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a distinguished feature of our approach and we have reasons to expect that
also the p-brane gauge field theory —not yet a completely solved problem—
can be straightforwardly formulated along the lines indicated here.

7.2. CLIFFORD ALGEBRA AND
QUANTIZATION

PHASE SPACE
Let us first consider the case of a 1-dimensional coordinate variable q

and its conjugate momentum p. The two quantities can be considered as
coordinates of a point in the 2-dimensional phase space. Let eq and ep be
the basis vectors satisfying the Clifford algebra relations

eq · ep ≡ 1
2(eqep + epeq) = 0, (7.97)

e2q = 1 , e2p = 1. (7.98)

An arbitrary vector in phase space is then

Q = qeq + pep. (7.99)

The product of two vectors ep and eq is the unit bivector in phase space
and it behaves as the imaginary unit

i = epeq , i2 = −1. (7.100)

The last relation immediately follows from (7.97), (7.98): i2 = epeqepeq =
−e2pe2q = −1.

Multiplying (7.99) respectively from the right and from the left by eq we
thus introduce the quantities Z and Z∗:

Qeq = q + pepeq = q + pi = Z, (7.101)

eqQ = q + peqep = q − pi = Z∗. (7.102)

For the square we have

QeqeqQ = ZZ∗ = q2 + p2 + i(pq − qp), (7.103)

eqQQeq = Z∗Z = q2 + p2 − i(pq − qp). (7.104)
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Upon quantization q, p do not commute, but satisfy

[q, p] = i, (7.105)

therefore (7.103), (7.104) become

ZZ∗ = q2 + p2 + 1, (7.106)

Z∗Z = q2 + p2 − 1, (7.107)

[Z,Z∗] = 1. (7.108)

Even before quantization the natural variables for describing physics are
the complex quantity Z and its conjugate Z∗. The imaginary unit is the
bivector of the phase space, which is 2-dimensional.

Writing q = ρ cosφ and p = ρ sinφ we find

Z = ρ(cosφ+ i sinφ) = ρ eiφ , (7.109)

Z∗ = ρ(cosφ− i sinφ) = ρ e−iφ , (7.110)

where ρ and φ are real numbers. Hence taking into account that physics
takes place in the phase space and that the latter can be described by
complex numbers, we automatically introduce complex numbers into both
the classical and quantum physics. And what is nice here is that the complex
numbers are nothing but the Clifford numbers of the 2-dimensional phase
space.

What if the configuration space has more than one dimension, say n?
Then with each spatial coordinate is associated a 2-dimensional phase space.
The dimension of the total phase space is then 2n. A phase space vector
then reads

Q = qµeqµ + pµepµ. (7.111)

The basis vectors have now two indices q, p (denoting the direction in the
2-dimensional phase space) and µ = 1, 2, ..., n (denoting the direction in the
n-dimensional configuration space).

The basis vectors can be written as the product of the configuration space
basis vectors eµ and the 2-dimensional phase space basis vectors eq, ep:

eqµ = eqeµ , epµ = epeµ . (7.112)

A vector Q is then

Q = (qµeq + pµep)eµ = Qµeµ , (7.113)
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where
Qµ = qµeq + pµep. (7.114)

Eqs. (7.101), (7.102) generalize to

Qµeq = qµ + pµepeq = qµ + pµi = Zµ , (7.115)

eqQ
µ = qµ + pµeqep = qµ − pµi = Z∗µ. (7.116)

Hence, even if configuration space has many dimensions, the imaginary
unit i in the variables Xµ comes from the bivector eqep of the 2-dimensional
phase space which is associated with every direction µ of the configuration
space.

When passing to quantum mechanics it is then natural that in general
the wave function is complex-valued. The imaginary unit is related to the
phase space which is the direct product of the configuration space and the
2-dimensional phase space.

At this point let us mention that Hestenes was one of the first to point
out clearly that imaginary and complex numbers need not be postulated
separately, but they are automatically contained in the geometric calculus
based on Clifford algebra. When discussing quantum mechanics Hestenes
ascribes the occurrence of the imaginary unit i in the Schrödinger and
especially in the Dirac equation to a chosen configuration space Clifford
number which happens to have the square −1 and which commutes with
all other Clifford numbers within the algebra. This brings an ambiguity as
to which of several candidates should serve as the imaginary unit i. In this
respect Hestenes had changed his point of view, since initially he proposed
that one must have a 5-dimensional space time whose pseudoscalar unit
I = γ0γ1γ2γ3γ4 commutes with all the Clifford numbers of C5 and its square
is I2 = −1. Later he switched to 4-dimensional space time and chose the
bivector γ1γ2 to serve the role of i. I regard this as unsatisfactory, since
γ2γ3 or γ1γ3 could be given such a role as well. In my opinion it is more
natural to ascribe the role of i to the bivector of the 2-dimensional phase
space sitting at every coordinate of the configuration space. A more detailed
discussion about the relation between the geometric calculus in a generic 2-
dimensional space (not necessarily interpreted as phase space) and complex
number is to be found in Hestenes’ books [22].

WAVE FUNCTION AS A POLYVECTOR
We have already seen in Sec. 2.5 that a wave function can in general be

considered as a polyvector, i.e., as a Clifford number or Clifford aggregate
generated by a countable set of basis vectors eµ. Such a wave function
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contains spinors, vectors, tensors, etc., all at once. In particular, it may
contain only spinors, or only vectors, etc. .

Let us now further generalize this important procedure. In Sec. 6.1 we
have discussed vectors in an infinite-dimensional space V∞ from the point
of view of geometric calculus based on the Clifford algebra generated by the
uncountable set of basis vectors h(x) of V∞. We now apply that procedure
to the case of the wave function which, in general, is complex-valued.

For an arbitrary complex function we have

f(x) =
1√
2
(f1(x) + if2(x)) , f∗(x) =

1√
2
(f1(x)− if2(x)) , (7.117)

where f1(x), f2(x) are real functions. From (7.117) we find

f1(x) =
1√
2
(f(x) + f∗(x)) , f2(x) =

1

i
√
2
(f(x)− f∗(x)). (7.118)

Hence, instead of a complex function we can consider a set of two indepen-
dent real functions f1(x) and f2(x).

