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* Introduction
Strings, branes
Theories of strings and higher dimensional extended objects, branes

- very promising in explaining the origin and interrelationship of the
fundamental interactions,

including gravity ‘

But there is a cloud
- what is a geometric principle behind string and brane theories
and how to formulate them in a background independent way




* Brane space (brane kinematics)

The basic kinematically possible objects:
n-dimensional, arbitrarily deformable branes V _ living in //,,
Tangential deformations are also allowed

Mathematically the surfaces on the left

and the right are the same.
Physically they are different.

We represent \/ . by functions

X“EY , u=01,.,N-1

where &2, a=0,12,...n-1 are parameterson \V

According to the assumed interpretation, different
functions X¥( &) can represent physically different branes.

The set of all possible V', forms the brane space

A brane V. can be considered as a point in
parametrized by coordinates m

which bear a discrete index 2 and n continuous indices &2

L&) as superscript or subscript denotes pair of indices 1L and (&)




Distance in  space

[ 46 dcpu (e, ¢ dx#(€) dx () metric in

U0 dx @) qxv(©) — dX“(g)dXM(f)

' Pu(e)v(c) = \/ﬁ @ gud(§ — ()

f,=0,X"0, X"

induced metric
on the brane //,

o. an arbitrary constant
v 9,., metric of the embedding space /'

A =[d& | flag,, dX“(&)dx“ (&)

Invariant volume (measure) in
JIpIDX =(|Detp,, (£,0)])" [ [dX“ (&)
S.u

14— pu(g)y(g) - \/maguy5(§ - C)

Jdplox =TT alg)"”dx* &)

S.u




Tensor calculus in —space:

Differential of coordinaib €I Bl Gad is a vector in

Under a general coordinate transformation a vector in  transforms according to:

Such a shorthand notation for

'/I(é) aX'IU(g) . . . . .
A" =—— functional derivative is very effective

5XW (5) Av(g)
aXV(e‘)

X" (c)

47 = J‘ de

An arbitrary coordinate transformation in = —space:

X = pHEOT X If X»© represent a kinematically possible brane,

then X obtained from X" by a functional transformation
represent the same (kinematically possible) brane

acting on a

0A

Variants of notation:;

A;,U(f) = é‘Xu(é:) EAa/l(f)

acting on a




* Branedynamics

Let a brane move in the embedding space ;. The parameter of evolution is 7 .
Kinematically, every continuous trajectory DeIENIBEDEGIEN s possible.

Brane theory as free fall in  -space
Dynamically possible trajectories are geodesics in

1

+ 50u(E)Pa(enpen X




o d (pague X
SXHE) (1) dr

14

X2 Eg#VX'UXV

H= PonpenX “O X7

i - Equations of motion for the
dr (\/—i' Xu) + g \/ f1V XQ@GXH,) =38 Dirac-Nambu-Goto brane




The action

I[Xa(ﬁ)] — /dT, (pa(gl)l@(gu)xa(ﬁl)X'@(gn))1/2

is by definition invariant under reparametrizations of £°.
In general, it is not invariant under reparametrizations of <.
This is so when the metric contains velocity.

If metric is given by

Pa(eper) = EM 0(E = &) Nap

X2(¢")

then the action becomes explicitly

x“©)1=[de(den [ 7]Vx2)

The equations of motion automatically contain the relation

FIVX? =

which is a gauge fixing relation.




In general, the exponent in the Lagrangian is not necessarily 2 , but can be arbitrary:

Not invariant under reparametrizations of t,
unless a =1

For our particular metric the corresponding equations of motion are:

XQ
For a =1 PFOM:‘I

The same equation of motion




Let us focus our attention to the action

I[x*9] = /dT Paenpem X 2 EI XPE) = /d'r dé ky/|FIV X2 ENEEEK

It is invariant under the transformations

T>7'=7'(7)

£V > £ = £ ()

in which t and £2do not mix.

Invariance of the action under reparametrizations t of implies a constraint among the canonical momenta.
are given by

Ipa(enp(e”) &) xBE")

—n® =~ 2Puerer X+ — =

=X

_ _t) u(E) _ yru)
w@) = Puewe X pr=X

We define

Pusy =P, E)=p,, X" =x"




T
K\/—(p P, -k

(€)
H=p,X" L——Idf

Constraint

K=K[X"9]=[déx | FINX?

A reparametrization of t changesX :

Therefore X? under the integral for H is arbitrary.
Consequently, H vanishes when the following expression under the integral vanishes:

(p"p, —x’ f)=0 This is satisfied at every ¢&°.

The quantity under the integral in the expression for Hamiltonian 77 — _[ dENX? 3
IS H.
From the requirement that the constraint is conserved in T we have:




I[x*0)] = /d'r Patensen X I XPE) = /d'r dé /| 1V X2

If(f)l

——=0(c=¢")o(r=1")7,
VXS

Variation of the above action with respect to X" gives the geodesic equation in A/-space:

dXﬂ(¢)

u(9) a(8) v B _
iz + L0 s )X X7 =0




Having the constraints one can write the first order, or phase space action

A

I[X”,p :-A::’\a] — /de’g (p X” — (ppp _h"-glfl) _/\ap 0 Xﬂ)
K ' B 2H\/m Iz nYa

It is classically equivalent to the minimal surface action for the (n+1)-dimensional world manifold V_, ,

11X"1=x [d" p(detd,X"9,X,)"

This is the conventional Dirac-Nambu-Goto action, invariant under reparametrizations of ¢#:




* Dynamical metric field in M-space

Let us now ascribe the dynamical role to the M-space metric.
\I-space perspective: motion of a point “particle” in the presence

of the metricfield o . whichisitself dynamical.

