Introduction

The unification of various branches of theoretical physics is a joint project
of many researchers, and everyone contributes as much as he can. So far
we have accumulated a great deal of knowledge and insight encoded in such
marvelous theories as general relativity, quantum mechanics, quantum field
theory, the standard model of electroweak interaction, and chromodynam-
ics. In order to obtain a more unified view, various promising theories have
emerged, such as those of strings and “branes”, induced gravity, the em-
bedding models of gravity, and the “brane world” models, to mention just
a few. The very powerful Clifford algebra as a useful tool for geometry
and physics is becoming more and more popular. Fascinating are the ever
increasing successes in understanding the foundations of quantum mechan-
ics and their experimental verification, together with actual and potential
practical applications in cryptography, teleportation, and quantum com-
puting.

In this book I intend to discuss the conceptual and technical foundations
of those approaches which, in my opinion, are most relevant for unification
of general relativity and quantum mechanics on the one hand, and funda-
mental interactions on the other hand. After many years of active research
I have arrived at a certain level of insight into the possible interrelationship
between those theories. Emphases will be on the exposition and under-
standing of concepts and basic techniques, at the expense of detailed and
rigorous mathematical development. Theoretical physics is considered here
as a beautiful landscape. A global view of the landscape will be taken. This
will enable us to see forests and mountain ranges as a whole, at the cost of
seeing trees and rocks.

Physicists interested in the foundations of physics, conceptual issues,
and the unification program, as well as those working in a special field and
desiring to broaden their knowledge and see their speciality from a wider
perspective, are expected to profit the most from the present book. They
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are assumed to possess a solid knowledge at least of quantum mechanics,
and special and general relativity.

As indicated in the subtitle, I will start from point particles. They move
along geodesics which are the lines of minimal, or, more generally, extremal
length, in spacetime. The corresponding action from which the equations
of motion are derived is invariant with respect to reparametrizations of an
arbitrary parameter denoting position on the worldline swept by the parti-
cle. There are several different, but equivalent, reparametrization invariant
point particle actions. A common feature of such an approach is that ac-
tually there is no dynamics in spacetime, but only in space. A particle’s
worldline is frozen in spacetime, but from the 3-dimensional point of view
we have a point particle moving in 3-space. This fact is at the roots of all
the difficulties we face when trying to quantize the theory: either we have a
covariant quantum theory but no evolution in spacetime, or we have evolu-
tion in 3-space at the expense of losing manifest covariance in spacetime. In
the case of a point particle this problem is not considered to be fatal, since
it is quite satisfactorily resolved in relativistic quantum field theory. But
when we attempt to quantize extended objects such as branes of arbitrary
dimension, or spacetime itself, the above problem emerges in its full power:
after so many decades of intensive research we have still not yet arrived at
a generally accepted consistent theory of quantum gravity.

There is an alternative to the usual relativistic point particle action pro-
posed by Fock [?] and subsequently investigated by Stueckelberg [?], Feyn-
man [?], Schwinger [?], Davidon [?], Horwitz [?, ?] and many others [?]-[?].
In such a theory a particle or “event” in spacetime obeys a law of motion
analogous to that of a nonrelativistic particle in 3-space. The difference
is in the dimensionality and signature of the space in which the particle
moves. None of the coordinates z°, 2!, 22, 3 which parametrize spacetime
has the role of evolution parameter. The latter is separately postulated and
is Lorentz invariant. Usually it is denoted as 7 and evolution goes along 7.
There are no constraints in the theory, which can therefore be called the
unconstrained theory. First and second quantizations of the unconstrained
theory are straightforward, very elegant, and manifestly Lorentz covariant.
Since 7 can be made to be related to proper time such a theory is often
called a Fock-Schwinger proper time formalism. The value and elegance of
the latter formalism is widely recognized, and it is often used, especially
when considering quantum fields in curved spaces [?]. There are two main
interpretations of the formalism:

(i) According to the first interpretation, it is considered merely as a
useful calculational tool, without any physical significance. Evolution in 7
and the absence of any constraint is assumed to be fictitious and unphysical.
In order to make contact with physics one has to get rid of 7 in all the
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expressions considered by integrating them over 7. By doing so one projects
unphysical expressions onto the physical ones, and in particular one projects
unphysical states onto physical states.