Introducing the basis vectors h1(x) and h2(x) satisfying the Clifford al-
gebra relations

hi(x) · hj(x′) ≡ 1
2(hi(x)hj(x

′) + hj(x
′)hi(x)) = δijδ(x− x′) , i, j = 1, 2,

(7.119)
we can expand an arbitrary vector F according to

F =

∫
dx(f1(x)h1(x) + f2(x)h2(x)) = f i(x)hi(x) , (7.120)

where hi(x) ≡ hi(x), f i(x) ≡ fi(x). Then

F · h1(x) = f1(x) , F · h2(x) = f2(x) (7.121)

are components of F .
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Introducing the imaginary unit i which commutes7 with hi(x) we can
form a new set of basis vectors

h(x) =
h1(x) + ih2(x)√

2
, h∗(x) =

h1(x)− ih2(x)√
2

, (7.122)

the inverse relations being

h1(x) =
h(x) + h∗(x)√

2
, h2(x) =

h(x)− h∗(x)
i
√
2

. (7.123)

Using (7.118), (7.123) and (7.120) we can re-express F as

F =

∫
dx(f(x)h∗(x) + f∗(x)h(x)) = f (x)h(x) + f∗(x)h∗(x) , (7.124)

where

f (x) ≡ f∗(x) , f∗(x) ≡ f(x) , h(x) ≡ h(x) , h∗(x) ≡ h∗(x). (7.125)

From (7.119) and (7.123) we have

h(x) · h∗(x) ≡ 1
2(h(x)h

∗(x′) + h∗(x′)h(x)) = δ(x− x′) , (7.126)

h(x) · h(x′) = 0 , h∗(x) · h∗(x′) = 0 , (7.127)

which are the anticommutation relations for a fermionic field.
A vector F can be straightforwardly generalized to a polyvector:

F = f i(x)hi(x) + f i(x)j(x
′)hi(x)hj(x′) + f i(x)j(x

′)k(x′′)hi(x)hj(x′)hk(x′′) + ...

= f (x)h(x) + f (x)(x
′)h(x)h(x′) + f (x)(x

′)(x′′)h(x)h(x′)h(x′′) + ...

+ f∗(x)h∗(x) + f∗(x)(x
′)h∗(x)h

∗
(x′) + f∗(x)(x

′)(x′′)h∗(x)h
∗
(x′)h

∗
(x′′) + ...

(7.128)

7Now, the easiest way to proceed is in forgetting how we have obtained the imaginary unit,
namely as a bivector in 2-dimensional phase space, and define all the quantities i, h1(x), h2(x),
etc., in such a way that i commutes with everything. If we nevertheless persisted in maintaining
the geometric approach to i, we should then take h1(x) = e(x), h2(x) = e(x)epeq , satisfying

h1(x) · h1(x′) = e(x) · e(x′) = δ(x− x′),
h2(x) · h2(x) = −δ(x− x′),
h1(x) · h2(x′) = δ(x− x′)1 · (epeq) = 0,

where according to Hestenes the inner product of a scalar with a multivector is zero. Introducing
h = (h1 + h2)/

√
2 and h∗ = (h1 − h2)/

√
2 one finds h(x) · h∗(x′) = δ(x − x′), h(x) · h(x′) = 0,

h∗(x) · h∗(x′) = 0.
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where f (x)(x
′)(x′′)... are scalar coefficients, antisymmetric in (x)(x′)(x′′)...

We have exactly the same expression (7.128) in the usual quantum field
theory (QFT), where f (x), f (x)(x

′),..., are 1-particle, 2-particle,..., wave
functions (wave packet profiles). Therefore a natural interpretation of the
polyvector F is that it represents a superposition of multi-particle states.

In the usual formulation of QFT one introduces a vacuum state |0〉, and
interprets h(x), h∗(x) as the operators which create or annihilate a particle
or an antiparticle at x, so that (roughly speaking) e.g. h∗(x)|0〉 is a state
with a particle at position x.

In the geometric calculus formulation (based on the Clifford algebra of
an infinite-dimensional space) the Clifford numbers h∗(x), h(x) already
represent vectors. At the same time h∗(x), h(x) also behave as operators,
satisfying (7.126), (7.127). When we say that a state vector is expanded
in terms of h∗(x), h(x) we mean that it is a superposition of states in
which a particle has a definite position x. The latter states are just h∗(x),
h(x). Hence the Clifford numbers (operators) h∗(x), h(x) need not act on
a vacuum state in order to give the one-particle states. They are already
the one-particle states. Similarly the products h(x)h(x′), h(x)h(x′)h(x′′),
h∗(x)h∗(x′), etc., already represent the multi-particle states.

When performing quantization of a classical system we arrived at the
wave function. The latter can be considered as an uncountable (infinite) set
of scalar components of a vector in an infinite-dimensional space, spanned
by the basis vectors h1(x), h2(x). Once we have basis vectors we auto-
matically have not only arbitrary vectors, but also arbitrary polyvectors
which are Clifford numbers generated by h1(x), h2(x) (or equivalently by
h(x), h∗(x). Hence the procedure in which we replace infinite-dimensional
vectors with polyvectors is equivalent to the second quantization.

If one wants to consider bosons instead of fermions one needs to introduce
a new type of fields ξ1(x), ξ2(x), satisfying the commutation relations

1
2 [ξi(x), ξj(x

′)] ≡ 1
2 [ξi(x)ξj(x

′)− ξj(x′)ξi(x)] = εij∆(x− x′)12 , (7.129)

with εij = −εji, ∆(x − x′) = −∆(x′ − x), which stay instead of the an-
ticommutation relations (7.119). Hence the numbers ξ(x) are not Clifford
numbers. By (7.129) the ξi(x) generate a new type of algebra, which could
be called an anti-Clifford algebra.

