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Introduction

Persisting problem of quantum gravity and the unification of interactions.

A need to reformulate the conceptual foundations of physics and to employ a more

evolved mathematical formalism.

In this talk I will consider Clifford algebras which provide very promising tools

for description and generalization of geometry and physics.

Orthogonal Clifford algebra

The inner, symmetric, product of basis vectors

gives the orthogonal metric,         .
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The outer, antisymmetric, product of basis vectors

gives the basis bivector.

Symplectic Clifford algebra
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The inner, antisymmetric, product of basis vectors

gives the symplectic metric,        .abJ

The outer, symmetric, product of basis vectors

gives a symplectic bivector.

aq



The generators of an orthogonal Clifford algebra can be transformed into a basis

in which they behave as fermionic creation and annihilation operators.

Instead of  finite dimensional spaces, we can consider infinite dimensional spaces.

Then we have  description of a field theory in terms of fermionic and bosonic

creation and annihilation operators.

The latter operators can be considered as being related to the basis vectors

of the corresponding infinite dimensional space.

We will show how both kinds of operators can be united into a single

structure so that they form a basis of a `superspace’.

We will consider an action for a point particle in such superspace.

The generators of a symplectic Clifford algebra behave

as bosonic creation and annihilation operators.



Inner product of vectors a and b

I. Orthogonal case

Basis vectors

Spaces with orthogonal an symplectic forms

( , ) ( , ) ( , ) ab

a b a b a b

g a b g a b ga b a b a b a g bγ γ γ γ= = =

( , )a b g abgγ γ = metric

For a basis we can take generators of the

orthogonal Clifford algebra:

1
·( , ) ( )

2
a b g ab a b b a a b abg gγ γ γ γ γ γ γ γ= == = +

Vectors are Clifford numbers:

( , ) ( )
2

·
1

ga b ab ba a b= + =

a aµ
µγ=



Inner product of symplectic vectors z and z’

II. Symplectic case

Symplectic basis vectors

( , ') ( , ' ) ( , ) ' 'a b a b a b

J a b a J abJ bz z z q z z q q z z J zq= = =

( , )Ja b abq q J= symplectic metric

For a symplectic basis we can take generators of the

symplectic Clifford algebra:

1
( , ) ( )

2
a a b ab J ab a a bb bq q J q q q Jq q q= = − == ∧

Vectors are now symplectic Clifford numbers:

'
1

( , ') ( ' ' )
2

Jz z z z z z z z− = ∧=

a

az z q=



Explicit notation with coordinates and momenta

Symplectic vector
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b

a b a b b a
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a b a

J J

a b

qz z z q q z z

z J z

x p p x

q q q z

µ ν ν
µν

ν η

−= =

=

= −

( ) ( )

( , )a

a

a

x p

z x p

z z q x q p qµ

µ µ

µ µ
µ

=

= = +

0

0
abJ
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η

η

 
=  

− 

Relations
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2
[ , ]a b abq q J= give
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2 2

1

( ) ( ) ( ) (
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[ , ] 0, [ , ] 0

[ , ]

x x p p

x p

q q q q
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µ ν µ ν

µ ν µνη

= =

=
Heisenberg commutation

relations



Poisson bracket (symplectic case)

Symplectic metric

0

0
abJ

µν

µν

η

η

 
=  

− 

By introducing the symplectic basis vectors,

we can rewrite the above expression as

1

2
[ , ]c d cdq q J=

These are the Heisenberg commutation

relations for `operators’         and        .

PB{ , } ab

a b

f g
f g J

z z

∂ ∂
≡

∂ ∂

1

2
,[ ] ab

a

a

b a b

bf g
q q

f g
J

z z z z

∂ ∂
∂
∂ ∂

∂ ∂ ∂
=

If we take ,c df z g z= =

0

0

abJ
µν

µν

η

η

− 
=  

 

cq dq

are thus `quantized’  phase space coordinates .
aq az are real coordinates

az



Poisson bracket (orthogonal case)

Orthogonal metric

0

0
abg

µν

µν

η

η

 
=  

 

By introducing the  basis vectors

we can rewrite the above expression as

1 1

2 2
,{ ( )}c d c d d c cdgγ γ γ γ γγ + =≡

These are the anticommutation relations for 

`operators’         and        .

