
THE LANDSCAPE OF THEORETICAL PHYSICS:
A GLOBAL VIEW

From Point Particles to the
Brane World and Beyond,
in Search of a Unifying Principle

MATEJ PAVŠIČ
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For a scalar-valued F (f) the derivative (6.83) becomes

δΦ0

δf(x′)
= lim

τ→0

Φ0[f(x) + δ(x− x′)τ ]− φ0[f(x)]
τ

, (6.85)

which is the ordinary definition of the functional derivative. Analogously
for an arbitrary r-vector valued field F (f).

The derivative with respect to a vector f is then

h(x)
(
h(x) ·

∂

∂f

)
F =

∂F

∂f
= h(x)

∂F

∂f (x)
. (6.86)

INCLUSION OF DISCRETE DIMENSIONS

Instead of a single function f(x) of a single argument x we can consider
a discrete set of functions fa(xµ), a = 1, 2, ..., N , of a multiple argument
xµ, µ = 1, 2, ..., n. These functions can be considered as components of a
vector f expanded in terms of the basis vectors ha(x) according to

f =

∫
dx fa(x)ha(x) ≡ fa(x)ha(x). (6.87)

Basis vectors ha(x) ≡ ha(x) and components fa(x) ≡ fa(x) are now labeled
by a set of continuous numbers xµ, µ = 1, 2, ..., n, and by a set of discrete
numbers a, such as, e.g., a = 1, 2, ..., N . All equations (6.72)–(6.85) consid-
ered before can be straightforwardly generalized by replacing the index (x)
with a(x).

6.2. DYNAMICAL VECTOR FIELD IN
M-SPACE

We shall now reconsider the action (5.76) which describes a membrane
coupled to its own metric field inM-space. The first term is the square of
the velocity vector

ρµ(φ)ν(φ)Ẋ
µ(φ)Ẋν(φ′) ≡ Ẋ2. (6.88)

The velocity vector can be expanded in terms ofM-space basis vectors
hµ(φ) (which are a particular example of generic basis vectors ha(x) consid-
ered at the end of Sec. 6.1):

Ẋ = Ẋµ(φ)hµ(φ). (6.89)
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Basis vectors hµ(φ) are not fixed, but they depend on the membrane
configuration. We must therefore include in the action not only a kinetic
term for Ẋµ(φ), but also for hµ(φ). One possibility is just to rewrite theM-
space curvature scalar in terms of hµ(φ) by exploiting the relations between
the metric and the basis vectors,

ρµ(φ)ν(φ′) = hµ(φ) · hν(ξ′), (6.90)

and then perform variations of the action with respect to hµ(φ) instead of
ρµ(φ)ν(φ′).

A more direct procedure is perhaps to exploit the formalism of Sec. 6.1.
There we had the basis vectors γµ(x) which were functions of the coordi-
nates xµ. Now we have the basis vectors hµ(φ)[X] which are functionals of

the membrane configuration X (i.e., of the M-space coordinates Xµ(φ)).
The relation (6.8) now generalizes to

∂α(φ′)hβ(φ′′) = Γ
µ(φ)
α(φ′)β(φ′′)hµ(φ) (6.91)

where

∂α(φ′) ≡
∂

∂Xα(φ′)
≡ δ

δXα(φ′)

is the functional derivative. The commutator of two derivatives gives the
curvature tensor inM-space

[∂α(φ′), ∂β(φ′′)]h
µ(φ) = Rµ(φ)ν(φ̄)α(φ′)β(φ′′)hν(φ̄). (6.92)

The inner product of the left and the right hand side of the above equation
with hν(φ̄′) gives (after renaming the indices)

Rµ(φ)ν(φ̄)α(φ′)β(φ′′) =
(
[∂α(φ′), ∂β(φ′′)]h

µ(φ)
)
· hν(φ̄). (6.93)