Instead of ξi(x) we can introduce the basis vectors

ξ(x) =
ξ1(x) + iξ2√

2
, ξ∗(x) =

ξ1(x)− iξ2√
2

(7.130)

which satisfy the commutation relations

[ξ(x), ξ∗(x′)] = −i∆(x− x′), (7.131)
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[ξ(x), ξ(x′)] = 0 , [ξ∗(x), ξ∗(x′)] = 0. (7.132)

A polyvector representing a superposition of bosonic multi-particle states
is then expanded as follows:

B = φi(x)ξi(x) + φi(x)j(x
′)ξi(x)ξj(x′) + ... (7.133)

= φ(x)ξ(x) + φ(x)(x
′)ξ(x)ξ(x′) + φ(x)(x

′)(x′′)ξ(x)ξ(x′)ξ(x′′) + ...

+φ∗(x)ξ∗(x) + φ∗(x)(x
′)ξ∗(x)ξ

∗
(x′) + φ∗(x)(x

′)(x′′)ξ∗(x)ξ
∗
(x′)ξ

∗
(x′′) + ... ,

where φi(x)j(x
′)... and φ(x)(x

′)..., φ∗(x)(x
′)(x′′)... are scalar coefficients, symmet-

ric in i(x)j(x′)... and (x)(x′)..., respectively. They can be interpreted as rep-
resenting 1-particle, 2-particle,..., wave packet profiles. Because of (7.131)
ξ(x) and ξ∗(x) can be interpreted as creation operators for bosons. Again,
a priori we do not need to introduce a vacuum state. However, whenever
convenient we may, of course, define a vacuum state and act on it by the
operators ξ(x), ξ∗(x).

EQUATIONS OF MOTION FOR BASIS VECTORS
In the previous subsection we have seen how the geometric calculus na-

turally leads to the second quantization which incorporates superpositions
of multi-particle states. We shall now investigate what are the equations of
motion that the basis vectors satisfy.

For illustration let us consider the action for a real scalar field φ(x):

I[φ] = 1
2

∫
d4x (∂µφ∂

µφ−m2). (7.134)

Introducing the metric

ρ(x, x′) = h(x) · h(x′) ≡ 1
2(h(x)h(x

′) + h(x′)h(x)) (7.135)

we have

I[φ] = 1
2

∫
dx dx′

(
∂µφ(x)∂

′µφ(x′)−m2φ(x)φ(x′)
)
h(x)h(x′). (7.136)

If, in particular,
ρ(x, x′) = h(x) · h(x′) = δ(x− x′) (7.137)

then the action (7.136) is equivalent to (7.134).
In general, ρ(x, x′) need not be equal to δ(x − x′), and (7.136) is then

a generalization of the usual action (7.134) for the scalar field. An action
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which is invariant under field redefinitions (‘coordinate’ transformations in
the space of fields) has been considered by Vilkovisky [85]. Integrating
(7.136) per partes over x and x′ and omitting the surface terms we obtain

I[φ] = 1
2

∫
dx dx′ φ(x)φ(x′)

(
∂µh(x)∂

′µh(x′)−m2h(x)h(x′)
)
. (7.138)

Derivatives no longer act on φ(x), but on h(x). If we fix φ(x) then instead
of an action for φ(x) we obtain an action for h(x).

For instance, if we take

φ(x) = δ(x− y) (7.139)

and integrate over y we obtain

I[h] =
1

2

∫
dy

(
∂h(y)

∂yµ
∂h(y)

∂yµ
−m2h2(y)

)
. (7.140)

The same equation (7.140), of course, follows directly from (7.136) in
which we fix φ(x) according to (7.139).

On the other hand, if instead of φ(x) we fix h(x) according to (7.137),
then we obtain the action (7.134) which governs the motion of φ(x).

Hence the same basic expression (7.136) can be considered either as an
action for φ(x) or an action for h(x), depending on which field we consider
as fixed and which one as a variable. If we consider the basis vector field
h(x) as a variable and φ(x) as fixed according to (7.139), then we obtain
the action (7.140) for h(x). The latter field is actually an operator. The
procedure from now on coincides with the one of quantum field theory.

Renaming yµ as xµ (7.140) becomes an action for a bosonic field:

I[h] = 1
2

∫
dx (∂µh∂

µh−m2h2). (7.141)

The canonically conjugate variables are

h(t,x) and π(t,x) = ∂L/∂ḣ = ḣ(t,x).

They satisfy the commutation relations

[h(t,x), π(t,x′) = iδ3(x− x′) , [h(t,x), h(t,x′)] = 0. (7.142)

At different times t′ 6= t we have

[h(x), h(x′)] = i∆(x− x′) , (7.143)
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where ∆(x−x′) is the well known covariant function, antisymmetric under
the exchange of x and x′.

The geometric product of two vectors can be decomposed as

h(x)h(x′) = 1
2

(
h(x)h(x′) + h(x′)h(x)

)
+ 1

2

(
h(x)h(x′)− h(x′)h(x)) .

(7.144)
In view of (7.143) we have that the role of the inner product is now given
to the antisymmetric part, whilst the role of the outer product is given to
the symmetric part. This is characteristic for bosonic vectors; they generate
what we shall call the anti-Clifford algebra. In other words, when the basis
vector field h(x) happens to satisfy the commutation relation

[h(x), h(x′)] = f(x, x′), (7.145)

where f(x, x′) is a scalar two point function (such as i∆(x−x′)), it behaves
as a bosonic field. On the contrary, when h(x) happens to satisfy the
anticommutation relation

{h(x), h(x′)} = g(x, x′), (7.146)

where g(x, x′) is also a scalar two point function, then it behaves as a
fermionic field8

The latter case occurs when instead of (7.134) we take the action for the
Dirac field:

I[ψ, ψ̄] =

∫
d4x ψ̄(x)(iγµ∂µ −m)ψ(x). (7.147)

Here we are using the usual spinor representation in which the spinor field
ψ(x) ≡ ψα(x) bears the spinor index α. A generic vector is then

Ψ =

∫
dx
(
ψ̄α(x)hα(x) + ψα(x)h̄α(x)

)

≡
∫

dx
(
ψ̄(x)h(x) + ψ(x)h̄(x)

)
. (7.148)