PB{ , } ab

a b

f g
f g g

λ λ
∂ ∂

≡
∂ ∂

1

2
,a ab b

a ab b

f g
g

f g

λ λ
γ γ

λ λ
∂ ∂ 


∂ ∂

∂

 ∂ ∂ ∂
=

If we take ,c df gλ λ= =

0

0

abg

µν

µν

η

η

 
=  

 

cγ dγ

are thus `quantized’      .
aλaγ are real anticommuting coordinates

aλ



Representation of operators

I. Orthogonal Clifford algebra

1
· ( )

2
a b a b b a abgγ γ γ γ γ γ≡ + =

0

0
abg

µν

µν

η

η

 
=  

 
In even dimensions we can write:

( , ) , 0,1,2,3a µ µγ γ γ µ= =
We can introduce Witt basis:

1
( )

2

1
( )

2

i

i

µ µ µ

µ µ µ

θ γ γ

θ γ γ−=

+=

1
(

2
· ) , · 0, · 0µ ν µ ν ν µ µν µ ν µ νθ θ θ θ θ θ η θ θ θ θ+ = = ==

, , ,µ µµ µ θγ θγ can be represented: 

1)  as 4 x 4  matrices,

2)  in terms of Grassmann coordinates:

2 , 2µ µ
µ µθ ξ θ

ξ
∂

→ →
∂

0µ ν ν µξ ξ ξ ξ+ =

µ µν
νθ η θ=



II. Symplectic Clifford algebra

1
( )

2
a b a b b a abq q q q q q J∧ ≡ − =

We can write:

( ) ( )( , ) , 0,1,2,3x p

aq q qµ µ µ= =

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
(

2
)

0, 0

x p x p p x

x x p p

qq q

qq q

qq

q

qν νµ µ µ µνν

ν µ νµ

η=

∧

=∧

∧ =

−

=

( ) ( ),x pq qµ µ
can be represented: 

1)  as 4 x 4  matrices,

2)  in terms of commuting coordinates:

( ) ( )2 , 2x px q
x

qµ µ
µ µ

∂
→ →

∂

0x x x xµ ν ν µ− =

Then the operators cannot

be cast into Hermitian form

0

0
abJ

µν

µν

η

η

 
=  

− 

( ) ( )x xq q
µ µν

νη=



Let us now consider the action

1

2
( )a b a b

ab abI d z J z z K zτ= +∫ ɺ
1

2

a b

abH z K z=
( , )az x pµ µ=

azδ

a ab

b

H
z J

z

∂
=

∂
ɺ

Let us consider trajectories             as components of an

infinite dimensional vector:

( )az τ

( )

( ) ( ) ( )a a

a az z q d z qτ
τ τ τ τ≡= ∫

The equations of motion are:

( ) ( )

( ) ( )

a a

a az q z qτ τ
τ τ= − ɺɺ

( ) ( ') ( ) ( ')

( )

a b a b

ab

q q J

J

τ τ τ τ

δ τ τ

∧ =

′= −

1

2

1 ( ) ( ')

( ) ( ')2

( ) ( )a b

ab

a b

a b

d z K z

z K zτ τ
τ τ

τ τ τ=

=

∫H

( ) ( ) ( ) ( ') ( ) ( ')

( ) ( ) ( ) ( ) ( ')( ')

a a a b a b

a a a a bb
z q z q q J q K z

z

τ τ τ τ τ τ
τ τ τ τ ττ

∂
= − = = −

∂
ɺɺ

H

Heisenberg equations as equations of motion for basis vectors

and write the action in the form

1 1( ) ( ') ( ) ( ')

( ) ( ') ( ) ( ')2 2

a b a b

a b a bI z J z z K zτ τ τ τ
τ τ τ τ= +ɺ

( ) ( ') ( )a b abK Kτ τ δ τ τ ′= −



Symplectic inner product

is given by commutator

( ') ( ) ( ')

( ') ( ) ( ')

b a b

b a bz q q K zτ τ τ
τ τ τ=ɺ

This equation holds for any
( )bz τ

( )

