THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle

MATEJ PAVŠIČ

Department of Theoretical Physics Jožef Stefan Institute
Ljubljana, Slovenia

Kluwer Academic Publishers

Boston/Dordrecht/London

Here $F(A)$ is a polyvector-valued function of a polyvector A, and E is an arbitrary polyvector . The star "*" denotes the scalar product

$$
\begin{equation*}
A * B=\langle A B\rangle_{0} \tag{6.66}
\end{equation*}
$$

of two polyvectors A and B, where $\langle A B\rangle_{0}$ is the scalar part of the Clifford product $A B$. Let e_{J} be a complete set of basis vector of Clifford algebra satisfying ${ }^{3}$

$$
\begin{equation*}
e_{J} * e_{K}=\delta_{J K} \tag{6.67}
\end{equation*}
$$

so that any polyvector can be expanded as $A=A^{J} e_{J}$. For E in eq. (6.65) we may choose one of the basis vectors. Then

$$
\begin{equation*}
\left(e_{K} * \frac{\partial}{\partial A}\right) F(A) \equiv \frac{\partial F}{\partial A^{K}}=\lim _{\tau \rightarrow 0} \frac{F\left(A^{J} e_{J}+e_{K} \tau\right)-F\left(A^{J} e_{J}\right)}{\tau} \tag{6.68}
\end{equation*}
$$

This is the partial derivative of F with respect to the multivector components A_{K}. The derivative with respect to a polyvector A is the sum

$$
\begin{equation*}
\frac{\partial F}{\partial A}=e^{J}\left(e_{J} * \frac{\partial}{\partial A}\right) F=e^{J} \frac{\partial F}{\partial A^{J}} \tag{6.69}
\end{equation*}
$$

The polyvector A can be a polyvector field $A(X)$ defined over the position polyvector field X which is a generalizatin of the position vector field x defined in (6.61). In particular, the field $A(X)$ can be $A(X)=X$. Then (6.68), (6.69) read

$$
\begin{gather*}
\left(e_{K} * \frac{\partial}{\partial X}\right) F(X) \equiv \frac{\partial F}{\partial X^{K}}=\lim _{\tau \rightarrow 0} \frac{F\left(X^{J} e_{J}+e_{K} \tau\right)-F\left(X^{J} e_{J}\right)}{\tau} \tag{6.70}\\
\frac{\partial F}{\partial X}=e^{J}\left(e_{J} * \frac{\partial}{\partial X}\right) F=e^{J} \frac{\partial F}{\partial X^{J}} \tag{6.71}
\end{gather*}
$$

which generalizes eqs. (6.63),6.64).

VECTORS IN AN INFINITE-DIMENSIONAL SPACE

In functional analysis functions are considered as vectors in infinite dimensional spaces. As in the case of finite-dimensional spaces one can introduce a basis $h(x)$ in an infinite-dimensional space V_{∞} and expand a vector of V_{∞} in terms of the basis vectors. The expansion coefficients form a function $f(x)$:

$$
\begin{equation*}
f=\int \mathrm{d} x f(x) h(x) \tag{6.72}
\end{equation*}
$$

[^0]The basis vectors $h(x)$ are elements of the Clifford algebra \mathcal{C}_{∞} of V_{∞}. The Clifford or geometric product of two vectors is

$$
\begin{equation*}
h(x) h\left(x^{\prime}\right)=h(x) \cdot h\left(x^{\prime}\right)+h(x) \wedge h\left(x^{\prime}\right) . \tag{6.73}
\end{equation*}
$$

The symmetric part

$$
\begin{equation*}
h(x) \cdot h\left(x^{\prime}\right)=\frac{1}{2}\left(h(x) h\left(x^{\prime}\right)+h\left(x^{\prime}\right) h(x)\right) \tag{6.74}
\end{equation*}
$$

is the inner product and the antisymmetric part

$$
\begin{equation*}
h(x) \wedge h\left(x^{\prime}\right)=\frac{1}{2}\left(h(x) h\left(x^{\prime}\right)-h\left(x^{\prime}\right) h(x)\right) \tag{6.75}
\end{equation*}
$$

is the outer, or wedge, product of two vectors.
The inner product defines the metric $\rho\left(x, x^{\prime}\right)$ of V_{∞} :

$$
\begin{equation*}
h(x) \cdot h\left(x^{\prime}\right)=\rho\left(x, x^{\prime}\right) \tag{6.76}
\end{equation*}
$$