Eq. (7.147) is then equal to the scalar part of the action

I[ψ, ψ̄] =

∫
dx dx′ ψ̄(x′)h̄(x)h(x′)(iγµ∂µ −m)ψ(x)

=

∫
dx dx′ ψ̄(x′)

[
h̄(x)(iγµ −m)h(x′)

]
ψ(x), (7.149)

where h(x), h̄(x) are assumed to satisfy

h̄(x) · h(x′) ≡ 1
2

(
h̄(x)h(x′) + h(x′)h̄(x)

)
= δ(x− x′) (7.150)

8In the previous section the bosonic basis vectors were given a separate name ξ(x). Here we
retain the same name h(x) both for bosonic and fermionic basis vectors.
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The latter relation follows from the Clifford algebra relations amongst the
basis fields hi(x), i = 1, 2,

hi(x) · hj(x′) = δij(x− x′) (7.151)

related to h̄(x), h(x) accroding to

h1(x) =
h(x) + h̄(x)√

2
, h2(x) =

h(x)− h̄(x)
i
√
2

. (7.152)

Now we relax the condition (7.150) and (7.149) becomes a generalization
of the action (7.147).

Moreover, if in (7.149) we fix the field ψ according to

ψ(x) = δ(x− y), (7.153)

integrate over y, and rename y back into x, we find

I[h, h̄] =

∫
dx h̄(x)(iγµ∂µ −m)h(x). (7.154)

This is an action for the basis vector field h(x), h̄(x), which are operators.
The canonically conjugate variables are now

h(t,x) and π(t,x) = ∂L/∂ḣ = ih̄γ0 = ih†.

They satisfy the anticommutation relations

{h(t,x), h†(t,x′} = δ3(x− x′), (7.155)

{h(t,x), h(t,x′)} = {h†(t,x), h†(t,x′)} = 0. (7.156)

At different times t′ 6= t we have

{h(x), h̄(x′)} = (iγµ +m)i∆(x− x′), (7.157)

{h(x), h(x′)} = {h̄(x), h̄(x′)} = 0. (7.158)

The basis vector fields hi(x), i = 1, 2, defined in (7.152) then satisfy

{hi(x), hj(x′)} = δij(iγ
µ +m)i∆(x− x′), (7.159)

which can be written as the inner product

hi(x) · hj(x′) = 1
2δij(iγ

µ +m)i∆(x− x′) = ρ(x, x′) (7.160)



Quantization 233

with the metric ρ(x, x′). We see that our procedure leads us to a metric
which is different from the metric assumed in (7.151).

Once we have basis vectors we can form an arbitrary vector according to

Ψ =

∫
dx

(
ψ(x)h̄(x) + ψ̄(x)h(x)

)
= ψ(x)h(x) + ψ̄(x)h̄(x). (7.161)

Since the h(x) generates a Clifford algebra we can form not only a vector
but also an arbitrary multivector and a superposition of multivectors, i.e.,
a polyvector (or Clifford aggregate):

Ψ =

∫
dx

(
ψ(x)h̄(x) + ψ̄(x)h(x)

)

+

∫
dx dx′

(
ψ(x, x′)h̄(x)h̄(x′) + ψ̄(x, x′)h(x)h(x′)

)
+ ...

= ψ(x)h(x) + ψ(x)(x′)h(x)h(x′) + ...

+ ψ̄(x)h̄(x) + ψ̄(x)(x′)h̄(x)h̄(x′) + ... , (7.162)

where ψ(x, x′, ...) ≡ ψ̄(x)(x′)..., ψ̄(x, x′, ...) ≡ ψ(x)(x′)... are antisymmetric
functions, interpreted as wave packet profiles for a system of free fermions.

Similarly we can form an arbitrary polyvector

Φ =

∫
dxφ(x)h(x) +

∫
dx dx′ φ(x, x′)h(x)h(x′) + ...

≡ φ(x)h(x) + φ(x)(x
′)h(x)h(x′) + ... (7.163)

generated by the basis vectors which happen to satisfy the commutation
relations (7.142). In such a case the uncountable set of basis vectors behaves
as a bosonic field. The corresponding multi-particle wave packet profiles
φ(x, x′, ...) are symmetric functions of x, x′,... . If one considers a complex
field, then the equations (7.141)–(7.142) and (7.163) are generalized in an
obvious way.

As already mentioned, within the conceptual scheme of Clifford algebra
and hence also of anti-Clifford algebra we do not need, if we wish so, to
introduce a vacuum state9, since the operators h(x), h̄(x) already represent
states. From the actions (7.141), (7.147) we can derive the corresponding
Hamiltonian, and other relevant operators (e.g., the generators of spacetime
translations, Lorentz transformations, etc.). In order to calculate their
expectation values in a chosen multi-particle state one may simply sandwich
those operators between the state and its Hermitian conjugate (or Dirac

9Later, when discussing the states of the quantized p-brane, we nevertheless introduce a vacuum
state and the set of orthonormal basis states spanning the Fock space.
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conjugate) and take the scalar part of the expression. For example, the
expectation value of the Hamiltonian H in a bosonic 2-particle state is

〈H〉 = 〈
∫

dx dx′ φ(x, x′)h(x)h(x′)H
∫

dx′′ dx′′′ φ(x′′, x′′′)h(x′′)h(x′′′)〉0,
(7.164)

where, in the case of the real scalar field,

H = 1
2

∫
d3x(ḣ2(x)− ∂ih∂ih+m2h2). (7.165)

Instead of performing the operation 〈 〉0 (which means taking the scalar
part), in the conventional approach to quantum field theory one performs
the operation 〈0|....|0〉 (i.e., taking the vacuum expectation value). How-
ever, instead of writing, for instance,

〈0|a(k)a∗(k′)|0〉 = 〈0|[a(k), a∗(k′)]|0〉 = δ3(k− k′), (7.166)

we can write

〈a(k)a∗(k′)〉0 = 1
2〈a(k)a∗(k′) + a∗(k′)a(k)〉0

+ 1
2〈a(k)a∗(k′)− a∗(k′)a(k)〉0

= 1
2δ

3(k− k′), (7.167)

where we have taken into account that for a bosonic operator the symmetric
part is not a scalar. Both expressions (7.166) and (7.167) give the same
result, up to the factor 1

2 which can be absorbed into the normalization of
the states.

