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Department of Theoretical Physics
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Here F (A) is a polyvector-valued function of a polyvector A, and E is
an arbitrary polyvector . The star “ * ” denotes the scalar product

A ∗B = 〈AB〉0 (6.66)

of two polyvectors A and B, where 〈AB〉0 is the scalar part of the Clifford
product AB. Let eJ be a complete set of basis vector of Clifford algebra
satisfying3

eJ ∗ eK = δJK , (6.67)

so that any polyvector can be expanded as A = AJeJ . For E in eq. (6.65)
we may choose one of the basis vectors. Then

(
eK ∗

∂

∂A

)
F (A) ≡ ∂F

∂AK
= lim

τ→0

F (AJeJ + eKτ)− F (AJeJ)
τ

. (6.68)

This is the partial derivative of F with respect to the multivector compo-
nents AK . The derivative with respect to a polyvector A is the sum

∂F

∂A
= eJ

(
eJ ∗

∂

∂A

)
F = eJ

∂F

∂AJ
. (6.69)

The polyvector A can be a polyvector field A(X) defined over the position
polyvector field X which is a generalizatin of the position vector field x
defined in (6.61). In particular, the field A(X) can be A(X) = X. Then
(6.68), (6.69) read

(
eK ∗

∂

∂X

)
F (X) ≡ ∂F

∂XK
= lim

τ→0

F (XJeJ + eKτ)− F (XJeJ)

τ
, (6.70)

∂F

∂X
= eJ

(
eJ ∗

∂

∂X

)
F = eJ

∂F

∂XJ
(6.71)

which generalizes eqs. (6.63),6.64).

VECTORS IN AN INFINITE-DIMENSIONAL
SPACE

In functional analysis functions are considered as vectors in infinite di-
mensional spaces. As in the case of finite-dimensional spaces one can intro-
duce a basis h(x) in an infinite-dimensional space V∞ and expand a vector
of V∞ in terms of the basis vectors. The expansion coefficients form a
function f(x):

f =

∫
dx f(x)h(x). (6.72)

3Remember that the set {eJ} = {1, eµ, eµ, eµeν , ...}.
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The basis vectors h(x) are elements of the Clifford algebra C∞ of V∞. The
Clifford or geometric product of two vectors is

h(x)h(x′) = h(x) · h(x′) + h(x) ∧ h(x′). (6.73)

The symmetric part

h(x) · h(x′) = 1
2

(
h(x)h(x′) + h(x′)h(x)

)
(6.74)

is the inner product and the antisymmetric part

h(x) ∧ h(x′) = 1
2

(
h(x)h(x′)− h(x′)h(x)) (6.75)

is the outer, or wedge, product of two vectors.
The inner product defines the metric ρ(x, x′) of V∞:

h(x) · h(x′) = ρ(x, x′) (6.76)

The square or the norm of f is

f2 = f · f =

∫
dx dx′ ρ(x, x′)f(x)f(x′). (6.77)

It is convenient to introduce notation with upper and lower indices and
assume the convention of the integration over the repeated indices. Thus

f = f (x)h(x), (6.78)

f2 = f (x)f (x
′)h(x) · h(x′) = f (x)f (x

′)ρ(x)(x′) = f (x)f(x), (6.79)

where (x) is the continuous index.
It is worth stressing here that h(x) ≡ h(x) are abstract elements satisfying

the Clifford algebra relation (6.76) for a chosen metric ρ(x, x′) ≡ ρ(x)(x′).
We do not need to worry here about providing an explicit representation
of h(x); the requirement that they satisfy the relation (6.76) is all that
matters for our purpose4.