The square or the norm of f is

$$
\begin{equation*}
f^{2}=f \cdot f=\int \mathrm{d} x \mathrm{~d} x^{\prime} \rho\left(x, x^{\prime}\right) f(x) f\left(x^{\prime}\right) \tag{6.77}
\end{equation*}
$$

It is convenient to introduce notation with upper and lower indices and assume the convention of the integration over the repeated indices. Thus

$$
\begin{gather*}
f=f^{(x)} h_{(x)}, \tag{6.78}\\
f^{2}=f^{(x)} f^{\left(x^{\prime}\right)} h_{(x)} \cdot h_{\left(x^{\prime}\right)}=f^{(x)} f^{\left(x^{\prime}\right)} \rho_{(x)\left(x^{\prime}\right)}=f^{(x)} f_{(x)}, \tag{6.79}
\end{gather*}
$$

where (x) is the continuous index.
It is worth stressing here that $h_{(x)} \equiv h(x)$ are abstract elements satisfying the Clifford algebra relation (6.76) for a chosen metric $\rho\left(x, x^{\prime}\right) \equiv \rho_{(x)\left(x^{\prime}\right)}$. We do not need to worry here about providing an explicit representation of $h(x)$; the requirement that they satisfy the relation (6.76) is all that matters for our purpose ${ }^{4}$.

The basis vectors $h_{(x)}$ are generators of Clifford algebra \mathcal{C}_{∞} of V_{∞}. An arbitrary element $F \in \mathcal{C}_{\infty}$, called a polyvector, can be expanded as

$$
\begin{equation*}
F=f_{0}+f^{(x)} h_{(x)}+f^{(x)\left(x^{\prime}\right)} h_{(x)} \wedge h_{\left(x^{\prime}\right)}+f^{(x)\left(x^{\prime}\right)\left(x^{\prime \prime}\right)} h_{(x)} \wedge h_{\left(x^{\prime}\right)} \wedge h_{\left(x^{\prime \prime}\right)}+\ldots \tag{6.80}
\end{equation*}
$$

[^1]i.e.,
\[

$$
\begin{align*}
F=f_{0} & +\int \mathrm{d} x f(x) h(x)+\int \mathrm{d} x \mathrm{~d} x^{\prime} f\left(x, x^{\prime}\right) h(x) h\left(x^{\prime}\right) \\
& +\int \mathrm{d} x \mathrm{~d} x^{\prime} \mathrm{d} x^{\prime \prime} f\left(x, x^{\prime}, x^{\prime \prime}\right) h(x) h\left(x^{\prime}\right) h\left(x^{\prime \prime}\right)+\ldots \tag{6.81}
\end{align*}
$$
\]

where the wedge product can be replaced by the Clifford product, if $f\left(x, x^{\prime}\right)$, $f\left(x, x^{\prime}, x^{\prime \prime}\right)$ are antisymmetric in arguments x, x^{\prime}, \ldots

We see that once we have a space V_{∞} of functions $f(x)$ and basis vectors $h(x)$, we also automatically have a larger space of antisymmetric functions $f\left(x, x^{\prime}\right), f\left(x, x^{\prime}, x^{\prime \prime}\right)$. This has far reaching consequences which will be discussed in Sec.7.2.

DERIVATIVE WITH RESPECT TO AN INFINITE-DIMENSIONAL VECTOR

The definition (6.49), (6.50) of the derivative can be straightforwardly generalized to the case of polyvector-valued functions $F(f)$ of an infinitedimensional vector argument f. The derivative in the direction of a vector g is defined according to

$$
\begin{equation*}
\left(g \cdot \frac{\partial}{\partial f}\right) F(f)=\lim _{\tau \rightarrow 0} \frac{F(f+g \tau)-F(f)}{\tau} \tag{6.82}
\end{equation*}
$$

If $g=h_{\left(x^{\prime}\right)}$ then

$$
\begin{align*}
\left(h_{\left(x^{\prime}\right)} \cdot \frac{\partial}{\partial f}\right) F=\frac{\partial F}{\partial f^{\left(x^{\prime}\right)}} & \equiv \frac{\delta F}{\delta f\left(x^{\prime}\right)} \\
& =\lim _{\tau \rightarrow 0} \frac{F\left(f^{(x)} h_{(x)}+h_{\left(x^{\prime}\right)} \tau\right)-F\left(f^{(x)} h_{(x)}\right)}{\tau} \\
& =\lim _{\tau \rightarrow 0} \frac{F\left[\left(f^{(x)}+\tau \delta^{(x)}\left(x^{\prime}\right)\right) h_{\left(x^{\prime}\right)}\right]-F\left[f^{(x)} h_{(x)}\right]}{\tau} \tag{6.83}
\end{align*}
$$

