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Clifford space: a quenched configuration space of extended objects

Strings and branes have infinitely many degrees of freedom.
But at first approximation we can consider just the centre of mass.

X7(c")

Next approximation is in considering the holographic coordinates of the
oriented area enclosed by the string.




We may go further and search for eventual thickness of the object.

If the string has finite thickness, i.e., if actually it is not a string, but a 2-brane,
then there exist the corresponding volume degrees of freedom.

They are the projections of r-dimensional volumes (areas) onto the coordinate planes.

Oriented r-volumes can be elegantly described by Clifford algebra.



Instead of the usual relativity formulated in spacetime in which the interval is

ds® = dx“n,, dx" = dx*y,y,dx"

we are studying the theory in which the interval is extended to
the space of r-volumes (called Clifford space):

dS? = dx" G, dx" =(dx"y,, 'y, dx" ), IR T I A |1 W

Coordinates of Clifford space can be used to model extended objects.
They are a generalization of the concept of center of mass.

Instead of describing extended objects in ““full detail”, we
can describe them in terms of the center of mass, area and
volume coordinates

In particular, extended objects can be fundamental strings or branes.



Instead of the usual relativity formulated in spacetime in which the interval is

ds® = dx“n,, dx" = dx"y,y,dx"

we are studying the theory in which the interval is extended to
the space of r-volumes (called Clifford space):

dS? = dx" G, dx" =(dx"y,, 'y, dx" ), IR T I A |1 W
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Thick point particles

A world line in C represents
the evolution of a ‘thick’ particle
in spacetime

Thick particle can be an
aggregate p-branes for
various p=0,1,2,...

But such interpretation is not
obligatory.




A world line in C represents
the evolution of a ‘thick’ particle
in spacetime

Thick particle can be an
aggregate p-branes for
various p=0,1,2,...

But such interpretation is not
obligatory.

Thick particle may be a conglomerate of whatever
extended objects that can be sampled by

i M ot
polyvector coordinates X" = X%




A Toy Model: Harmonic Oscillator in Pseudo-Euclidean Space’

Case

1., o 1
L=5(x2—y2)——w2(x2—y2)

2

Equations of motion

The change of sign in front of
the y-term has no influence
on the equation of motion

and the Hamiltonian
2

. : 1 0
H=pi+py-L =5(p§ —p§)+7(x2 -»%)




The kinetic term for the y-component has negative sign, whilst that for the x-component has
positive sign. Therefore, the equations of motion are

1
V=5a)2(3c2 - %)

The criterion for the stability of motion for the y-degree of freedom is that the potential has to
have a maximum in the (y,V)-plane?.

Stability could be destroyed, if we include an extra interactive term into V.
Let us demonstrate that even in the presence of an interaction,
stability can be preserved.

Some examples:

¥=—x—0.1(4x"y" —2x)"), =—x-0.1(4x"y" —2x "),
P=—y+0.12x"y—4x"y%) Py=—y+0.12x"y—4x"y")

x(0)=0, y(0)=1, te[0,400] x(0)=0, p(0)=1, #<[0,400]

o

Calculations executed by Mafhematica,
by using NDSolve and ParametricPlot

2M. Pavsi¢, Found. Phys. 35 (2005) 1617




¥=-x-0.1(4x"y* —2x "), X=-x-0.1(4x"y* =2x y"),
y=-y+0.12x"y—4x7y%) y=-y+0.12x"y—4x7y%)
x(0)=0.9, $(0)=0.2, x(0)=2, p(0)=1,

x(0)=0.6, ¥(0)=1.5, r€[0,514] x(0)=0.3, »(0)=1, ¢e[0,200]

¥=-x—-0.1(4x"y* =2x "),
$=-y+0.102x"y—4x"y%)
x(0)=0.2, y(0)=0.2,
x(0)=0.3, »(0)=1, ¢€[0,400]

Vzg(x2 —)/2)+0.1()c4y2 +x2y4) Vzé(x2 —y2)+0.1(x4y—x3) Vzé(x2 —)}2)+0.1()c4 +y4)

¥(t)=—x—-0.1x4x(t)’, ¥=—-y(t)
¥=-x-0.104x"y" +2x "), ¥=-x-0.1(4x"y -3x%), ¥=-x-0.1x4x", x(0)=1, »(0)=0,
J=—y+0.12x"y +4x*y*) J=—p+0.Ixx" J=—y+0.1x4y’ x(0)=0, »(0)=1, £<[0,400]
#0)=09, #(0)=0, £(0)=0.8, 3(0)=0.2, 20)=1, #(0)=0.2,

X(0)=0, y(0)=1, £€[0,400]  x(0)=02, y(0)=0.9, 7e[0,700] x(0)=0, y(0)=1, ¢e[0,700]
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The Hamilton form of the equations of motion’

X:{x,H}:g—H:pw

X

_{pxaH}__aﬂ__waa
Ox

Poisson brackets are defined as usual {x,p.} =1, v.p,i=1

In the quantized theory we have commutators  [x,p. =i,  [y,p, ]=i

cx=%(@x+%px), ci=%(@x—fpx)

Introducing’

(= pWore=r) d=por-rn

we have [Cx,cz]:l, [Cy,C;r}]zl,

[,.c,]=[c}.c]]=0

Using p,=-i0/0x, p,6=—i0/0y
and writing  (x,y|0)=w,(x,y)

1

H = Ea)(cicx +c.cl—c!