We leave to the interested reader to explore in full detail (either as an
exercise or as a research project), for various operators and kinds of field,
how much the results of the above procedure (7.164) deviate, if at all, from
those of the conventional approach. Special attention should be paid to
what happens with the vacuum energy (the cosmological constant prob-
lem) and what remains of the anomalies. According to a very perceptive
explanation provided by Jackiw [86], anomalies are the true physical effects
related to the choice of vacuum (see also Chapter 3). So they should be
present, at least under certain circumstances, in the procedure like (7.164)
which does not explicitly require a vacuum. I think that, e.g. for the
Dirac field our procedure, in the language of QFT means dealing with
bare vacuum. In other words, the momentum space Fourier transforms of
the vectors h(x), h̄(x) represent states which in QFT are created out of
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the bare vacuum. For consistency reasons, in QFT the bare vacuum is re-
placed by the Dirac vacuum, and the creation and annihilation operators
are redefined accordingly. Something analogous should also be done in our
procedure.

QUANTIZATION OF THE STUECKELBERG FIELD

In Part I we have paid much attention to the unconstrained theory which
involves a Lorentz invariant evolution parameter τ . We have also seen that
such an unconstrained Lorentz invariant theory is embedded in a polyvector
generalization of the theory. Upon quantization we obtain the Schrödinger
equation for the wave function ψ(τ, xµ):

i
∂ψ

∂τ
=

1

2Λ
(−∂µ∂µ − κ2)ψ. (7.168)

The latter equation follows from the action

I[ψ,ψ∗] =
∫

dτ d4x

(
iψ∗

∂ψ

∂τ
− Λ

2
(∂µψ

∗∂µψ − κ2ψ∗ψ)
)
. (7.169)

This is equal to the scalar part of

I[ψ,ψ∗] =
∫

dτ dτ ′ dx dx′
[
iψ∗(τ ′, x′)

∂ψ(τ, x)

∂τ
− Λ

2
(∂′µψ

∗(τ ′, x′)∂µψ(τ, x)

−κ2ψ∗(τ ′, x′)ψ(τ, x)
]
h∗(τ, x)h(τ ′, x′)

=

∫
dτ dτ ′ dx dx′ ψ∗(τ ′, x′)ψ(τ, x)

×
[
−i∂h

∗(τ, x)
∂τ

h(τ ′, x′)

− Λ

2

(
∂µh

∗(τ, x)∂′µh(τ ′, x′)− κ2h∗(τ, x)h(τ ′, x′)
)]

(7.170)
where h(τ ′, x′), h∗(τ, x) are assumed to satisfy

h(τ ′, x′) · h∗(τ, x) ≡ 1
2

(
h(τ ′, x′)h∗(τ, x) + h∗(τ, x)h(τ ′, x′)

)
,

= δ(τ − τ ′)δ4(x− x′)

h(τ, x) · h(τ ′, x′) = 0 , h∗(τ, x) · h∗(τ ′, x′) = 0. (7.171)
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The relations above follow, as we have seen in previous subsection (eqs. (7.119)–
(7.127)) from the Clifford algebra relations amongst the basis fields hi(x),
i = 1, 2,

hi(τ, x) · hj(τ ′, x′) = δijδ(τ − τ ′)δ(x− x′) (7.172)

related to h(τ, x), h∗(τ, x) according to

h1 =
h+ h∗√

2
, h2 =

h− h∗
i
√
2
. (7.173)

Let us now relax the condition (7.171) so that (7.170) becomes a gener-
alization of the original action (7.169).

Moreover, if in (7.170) we fix the field ψ according to

ψ(τ, x) = δ(τ − τ ′)δ4(x− x′), (7.174)

integrate over τ ′, x′, and rename τ ′, x′ back into τ , x, we find

I[h, h∗] =
∫

dτ d4x

[
ih∗

∂h

∂τ
− Λ

2
(∂µh

∗∂µh− κ2h∗h)
]
, (7.175)

which is an action for basis vector fields h(τ, x), h∗(τ, x). The latter fields
are operators.

The usual canonical procedure then gives that the field h(x) and its
conjugate momentum π = ∂L/∂ḣ = ih∗, where ḣ ≡ ∂h/∂τ , satisfy the
commutation relations

[h(τ, x), π(τ ′, x′)]|τ ′=τ = iδ(x− x′),
[h(τ, x), h(τ ′, x′)]τ ′=τ = [h∗(τ, x), h∗(τ ′, x′)]τ ′=τ = 0. (7.176)

From here on the procedure goes along the same lines as discussed in Chap-
ter 1, Section 4.

QUANTIZATION OF THE PARAMETRIZED DIRAC FIELD

In analogy with the Stueckelberg field we can introduce an invariant
evolution parameter for the Dirac field ψ(τ, xµ). Instead of the usual Dirac
equation we have

i
∂ψ

∂τ
= −iγµ∂µψ. (7.177)

The corresponding action is

I[ψ, ψ̄] =

∫
dτ d4x

(
iψ̄
∂ψ

∂τ
+ iψ̄γµ∂µψ

)
. (7.178)
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Introducing a basis h(τ, x) in function space so that a generic vector can
be expanded according to

Ψ =

∫
dτ dx

(
ψ̄α(τ, x)hα(τ, x) + ψα(τ, x)h̄α(τ, x)

)

≡
∫

dτ dx
(
ψ̄(τ, x)h(τ, x) + ψ(τ, x)h̄(τ, x)

)
. (7.179)

We can write (7.178) as the scalar part of

I[ψ, ψ̄] =

∫
dτ dτ ′ dx dx′ iψ̄(τ ′, x′)h̄(τ, x)h(τ ′, x′)

(
∂ψ(τ, x)

∂τ
+ iγµ∂µψ(τ, x)

)
,

(7.180)
where we assume

h̄(τ, x) · h(τ ′, x′) ≡ 1
2

(
h̄(τ, x)h(τ ′, x′) + h(τ ′, x′)h̄(τ, x)

)

= δ(τ − τ ′)δ(x− x′) (7.181)

For simplicity, in the relations above we have suppressed the spinor indices.
Performing partial integrations in (7.180) we can switch the derivatives

from ψ to h, as in (7.149):

I =

∫
dτ dτ ′ dx dx′ ψ̄(τ, x) (7.182)

×
[
−i h̄(τ, x)

∂τ
h(τ ′, x′)− iγµ∂µh̄(τ, x)h(τ ′, x′)

]
ψ(τ ′, x′).

