONNECTIONS AMONG
VARIOUS MEMBRANE ACTIONS

In the previous section we have considered various membrane actions.
One action was just that of a free fall inM-space (eq. (4.21)). For a special
metric (4.28) which contains the membrane velocity we have obtained the
equation of motion (4.35) which is identical to that of the Dirac–Nambu–
Goto membrane described by the minimal surface action (4.80).

Instead of the free fall action inM-space we have considered some equiva-
lent forms such as the quadratic actions (4.39), (4.49) and the corresponding
first order or phase space action (4.70).
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Then we have brought into the play the geometric calculus based on Clif-
ford algebra and applied it to M-space. The membrane velocity and mo-
mentum are promoted to polyvectors. The latter variables were then used to
construct the polyvector phase space action (4.132), and its more restricted
form in which the polyvectors contain the vector and the pseudoscalar parts
only.

Whilst all the actions described in the first two paragraphs were equiv-
alent to the usual minimal surface action which describes the constrained
membrane, we have taken with the polyvectors a step beyond the conven-
tional membrane theory. We have seen that the presence of a pseudoscalar
variable results in unconstraining the rest of the membrane’s variables which
are Xµ(τ, ξ). This has important consequences.

If momentum and velocity polyvectors are given by expressions (4.129)–
(4.131), then the polyvector action (4.132) becomes (4.136) whose more
explicit form is (4.138). Eliminating from the latter phase space action the
variables Pµ and m by using their equations of motion (4.139), (4.142), we
obtain

I[Xµ, s, λ, λa]

=
κ

2

∫
dτ dnξ

√
|f | (4.165)

×
(
(Ẋµ − λa∂aXµ)(Ẋµ − λb∂bXµ)− (ṡ− λa∂as)2

λ
+ λ

)
.

The choice of the Lagrange multipliers λ, λa fixes the parametrization τ
and ξa. We may choose λa = 0 and action (4.165) simplifies to

I[Xµ, s, λ] =
κ

2

∫
dτ dnξ

√
|f |
(
ẊµẊµ − ṡ2

λ
+ λ

)
, (4.166)

which is an extension of the Howe–Tucker-like action (4.48) or (2.31) con-
sidered in the first two sections.

Varying (4.166) with respect to λ we have

λ2 = ẊµẊµ − ṡ2. (4.167)

Using relation (4.167) in eq. (4.166) we obtain

I[Xµ, s] = κ

∫
dτ dnξ

√
|f |
√
ẊµẊµ − ṡ2. (4.168)

This reminds us of the relativistic point particle action (4.21). The differ-
ence is in the extra variable s and in that the variables depend not only on
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the parameter τ but also on the parameters ξa, hence the integration over
ξa with the measure dnξ

√
|f | (which is invariant under reparametrizations

of ξa).
Bearing in mind Ẋ = ∂Xµ/∂τ , ṡ = ∂s/∂τ , and using the relations

(4.160), (4.161), we can write (4.168) as

I[Xµ] = κ

∫
ds dnξ

√
|f |
√

dXµ

ds

dXµ

ds
− 1. (4.169)

The step from (4.168) to (4.169) is equivalent to choosing the parametriza-
tion of τ such that ṡ = 1 for any ξa, which means that ds = dτ .

We see that in (4.169) the extra variable s takes the role of the evolution
parameter and that the variables Xµ(τ, ξ) and the conjugate momenta
pµ(τ, ξ) = ∂L/∂Ẋµ are unconstrained 5.

In particular, a membrane Vn which solves the variational principle (4.169)
can have vanishing velocity

dXµ

ds
= 0. (4.170)

Inserting this back into (4.169) we obtain the action6

I[Xµ] = iκ

∫
ds dnξ

√
|f |, (4.171)

which governs the shape of such a static membrane Vn.
In the action (4.168) or (4.169) the dimensions and signatures of the

corresponding manifolds Vn and VN are left unspecified. So action (4.169)
contains many possible particular cases. Especially interesting are the fol-
lowing cases:

Case 1. The manifold Vn belonging to an unconstrained membrane Vn
has the signature (+−−− ...) and corresponds to an n-dimensional world-
sheet with one time-like and n− 1 space-like dimensions. The index of the
worldsheet coordinates assumes the values a = 0, 1, 2, ..., n− 1.

Case 2. The manifold Vn belonging to our membrane Vn has the signature
(− − − − ...) and corresponds to a space-like p-brane; therefore we take
n = p. The index of the membrane’s coordinates ξa assumes the values
a = 1, 2, ..., p.

Throughout the book we shall often use the single formalism and apply
it, when convenient, either to the Case 1 or to the Case 2.

5The invariance of action (4.169) under reparametrizations of ξa brings no constraints amongst
the dynamical variables Xµ(τ, ξ) and pµ(τ, ξ) which are related to motion in τ (see also [53]-
[55]).
6The factor i comes from our inclusion of a pseudoscalar in the velocity polyvector. Had we
instead included a scalar, the corresponding factor would then be 1.
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When the dimension of the manifold Vn belonging to Vn is n = p + 1
and the signature is (+ − − − ...), i.e. when we consider Case 1, then the
action (4.171) is just that of the usual Dirac–Nambu–Goto p-dimensional
membrane (well known under the name p-brane)

I = iκ̃

∫
dnξ

√
|f | (4.172)

with κ̃ = κ
∫
ds.