;
yCy T Cycy)

1 1 ©

— | Vox+—-Z |y, (x,7) =0
we have 5 OX +——= — W (x,y)

1

c.10)=0, ¢, 10)=0
H=w(clc, —c c,)

J_y+\/— ey Wy(x,y)=0

Vacuum

2z »w(x +1%)
All states have positive norm, e.g.,: -

(Ofcc’[0)=(0][e.c'10) =(0[0) = [ dvdy =1.




Generalizationto s

Procedure with gen{eralizir}_g
the operators ¢..¢, ,C,, C,
of the 2-dimensional case™:

1 1 5
H=—p'p +—o'x"x
2 PPy ‘

signature (r,s), a,b=1,2,..

L=

oL

_ ) _ )
- a-x-:a _xa _nab‘x

P,

Upon quantization:

LTS

Procedure with an alternative
definition of creation and
annihilation operators?:

[xa > pb] = iaab

or [xa,pb]:l-nab

A.
oo L a)x”+L
: _ﬁ[f @paj

R -
. _ﬁ[f @paj

H = %a)(cic” +cc))

[Ca,CbT] — 5ab

¢ 10)=0

1
H= Ea)(a“aa +a,a’")

F bt bt b
c‘cl=n,c'c’" =n,("c"+57)

=c"c +r—s

H=w(cc +1—£)
2 2

. ros
H=w(a""a,+a,a" +=—-=)

[a“,a;] =0, or [a“,a”] = 77“”

L a*]0)=0

H=w(a"a, +1+£)
2 2

II. a°=(a",a")

a®10y=0, a*"10)=0

2




In Case A, the creatlon and annihilation operators are superposmons of
the coordinates X“ and the covariant components of momenta D,

In Case B, the creatlon and annihilation operators are superpositions of
the coordinates y“ and the contravariant components of momenta p

In Case B, there are two possible definitions of vacuum:

Possibility 1.

This is th | definition ~ @* 19 =0 The eigenvalues of
is is the usual definition e eigenvalues o Possibility |

_ at r S 0 iy
H=w(a"q, +5+5) All energies are positive.
Negative norms.

are all positive. There exist negative norm states or ghosts.

Possibiilty 1.
This is the Cangemi-Jackiw-Zwiebach definition3

a’10y=0, a"10)=0, a@=12,..r, a=12,..5s

The eigenvalues of Possibility 11
Positive and negative energies.

No negative norms.

H=w(a""a, +a,a* [ ——)

can be positive or negative. The are no negatlve norm states.
The presence of negative energies does not automatically imply
instability of the system.

If 7 =S, then the zero point energy vanishes.

3D. Cangemi, R. Jackiw, and B. Zwiebach, Ann. of Phys. 245 (1996) 408
R. Jackiw, and H.-J. Lee, Phys. Rev. D 54 (1996) 6213




Quantum Field Theory

A system of scalar field
d elas Metric in the space

Action of fields ¢"
I14'] jd“xf<gf”a #0,8"-m’¢'¢")y., a=12....n
oL : . )
T, =W=5 ¢,=04,=4,  canonical momenta wt,v=0,1,2,3

Upon quantization, the following equal time commutation relations

are satisfied:
[¢°(x),7,(x)]=i8’ (x—x )",

The Hamiltonian is

H = % j d’x(¢'¢" —0.4°0'¢" + m*¢° 8"y,

a d3k ikx a ikx
$ j(z g (@ (0 +a ()

0" (0.0, ()] = (2 20, 8" (k=K )",
[a* (k),a" (K')] = (27)* 20, 8> (k— k')

_ d3k a)k at bt
- j Gy 2@ W )+ ()" )y,
a®(k)|0)=0, a*"(k)|0)=0 a’(k)=(a”,a”
H= j (;;l; 2“’k (a" (K)a, (k) +a* (K)a,") += j Pk 5 (0)(r—s) r=0%_,

If signature has equal number of plus and minus signs, i.e., if r =g,
then the zero point energies cancel out from the Hamiltonian®.




Generalization to Clifford Space

P = ¢A7/A Clifford algebra-valued field

" ) Signature (R,S5)
I = Ejd“x\/—g(g” 0,0°0,0° —m*¢ )G, with R =S

Using the Cangemi-Jackiw-Zwiebach definition of vacuum,
and following the same procedure as before, we obtain?# that
the zero point energies cancel out:

Vacuum energy vanishes.

Therefore, in such theory there is no cosmological constant problem.
The small observed cosmological constant could be a residual effect
of something else.