where $\delta^{(x)}{ }_{\left(x^{\prime}\right)} \equiv \delta\left(x-x^{\prime}\right)$. This is a definition of the functional derivative. A polyvector F can have a definite grade, e.g.,

$$
\begin{align*}
& r=0 \quad: \quad F(f)=F_{0}\left[f^{(x)} h_{(x)}\right]=\Phi_{0}[f(x)] \\
& r=1 \quad: \quad F(f)=F^{(x)}\left[f^{(x)} h_{(x)}\right] h_{(x)}=\Phi^{(x)}[f(x)] h_{(x)} \tag{6.84}\\
& r=2 \quad: \quad F(f)=F^{(x)\left(x^{\prime}\right)}\left[f^{(x)} h_{(x)}\right] h_{(x)} h_{\left(x^{\prime}\right)}=\Phi^{(x)\left(x^{\prime}\right)}[f(x)] h_{(x)} h_{\left(x^{\prime}\right)}
\end{align*}
$$

For a scalar-valued $F(f)$ the derivative (6.83) becomes

$$
\begin{equation*}
\frac{\delta \Phi_{0}}{\delta f\left(x^{\prime}\right)}=\lim _{\tau \rightarrow 0} \frac{\Phi_{0}\left[f(x)+\delta\left(x-x^{\prime}\right) \tau\right]-\phi_{0}[f(x)]}{\tau} \tag{6.85}
\end{equation*}
$$

which is the ordinary definition of the functional derivative. Analogously for an arbitrary r-vector valued field $F(f)$.

The derivative with respect to a vector f is then

$$
\begin{equation*}
h^{(x)}\left(h_{(x)} \cdot \frac{\partial}{\partial f}\right) F=\frac{\partial F}{\partial f}=h^{(x)} \frac{\partial F}{\partial f^{(x)}} . \tag{6.86}
\end{equation*}
$$

INCLUSION OF DISCRETE DIMENSIONS

Instead of a single function $f(x)$ of a single argument x we can consider a discrete set of functions $f^{a}\left(x^{\mu}\right), a=1,2, \ldots, N$, of a multiple argument $x^{\mu}, \mu=1,2, \ldots, n$. These functions can be considered as components of a vector f expanded in terms of the basis vectors $h_{a}(x)$ according to

$$
\begin{equation*}
f=\int \mathrm{d} x f^{a}(x) h_{a}(x) \equiv f^{a(x)} h_{a(x)} . \tag{6.87}
\end{equation*}
$$

Basis vectors $h_{a(x)} \equiv h_{a}(x)$ and components $f^{a(x)} \equiv f^{a}(x)$ are now labeled by a set of continuous numbers $x^{\mu}, \mu=1,2, \ldots, n$, and by a set of discrete numbers a, such as, e.g., $a=1,2, \ldots, N$. All equations (6.72)-(6.85) considered before can be straightforwardly generalized by replacing the index (x) with $a(x)$.

6.2. DYNAMICAL VECTOR FIELD IN \mathcal{M}-SPACE

We shall now reconsider the action (5.76) which describes a membrane coupled to its own metric field in \mathcal{M}-space. The first term is the square of the velocity vector

$$
\begin{equation*}
\rho_{\mu(\phi) \nu(\phi)} \dot{X}^{\mu(\phi)} \dot{X}^{\nu\left(\phi^{\prime}\right)} \equiv \dot{X}^{2} . \tag{6.88}
\end{equation*}
$$

The velocity vector can be expanded in terms of \mathcal{M}-space basis vectors $h_{\mu(\phi)}$ (which are a particular example of generic basis vectors $h_{a}(x)$ considered at the end of Sec. 6.1):

$$
\begin{equation*}
\dot{X}=\dot{X}^{\mu(\phi)} h_{\mu(\phi)} . \tag{6.89}
\end{equation*}
$$

[^0]: $\left.\overline{{ }^{3} \text { Remember that the set }\left\{e_{J}\right\}=\left\{1, e_{\mu}\right.}, e_{\mu}, e_{\mu} e_{\nu}, \ldots\right\}$.

[^1]: ${ }^{4}$ Similarly, when introducing the imaginary number i, we do not provide an explicit representation for i. We remain satisfied by knowing that i satisfies the relation $i^{2}=-1$.