We now relax the condition (7.181). Then eq. (7.182) is no longer equiv-
alent to the action (7.178). Actually we shall no more consider (7.182) as
an action for ψ. Instead we shall fix10 ψ according to

ψ(τ, x) = δ(τ − τ ′)δ4(x− x′). (7.183)

Integrating (7.182) over τ ′′, x′′ and renaming τ ′′, x′′ back into τ , x, we
obtain an action for basis vector fields h(τ, x), h̄(τ, x):

I[h, h̄] =

∫
dτ d4x

[
ih̄
∂h

∂τ
+ ih̄γµ∂µh

]
. (7.184)

Derivatives now act on h, since we have performed additional partial inte-
grations and have omitted the surface terms.

10Taking also the spinor indices into account, instead of (7.183) we have

ψα(τ, x) = δα,α′δ(τ − τ ′′)δ4(x− x′′).
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Again we have arrived at an action for field operators h, h̄. The equations
of motion (the field equations) are

i
∂h

∂τ
= −iγµ∂µh. (7.185)

The canonically conjugate variables are h and π = ∂L/∂ḣ = ih̄, and they
satisfy the anticommutation relations

{h(τ, x), π(τ ′, x′)}|τ ′=τ = iδ(x− x′), (7.186)

or

{h(τ, x), h̄(τ ′, x′)}|τ ′=τ = δ(x− x′), (7.187)

and

{h(τ, x), h(τ ′, x′)}|τ ′=τ = {h̄(τ, x), h̄(τ ′, x′)}|τ ′=τ = 0. (7.188)

The anticommutation relations above being satisfied, the Heisenberg
equation

∂h

∂τ
= i[h,H] , H =

∫
dx ih̄γµ∂µh , (7.189)

is equivalent to the field equation (7.185).

QUANTIZATION OF THE p-BRANE:
A GEOMETRIC APPROACH

We have seen that a field can be considered as an uncountable set of
components of an infinite-dimensional vector. Instead of considering the
action which governs the dynamics of components, we have considered the
action which governs the dynamics of the basis vectors. The latter behave
as operators satisfying the Clifford algebra. The quantization consisted
of the crucial step in which we abolished the requirement that the basis
vectors satisfy the Clifford algebra relations for a “flat” metric in function
space (which is proportional to the δ-function). We admitted an arbitrary
metric in principle. The action itself suggested which are the (commutation
or anti commutation) relations the basis vectors (operators) should satisfy.
Thus we arrived at the conventional procedure of the field quantization.

Our geometric approach brings a new insight about the nature of field
quantization. In the conventional approach classical fields are replaced by
operators which satisfy the canonical commutation or anti-commutation
relations. In the proposed geometric approach we observe that the field
operators are, in fact, the basis vectors h(x). By its very definition a basis
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vector h(x), for a given x, “creates” a particle at the position x. Namely,
an arbitrary vector Φ is written as a superposition of basis vectors

Φ =

∫
dx′ φ(x′)h(x′) (7.190)

and φ(x) is “the wave packet” profile. If in particular φ(x′) = δ(x′ − x),
i.e., if the “particle” is located at x, then

Φ = h(x). (7.191)

We shall now explore further the possibilities brought by such a geometric
approach to quantization. Our main interest is to find out how it could be
applied to the quantization of strings and p-branes in general. In Sec. 4.2,
we have found out that a conventional p-brane can be described by the
following action

I[Xα(ξ)(τ)] =

∫
dτ ′ ρα(ξ′)β(ξ′′)Ẋ

α(ξ′)Ẋβ(ξ′′) = ρα(φ′)β(φ′′)Ẋ
α(φ′)Ẋβ(φ′′),

(7.192)
where

ρα(φ′)β(φ′′) =
κ
√
|f |√
Ẋ2

δ(τ ′ − τ ′′)δ(ξ′ − ξ′′)gαβ . (7.193)

Here Ẋα(φ) ≡ Ẋα(τ,ξ) ≡ Ẋα(ξ)(τ), where ξ ≡ ξa are the p-brane coordinates,
and φ ≡ φA = (τ, ξa) are coordinates of the world surface which I call
worldsheet.

If theM-space metric ρα(φ′)β(φ′′) is different from (7.193), then we have
a deviation from the usual Dirac–Nambu–Goto p-brane theory. Therefore
in the classical theory ρα(φ′)β(φ′′) was made dynamical by adding a suitable
kinetic term to the action.

Introducing the basis vectors hα(φ) satisfying

hα(φ′) · hβ(φ′′) = ρα(φ′)β(φ′′) (7.194)

we have
I[Xα(φ)] = hα(φ′)hβ(φ′′)Ẋ

α(φ′)Ẋβ(φ′′). (7.195)

Here hα(φ′) are fixed while Xα(φ′) are variables. If we now admit that hα(φ′)
also change with τ , we can perform the partial integrations over τ ′ and τ ′′

so that eq. (7.195) becomes

I = ḣα(φ′)ḣβ(φ′′)X
α(φ′)Xβ(φ′′). (7.196)
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We now assume that Xα(φ′) is an arbitrary configuration, not necessarily
the one that solves the variational principle (7.192). In particular, let us
take

Xα(φ′) = δα(φ
′)
µ(φ) , Xβ(φ′′) = δβ(φ

′′)
µ(φ), (7.197)

which means that our p-brane is actually a point at the values of the pa-
rameters φ ≡ (τ, ξa) and the value of the index µ. So we have

I0 = ḣµ(φ)ḣµ(φ) no sum and no integration. (7.198)

By taking (7.197) we have in a sense “quantized” the classical action. The
above expression is a “quantum” of (7.192).