The Ricci tensor is then

Rν(φ̄)β(φ′′) = Rµ(φ)ν(φ̄)µ(φ)β(φ′′) =
(
[∂µ(φ), ∂β(φ′′)]h

µ(φ)
)
· hν(φ̄), (6.94)

and the curvature scalar is

R = ρν(φ̄)β(φ
′′)Rν(φ̄)β(φ′′)

=
(
[∂µ(φ), ∂ν(φ′)]

)
· hν(φ′)

=
(
∂µ(φ)∂ν(φ′)h

µ(φ)
)
· hν(φ′) −

(
∂ν(φ′)∂µ(φ)h

µ(φ)
)
· hν(φ′). (6.95)
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A possible action is then

I[Xµ(φ), hµ(φ)] =

∫
DX

√
|ρ|
(
Ẋ2 +

ε

16π
R
)
, (6.96)

where ρ is the determinant of M-space metric, and where R and ρ are
now expressed in terms of hµ(φ). Variation of (6.96) with respect to hα(φ)
gives their equations of motion. In order to perform such a variation we
first notice that ρ = det ρµ(φ)ν(φ′), in view of the relation (6.90), is now

a function of hα(φ). Differentiation of
√
|ρ| with respect to a vector hα(φ)

follows the rules given in Sec. 6.1:

∂
√
|ρ|

∂hα(φ)
=

∂
√
|ρ|

∂ρµ(φ′)ν(φ′′)
∂ρµ(φ

′)ν(φ′′)

∂hα(φ)

= −1
2

√
|ρ|ρµ(φ′)ν(φ′′)(δµ(φ

′)
α(φ)h

ν(φ′′) + δν(φ
′′)
α(φ)h

µ(φ′))

= −
√
|ρ|hα(φ). (6.97)

Since the vectors hα(φ) are functionals of the membrane’s configuration

Xµ(φ), instead of the derivative we take the functional derivative

δ
√
|ρ[X]|

δhα(φ)[X ′]
= −

√
|ρ[X]hα(φ)[X]δ(M)(X −X ′), (6.98)

where
δ(M)(X −X ′) ≡

∏

µ(φ)

(Xµ(φ) −X ′µ(φ)) (6.99)

is the δ-functional inM-space.
Functional deriative of R with respect to hα(φ)[X] gives

δR[X]

δhα(φ)[X ′]
=
(
[∂µ(φ′), ∂ν(φ′′)]δ

µ(φ′)
α(φ)δ

(M)(X −X ′)
)
hν(φ

′′)[X]

+ [∂µ(φ′), ∂ν(φ′′)]h
µ(φ′)[X]δν(φ

′′)
α(φ)δ

(M)(X −X ′). (6.100)

For the velocity term we have

δ

δhα(φ)[X ′]

(
Ẋµ(φ′)h

µ(φ′)Ẋν(φ′′)h
ν(φ′′)

)

= 2Ẋα(φ)Ẋν(φ′′)h
ν(φ′′)δ(M)(X −X ′). (6.101)

We can now insert eqs. (6.97)–(6.101) into

δI

δhα(φ)[X ′]
=

∫
DX δ

δhα(φ)[X ′]

[√
|ρ|
(
Ẋ2 +

ε

16π
R
)]

= 0. (6.102)
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We obtain

Ẋα(φ)Ẋν(φ′)h
ν(φ′) − 1

2hα(φ)Ẋ
2

+
ε

16π

(
−1

2hα(φ)R+ [∂ν(φ′), ∂α(φ′′)]h
ν(φ′)

)
= 0. (6.103)

These are the equations of “motion” for the variables hµ(φ). The equations

for Xµ(φ) are the same equations (5.79).
After performing the inner product of eq. (6.103) with a basis vector

hβ(φ′) we obtain theM-space Einstein equations (5.80). This justifies use
of hµ(φ) as dynamical variables, since their equations of motion contain the
equations for the metric ρµ(φ)ν(φ′).