Cancellation of vacuum energies in this theory does not exclude’ the
existence of the well known vacuum effects, such as the Casimir effect.




Generalized Dirac equation (Dirac-Kahler equation’)

(i}/ﬂaﬂ_m)q)zo (D:¢A7/A:l///]§/]:lﬂai§ai4/

Spinor basis?#% of Ci(1,3)

@ is spinor index of a left minimal ideal.

<(§;1 )i7ﬂ§g>s _ (yﬂ)aé i runs over four left ideals of CI(1,3)

(i(r*)30,-mo"; )w® =0

(i(r*)*p0,—mo®, )w” =0

(i Vﬂaﬂ —m)y' =0 Here we omit spinor index

Metric in spinor space*

Action

I= jd“x v'(iy"o,—mywy’'z,

= Z(ai)B)) — “apZi

’E. Kahler, Rendiconti di Matematica 21 (1962) 425;
S.1. Kruglov, Dirack-Kahler Equation, arXiv: hep-th/0110251 (and many references therein)
D. Spehled, and G.C. Marques, Eur. Phys. J. 61 (2009) 75




Hamiltonian
H = jd3x w'(—iy"0, + m)l//jzij

We expand /' in terms of the annihilation and creation operators
Index i distinguishes the spinors of different left

()b’ _d d'z. ideals of CI(1,3).
2;;)3 m( » (P)b,(p)=d,(p)d, )Z’f Index n=1,2 is the usual one that distinguishes

“spin up’ and “spin down’ states.
i=(i,i), i=12; i=34 We splitthe index

b 10y=0, d'[0)=0 We define vacuum according to
" o Cangemi-Jackiw-Zwiebach.
Index i refers to the negative signature sector.

b1 10y=0, diT|0)=0

e m (b, (p)b] (p) b (p)bY (p)+d) (p)d] —di(p)d. (p)+5(0)(" -2"))z,

R

This term vanishes

(0|H10)=0 Vacuum expectation of
this Hamiltonian is zero

Each fermion i/ i couples to the corresponding gauge field. The Casimir force between
two metalic plates, consisting of /', i =1, is not expected’ to vanish in this general theory.

(T*Y =(H) is the source of the gravitational field. Because (0|H [0)=(0|7"|0)=0 ,
the cosmological constant vanishes. There is no problem of the huge cosmological constant.
It remains to explain the small observed cosmological constant.




Besides resolving the problem of the cosmological constant,
the Dirac-Kahler equation’ and its generalization*°> may provide
a theoretical framework that could be used for the unification

of fundamental particles and forces.

“M. Pavsic, Int. J. Mod. Phys. 21 (2006) 5905 (and references therein)
SM. Pavsic¢, Phys. Lett. B 614 (2005) 85
6M. Pavsic, Phys. Lett. B 692 (2010) 212




Presence of interactions

Classical Oscillator

Interaction

L=o(F=i-V, V=262 =)+,

Equation of motion:

LA,
Ox

j}+a)2y—%=0
oy

As an example we will study

.| this form of interaction

A
4 =2(X2 -y

¥+’ x+Ax(x>=y>)=0

j}+a)2y+ly(x2—y2)=0




sol :I‘J‘DSnlve[{x”[t] +x[E] +0.1 wx[E]wix[E] A2 —w[E]AZY) =0,

¥IE] +w[E] + 0.1 %y [E] X._|_x_|_0.1x(x2_y2):0 I = o R . .t };
i%: ¥ie {8 10007

.o 2 2
y+y+0.1y(x =y )=0
ParametricPlot[Evaluate[{x[t], ¥[tl /. =
[Plot [Evaluate]

{t; 0, 100}, PlotRange -> All] x(O) — 1 y(O) — O
9 9
X'[E]%2 FE-yrEl 2 2 +n[E] 22y [E] 022+ (017 4) (x[t] 2 -¥[E]"2) "2 F. Bol],

X(O) = O, y(O) = 1 {t, 0, 447), PlotRange-» All]
Py | Total energy

F 2

sol = NDSolve[[x"[t] +x[t] +0.1 wx[E]w (x[E]1A2 -¥[E]A2) =0,
¥O[E] +¥[t] + 0. wy[t] wim[E] A2 -y[E]A42) =0, x'[0] =1, ¥ [0] =-1.2, %[0] ==0, ¥[0] =0.5],
{x; Y}: {L'-: 3':”:“:'}

ParametricPlot[Evaluate[{x[t]; ¥[E]} S s01].
{t; O; 200}, PlotRange -»All]

Plot [Evaluate[x' [t] 2 /. 8ol], P1ot [Evaluate[

{t, 0. 447}, PlotRange -» All] x'[E]72 s2-y [E]CE /2 4x[E] 272 -y [R] 2 24 (0.1 4) (X[E]"2Z-¥[L]"2)"2 /. sol],
{t, 0, ¢47}, PlotRange -» Al1]

