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Abstract. I f  an integrable classical Hamiltonian H describing bound motion depends on 
parameters which are changed very slowly then the adiabatic theorem states that the action 
variables I of the motion are conserved. Here the fate of the angle uarinbles is analysed. 
Because of the unavoidable arbitrariness in their definition, angle variables belonging to 
distinct initial and final Hamiltonians cannot generally be compared. However, they can 
be compared if the Hamiltonian is taken on a closed excursion in parameter space so that 
initial and final Hamiltonians are the same. The result shows that the angle variable change 
arising from such an excursion is not merely the time integral of the instantaneous frequency 
w = dH/dI,  but differs from it by a definite extra angle which depends only on the circuit 
in parameter space, not on the duration of the process. The 2-form which describes this 
angle variable holonomy is calculated. 

1. Introduction 

Holonomy kff ects, those governed by inexact ‘differentials’ ( 1 -forms) or ‘non-integrable 
or anholonomic connections’ are familiar in physics. Ranging from heat in thermody- 
namics, to the parallel transport of a vector in a curved space, where they are a 
fundamental ingredient in a physical theory, they are characterised by the existence 
of non-zero change in traversing closed circuits. (Strictly, perhaps, this should be 
called an anholonomy but in current usage the reversed emphasis is understood.) 

Recently an embarassingly elementary holonomy effect in quantum mechanics that 
had somehow escaped early discovery was pointed out by Berry (1984). It concerns 
a quantum Hamiltonian depending on parameters which are changed adiabatically 
(infinitely slowly) and shows that the phase of an eigenstate changes when the Hamil- 
tonian is taken around a closed circuit in parameter space, not only by the dynamical 
amount h-’ E d t  depending on the duration of the process, but by an extra geometrical 
amount depending only on the circuit. The fundamental object governing Berry’s 
phase is a phase 2-form in parameter space for which he obtains a formula. The theory 
was recast in formal mathematical language by Simon (1983). 

The present paper arises out of a question posed by Berry, namely what is the 
semiclassical limit (h+O) of his phase. In fact, that particular question will not be 
answered here, though a guess can be made on the basis of the theory below which 
turns out to be correct when the proper analysis is made (Berry 1985). Instead I shall 
analyse an  analogous holonomy effect which arises purely classically. It is analogous 
in that it arises when a classical Hamiltonian is taken adiabatically around a closed 
circuit in parameter space. Unlike the quantum holonomy though, the classical one 
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has restricted validity. It applies only if the Hamiltonian has just one freedom, or 
more generally if it has integrable classical motion, because it involves the action angle 
variables of the Hamiltonian which only exist in that case. As is recalled in 0 2 the 
action variables are the classical adiabatic invariants of such a system-they are 
guaranteed not to change around the circuit. But the angle variable, like the quantum 
phase, is not constrained to be the same; it is anholonomic, and the object here is to 
quantify and illustrate this effect. The semiclassical connection between the classical 
angle holonomy and the quantum phase holonomy was established by Berry (1985) 
and indeed two of the examples introduced below are there reanalysed in a framework 
better suited to semiclassical mechanics. 

The plan of the paper is this. Restricting attention to one degree of freedom, I 
shall first recall the classical principle of adiabatic invariance of action ( 0  2 ) ,  present 
the angle variable holonomy ( §  3), illustrate it ( 5  4), and finally generalise the result 
to an N-freedom integrable system and discuss it (§  5). 

2. Review of classical adiabatic invariance 

The standard example which is used to explain adiabatic invariance in classical 
mechanics is that of the shortening pendulum (figure 1)-a bob swinging on a string 
which is slowly being drawn up through a hole. Work is done on the pendulum so 
its energy is not conserved as it would be for a static Hamiltonian, but there is a 
substitute quantity, the action, which is conserved in the adiabatic limit of slow change. 

Figure 1. Adiabatic change in the length of a pendulum (from Arnold 1978) 

In the phase plane (9, p) ,  the initial, long pendulum has a Hamiltonian H( q, p, Llong) 
with concentric horizontal ellipse shaped contours around one of which the point 
representing the bob runs depending on its amplitude of oscillation. As the pendulum 
length L ( t )  is shortened the contours become squashed horizontally so that finally, 
the short pendulum has a Hamiltonian H (4, p ,  Lshort) with vertical ellipses instead. 
The bob will again be running around one of them-the question is which one? The 
answer is not that with the same energy value as initially but that with the same area. 
It is the action function Z(q, p ,  L( t ) ) ,  by definition ( 2 ~ ) - '  times the instantaneous area 
of the Hamiltonian H ( q ,  p ,  L( t ) )  contour on which ( q ,  p )  lies, which is adiabatically 
conserved. 