DESCRIPTION WITH THE VECTOR FIELD IN
SPACETIME

The set of M-space basis vectors hµ(φ) is an arbitrary solution to the
dynamical equations (6.103). In order to find a connection with the usual
theory which is formulated, not in M-space, but in a finite-dimensional
(spacetime) manifold VN , we now assume a particular Ansatz for hµ(φ):

hµ(φ) = h(φ)γµ(φ), (6.104)

where

h(φ) · h(φ′) =
√
Ẋ2

κ
√
|f | δ(φ− φ

′) (6.105)

and
γµ(φ) · γν(φ) = gµν . (6.106)

Altogether the above Ansatz means that

hµ(φ) · hν(φ′) =
√
Ẋ2

√
|f | g

µν(φ)δ(φ− φ′). (6.107)

Here gµν(φ) is the proto-metric, and γµ(φ) are the proto-vectors of space-
time. The symbol f now meens

f ≡ det fab , fab ≡ ∂aXµ∂bX
µγνγν = ∂aXµ ∂bXν γ

µγν . (6.108)

Here the M-space basis vectors are factorized into the vectors h(φ), φ =
(φA, k), φA ∈ [0, 2π] , k = 1, 2, ..., Z, which are independent for all values
of µ, and are functions of parameter φ. Loosely speaking, h(φ) bear the
task of being basis vectors of the infinite-dimensional part (index (φ) ofM-
space, while γµ(φ) are basis vectors of the finite-dimensional part (index µ)
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of M-space. As in Sec. 6.1, γµ here also are functions of the membrane’s
parameters φ = (φA, k).

The functional derivative of hµ(φ) with respect to the membrane coordi-
nates Xµ(φ) is

∂ν(φ′)h
µ(φ) =

δh(φ)

δXν(φ′)
γµ(φ) + h(φ)

δγµ(φ)

δXν(φ′)
. (6.109)

Let us assume a particular case where

[∂µ(φ), ∂ν(φ′)]γ
µ(φ′′) =

[
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ′′)δ(φ− φ′′)δ(φ′ − φ′′)

6= 0 (6.110)

and
[∂µ(φ), ∂ν(φ′)]h(φ

′′) = 0. (6.111)

Inserting the relations (6.104)–(6.111) into the action (6.96), and omitting
the integration over DX we obtain

εR = ε

∫ √
Ẋ2

κ
√
|f(φ)|δ

2(0)dφ

([
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)

= ε

∫ √
Ẋ2

κ
√
|f(φ)|δ

2(0)dφ

×
([

∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)δ (x−X(φ))√

|g|
√
|g| dNx

=
1

G

∫
dNx

√
|g| R̃, (6.112)

where we have set

ε

∫
dφ δ2(0)

√
Ẋ2

κ
√
|f(φ)|

([
∂

∂Xµ
,
∂

∂Xν

]
γµ(φ)

)
· γν(φ)δ (x−X(φ))√

|g|

=
1

G
R̃(x), (6.113)

G being the gravitational constant. The expression R̃(x) is defined formally
at all points x, but because of δ(x − X(φ)) it is actually different from
zero only on the set of membranes. If we have a set of membranes filling
spacetime, then R̃(x) becomes a continuous function of x:

R̃(x) = ([∂µ, ∂ν ]γ
µ(x)) · γν(x) = R(x) (6.114)
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which is actually a Ricci scalar.
For the first term in the action (6.96) we obtain

hµ(φ)hν(φ′)Ẋ
µ(φ)Ẋν(φ′)

=

∫
κ
√
|f |√
Ẋ2

dφγµ(φ)γν(φ)Ẋ
µ(φ)Ẋν(φ)

=

∫
dnφ

κ
√
|f |√
Ẋ2

γµ(x)γν(x)Ẋ
µ(φ)Ẋν(φ) δ (x−X(φ)) dNx

=

∫
dnφ

κ
√
|f |√
Ẋ2

gµν(x)Ẋ
µ(φ)Ẋν(φ) δ (x−X(φ)) dNx. (6.115)