( ') ( ) ( ')

a

b a bq q Kτ
τ τ τ=ɺ Equations of motion

for operators ( )aq τ

1

2
ˆ a b

abH q K q=

( ) ( ') ( )a b abK Kτ τ δ τ τ ′= −

( ) ( )a

b abq q Kτ τ=ɺ

( ) ( )a aq qτ τ≡

ˆ[ , ] b

a abq H K q=

ab baK K=

ˆ[ , ]a aq q H=ɺ Heisenberg equations

of motion

We see that the basis vectors of phase space

satisfy the Heisenberg equations of motion for

`quantum’ operators



Symplectic inner product

is given by commutator

( ') ( ) ( ')

( ') ( ) ( ')

b a b

b a bz q q K zτ τ τ
τ τ τ=ɺ

This equation hold for any
( )bz τ

( )

( ') ( ) ( ')

a

b a bq q Kτ
τ τ τ=ɺ Equations of motion

for operators ( )aq τ

1

2
ˆ a b

abH q K q=

( ) ( ') ( )a b abK Kτ τ δ τ τ ′= −

( ) ( )a

b abq q Kτ τ=ɺ

( )

( )

( )

( )

a a

a a

q q

z z

τ

τ

τ

τ

≡

≡

ˆ[ , ] b

a abq H K q=

ab baK K=

ˆ[ , ]a aq q H=ɺ Heisenberg equations

of motion

We see that the basis vectors of phase space

satisfy the Heisenberg equations of motion for

`quantum’ operators

That the operator equations  hold for any                means

that coordinates and momenta are undetermined.

( ) ( ( ), ( ))az x pµ µτ τ τ=

Classical solution Any trajectory

( )az τ



Point particle action in `superspace’

We introduce the generalized vector space

whose elements are:

A

AZ z q= ( , )

( ,

( ,( , ) ,

( , ) , ,)

)

( , )

,A a a

aA a

a

a

a

a

z z

q

z x x

qq q q

µ µ

µ µ

µ µ

µ µ

λ λ λ
γ γ

λ
γγ

=

===

==

symplectic

part
orthogonal

part

basis elementscoordinates

0

0

ab

A B S AB

ab

q
J

q G
g

 
〈 〉 = =  

  0

0

0
·

0

a

a

ab

b

b

ab

q q J

g

µν

µ

ν

ν

ν

µ

µ

η
γ

η

γ

η

η

 
∧ = =  

 
= =  



−




symplectic metric

orthogonal metric

Let us consider a particle moving

in such space. Its worldline is given by:

( )A Az Z τ=

parameter on the worldline



Example of a possible action

)

.
0

, ( , )
0

ab A a a

AB

ab

J
G z z

g
λ

 
= = 

 ( )a b a a

ab abI z J z gd λτ λ+= ∫ ɺ ɺɺ ɺ

( , )

( , )

0,1,2,3

a

a

z z zµ µ

µ µλ λ λ
µ

=

=

=

Since                ,

this term differs

from zero if

are commuting

coordinates.

Since                   ,

this term differs

from zero if

are Grassmann

coordinates.

ab baJ J= − ab bag g=

1 1

2 2

A B

B

A B

A S ABI d Z q Z Z G Zq dτ τ= =〈 〉∫ ∫ɺ ɺ

.
0

, ( , )
0

ab A a a

AB

ab

J
G z z

g
λ

 
= = 

 

1

2
( )a b a b

ab abz J z gI dτ λ λ= +∫ ɺɺ

In this term,

are anticommuting

(Grassmann) coordinates.

In this term,       

are commuting

coordinates.

ab baJ J= −

ab bag g=

az aλ

Canonical momenta:
1

2

(

1

)

( )

2
,a aba

a aa

z

a

b

bL
p J

z

L
p g

z

λ λ
λ

∂
= =

∂
∂

= =
∂

ɺ

ɺ

Example of a possible action



1

2
( )a b a b

ab abz J z gI dτ λ λ= +∫ ɺɺ

0
,

0

0

0
a abb gJ

µν

µν

µν

µν

η

η

η

η

 
=  

−

 
=  

 

1

2
( )I x xd x xν µ ν µ ν µ ν

µν µν
µ

νµν µη λ η λ λ η λτ η + += −∫ ɺ
ɺɺɺ

are commuting [ , ] 0, [ , ] 0x x x xµ ν µ ν= =,x xµ µ

,µ µλ λ are Grassmannian { , } 0, { , } 0µ ν µ νλ λ λ λ= =

Canonical momenta:

1 1

2 2

1

( ) ( )

( 1

2

) ( )

2

,

,

x xL L
p x p x

x x

L L
p p

ν ν
µν µνµ µ

ν ν
µν µνµ µ

µ µ

λ λ
µ µ

η η

η λ η λ
λ λ

∂ ∂
= = = = −

∂ ∂
∂ ∂

= = = =
∂ ∂

ɺɺ

ɺ ɺ



Quantization

( ) ( )ˆ ˆ, ,x xx p x pµ µ
µ µ→
( ) ( )ˆ ˆ, ,p pµ λ µ λ
µ µλ λ→

( )

( )

(

(

)

) ˆˆ

ˆ ˆ

, ,

, ,

a z a z

a a

a a

a a

z p z p

p pλ λλ λ→

→
Altogether,  we have

( , )

( , )

0,1,2,3

a

a

z z zµ µ

µ µλ λ λ
µ

=

=

=

Operators

where
( )

( ) ( )

ˆ ˆ[ , ] ,

ˆ ˆ ˆ ˆ[ , ] 0, [ , ] 0

x

x x

x p i

x x p p

µ µ
ν ν

µ ν
µ ν

δ=

= =

( ) ( )

( ) ( )

ˆˆ ˆ ˆ{ , } , { , }

ˆˆ ˆ ˆ{ , } 0, { , } 0

p i p i

p p

µ λ µ µ λ µ
ν ν ν ν

µ ν λ λ
µ ν

λ δ λ δ

λ λ

= =

= =

where the operators satisfy

(

( )

)

ˆ ˆ{

[

}

ˆˆ ]

,

,

a a

b

a

b

a z

b bz

p i

p i

λλ

δ

δ=

= Commutators

Anticommutators

Similar relations hold

for barred quantities..



But we see that the above operator equations are just

the relations for the basis vectors of the orthogonal

and symplectic Clifford algebra, provided that we

identify:

We se that `quantization’ is in fact the replacements

of the coordinates             with the corresponding

basis vectors.

1( )

2

1( )

2

,z b

a ab

a

a ab

p J z

p gλ λ

=

=

( )

( )

ˆˆ[ , ]

ˆ ˆ{ , }

a z a

b b

a a

b b

z p i

p iλ

δ

λ δ

=

=

1

2

1

2

ˆ ˆ[ , ]

ˆ ˆ{ , }

a b ab

a b ab

z z i J

i gλ λ

=

=

ˆ

ˆ ( ,

,

)

( )a

az q iq

i

µ µ

µ µλ γ γ=

=

,a az λ

The only difference is in

the factor i in front of qµ



1

2

1

2

( )a b a b

ab ab

a b a b

a b a b S

I d

d

z J z g

z q q z

λτ

λ γ λτ

λ

γ

+

= 〈

=

+ 〉

∫
∫

ɺɺ

ɺɺ

Basis vectors,  entering the action, are `quantum operators’,

apart from the i in the relations

ˆ ( , ) , ˆ ( , )aa i iz q qµ µ µ µλ γ γ= =

( , ) ,

( , )

a

a

q q qµ µ

µ µγ γ γ

=

=



1

2

1

2

1

2

(

)

)

(

a b a b

ab ab

a b a b

a b a b S

a b a

ab ab

b

z J z g

z q q z

z J z g

I d

d

d

λ λ

λ γ γ λ

λτ λ

τ

τ

+

= 〈 + 〉

′ ′

=

′+=

∫
∫
∫

ɺɺ

ɺɺ

ɺɺ

( , ) ,

( , )

a

a

q q qµ µ

µ µγ γ γ

=

=

The above action is not complete. An additional term is needed.