The demonstration of this follows immediately from two principles which are most 
easily expressed not in terms of the individual bob concerned, but of the continuum 
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of ‘virtual’ bobs chasing each other around the swinging cycle with different phases-a 
continuous train of dots around the contour of the initial Hamiltonian in the phase 
plane. 

(i) The adiabatic principle. If the imposed change is slow enough the bobs will all 
be affected in the same way and will therefore finally still be chasing each other around 
their new swinging cycle. So the final train of dots once again lies around a single 
contour of the (new) Hamiltonian (rather than being slewed across a range of them 
as it would in a fast change). The adiabatic principle is otherwise known as the 
principle of angle-averaging (Arnold 1978); each point is supposed to experience the 
disturbance averaged over all of them. 

(ii) Liouuille’s theorem. The area enclosed by any loop of particles in phase space 
is conserved under all circumstances (whether the Hamiltonian is static, slowly changing 
or  fast changing). 

Although the adiabatic principle (i) is well defined and  widely realised physically 
(Landau and  Lifshitz 1976), it appears (Arnold 1978) to be surprisingly difficult to 
eliminate the mathematical loopholes which prevent the simple statement that it holds 
rigorously in the limit of slow change. It remains an  ‘assertion of a physical character, 
i.e. it is untrue without further assumptions’. I shall take it for granted. 

3. Angle variable holonomy 

The prescription above applies equally well to the slow change of any form of 
Hamiltonian function H( q, p )  in the phase plane (provided, at least, that contours are 
not forced to change their topology by passage through a saddle point (Robnik and 
Hannay 1985)). The particle in phase space races around a track (contour of the 
instantaneous Hamiltonian) of fixed area 2 r I  but slowly changing shape. Given this 
rule of the conservation of action for which contour the particle lies on, it seems natural 
to ask about the development of the complementary variable, the angle variable, which 
describes whereabouts on the contour the particle is; to ask, that is, how many 
circuits it has made. 

The instantaneous frequency of traversals’ i.e. that which it would obtain if the 
Hamiltonian was ‘frozen’ is given by the derivative (27r ) - ’  dH/dZ, so it is tempting to 
write the total angle traversed in a time T as simply 

where in the last form H is considered as a function H (  I, t )  of the area of its contours 
and adiabatic invariance, I (  t )  = I constant, is invoked. 

The reason (1) is incomplete is of course that the angle variable also changes by 
virtue of the changing (I, 0)  coordinate system in phase space. To reveal the true 
structure of the situation it is necessary to consider the time dependence of the 
Hamiltonian function, and  ( I ,  6 )  coordinate system, as being produced by carrying 
them along a path R ( t )  in a parameter space R = ( X ,  Y, Z . .  .) of two or  more 
dimensions in which the functions H( q, p ,  R ) ,  I (  q, p ,  R ) ,  e( q, p ,  R )  are uniquely 
defined. The point of making R more than one dimensional is that we shall wish to 
consider closed excursions R( T )  = R(0)  in which R ( t )  executes a loop. With just one 
parameter, the length of the shortening pendulum for intance, the only way to restore 
the original length is to reverse the shortening and the holonomy effect is not realised. 
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In this framework then the exact rates of change of a particle's action and angle are: 

I =  -aH/aO(=Zero)+R. aZ/dR (2) 

8, = aH/aI + R ao/aR (3) 

where the last terms are the rates of change of action and angle coordinates at a fixed 
point ( q ,  p )  in phase space (figure 2). For non-adiabatic excursion of the Hamiltonian 
these equations will lead to changes in both I and 0 which will depend on the trajectory 
selected i.e. on the initial values of both I and 0. For adiabatic excursion the equations 
become 

Z = Zero + R . (aZ/aR)( =Zero) (4) 

8, =aH/ar+R.  (ae/aR) ( 5 )  

where the average brackets stand for the average around the Hamiltonian contour on 
which the point lies. Specifically for any function f(q, p )  we define a function (f) of 
action I by 

(f) = ( 2 r ) - '  ( 6 )  