The basis vectors h(x) are generators of Clifford algebra C∞ of V∞. An
arbitrary element F ∈ C∞, called a polyvector, can be expanded as

F = f0 + f (x)h(x) + f (x)(x
′)h(x) ∧ h(x′) + f (x)(x

′)(x′′)h(x) ∧ h(x′) ∧ h(x′′) + ...,
(6.80)

4Similarly, when introducing the imaginary number i, we do not provide an explicit representation
for i. We remain satisfied by knowing that i satisfies the relation i2 = −1.
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i.e.,

F = f0 +

∫
dx f(x)h(x) +

∫
dx dx′ f(x, x′)h(x)h(x′)

+

∫
dx dx′ dx′′ f(x, x′, x′′)h(x)h(x′)h(x′′) + ..., (6.81)

where the wedge product can be replaced by the Clifford product, if f(x, x′),
f(x, x′, x′′) are antisymmetric in arguments x, x′, . . . .

We see that once we have a space V∞ of functions f(x) and basis vectors
h(x), we also automatically have a larger space of antisymmetric functions
f(x, x′), f(x, x′, x′′). This has far reaching consequences which will be dis-
cussed in Sec.7.2.

DERIVATIVE WITH RESPECT TO AN
INFINITE-DIMENSIONAL VECTOR

The definition (6.49), (6.50) of the derivative can be straightforwardly
generalized to the case of polyvector-valued functions F (f) of an infinite-
dimensional vector argument f . The derivative in the direction of a vector
g is defined according to

(
g · ∂

∂f

)
F (f) = lim

τ→0

F (f + gτ)− F (f)
τ

. (6.82)

If g = h(x′) then

(
h(x′) ·

∂

∂f

)
F =

∂F

∂f (x′)
≡ δF

δf(x′)

= lim
τ→0

F (f (x)h(x) + h(x′)τ)− F (f (x)h(x))
τ

= lim
τ→0

F
[
(f (x) + τδ(x)(x′))h(x′)

]
− F [f (x)h(x)]

τ
,

(6.83)
where δ(x)(x′) ≡ δ(x− x′). This is a definition of the functional derivative.
A polyvector F can have a definite grade, e.g.,

r = 0 : F (f) = F0[f
(x)h(x)] = Φ0[f(x)],

r = 1 : F (f) = F (x)[f (x)h(x)]h(x) = Φ(x)[f(x)]h(x), (6.84)

r = 2 : F (f) = F (x)(x′)[f (x)h(x)]h(x)h(x′) = Φ(x)(x′)[f(x)]h(x)h(x′).
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For a scalar-valued F (f) the derivative (6.83) becomes

δΦ0

δf(x′)
= lim

τ→0

Φ0[f(x) + δ(x− x′)τ ]− φ0[f(x)]
τ

, (6.85)

which is the ordinary definition of the functional derivative. Analogously
for an arbitrary r-vector valued field F (f).

The derivative with respect to a vector f is then

h(x)
(
h(x) ·

∂

∂f

)
F =

∂F

∂f
= h(x)

∂F

∂f (x)
. (6.86)

INCLUSION OF DISCRETE DIMENSIONS

Instead of a single function f(x) of a single argument x we can consider
a discrete set of functions fa(xµ), a = 1, 2, ..., N , of a multiple argument
xµ, µ = 1, 2, ..., n. These functions can be considered as components of a
vector f expanded in terms of the basis vectors ha(x) according to

f =

∫
dx fa(x)ha(x) ≡ fa(x)ha(x). (6.87)

Basis vectors ha(x) ≡ ha(x) and components fa(x) ≡ fa(x) are now labeled
by a set of continuous numbers xµ, µ = 1, 2, ..., n, and by a set of discrete
numbers a, such as, e.g., a = 1, 2, ..., N . All equations (6.72)–(6.85) consid-
ered before can be straightforwardly generalized by replacing the index (x)
with a(x).

6.2. DYNAMICAL VECTOR FIELD IN
M-SPACE

We shall now reconsider the action (5.76) which describes a membrane
coupled to its own metric field inM-space. The first term is the square of
the velocity vector

ρµ(φ)ν(φ)Ẋ
µ(φ)Ẋν(φ′) ≡ Ẋ2. (6.88)

The velocity vector can be expanded in terms ofM-space basis vectors
hµ(φ) (which are a particular example of generic basis vectors ha(x) consid-
ered at the end of Sec. 6.1):

Ẋ = Ẋµ(φ)hµ(φ). (6.89)