As a model let us consider

/ (#) yv(9) icCi -
Il p]= J'(DX (pﬂ(¢)v(¢)){” X + R) ®_ Ricci scalarin

u(P)v(4")

a(d') vO(¢") _ geodesic equation in M
a(gp@nX X =0

. . Y E /
XHO x4 Fq{ﬂww(@ W Einstein’s equations in M
T




The metric Z.w is a functional of the variables X“”’ and on the previous slide
we had a system of functional differential equations which determine the set of possible

solutions for y« and o, ., -

Our brane model (including strings) is background independent:
There is no pre-existing space with a pre-existing metric, neither curved nor flat.

A model universe: a single brane

There is no metric of a space into
which the brane is embedded.

All what exists is a brane configuration
X#9 and the corresponding

metric o, InM-space.

Pl X]

This metric is defined
only on the brane




A system branes (brane configuration)

In the limit of infinitely many densely
packed branes, the set of points
@ D (¢", k) is supposed to become
a continuous, finite dimensional
. metric space V.
(¢",k)

Metric is defined only at the points
situated on the branes

If we replace (&) with (¢,k), or, alternatively, if we interpret (¢) to include
the index k, then the previous equations are also valid for a system of branes.

A brane configuration is all what exists in such a model.
It is identified with the embedding space.




From 9/-space to spacetime

dX#(¢ k)

dX,U(¢ k')
(¢ >(\ X4 M

X/l(¢/() Xv#(¢/c /1(¢ k) X'/1(¢ k)

Let us now introduce
Mﬂ (¢ k) = YH@K) _ y a4k

and define

dXx “5) qx V(@K

2 _
A" = P, ovisiir

The metric p determines the
between the points belonging to two
different brane configurations

Brane configuration

is a skeleton S
of a target space V|

AS” = Doy AX“(d,k)AX" (¢, k)

This is the quadratic form M The metric p in the skeleton space S
in the skeleton space S is the prototype for the metric in V




» Conclusion
We have taken the brane space /\/ seriously as an arena for physics.

The theory is thus background independent. It is based on the geometric
principle which has its roots in the brane space M

2 e, 1= [a'x T2IR

@ L Pugyr 1= _[ DX p|R

We have formulated a theory in which an embedding space per se does not exist,
but is intimately connected to the existence of branes (including strings).

There is no pre-existing space and metric: they appear dynamically as solutions
to the equations of motion.




All this was just an introduction. Much more can be found in a book

M. Pavsic: The Landscape of Theoretical Physics: A Global view;

From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle
(Kluwer Academic, 2001)

where the description with a metric tensor has been surpassed.

Very promising is the description in terms of the Clifford algebra equivalent
of the tetrad field which simplifies calculations significantly.

Possible connections to other topics:
- How to identify spacetime points
- DeWitt-Rovelli reference fluid (with respect to which the points | .. system, or condensate of
of the target space are defined) branes represents a reference
- Mach principle system or reference fluid with

respect to which the points of
the target space are defined

Such a situation is implemented in the
model of a universe consisting

of a system of branes: the motion

of a k-the brane, including its inertia
(metric ), is determined by the presence
of all the other branes.




A
2k/|f|

I[X*, puy A A% = f drdé¢ (pp).(*u _

(p"pu — K°|f]) — ApuBuX “”) :

(4.70)
where \ and A* are Lagrange multipliers.
The equations of motion are

opy : XM — % Py — A9, X =0, (4.72)

]
oA = plpu—RIfI=0, (4.73)

SAC 1 pud, XM =0. (4.74)
Eqgs. (4.72)—(4.74) can be cast into the following form:

py = — A|f |(;fqu — A9, XH), (4.75)
A2 (XF — N9, X" (X, — N\oyX,) (4.76)

Ao = XFO,X,. (4.77)




Inserting the last three equations into the phase space action (4.70) we
have

I[XH] =k f dr dg\/m [Xﬂ}'(“(nw - aﬂxﬂaaxv)]” : (4.78)

The vector X (N — 0°X,,0,X,) is normal to the membrane Vi; its scalar
product with tangent vectors 8, X* is identically zero. The form X* XV Uz

0°X,,0,X,) can be considered as a 1-dimensional metric, equal to its de-
terminant, on a line which is orthogonal to V,,. The product

FXEXY () — 0°X,,0,X,) = det 94 X" 05X, (4.79)

is equal to the determinant of the induced metric 94 X#9dp X, on the (n+1)-
dimensional surface X#(¢1), ¢ = (7, &%), swept by our membrane V;,. The
action (4.78) is then the minimal surface action for the (n + 1)-dimensional
worldsheet V4 1:

I[X" = k f 4"t (det 94 X 0 X,) /2. (4.80)