Altogether we have

I[Xµ(φ), γµ(x)] = κ

∫
dφ
√
|f |
√
γµ(x)γν(x)Ẋµ(φ)Ẋν(φ) δN (x−X(φ)) dNx

+
1

16πG

∫
dNx

√
|g| ([∂µ, ∂ν ]γµ(x)) · γν(x). (6.116)

This is an action for the spacetime vector field γµ(x) in the presence of a
membrane configuration filling spacetime. It was derived from the action
(6.96) in which we have omitted the integration over DX√ρ.

Since γµ · γν = gµν , and since according to (6.13)

([∂µ, ∂ν ]γ
µ) · γν = R, (6.117)

the action (6.116) is equivalent to

I[Xµ(φ), gµν ] = κ

∫
dφ
√
|f |
√
Ẋ2 δ (x−X(φ)) dNx

+
1

16πG

∫
dNx

√
|g|R (6.118)

which is an action for the gravitational field gµν in the presence of mem-
branes.

Although (6.118) formally looks the same as the usual gravitational ac-
tion in the presence of matter, there is a significant difference. In the con-
ventional general relativity the matter part of the action may vanish and
we thus obtain the Einstein equations in vacuum. On the contrary, in the
theory based onM-space, the metric ofM-space is intimately connected to
the existence of a membrane configuration. Without membranes there is no
M-space and no M-space metric. When considering the M-space action
(5.76) or (6.96) from the point of view of an effective spacetime (defined
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in our case by the Ansatz (6.104)–(6.107), we obtain the spacetime action
(6.118) in which the matter part cannot vanish. There is always present a
set of membranes filling spacetime. Actually, the points of spacetime are
identified with the points on the membranes.

The need to fill spacetime with a reference fluid (composed of a set of
reference particles) has been realized recently by Rovelli [26], following an
earlier work by DeWitt [25]. According to Rovelli and DeWitt, because of
the Einstein “hole argument” [42], spacetime points cannot be identified
at all. This is a consequence of the invariance of the Einstein equations
under active diffeomorphisms. One can identify spacetime points if there
exists a material reference fluid with respect to which spacetime points are
identified.

We shall now vary the action (6.116) with respect to the vector field
γα(x):

δI

δγα(x)
=

∫
dφ

√
|f |√
Ẋ2

ẊαẊν γ
νδ (x−X(φ)) (6.119)

+
1

16πG

∫
dx′

[
δ
√
|g(x′)|

δγα(x)
R(x′) +

√
|g(x′)| δR(x

′)
δγα(x)

]
.

For this purpose we use

δγµ(x)

δγν(x′)
= δµνδ(x− x′) (6.120)

and
δ
√
|g(x)|

δγν(x′)
= −

√
|g(x)| γν(x)δ(x− x′). (6.121)

In (6.121) we have taken into account that g ≡ det gµν and gµν = γµ · γν .
Using (6.120), we have for the gravitational part

δIg
δγα(x)

=
1

16πG

∫
dNx′

√
|g(x′)|

[
−γα(x′)R(x′)δ(x− x′)

+
(
[∂′µ, ∂

′
ν ]δ

µ
αδ(x− x′)

)
γν(x′) + [∂′µ, ∂

′
ν ]γ

µ(x′)δναδ(x− x′)
]

=
1

16π

√
|g| (−γαR+ 2[∂µ, ∂α]γ

µ) . (6.122)

The equations of motion for γα(x) are thus
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[∂µ, ∂α]γ
µ − 1

2Rγα

= −8πG
∫

dφ
√
|f |
√
Ẋ2

(
ẊαẊν

Ẋ2
+ ∂aXα ∂aXν

)