The usual p-brane is considered here as a particular case of a more general
membrane7 which can move in the embedding spacetime (target space)
according to the action (4.168) or (4.169). Bearing in mind two particular
cases described above, our action (4.169) describes either

(i) a moving worldsheet, in the Case I; or
(ii) a moving space like membrane, in the Case II.

Let us return to the action (4.166). We can write it in the form

I[Xµ, s, λ] =
κ

2

∫
dτ dnξ

[√
|f |
(
ẊµẊµ

λ
+ λ

)
− d

dτ

(
κ
√
|f |ṡs
λ

)]
,

(4.173)
where by the equation of motion

d

dτ

(
κ
√
|f |
λ

ṡ

)
= 0 (4.174)

we have
d

dτ

(
κ
√
|f |ṡs
λ

)
=
κ
√
|f |ṡ2
λ

. (4.175)

The term with the total derivative does not contribute to the equations of
motion and we may omit it, provided that we fix λ in such a way that the
Xµ-equations of motion derived from the reduced action are consistent with
those derived from the original constrained action (4.165). This is indeed
the case if we choose

λ = Λκ
√
|f |, (4.176)

where Λ is arbitrary fixed function of τ .
Using (4.167) we have

√
ẊµẊµ − ṡ2 = Λκ

√
|f |. (4.177)

7By using the name membrane we distinguish our moving extended object from the static object,
which is called p-brane.
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Inserting into (4.177) the relation

κ
√
|f |ṡ√

ẊµẊµ − ṡ2
=

1

C
= constant, (4.178)

which follows from the equation of motion (4.139), we obtain

Λ

C
=

ds

dτ
or Λdτ = C ds (4.179)

where the differential ds = (∂s/∂τ)dτ + ∂asdξ
a is taken along a curve on

the membrane along which dξa = 0 (see also eqs. (4.160), (4.161)). Our
choice of parameter τ (given by a choice of λ in eq. (4.176)) is related to
the variable s by the simple proportionality relation (4.179).

Omitting the total derivative term in action (4.173) and using the gauge
fixing (4.176) we obtain

I[Xµ] =
1

2

∫
dτ dnξ

(
ẊµẊµ

Λ
+ Λκ2|f |

)
. (4.180)

This is the unconstrained membrane action that was already derived in
previous section, eq. (4.154).

Using (4.179) we find that action (4.180) can be written in terms of s as
the evolution parameter:

I[Xµ] =
1

2

∫
ds dnξ



◦
X
µ ◦
Xµ

C
+ Cκ2|f |


 (4.181)

where
◦
X
µ
≡ dXµ/ds.

The equations of motion derived from the constrained action (4.166) are

δXµ :
d

dτ

(
κ
√
|f |Ẋµ√

Ẋ2 − ṡ2

)
+ ∂a

(
κ
√
|f |
√
Ẋ2 − ṡ2 ∂aXµ

)
= 0, (4.182)

δs :
d

dτ

(
κ
√
|f |ṡ√

Ẋ2 − ṡ2

)
= 0, (4.183)

whilst those from the reduced or unconstrained action (4.180) are

δXµ :
d

dτ

(
Ẋµ

Λ

)
+ ∂a

(
κ2|f |Λ∂aXµ

)
= 0. (4.184)

By using the relation (4.177) we verify the equivalence of (4.184) and
(4.182).
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The original, constrained action (4.168) implies the constraint

pµpµ −m2 − κ2|f | = 0, (4.185)

where

pµ − κ
√
|f |Ẋµ/λ , m = κ

√
|f |ṡ/λ , λ =

√
ẊµẊµ − ṡ2.

According to the equation of motion (4.174) ṁ = 0, therefore

pµpµ − κ2|f | = m2 = constant. (4.186)

The same relation (4.186) also holds in the reduced, unconstrained theory
based on the action (4.180). If, in particular,m = 0, then the corresponding
solution Xµ(τ, ξ) is identical with that for the ordinary Dirac–Nambu–
Goto membrane described by the minimal surface action which, in a special
parametrization, is

I[Xµ] = κ

∫
dτdn ξ

√
|f |
√
ẊµẊµ (4.187)

This is just a special case of (4.168) for ṡ = 0.
To sum up, the constrained action (4.168) has the two limits:

(i) Limit Ẋµ = 0. Then

I[Xµ(ξ)] = iκ̃

∫
dnξ

√
|f |. (4.188)

This is the minimal surface action. Here the n-dimensional membrane
(or the worldsheet in the Case I ) is static with respect to the evolution8

parameter τ .
(ii) Limit ṡ = 0. Then

I[Xµ(τ, ξ)] = κ

∫
dτ dnξ

√
|f |
√
ẊµẊµ. (4.189)

This is an action for a moving n-dimensional membrane which sweeps an
(n+1)-dimensional surfaceXµ(τ, ξ) subject to the constraint pµpµ−κ2|f | =
0. Since the latter constraint is conserved in τ we have automatically also
the constraint pµẊ

µ = 0 (see Box 4.3). Assuming the Case II we have thus
the motion of a conventional constrained p-brane, with p = n.

In general none of the limits (i) or (ii) is satisfied, and our membrane
moves according to the action (4.168) which involves the constraint (4.185).

8The evolution parameter τ should not be confused with one of the worldsheet parameters ξa.
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From the point of view of the variables Xµ and the conjugate momenta pµ
there is no constraint, and instead of (4.168) we can use the unconstrained
action (4.180) or (4.181), where the extra variable s has become the param-
eter of evolution .