1

2

A B

ABI d Z G Zτ= ∫ ɺ

replace with covariant derivativeB

C

B B CZ ZZ A→ +ɺ ɺ

1

2
( )A B B C

AB CI d Z G Z A Zτ= +∫ ɺ Generalized Bars action

(invariant under    -dependent 

rotations of        )

0

0

ab

AB

ab

J
G

g

 
=  

 

τ
AZ

In particular, this term gives:

p p pµ µ
µ µα β λ+

Lagrange multipliers (contained in        )
A

CA

Mass comes from

extra dimensions

µ ν µ
µν

ν
µνξ ξη ξ η ξ+ɺ ɺ

1

2

1

2

( , ) , ( )

( )

a i

i

µ µ µ µ µ µ

µ µ µ µ

λ λ λ λ ξ λ λ

λ ξ λ λ

′ ′ ′ ′= ≡ = −

′ ≡ = +

0
' ·

0
ab a bg

µν

µν

η
γ γ

η

 
′ ′= =   

 



Upon quantization, the classical constraint

0pµ
µλ =

becomes the Dirac equation:

ˆ 0ˆ pµ
µλ Ψ =

where                .ˆµ µλ γ=

can be representedΨ

1) as a column
αψ
( , )xµ µψ ξ2)  as a function

can be represented

1)  as matrices

2) as

( )i µ µξ
ξ
∂

−
∂

ˆµ µλ γ=

We also have                   which can be representedˆ
iµ µλ γ=

1)  as matrices

2)  as

µ µξ
ξ
∂

+
∂



1

2

1

2

( )

( )

i

i

µ µ µ

µ µ µ

θ γ γ

θ γ γ

= +

= −

From
1

2
· { , } ,

· 0, · 0

µ ν µ ν µν

µ ν µ ν

θ θ θ θ η

θ θ θ θ

≡ =

= =

1

2

1

2

( )

( )

i

i

µ µ µ

µ µ µ

ξ λ λ

ξ λ λ

= −

= +

we can build up spinors by taking a `vacuum’

µ
µ

θΩ = ∏ which satisfies 0µθ Ω =

and acting on it by `creation’ operators       .µθ
0,1,2,3µ =

So we obtain a `Fock space’ basis for spinors:

( ),, ,,
A µ µ ν µνρ µνρσϑ θ θ θ θ θ= Ω Ω Ω Ω Ω1ɶ 1,2,...,16A =ɶ

in terms of which any state can be expanded:

A

A
ψ ϑΨ = ∑ ɶ

ɶ

With operators              defined above, we can construct the

spinors as the elements of a minimal left ideal of            .
,µ µθ θ

(8)Cℓ

Taking all possible vacua, such as

we obtain the Fock space basis for the whole            .

1 2 1 2
... ... , 0,1,2,3,4

r r r n
rµ µ µ µ µ µθ θ θ θ θ θ

+ +
Ω = =

(8)Cl



Description of fields

( )

( )i

i x

xhψΨ =

( ) ( ') ( ) ( ')· ii x j x x j xh h ρ= metric ( ) ( ') ( ')i x j x ij x xρ δ δ= −

particular case

New basis:
1

( ) 1( ) 2( )2

1

*( ) 1( ) 2( )2

( )

( )

x x x

x x x

h h i h

h h i h

= +

= −
Witt basis

( )

( ) *( )

*( )

x x

xxh hψ ψ+Ψ = ( ) *( ') ( )*( ')

( ) ( ') *( ) *( ')

·

· · 0

x x x x

x x x x

h h

h h h h

ρ=

= =

( )*( ')

( )*( ') *( ) ( ')

( ')x x

x x x x

x xρ δ

ρ ρ

≡ −

=

Scalar product:
( ) *( ') *( ) ( ')

( )*( ') *( ) ( ')

x x x x

S x x x xψ ρ ψ ψ ρ ψ〈Ψ Ψ〉 = +

3 1,31,2; ori x x= ∈ ∈ℝ ℝ

( )

( )

*( )

*( )

|

|

x

x

x

x

h

h

ψ

ψ ψ

→ Ψ〉

→ 〈

Both vectors bring the same

information about the state

*( ) ( ') *( ) ( ') *

*( ) ( ') *( ) ( ')| · ( ) ( )x x x x

x x x xh h dx x xψ ψ ψ ρ ψ ψ ψ〈Ψ Ψ〉 = = = ∫

Fermionic commutation

relations

Orthogonal case



Vacuum
*( )x

x

hΩ = ∏ *( ) 0xh Ω =

( ) *( )

( ) *( )

x x

x xh hψ ψΨ = +

( )

( )

x

xhψΨ Ω = Ω The second part of        disappearsΨ

Let us consider a more general case:

( ) ( )( ')