L . N _____,,_._.._..--------l-'"'""l

Fre,




sol :I‘J‘DSnlve[{x”[t] +x[E] +0.1 wx[E]wix[E] A2 -yw[E]AZ2) =0,
¥O[E] +¥[E] + 0. 1wy [b] % (x[E]1 A2 -y[E]A2) =0, x'[0] =1, ¥ [0] ==0, x[0] ==0, ¥[0] =1},
{x: :'lr}: {L‘-: lﬂﬂﬂ}

ParametricPlot[Evaluate[{x[t]; ¥[t]l} f. sol]l.
{t; 0, 100}, PlotRange -> All]
Plot [Evaluate(x' [t] -2 /. 8ol], P1ot [Evaluate[

{t, 0, 200}, PlotRange-» All] XU[E]%2 FR-y (]2 Z4x[E]Z/2-y[E] 2/ 2+ (0,17 4) (x[t]"2-¥[t] 2)"2 /. scl],
[t, 0, 447}, PlotRange-» Al1]

| Total energy

sol = NDSolve[[x"[t] +x[t] +0.1 wx[E]w (x[E]1A2 -¥[E]A2) =0,
¥O[E] +¥[t] + 0. wy[t] wim[E] A2 -y[E]A42) =0, x'[0] =1, ¥ [0] =-1.2, %[0] ==0, ¥[0] =0.5],
{x; Y}: {L'-: 3':”:“:'}

ParametricPlot[Evaluate[{x[t]; ¥[E]} S s01].
{t; O; 200}, PlotRange -»All]

Plot [Evaluate[x' [t] 2 /. 8ol], P1ot [Evaluate[

{t, 0. 447}, PlotRange -» All] x'[E]72 s2-y [E]CE /2 4x[E] 272 -y [R] 2 24 (0.1 4) (X[E]"2Z-¥[L]"2)"2 /. sol],
{t, 0, ¢47}, PlotRange -» Al1]

b . s

;Total energy

Fre,




g0l = ND@olve[ (X" [t] +1.01%[t] +1.01+0.1 «X[t] « (X[t] " 2-¥[t]"2) = 0O,

t t 0.1 t
e T S 41.01x+1.01x0.1x(x* = 37) =0

[ParametricPlot [Evaluate[{x[t], ¥[t]} /. =0l j} + y —+ O_]_y(x2 — y2) = 0 Plot [Bvaluate[x' [t] "2/ 2 /. sol],

x(0)=1, y(0)=0,
x(O =0, y(0)=1

t, 0, 100}, FlotR -» A1l
[ } ange ] {t. 0, 400}, PlotRange -» All]

b I‘““H‘H‘l Al ..|||||||. I“ ..|‘“‘|. Al ...||“||. A
Ja0

100 y1]1] ET

801 = NDSolve[ (x° [£] +1.0001x[t] +1.0001 » 0.1 #x[E] » (X[t] "2 -¥[E] “2) = 0,

YIE] +¥[E] +0.1+¥[E] » (X[t] “2-¥[E] "2) =0, X' [0] =1,

¥ [0] == 0, X[0] == 0, ¥[0] =1}, [, ¥}, [t, 1000}]
ParametricPlok |Bvaluate[ (x[t], ¥[t]] /. sol], ParametricPlok |Bvaluate[ (x[t], ¥[t]] /. sol],

[t, 0, 400}, FlotRange -» All] [t, 0, 777}, FlotRange -» All] Plot [Evaluate[x' [t] 272 7. 8ol],
{t: 0, T77)}, PlotRange -» .iL'I.l]




g0l = ND@olve[ (X" [t] +1.01%[t] +1.01+0.1 «X[t] « (X[t] " 2-¥[t]"2) = 0O,
Y IE] +¥[t] +0. 1« y[t] # (x[t]“2-¥[t]"2) =0, ¥ [0] =1,
¥ [0] == 0, x[0] == 0, ¥[0] =1}, (X, ¥}, {t, 1000}]

[ParametricPlot [Evaluate[ (x[t], ¥[t]} /. sol]., [ParametricPlot [Evaluate[ (x[t], ¥[t]} /. sol]., [Plot [Bvaluate[x' [t] =T B gol]
{t, 0, 100}, PlotRange -» Al1] {t, 0, 400}, PlotRange -» All] (t, 0, 400}, PlOtR I .L'Ll]
r r r -iII-';I =,
<2

2

b I‘““H‘H‘l Al ..|||||||. I“ ..|‘“‘|. Al ...||“||. A
Ja0

100 200 40

801 = NDSolve[ (x° [£] +1.0001x[t] +1.0001 » 0.1 #x[E] » (X[t] "2 -¥[E] “2) = 0,

YIE] +¥[E] +0.1+¥[E] » (X[t] “2-¥[E] "2) =0, X' [0] =1,

¥ [0] == 0, X[0] == 0, ¥[0] =1}, [, ¥}, [t, 1000}]
ParametricPlok |Bvaluate[ (x[t], ¥[t]] /. sol], ParametricPlok |Bvaluate[ (x[t], ¥[t]] /. sol],