× γν δ (x−X(φ))√
|g| , (6.123)

where now Ẋ2 ≡ ẊµẊµ.
After performing the inner product with γβ the latter equations become

the Einstein equations

Rαβ − 1
2Rgαβ = −8πGTαβ , (6.124)

where

Rαβ = ([∂µ, ∂α])γ
µ · γβ (6.125)

and

Tαβ = κ

∫
dφ
√
|f |
√
Ẋ2

(
ẊαẊβ

Ẋ2
+ ∂aXα∂aXβ

)
δ(x−X(φ)√

|g| (6.126)

is the stress–energy tensor of the membrane configuration. It is the ADW
split version of the full stress–energy tensor

Tµν = κ

∫
dφ (det∂AX

α∂BXα)
1/2 ∂AXµ∂AXν

δ (x−X(φ))√
|g| . (6.127)

The variables γµ(x) appear much easier to handle than the variables gµν .
The expressions for the curvature scalar (6.117) and the Ricci tensor (6.125)
are very simple, and it is easy to vary the action (6.116) with respect to
γ(x).5

We should not forget that the matter stress–energy tensor on the right
hand side of the Einstein equations (6.124) is present everywhere in space-
time and it thus represents a sort of background matter6 whose origin is
in the originalM-space formulation of the theory. The ordinary matter is
then expected to be present in addition to the background matter. This
will be discussed in Chapter 8.

5At this point we suggest the interested reader study the Ashtekar variables [74], and compare
them with γ(x).
6It is tempting to speculate that this background is actually the hidden mass or dark matter

postulated in astrophysics and cosmology [73].
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6.3. FULL COVARIANCE IN THE SPACE OF
PARAMETERS φA

So far we have exploited the fact that, according to (4.21), a membrane
moves as a point particle in an infinite-dimensionalM-space. For a special
choice of M-space metric (5.4) which involves the membrane velocity we
obtain equations of motion which are identical to the equations of motion
of the conventional constrained membrane, known in the literature as the
p-brane, or simply the brane7. A moving brane sweeps a surface Vn which
incorporates not only the brane parameters ξa, a = 1, 2, ..., p, but also an
extra, time-like parameter τ . Altogether there are n = p + 1 parameters
φA = (τ, ξa) which denote a point on the surface Vn. The latter surface is
known in the literature under names such as world surface, world volume
(now the most common choice) and world sheet (my favorite choice).

Separating the parameter τ from the rest of the parameters turns out to
be very useful in obtaining the unconstrained membrane out of the Clifford
algebra based polyvector formulation of the theory.

On the other hand, when studying interactions, the separate treatment
of τ was a nuisance, therefore in Sec. 5.1 we switched to a description
in terms of the variables Xµ(τ, ξa) ≡ Xµ(φA) which were considered as
M-space coordinates Xµ(φA) ≡ Xµ(φ). So M-space was enlarged from
that described by coordinates Xµ(ξ) to that described by Xµ(φ). In the
action and in the equations of motion there occurred theM-space velocity
vector Ẋµ(φ) ≡ ∂Xµ(φ)/∂τ . Hence manifest covariance with respect to
reparametrizations of φA was absent in our formulation. In my opinion such
an approach was good for introducing the theory and fixing the development
of the necessary concepts. This is now to be superceded. We have learnt
enough to be able to see a way how a fully reparametrization covariant
theory should possibly be formulated.

DESCRIPTION IN SPACETIME
As a first step I now provide a version of the action (6.116) which is

invariant under arbitrary reparametrizations φA → φ′A = fA(τ). In the
form as it stands (6.116) (more precisely, its “matter” term) is invariant
under reparametrizations of ξa and τ separately. A fully invariant action

7For this reason I reserve the name p-brane or brane for the extended objetcs described by
the conventional theory, while the name membrane stands for the extended objects of the more
general, M-space based theory studied in this book (even if the same name “membrane” in the
conventional theory denotes 2-branes, but this should not cause confusion).