Figure 2. Action-angle coordinates changed with a parameter 

The average in (4) vanishes identically by Liouville's theorem and yields therefore 
I = 0 as required. There is no reason however why the average in (5) should vanish 
and integration of this equation therefore yields the dynamical angle change anticipated 
in ( 1 )  plus the extra angle change we are interested in 

A 0  = R * ( d O ( q (  t ) ,  p (  t), R (  t))/3R) d t  = (dO/dR) * dR. ( 7 )  

In the last expression time has been completely eliminated because by definition (6) 
the average is a function of the conserved, and therefore initial, action I. There is a 
different field (aO/aR) for each I, on which A 0  therefore depends. I t  does not depend 
on the initial angle. 

Fixing I, then, we now examine the field (JOldR). It depends on the angle variable 
coordinatisation O(q, p ,  R )  which is to some extent arbitrary. Unlike the lines of 
constant action I ( q ,  p ,  R) which for fixed R are fully determined as the contours of 
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the Hamiltonian H ( q ,  p ,  R ) ,  the lines of constant angle are only specified once one of 
them (say 8 = 0 )  is chosen. This one, and thus all the others, may be arbitarily 
twisted-into a spiral for instance (figure 2). So the angle variable change AB inevitably 
depends upon the angle coordinates chosen for the initial and final parameters R ( 0 )  
and R ( T ) .  Only if they are identical coordinate systems, which in turn requires 
R ( 0 )  = R( T )  (barring specially favourable circumstances) can one expect to make 
coordinate independent statements about A8. The excursions must be closed loops. 

That A 0  is generally non-zero for such excursions is the central point of this paper 
expressing the anholonomy or non-integrability of the angle variable under adiabatic 
excursions of the Hamiltonian. The equivalent statement in local terms is that while 
the field (a8/dR) is angle coordinate dependent, its ‘curl’ 

a/aR A (ae/aR) (8) 

(or the appropriate generalisation below) is the primitive angle-coordinate-independent 
object. The assertion is that because the averaging is R dependent, the curl does not 
vanish identically as it would if the average brackets were absent. Physically speaking 
then, the field and its curl are rather like the vector potential A and the magnetic field 
B with their respective dependence on, and independence of, gauge transformations. 

The manifestly angle-coordinate-independent expression for the curl is quoted 
below (9) and derived in the appendix. It is convenient there, and from here on to 
use the differential form notation appropriate to a structure free parameter space of 
arbitrary dimensionality. The gradient field a8/aR becomes the l-form field de, and 
(8) is replaced by the exterior derivative 2-form d ( d 8 ) .  

The result for this angle 2-form is 

Since the angle variables 8’ and ,y are integrated over and the bracket in (9) is periodic, 
this expression is obviously independent of the angle origin chosen, as required. 
Actually in practice it is usually simplest to choose a specific e( q, p ,  R )  arbitrarily, and 
obtain the 2-form by direct evaluation of the left hand side of (9) rather than carry 
out the integrals on the right. 

4. Illustrations 

Two illustrations of the geometrical angle holonomy originated in the idea that the 
simplest realisation of the effect might be to take a particle racing around an elliptical 
curve either in phase space or in real space, and to rotate the curve slowly and rigidly 
through one complete turn. The object would then be to demonstrate that the particle 
had not made the same number of circuits as it would have around the stationary 
curve, and not merely one less or one more either. It turns out, as we now see, that 
both the phase space and real space illustrations admit a rather more general analysis. 

An important class of Hamiltonians (particularly for quantum mechanical purposes) 
are quadratic ones-the generalised simple harmonic oscillator, 

H ( q , p )  = t ( X q 2 + 2 Y v + Z p 2 )  (10) 

whose contours are concentric oblique ellipses (for X Z  > Y’) or hyperbolae ( YZ < Y 2 )  
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in the phase plane. One could pick an elliptical one and ask that X ,  Y and Z be 
changed slowly in such a way as to effect exactly one rotation in the phase plane. It 
follows from (13) below that the consequent angle change is T times the sum of the 
ellipse axis ratio and its reciprocal. But the analysis is easily pursued to yield the angle 
2-form and hence the result for an arbitrary closed excursion of the Hamiltonian in 
X ,  Y, Z space. Let the ellipse be that obtained from a circle by stretching by a factor 
a along a direction at angle 4 to the q axis in the phase plane. Then the point on 
the ellipse at angle 4’ to the q axis in the phase plane comes from the direction -0  + 4 
on the circle with 0 given by 

e = -tan-’( cy tan( 4‘ - 4)). (11)  