[t, 0, 400}, FlotRange -» All] [t, 0, 777}, FlotRange -» All] Plot [Evaluate[x' [t] 272 7. 8ol],
o y i y {t: 0, T77)}, PlotRange -» .iL'I.l]

1
)




Stueckelberg action in higher dimensions

]:%J‘dz.gw)'(ﬂ)'(v u,v=0,1,2,....D—1

o X2
g, X"'X" = Y XX+ =2
goo

_ Eoa8os»
Vab = 8ab — a,b=1,2,....D—1

8o
Signature (7,s)

o X _ -
[:% J.dz-yabXaXb_i__O If gW’O—O,then ).(0 g — D]
oo is a constant of motion
Wetake r=s

Equations of motion

d(&L j_ oL _,
dr\oX® ) ox’

yab,c — O
Xa + 1 ab __ O
2 9 gOO,b 7/ -
00 -
X C
V:_%_O__%_
8oo 8oo

This corresponds to the equations of motion
on the previous slide




Quantum oscillator

v=> cnOW,,

mn

H,,,. = |dxdyy,,Hy,,

v
lcmn T Z 11 mn;rs Crs
rs

T Basis functions of the 2D harmonic oscillator

We will investigate the case:




PlotiD[Abs[EE[0, xx, ¥]]1 A2, (%, -4, 4}; {¥; -4, 4}; PlotFoints + 50, PlotRange -» Al11]

il
W — Z C]n/] (t) Wﬂ?l?
0

m,n=

Initial condition
o (0)=1, the other coefficients=0

Clot3D[Abs [EE[4. %, v]1AZ.s {3

-4, 4%, {¥ys -4, 43, PlotPoints + 50, PlotRange -> A11]




Plot3D[Abs [E[0, x, v]1A2, {%xs -4, 4}, {¥vs -4, 4}, PlotRange -» Al1]

t=0

Plot3D[Abs[E[3.5, %, v]]1A2, {x, -4, 4}, {v. -4, 4}, PlotRange -> Al1]




PlotiD[Abs[E[d, i, w11 AL, {3t -2, 43, {¥s -4, 4}, PlotHange -» 2l1] PlotiD[Abs [E[7F, i, ¥]1AZ, {3tr -2, 43, {¥s -4, 4}, PlotRHange -» al1]

=77

PlotiD[Abs[E[5, ., ¥]]1AZ, {3tr -2, 43, {¥s -4, 4}, PlotRHange -»al1] PlotiD[Abs[E[G, i, ¥]]1AZ, {tr -2, 23, {¥s -4, 4}, PlotRHange -» Al1]

=38




Plot3iD[Abs[E[RO0, %, w11 A2, {5, -4: 4} {¥s -d4; 4} FlotRange -> All]
Plot[Abs[E[tt, 1, 11122, {tt, O, 60}, PlotRange -+ &11]

t =500 ) i )

PlotiD[Abs[E[VO00, xx, w11 A2, {5, -4; 4} {¥s -d4:; 4} FlotRange -> All]

t =700 // T~
2 L

RS

—r1

200 400 £00 goo ! time




Interacting quantum fields

Example: scalar fields

! o~
1= [dx'[g"0,0"0,0"Gy+V (9)]

Upon quantization:
W)y =D | PY(PIY)

Fock space basis | P)=| p,, Pys--

—iH (t—
() =e T R (4,)) H is the Hamilton operator
corresponding to the field action

(PI(@0) =2 (P le ™0 | POCP (1)

|'Y(z,)) =|0) vacuum

(P|W(£)) = (P |e ) | 0) Such transition is possible, because (P |_ contains
particles with positive and negative energies.

Vacuum decays into a superposition of many particle states:

) = Y| Drs Darees 2,) (D1 Do D | ()

n=0




Interacting quantum fields
Example: scalar fields
I={ax* [g"0,0'0,0"y, ~V(p)]

Upon quantization:
W)y =D | PY(PIY)

Fock space basis | P)=| p,, Pys--

—iH (t—
[P(t))y =e TP (1,)) H is the Hamilton operator
corresponding to the field action

(PIP@)y =2 (P | PP ()

|'Y(z,)) =|0) vacuum

(P|W(£)) = (P |e ) | 0) Such transition is possible, because (P |_ contains
particles with positive and negative energies.

Vacuum decays into a superposition of many particle states:

) = Y| Drs Darees 2,) (D1 Do D | ()

n=0

The amplitude that we will measure the
multi particle state | P15 Pyseees Py?




Interacting quantum fields

Example: scalar fields

I={dx*}[g"0,0°0,0"y.,~V(p)]

Upon quantization:
W)y =D | PY(PIY)

() =" | R (1))

Fock space basis | P)=| p,, Pys--

H is the Hamilton operator
corresponding to the field action

(PIP@)y =2 (P | PP ()

|'Y(z,)) =|0) vacuum

(P|W(£)) = (P |e ) | 0) Such transition is possible, because (P |_ contains
particles with positive and negative energies.