0 ( ) ( ) ( ')( ... )x x x

x x xh h hψ ψ ψΨ Ω = + + + Ω

This state is the infinite dimensional space analog

of the spinor as an element of a left ideal of

Clifford algebra

Reversed state:

‡ ‡ † ‡ * *( ) *( )( ')

0 *( ) *( ) *( ')( ) ( ... )x x x

x x xh h hψ ψ ψΨ Ω = Ω Ψ + += Ω +
Then ‡ ‡ ‡

‡ *( ) ( ') ‡ *( ) ( ')

*( ) ( ') ( ) ( ')

( )

... 2 ...x x x x

x x x xh hψ ψ ψ δ ψ=

Ψ Ω ΨΩ = Ω Ψ ΨΩ

Ω Ω + = Ω Ω +

( )( ') ( ') *( )2 x x x xh hδ − This acting on

vacuum gives 0



Vacuum
*( )x

x

hΩ = ∏ *( ) 0xh Ω =

( ) *( )

( ) *( )

x x

x xh hψ ψΨ = +

( )

( )

x

xhψΨ Ω = Ω The second part of        disappearsΨ

Let us consider a more general case:

( ) ( )( ')

0 ( ) ( ) ( ')( ... )x x x

x x xh h hψ ψ ψΨ Ω = + + + Ω

This state is the infinite dimensional space analog

of the spinor as an element of a left ideal of

Clifford algebra

We obtain a non vanishing form is we take the 

reversed state

‡ ‡ ‡ ‡ * *( ) *( )( ')

0 *( ) *( ) *( ')( ) ( ... )x x x

x x xh h hψ ψ ψΨ Ω = Ω Ψ + += Ω +
Then ‡ ‡ ‡

‡ *( ) ( ') ‡ *( ) ( ')

*( ) ( ') ( ) ( ')

( )

... 2 ...x x x x

x x x xh hψ ψ ψ δ ψ=

Ψ Ω ΨΩ = Ω Ψ ΨΩ

Ω Ω + = Ω Ω +

( )( ') ( ') *( )2 x x x xh hδ − This acting on

vacuum gives 0

‡ ‡ *( ) ( ')

( ) ( ') ...x x

S x xψ δ ψ〈Ω Ψ =ΨΩ〉 +

scalar part



Bosonic commutation relations

1

2
)(I d dx d dH Hxφ φ φτ τ Π − Π = − Π −  = ∫ ∫ɺ ɺ ɺ

*L
iφ

φ
∂

= Π =
∂ ɺ

*( , ) ( , )I d d x x Hx i τ φτ φ τ=  − ∫ ɺ

( ) ( ) ( )( , ) 1,2,i x x x iφ φ Π ==

( ) ( ')

( ) ( ')( )i x j x

i x j xI d J Hτ φ φ= −∫ ɺ

3

1,3

x

x

∈

∈

ℝ

ℝ

Schroedinger field

Stueckelberg field

( )( ')

( ) ( ')

( )( ')

0

0

x x

i x j x

x x

J
δ

δ

 
=   − 

( ) ( )

( ) 1( ) 2( )

( ) 1( ) 2( )

( ) ( )
x x

i x x x

x x

i x x x

k

k k

k

k

φ

φ φ

φ

φ

Π

Φ

≡ +

= +

Π

=

( ')( ) ( ) ( ')i x i j xx xjk Jk =∧

Symplectic vector:

Symplectic inner product:

basis vectors metric

( )( ') ( ')x x x xδ δ≡ −

Symplectic case



1

2
)(I d dx d dH Hxφ φ φτ τ Π − Π = − Π −  = ∫ ∫ɺ ɺ ɺ

*L
iφ

φ
∂

= Π =
∂ ɺ

*( , ) ( , )I d d x x Hx i τ φτ φ τ=  − ∫ ɺ

( ) ( ) ( )( , ) 1,2,i x x x iφ φ Π ==

( ) ( ')

( ) ( ')( )i x j x

i x j xI d J Hτ φ φ= −∫ ɺ

3

1,3

x

x

∈

∈

ℝ

ℝ

Schroedinger or scalar field

Stueckelberg field

( )( ')

( ) ( ')

( )( ')

0

0

x x

i x j x

x x

J
δ

δ

 
=   − 

( ) ( )