Integrating (7.198) over φ and summing over µ we obtain

I[hµ(φ)] =

∫
dφ

∑

µ

ḣµ(φ)ḣµ(φ). (7.199)

The latter expression can be written as11

I[hµ(φ)] =

∫
dφ dφ′ δ(φ− φ′)ηµν ḣ(φ)ḣν(φ′)

≡ ηµ(φ)ν(φ
′)ḣµ(φ)ḣν(φ′), (7.200)

where

ηµ(φ)ν(φ
′) = ηµνδ(φ− φ′) (7.201)

is the flatM-space metric. In general, of course,M-space is not flat, and
we have to use arbitrary metric. Hence (7.200) generalizes to

I[hµ(φ)] = ρµ(φ)ν(φ
′)ḣµ(φ)ḣν(φ′), (7.202)

where

ρµ(φ)ν(φ
′) = hµ(φ) · hν(φ′) = 1

2(h
µ(φ)hν(φ

′) + hν(φ
′)hµ(φ)). (7.203)

Using the expression (7.203), the action becomes

I[hµ(φ)] = hµ(φ)hν(φ
′)ḣµ(φ)ḣν(φ′). (7.204)

11Again summation and integration convention is assumed.
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METRIC IN THE SPACE OF OPERATORS

In the definition of the action (7.202), or (7.204), we used the relation
(7.203) in which the M-space metric is expressed in terms of the basis
vectors hµ(φ). In order to allow for a more general case, we shall introduce

the metric Zµ(φ)ν(φ
′) in the “space” of operators. In particular it can be

1
2Z

µ(φ)ν(φ′) = hµ(φ)hν(φ
′), (7.205)

or
1
2Z

µ(φ)ν(φ′) = 1
2(h

µ(φ)hν(φ
′) + hν(φ

′)hµ(φ)), (7.206)

but in general, Zµ(φ)ν(φ
′) is expressed arbitrarily in terms of hµ(φ). Then

instead of (7.204), we have

I[h] = 1
2Z

µ(φ)ν(φ′)ḣµ(φ)ḣν(φ′) =
1
2

∫
dτ Zµ(ξ)ν(ξ

′)ḣµ(ξ)ḣν(ξ′). (7.207)

The factor 1
2 is just for convenience; it does not influence the equations of

motion.
Assuming Zµ(φ)ν(φ

′) = Zµ(ξ)ν(ξ
′)δ(τ − τ ′) we have

I[h] = 1
2

∫
dτ Zµ(ξ)ν(ξ

′)ḣµ(ξ)ḣν(ξ′). (7.208)

Now we could continue by assuming the validity of the scalar product
relations (7.194) and explore the equations of motion derived from (7.207)
for a chosen Zµ(φ)ν(φ

′). This is perhaps a possible approach to geometric
quantization, but we shall not pursue it here.

Rather we shall forget about (7.194) and start directly from the action
(7.208), considered as an action for the operator field hµ(ξ) where the com-
mutation relations should now be determined. The canonically conjugate
variables are

hµ(ξ) , πµ(ξ) = ∂L/∂ḣµ(ξ) = Zµ(ξ)ν(ξ
′)ḣν(ξ′). (7.209)

They are assumed to satisfy the equal τ commutation relations

[hµ(ξ), hν(ξ′)] = 0 , [πµ(ξ), πν(ξ
′)] = 0 ,

[hµ(ξ), π
ν(ξ′)] = iδµ(ξ)

ν(ξ′). (7.210)

By imposing (7.210) we have abolished the Clifford algebra relation (7.194)
in which the inner product (defined as the symmetrized Clifford product)
is equal to a scalar valued metric.
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The Heisenberg equations of motion are

ḣµ(ξ) = −i[hµ(ξ), H], (7.211)

π̇µ(ξ) = −i[πµ(ξ), H], (7.212)

where the Hamiltonian is

H = 1
2Zµ(ξ)ν(ξ′)π

µ(ξ)πν(ξ
′). (7.213)

In particular, we may take a trivial metric which does not contain hµ(ξ),
e.g.,

Zµ(ξ)ν(ξ
′) = ηµνδ(ξ − ξ′). (7.214)

Then the equation of motion resulting from (7.212) or directly from the
action (7.208) is

π̇µ(ξ) = 0. (7.215)

Such a dynamical system cannot describe the usual p-brane, since the equa-
tions of motion is too simple. It serves here for the purpose of demon-
strating the procedure. In fact, in the quantization procedures for the
Klein–Gordon, Dirac, Stueckelberg field, etc., we have in fact used a fixed
prescribed metric which was proportional to the δ-function.

In general, the metric Zµ(ξ)ν(ξ
′) is an expression containing hµ(ξ). The

variation of the action (7.207) with respect to hµ(ξ) gives

d

dτ
(Zµ(φ)ν(φ

′)ḣν(φ))−
1

2

δZα(φ
′)β(φ′′)

δhµ(φ)
ḣα(φ′)ḣβ(φ′′) = 0. (7.216)

Using (7.210) one finds that the Heisenberg equation (7.212) is equivalent
to (7.216).