Vacuum decays intl > [(p )P + > [(p,p, [T+ D [{pypyses D, [P +. =1
P

b1-P> P1sP2 5Py

()= D] py, Py
=0 Probabilities that vacuum decays into any of the states

Py | PPy, | PPy p, )., are not drastically different.




Generalized field action
We will write the usual field action

[=|dx*[Lg"0 @0, ¢"G, -V _
I *1:870,0°0,9° G~V ()] Integration over the repeated continuous
in a more compact notation: “index” (x) is implied here.

I = %ayqpa(X)avqpb(xV)yﬂva(x)b(x') _U[(D]

This comes from a higher dimensional action:

_ 1 A(x) B(x") ~uv
[,=50,070,07" G" i)

Kaluza-Klein split of the metric

v A 4 B juv B juv
Y ab + Aa Ab ¢ AB ° Aa ¢ AB
B juv v
Ah ¢ AB ° ¢ AB

7
GAB_

1A a)A b)), uv 1 B
1, = §5ﬂ¢ 0,9y a(x)b(x") +§ay¢z 0,05 ¢

-Ulop]

Total action: Since the metric G**,, is dynamical,

the potential U[¢] is not fixed, but it
changes with evolution of the system.




Generalized Dirac field

Dirac spinors
of the usual

energy type

Dirac spinors
of the opposite

energy type

Positive and negative energy states of the usual Dirac spinors
do not mix in our Universe. Even if they did mix, the evolution
of the Universe has leaded to the current situation with no mixing.

This was not so clear when Dirac proposed his theory.

Dirac sea

Here is what Fermi wrote: It is well known that the most serious difficulty in Dirac’s relativistic

no harm if no transition between positive and negative

wave equation lies in the fact that it yields besides the normal positive
states also negative ones, which have no physical significance. This would do

states were possible

(as are, e.g., transitions between states with symmetrical and antisymmetri-
cal wave function). But this is unfortunately not the case: Klein has shown
by a very simple example that electrons impinging against a very high poten-
tial barrier have a finite probability of going over in a negative state.




It is well known that the most serious difficulty in Dirac’s relativistic
wave equation lies in the fact that it yields besides the normal positive
states also negative ones, which have no physical significance. This would do

no harm if no transition between positive and negative states were possible
(as are, e.g., transitions between states with symmetrical and antisymmetri-
cal wave function). But this is unfortunately not the case: Klein has shown
by a very simple example that electrons impinging against a very high poten-
tial barrier have a finite probability of going over in a negative state.

E. Fermi, Rev. Mod. Phys., 4, 87 (1932)

This problem was resolved by the Dirac sea of negative energy particles.



Generalized Dirac field

Dirac spinors Dirac spinors
of the usual .| of the opposite

energy type energy type

Positive and negative energy states of the usual Dirac spinors
do not mix in our Universe. Even if they did mix, the evolution

of the Universe has leaded to the current situation with no mixing. L2 "aC Sea

This was not so clear when Dirac proposed his theory During the evolution

It is well known that the most s
lies in fact tha

Here |S What Ferml Wrote :o:v::e uation lies in the fact i ie s besides the nor Aal :)lsi'ivg the Sea Of type I negative
by ok e s ety e 7 and type II positive energy

finif pbblyfgg

states have formed.

The existence of type | and type Il Dirac spinors also should
not be considered as a priori problematic.




Clifford algebra description of fermionic fields
— 3,7 (%)
Y=y hr(x) r=12; xeR’ or xeR"

hr(x) .hs(x') — pr(x)s(x') metric pr(x)s(x.) = 5},5, 5(x —X ')

New basis: 1
Ry =5 My +ihy,)

1 . Witt basis
Riiry = 55 (Mg =1 hy)

W=y Dh iy Oh

h, . h, . = .
") ) ey = Py }
0

h(x)'h(x'> - h*(x)'h*(x'> -

Scalar product:

*(x)

(PY)s =00 e+ o oy

(x)
vy > ) Both vectors bring the same
l//*(x)h*(x) — (| information about the state

(W|Y)= ‘//*(X)h*(x)'h(x')‘//(x') = W*(X)p*(x)(x')‘//(x') - Idx v (X)p(x)

particular case

— - et
P xyxxy = 5(X = )
'0(.\')*( x) 10"‘(-\') (x")

Fermionic commutation
relations




Vacuum _
Q:Hh*(x) h*(X)Q—O

Y Q= l//(x)h () | The second part of W disappears

Y= l//(x)h +V/*(X)h*(x)

Let us consider a more general case:

YQ=(y, +y " h ) T W(X)(X)h(x)h(x) e

This state is the infinite dimensional space analog
of the spinor as an element of a left ideal of
Clifford algebra

Other possible vacuums:
Q=[] h, Q=0

(i

Analogous holds in momentum representation.