(ii) According to the second interpretation, evolution in 7 is genuine and
physical. There is, indeed, dynamics in spacetime. Mass is a constant of
motion and not a fixed constant in the Lagrangian.

Personally, I am inclined to the interpretation (ii). In the history of
physics it has often happened that a good new formalism also contained
good new physics waiting to be discovered and identified in suitable exper-
iments. It is one of the purposes of this book to show a series of arguments
in favor of the interpretation (ii). The first has roots in geometric calculus
based on Clifford algebra [?]

Clifford numbers can be used to represent vectors, multivectors, and,
in general, polyvectors (which are Clifford aggregates). They form a very
useful tool for geometry. The well known equations of physics can be cast
into elegant compact forms by using the geometric calculus based on Clifford
algebra.

These compact forms suggest the generalization that every physical quan-
tity is a polyvector [?, ?]. For instance, the momentum polyvector in 4-
dimensional spacetime has not only a vector part, but also a scalar, bivector,
pseudovector and pseudoscalar part. Similarly for the velocity polyvector.
Now we can straightforwardly generalize the conventional constrained ac-
tion by rewriting it in terms of polyvectors. By doing so we obtain in the
action also a term which corresponds to the pseudoscalar part of the veloc-
ity polyvector. A consequence of this extra term is that, when confining
ourselves, for simplicity, to polyvectors with pseudoscalar and vector part
only, the variables corresponding to 4-vector components can all be taken as
independent. After a straightforward procedure in which we omit the extra
term in the action (since it turns out to be just the total derivative), we
obtain Stueckelberg’s unconstrained action! This is certainly a remarkable
result. The original, constrained action is equivalent to the unconstrained
action. Later in the book (Sec. 4.2) I show that the analogous procedure
can also be applied to extended objects such as strings, membranes, or
branes in general.

When studying the problem of how to identify points in a generic curved
spacetime, several authors [?], and, especially recently Rovelli [?], have rec-
ognized that one must fill spacetime with a reference fluid. Rovelli considers
such a fluid as being composed of a bunch of particles, each particle car-
rying a clock on it. Besides the variables denoting positions of particles
there is also a variable denoting the clock. This extra, clock, variable must
enter the action, and the expression Rovelli obtains is formally the same as
the expression we obtain from the polyvector action (in which we neglect
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the bivector, pseudovector, and scalar parts). We may therefore identify
the pseudoscalar part of the velocity polyvector with the speed of the clock
variable. Thus have a relation between the polyvector generalization of the
usual constrained relativistic point particle, the Stueckleberg particle, and
the DeWitt—Rovelli particle with clock.

A relativistic particle is known to posses spin, in general. We show how
spin arises from the polyvector generalization of the point particle and how
the quantized theory contains the Dirac spinors together with the Dirac
equation as a particular case. Namely, in the quantized theory a state
is naturally assumed to be represented as a polyvector wave function @,
which, in particular, can be a spinor. That spinors are just a special kind
of polyvectors (Clifford aggregates), namely the elements of the minimal
left or right ideals of the Clifford algebra, is an old observation [?]. Now,
scalars, vectors, spinors, etc., can be reshuffled by the elements of the Clif-
ford algebra. This means that scalars, vectors, etc., can be transformed
into spinors, and vice versa. Within Clifford algebra thus we have transfor-
mations which change bosons into fermions. In Secs. 2.5 and 2.7 I discuss
the possible relation between the Clifford algebra formulation of the spin-
ning particle and a more widely used formulation in terms of Grassmann
variables.

A very interesting feature of Clifford algebra concerns the signature of the
space defined by basis vectors which are generators of the Clifford algebra.
In principle we are not confined to choosing just a particular set of elements
as basis vectors; we may choose some other set. For instance, if €0, e', €2,
e3 are the basis vectors of a space M, with signature (+ + + +), then we
may declare the set (2, e’el, e¥e?, e’e?) as basis vectors 7, v, 2, 3 of
some other space M, with signature (+ — ——). That is, by suitable choice
of basis vectors we can obtain within the same Clifford algebra a space of
arbitrary signature. This has far reaching implications. For instance, in
the case of even-dimensional space we can always take a signature with an
equal number of pluses and minuses. A harmonic oscillator in such a space
has vanishing zero point energy, provided that we define the vacuum state
in a very natural way as proposed in refs. [?]. An immediate consequence
is that there are no central terms and anomalies in string theory living in
spacetime with signature (+ + +... — ——), even if the dimension of such
a space is not critical. In other words, spacetime with such a ‘symmetric’
signature need not have 26 dimensions [?].