( ) 1( ) 2( )

( ) 1( ) 2( )

( ) ( )
x x

i x x x

x x

i x x x

k

k k

k

k

φ

φ φ

φ

φ

Π

Φ

≡ +

= +

Π

=

( ')( ) ( ) ( ')i x i j xx xjk Jk =∧

Symplectic vector:

Symplectic inner product:

basis vectors metric

( )( ') ( ')x x x xδ δ≡ −

Symplectic case

( ) ( ')

( ) ( ')

i x j x

i x j xH Kφ φ=

( ) ( ')

2

( ) ( ')

( )

) ( ') 0

0 ( '

1
( ')

)

,
2

0 1

1 0

(
,

i x j x ij

ij

i x j

r

x

r

r

r

K x x g
m

g

m
K

V x

x x

x x

δ

δ

δ = − − 
 



∂ ∂ +

∂ ∂ −

−


=  

 

 +
=  

 



Poisson bracket

{ }( ) ( ) ( )

( ) ( '

( )

PB )

'( ), ( )
i x j x

i x i x i x j xf g J
f g

φ
φ φ

φ
∂ ∂

∂ ∂
= ( )( ')( ) ( ')

( )( ')

0

0

x xi x j x

x x

J
δ

δ

− 
=   

 
In particular: ( '') ( '''),k x l xf gφ φ= =

{ }( '') ( ''') ( '') ( ''') ( ( ''')

1 ( ''')

2

'')

PB

( '')

,

,

lk x l x k x l x k x

k

x

lx x

J k k

k k

φ φ = ∧

≡

=

  

The Poisson bracket of two classical fields 

is equal to the symplectic metric.

On the other hand, the symplectic metric

is equal to the wedge product of basis vectors.

In fact, the basis vectors are quantum operators, and

satisfy the quantum canonical commutation relations:

1

2
[ ( ), ( ')] ( ')k x k x x xφ δΠ = −

ˆ ˆ[ ( ), ( ')] ( ')x x i x xφ δΠ = −
1

2

ˆ( ) ( ) ,

ˆ ( ) ( )

x k x

x i q x

φφ

Π

=

Π =or



Discussion:  Prospects for quantum gravity

`Matter’ configuration

iX µ

( )X µ ξ

a system of point particles

a (system) of branes

etc.

MX
A compact notation

for a configuration

Basis vectors
Mh

Metric · NM MNhh η=

In Witt basis we  have annihilation and creation operators:

,M Mh h+ −

(wavepacket profile) (| ) | 0M

M

h+Ψ〉 = 〉∏
Expectation value

1M Mh h〈Ψ Ψ〉 ≡〈 〉

Induced metric

·M M MNh h g〈 〉 〈 〉 =



I expect that in general we will obtain an induced metric

with non vanishing curvature.

Since spacetime is a subspace of a configuration space,

we will also obtain the metric of spacetime.

Curved spacetime metric originates from quantum configurations

of many `particle’ systems.



Conclusion

An action for a physical system can be written in the phase space form,

and it contains either the symplectic or the orthogonal form (or both).

The corresponding basis vectors satisfy either the fermionic

anticommutation relations or the bosonic commutation relations,

and satisfy the Heisenberg equations of motion.

The fact that basis vectors on the one hand are quantum operators,

and on the other hand they give metric, can be exploited in the

development of quantum gravity.

Quantum operators are just the basis vectors of the phase space action.

We have pointed out how `quantization’ can be seen

from yet another perspective.

According to Feynman it is necessary to know several

different representations of the same physics.



The idea that basis vectors are quantum operators can be found in a book

M. Pavšič: The Landscape of Theoretical Physics: A Global view;

From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle

(Kluwer Academic, 2001)

where the orthogonal and symplectic cases are discussed.

Very promising is the description of gravity in terms of the Clifford algebra equivalent 

of the tetrad field which simplifies calculations significantly.
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Beyond the relativistic point particle: A reciprocally invariant system, 

Phys. Lett. B 680, 526-532 (2009)

Space inversion of spinors revisited: A possible explanation of

chiral behavior in weak interactions, Phys. Lett. B 692, 212-217 (2010)

On the relativity in configurations space: A renewed physics in sight,

0912.3669 [gr-qc]