In the usual notation we have
Vacuum

bi(p">0,p), di(p°<0.p)  annihilate O
bE(p’ <0,p), di(p’>0,p)

Q= [H bl (p' > Qp))[]_[ di (p’ < 0,1))][]_[ bl (p" < Qp)](]_[ dr'(p" > Qp)j

n?p

One particle Fock states:

prQ, dTQ, b, d'Q ..., andall many particle states

- J - J

il AN

Positive energies Negative energies

Q) decays, Superposition of positive and negative energy states

The final state with infinitely many positive and negative energy
particles, | P P2s D), is the state in which all operators
were removed from the vacuum Q) :

() =b"(p )b (py).di (p ) (p,) . d) (p)d) (py).. Q=1

The latter state also is ‘unstable’ and can evolve into another state
that is a superposition of the following basis states:

7 T i 7
b, d ', b, d .., andall many operator states







-~ Although accerding to Newton’s dynamics such a configuration cannot be
-~ .. stable, Nature has found a way to make it stable for some time.
— 3 -_‘_ ) :_—_E'.;_'—_—i___,
— - S
. = - 3y -|.‘I :F: =

Katja Pavsi¢, August 2010, Spain



= = '__“.Q_f____AIthough ﬁﬁ:ﬂng to N'ewtoh_’s‘-d_ynamics such a configuration cannot be
._"_;’.ff'f-‘jg_t__able, Nature has found a way_t_o make it stable for some time.

= r—--.. =

“Although aCtdfdlng to QFT, interacting field configurations with negative
__energies are unstable, they might not be so vigorously unstable in
_properly generalized QFTs.



Conclusion

Field theories in spaces with neutral signature may not have so vigorously
unstable solutions, as believed so far.

Moreover, they could explain the occurrence of Big Bang or the fact that the
Universe is not stable (Einstein’s “"Biggest blunder”).

We have demonstrated stability on the example of the classical oscillator

for two case:
- unequal metric coefficients
- collisions of the oscillator with surrounding particles

We expect that ---because of the correspondence principle---
this is also true for the quantized oscillator.

Field theories should be suitable generalized, so to included the

kinetic term for the metric in the field space.

Then the corresponding field potential is not fixed, but changes during the
evolution of the system.

Clifford algebra formulation of fermionic fields and vacuums brings novel insight
into the evolution of such systems.



The following are auxiliary slides that were not presented in the talk




Collision of the oscillator with a free particle

Particle is practically
free before and after
the collision

free particle
@)
o (u,v)

_ This part of the Lagrangian
oscillator (x, ») models the collision interaction

Model Lagrangian:

L=1
2

als
[(u—x)"+(v—y)* +al

CRET I SN T D ST AU S S S
(X" =7) 2(X y7) 4(x »7) 2(“ vY)




Collision of the oscillator with a free particle

free particle
@)
o (u,v)

Particle is practically
free before and after
the collision

oscillator (x, )
Model Lagrangian:

L=1
2

CRET I SN T D ST AU S S S
(X" =7) 2(X y7) 2(x »7) 2(“ vY)

a(u—x)

This part of the Lagrangian
models the collision interaction

als
[(u—x)"+(v—y)* +al

¥+x+Ax(x>=y°)+

a(v—y)

[(u=x)"+(v=p)’

N a]5/2 o

J+y+Ay(x® -y )+

B a(u—x) B
(u—x)2+(v—y)2+a -

B a(v—-y)
[(u—x)2+(v—y)2 +a

]5/2 o

[(u—x)"+(v—y) +a

]5/2 =




gol = HDSolva[ (X' [t] +X[t] +0.1 »X[E] » (X[E] " 2-y[E]"2) +

(u[t] -x[€]) / (({u[t] -x[t]) "2+ (v[t] -¥[E]) "2+0.1) " (E/2))

=0, Y [E] +¥[t]+0.1 »¥[t] » (x[t] "2 -¥[E] " 2) -

(w[E] -¥IE]) 7 (idafe] -x[
utte] -mpe] -x[e]) £ 0]
wiI[E] - iw[E] -¥[E]) 7 (i
x[0] =1, ¥ [0] =0, u'[0] =
{X, ¥, 0, ¥}, (&, 1000}]

ParametricPlot |Bvaluate[ (x[t], ¥[t]} /. sol].
{t. 0, 150}, PlotRange -= All]

Frx+0.1x(x? —p2)+ e -0
" =y) [(u—x)*+(v-y)* +0.17"

P+ y+0.1p(x* — )+ — =0
Vs i’ ) [(u—x)z+(v—y)2+0.1]5/2

Plot [Evaluate[x[t] /. sol],

(t. 0, 152}, PlotRange-» 3. Uu—Xx

_(u—x)2+(v—y)2+0.1_0
vV—y 3
[(u—x)" +(v—y) +0.1]" -
x(0)=1, y(0)=0, u(0)=0, v(0)=0,
x(0)=0, y(0)=1, u(0)=12, v(0)=11.5