THE STATES OF THE QUANTIZED BRANE

According to the traditional approach to QFT one would now introduce
a vacuum state vector |0〉 and define

hα(ξ)|0〉 , hα(ξ)hβ(ξ)|0〉 , ... (7.217)

as vectors in Fock space. Within our geometric approach we can do some-
thing quite analogous. First we realize that because of the commutation re-
lations (7.210) hµ(ξ) are in fact not elements of the Clifford algebra. There-
fore they are not vectors in the usual sense. In order to obtain vectors we
introduce an object v0 which, by definition, is a Clifford number satisfying12

v0v0 = 1 (7.218)

12The procedure here is an alternative to the one considered when discussing quantization of the
Klein–Gordon and other fields.
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and has the property that the products

hµ(ξ)v0 , hµ(ξ)hν(ξ)v0 ... (7.219)

are also Clifford numbers. Thus hµ(ξ)v0 behaves as a vector. The inner
product between such vectors is defined as usually in Clifford algebra:

(hµ(ξ)v0) · (hν(ξ′)v0) ≡ 1
2

[
(hµ(ξ))v0)(hν(ξ′)v0) + (hν(ξ′)v0)(hµ(ξ))v0)

]

= ρ0µ(ξ)ν(ξ′) , (7.220)

where ρ0µ(ξ)ν(ξ′) is a scalar-valued metric. The choice of ρ0µ(ξ)ν(ξ′) is deter-
mined by the choice of v0. We see that the vector v0 corresponds to the
vacuum state vector of QFT. The vectors (7.219) correspond to the other
basis vectors of Fock space. And we see here that choice of the vacuum
vector v0 determines the metric in Fock space. Usually basis vector of Fock
space are orthonormal, hence we take

ρ0µ(ξ)ν(ξ′) = ηµνδ(ξ − ξ′). (7.221)

In the conventional field-theoretic notation the relation (7.220) reads

〈0|12(hµ(ξ)hν(ξ′) + hν(ξ′)hµ(ξ))|0〉 = ρ0µ(ξ)ν(ξ′). (7.222)

This is the vacuum expectation value of the operator

ρ̂µ(ξ)ν(ξ′) =
1
2(hµ(ξ)hν(ξ′) + hν(ξ′)hµ(ξ)), (7.223)

which has the role of theM-space metric operator.
In a generic state |Ψ〉 of Fock space the expectation value of the operator

ρ̂µ(ξ)ν(ξ′) is
〈Ψ|ρ̂µ(ξ)ν(ξ′)|Ψ〉 = ρµ(ξ)ν(ξ′). (7.224)

Hence, in a given state, for the expectation value of the metric operator we
obtain a certain scalar valuedM-space metric ρµ(ξ)ν(ξ′).

In the geometric notation (7.224) reads

〈V hµ(ξ)hν(ξ′)V 〉0 = ρµ(ξ)ν(ξ′). (7.225)

This means that we choose a Clifford number (Clifford aggregate) V formed
from (7.219)

V = (φµ(ξ)hµ(ξ) + φµ(ξ)ν(ξ
′)hµ(ξ)hν(ξ′) + ... )v0, (7.226)

where φµ(ξ), φµ(ξ)ν(ξ
′), ... , are the wave packet profiles, then we write the

expression V hµ(ξ)hν(ξ′)V and take its scalar part.
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Conceptually our procedure appears to be very clear. We have an action
(7.208) for operators hµ(ξ) satysfying the commutation relations (7.210) and
the Heisenberg equation of motion (7.212). With the aid of those operators
we form a Fock space of states, and then we calculate the expectation value
of the metric operator ρ̂µ(ξ)ν(ξ′) in a chosen state. We interpret this expec-
tation value as the classical metric of M-space. This is justified because
there is a correspondence between the operators hµ(ξ) and the M-space
basis vectors (also denoted hµ(ξ), but obeying the Clifford algebra relations
(7.198)). The operators create, when acting on |0〉 or v0, the many brane
states and it is natural to interpret the expectation value of ρ̂µ(ξ)ν(ξ′) as the
classicalM-space metric for such a many brane configuration.

WHICH CHOICE FOR THE OPERATOR METRIC Zµ(ξ)ν(ξ′)?

A question now arise of how to choose Zµ(ξ)ν(ξ
′). In principle any com-

bination of operators hµ(ξ) is good, provided that Zµ(ξ)ν(ξ
′) has its inverse

defined according to

Zµ(ξ)α(ξ
′′)Zα(ξ′′)ν(ξ′) = δµ(ξ)ν(ξ′) ≡ δµνδ(ξ − ξ′). (7.227)

Different choices of Zµ(ξ)ν(ξ
′) mean different membrane theories, and hence

different expectation values ρµ(ξ)ν(ξ′) = 〈ρ̂µ(ξ)ν(ξ′)〉 of the M-space met-
ric operator ρ̂µ(ξ)ν(ξ′). We have already observed that different choices of
ρµ(ξ)ν(ξ′) correspond to different classical membrane theories. In order to
get rid of a fixed background we have given ρµ(ξ)ν(ξ′) the status of a dy-
namical variable and included a kinetic term for ρµ(ξ)ν(ξ′) in the action (or
equivalently for hµ(ξ), which is the “square root” of ρµ(ξ)ν(ξ′), since clas-
sically ρµ(ξ)ν(ξ′) = hµ(ξ) · hν(ξ′)). In performing the quantization we have
seen that to the classical vectors hµ(ξ) there correspond quantum opera-

tors13 ĥµ(ξ) which obey the equations of motion determined by the action
(7.208). Hence in the quantized theory we do not need a separate kinetic

term for ĥµ(ξ). But now we have something new, namely, Zµ(ξ)ν(ξ
′) which

is a background metric in the space of operators ĥµ(ξ). In order to obtain a

background independent theory we need a kinetic term for Zµ(ξ)ν(ξ
′). The

search for such a kinetic term will remain a subject of future investigations.
It has its parallel in the attempts to find a background independent string
or p-brane theory. However, it may turn out that we do not need a kinetic
term for Zµ(ξ)ν(ξ

′) and that it is actually given by the expression (7.205)
or (7.206), so that (7.204) is already the “final” action for the quantum
p-brane.

13Now we use hats to make a clear distinction between the classical vectors hµ(ξ), satisfying the

Clifford algebra relations (7.194), and the quantum operators ĥµ(ξ) satisfying (7.210).
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In the field theory discussed previously we also have a fixed metric
Zµ(ξ)ν(ξ

′), namely, Z(ξ)(ξ′) = δ(ξ − ξ′) for the Klein–Gordon and similarly
for the Dirac field. Why such a choice and not some other choice? This
clearly points to the plausible possibility that the usual QFT is not com-
plete. That QFT is not yet a finished story is clear from the occurrence of
infinities and the need for “renormalization”14.

14An alternative approach to the quantization of field theories, also based on Clifford algebra,
has been pursued by Kanatchikov [87].