The principle of such a harmonic oscillator in a pseudo-Euclidean space
is applied in Chapter 3 to a system of scalar fields. The metric in the space
of fields is assumed to have signature (+ + +... — ——) and it is shown
that the vacuum energy, and consequently the cosmological constant, are
then exactly zero. However, the theory contains some negative energy fields
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(“exotic matter”) which couple to the gravitational field in a different way
than the usual, positive energy, fields: the sign of coupling is reversed,
which implies a repulsive gravitational field around such a source. This is
the price to be paid if one wants to obtain a small cosmological constant in
a straightforward way. One can consider this as a prediction of the theory
to be tested by suitably designed experiments.

The problem of the cosmological constant is one of the toughest prob-
lems in theoretical physics. Its resolution would open the door to further
understanding of the relation between quantum theory and general rela-
tivity. Since all more conventional approaches seem to have been more or
less exploited without unambiguous success, the time is right for a more
drastic novel approach. Such is the one which relies on the properties of
the harmonic oscillator in a pseudo-Euclidean space.

In Part IT I discuss the theory of extended objects, now known as
“branes” which are membranes of any dimension and are generalizations
of point particles and strings. As in the case of point particles I pay much
attention to the unconstrained theory of membranes. The latter theory is a
generalization of the Stueckelberg point particle theory. It turns out to be
very convenient to introduce the concept of the infinite-dimensional mem-
brane space M. Every point in M represents an unconstrained membrane.
In M we can define distance, metric, covariant derivative, etc., in an anal-
ogous way as in a finite-dimensional curved space. A membrane action,
the corresponding equations of motion, and other relevant expressions ac-
quire very simple forms, quite similar to those in the point particle theory.
We may say that a membrane is a point particle in an infinite dimensional
space!

Again we may proceed in two different interpretations of the theory:

(i) We may consider the formalism of the membrane space as a useful
calculational tool (a generalization of the Fock—Schwinger proper time for-
malism) without any genuine physical significance. Physical quantities are
obtained after performing a suitable projection.

(ii) The points in M-space are physically distinguishable, that is, a mem-
brane can be physically deformed in various ways and such a deformation
may change with evolution in 7.

If we take the interpretation (ii) then we have a marvelous connec-
tion (discussed in Sec. 2.8) with the Clifford algebra generalization of the
conventional constrained membrane on the one hand, and the concept of
DeWitt—Rovelli reference fluid with clocks on the other hand.

Clifford algebra in the infinite-dimensional membrane space M is de-
scribed in Sec. 6.1. When quantizing the theory of the unconstrained
membrane one may represent states by wave functionals which are polyvec-
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tors in M-space. A remarkable connection with quantum field theory is
shown in Sec. 7.2

When studying the M-space formulation of the membrane theory we
find that in such an approach one cannot postulate the existence of a back-
ground embedding space independent from a membrane configuration. By
“membrane configuration” I understand a system of (many) membranes,
and the membrane configuration is identified with the embedding space.
There is no embedding space without the membranes. This suggests that
our spacetime is nothing but a membrane configuration. In particular, our
spacetime could be just one 4-dimensional membrane (4-brane) amongst
many other membranes within the configuration. Such a model is dis-
cussed in Part III. The 4-dimensional gravity is due to the induced metric
on our 4-brane Vj, whilst matter comes from the self-intersections of Vj,
or the intersections of V; with other branes. As the intersections there can
occur manifolds of various dimensionalities. In particular, the intersection
or the self-intersection can be a 1-dimensional worldline. It is shown that
such a worldline is a geodesic on V4. So we obtain in a natural way four-
dimensional gravity with sources. The quantized version of such a model is
also discussed, and it is argued that the kinetic term for the 4-dimensional
metric g, is induced by quantum fluctuations of the 4-brane embedding
functions.

In the last part I discuss mainly the problems related to the foundations
and interpretation of quantum mechanics. I show how the brane world view
sheds new light on our understanding of quantum mechanics and the role
of the observer.