Plot [Evaluate[u' [t] /. sol],
(t, 0, 200}, PlotRange-» All] {t. 0, 200}, PlotRange-» All]




gol = HDSolva[ (X' [t] +X[t] +0.1 »X[E] » (X[E] " 2-y[E]"2) +
(u[t] -x[€]) / (({u[t] -x[t]) "2+ (v[t] -¥[E]) "2+0.1) " (E/2))
=0, ¥ [E] +¥[t] +0.1 »¥[t] » (x[t] "2 -¥[t] " 2) -
(w[E] -¥I[t]) / (({u[t] -x[t]) "2+ (v[t] -¥[E]) "2+0.1)"(E/2)) =0,
u't[e] - (ufe] -x[t]) £ {({ult] -x[t]) "2+ {v[E] -¥[t]}) "2+0.1)"(5/2)) =0,
vUI[E] - (vIE] - ¥IED) S (({ult] -x[t]) "2+ (v[t] -¥[t]}) "2+0.1)"(§/2)) =0,
X[0] =1, ¥ [0] =0, 0'"[0] =0, v'[0] =0, Xx[0] ==0,; ¥[0] =1, u[d] =12, wv[0] = 11.5}.,
{X, ¥, 0, ¥}, (&, 1000}]

ParametricPlot |Bvaluate[ (x[t], ¥[t]} /. sol].
{t. 0, 150}, PlotRange -= All]

Plot [Evaluate[x[t] /. sol],
{t. 0, 162), PlotRange -= All]

_?éwﬁ ﬂumunﬁ%ﬂuﬂuﬂ&ﬂuﬂuﬂun.n.n f}ﬂ“ﬁnuﬂ-

Ik

Plot [Evaluate[u' [t] /. sol],
(t, 0, 200}, PlotRange-» All] {t. 0, 200}, PlotRange-» All]




Kinetic energy of the oscilliator

Plot[Evaluate[x '[L]A2/2 /. sol], increases to infinity
{t. 0, 150}, PlotRange -» All]

Plot (BEvaluate[ (17 2) (x'[t]"2-y"[Et] " 2+u"[L] "Z+Vv'[L] " 2+x[t] "2 -¥[E] "2}
+i{0.174) (x[E]"2-¥[E] 2172+
(172 S 0a[e] —x[E]) "2 +{v[E] -¥[E])"2+0.1) " {2 7,2y ) F. 8al],

(t, 0, 200}, PlotRange-» All]
Total energy is conserved




8ol = HDSolve[ (x° [t] +1.0001x[t] +1.000L « 0.1 sx[t] » (X[t] "2 -¥[E] "2} +
fuft] -x[t]) Fifdu[e] -x[E]) "2+ {Vv[E] -¥[t]) "2+0.1) " (B2}
=8 ¥ U—Xx
(v[tll X +1.0001x +1.0001x0.1x(x> —y2)+ ; ; —=0
ur[E] - [(u—x)"+(v—yp) +0.1]

vir[E] -
X0l =15+ p+0.1p(x*—p*)+ v=Jy ~0
(X, Y. 1, yry y( Y ) [(M_X)2+(V_y)2+0.1]5/2

B U—Xx 0
(u—x)2 +(v—y)2+0.1

Plot [Evalual I/

- b4 =
[(u—x)"+(v—y) +0.17"
x(0)=1, y(0)=0, u(0)=0, v(0)=0,
x(0)=0, y(0)=1, u(0)=12, v(0)=11.5

< Plot [Bvaluate[x'[t]"2/2 f. aol],
(t, 0, 746}, PlotRange -» All]




gol =HOSolve[ (X" [t] +1.0001 X[C] +1.0001L » 0.1 »X[E] » (X[L] "2—}"[':] T2+
(uft] -:[t]) 7 {({u[t] -x[E]) "2+ (V[£] -¥[t]) “2+0.1) * (5 /2))
=0, ¥ [E] +¥[E] +0. 1« ¥[t] » (x[t] "2 -¥[t] “2) -

(vIt] -¥[t]) / {{{u[t] -x[t]) "2+ (V[E] -¥[E]) “2+0.1) “(5/2)) =0,
wtr[e] - qult] -x[E]) 7 {{(u[t] -x[t]) "2+ {v[E] -¥[E]} "2+ 0.1) " (5 /2)) =0,
wOULE] - (V[E] - ¥[E]) / ({(u[k] -x[E]) "2+ (VL] -¥[E]} "2+ 0.1) " (5 /2)) =0,
x'[0] =1, ¥ [0] ==0, u'[0] =0, v'[0] =0, x[0] ==0, ¥[0] =1, u[0] = 12, v[0] = 11.5},
{X, ¥. 1, ¥}, {C, 1000]}]

Plot [Evaluate[u' [t] /. 80l], Plot [Bvaluate[u[t] /. sol],
(t, 0, 746}, PlotRange-» Al11] (t, 0, 746}, PlotRange -» Al1]

ey .
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