This is the angle variable on the ellipse measured from the long axis. The negative 
sign arises from the convention that the angle variable is measured in the opposite 
sense to ordinary angle. Exterior differentiation (in parameter space a, 4 )  and averag- 
ing around the ellipse yields 

= Zero da  -f( a + a - ’ ) d 4  (13) 

1 ( X + Z )  -- 

where standard ellipse geometry has been used to relate cy (ratio of principal axes) 
and 4 to X ,  Y, Z.  Taking the exterior derivative (and using d d = 0) gives 

d( d e )  = -$d ) A d tan-‘( &) 
-1 

3 / 2  [( X Z  - Y 2 ) ( d X  + d Z )  - f ( X  + Z ) ( Z d X  + XdZ - 2 Y d Y ) ]  - - 
4 ( X Z -  Y ) 

2 ( X  - 2 )  d Y - 2 Y ( dX - d Z )  
A ( X  - Z ) 2 +  4 Y 2  

-1 
- - , , , [ X ( d Y A d Z ) +  Y ( d Z r , d X ) + Z ( d X r , d Y ) ] .  4 ( X Z -  Y ) 

The symmetry of the bracket here with respect to the cyclic permutation of X ,  Y, Z 
shows that the curl vector field representing the 2-form is a radial one. Moreover since 
it decays as the inverse square of the ‘radius’, the phase change around a circuit actually 
depends only on the circuit of directions (i.e. on the radial projection of the circuit 
onto the unit sphere). 

The second illustration involves the rotation of a curve in real space rather than 
phase space. A wire ‘hoop’ of area A and perimeter L in a plane with a bead of unit 
mass sliding frictionlessly around it is slowly turned through one revolution. There is 
now no need to restrict attention to an elliptical hoop-the shape can be kept general. 
The analysis of this system is easy in the frame rotating with the hoop. If fl is the 
hoop’s angular velocity and q ( t )  the position of the bead in the hoop frame, the 
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canonical momentum p( t )  is given by 

p = i + f i A Q  (18) 
(which is equal to its ordinary momentum in the non-rotating frame). The action is 
the line integral of p around the hoop 

I=- p - d q  
21r ‘f 

=-!-($q-dq+2RA). 21r 

This says that the adiabatically conserved quantity is the (spatial) average speed of 
the bead around the hoop plus 2RA/ L. If R is sufficiently small the bead’s fluctuations 
in speed around the length of the hoop are small and the spatial average speed can 
be taken as the temporal average speed. If R rises from zero and falls back again with 
time integral 2lr corresponding to one revolution of the hoop, then the time integral 
of the average speed is -4lrAl L greater than it would have been had R remained zero. 
This, then, is the extra distance travelled, or, multiplied by 27r/ L, the extra angle change 

AB = -81r2A/ L2. (21) 

This result reduces to the expected one AB = -2lr for the circular hoop, where the 
hoop has simply slipped around, catching up on the bead by one revolution, so that 
the bead has made one fewer turns in the hoop frame. 

The result (21) can be obtained by a variety of alternative means. One of the two 
used by Berry (1985) is direct integration of the acceleration due to the pseudo-forces in 
the rotating frame. There the effect emerges entirely as a result of the ‘Euler force’ 
m(n A q ) .  In an analysis of ring gyroscopes (Forder 1984), the result arises from the 
relativistic lack of synchrony of clocks in the rotating frame. 

As a final illustration I consider a rather obvious realisation of the extra angle 
change. It is a spinning symmetric top with fixed base point whose axis is pulled 
around a closed circuit enclosing a solid angle R. (Gravity plays no role since the 
axis is driven, not free.) The component of angular velocity w of the top along its 
axis is invariant (this time rigorously, not merely adiabatically). So the dynamical part 
of the top’s rotation angle after the circuit is simply w times the circuit duration. But 
there is an extra angle which would be present even if the top were not spinning 
( w  = 0), namely that caused by the familiar parallel transport holonomy of a vector 
on a curved surface, in this case the unit sphere. The angle turned through by a vector, 
and therefore the extra angle for the top, is the integral of the Gaussian curvature over 
the area enclosed-that is, the solid angle R. In this example the angle 2-form is just 
the curvature 2-form of the unit sphere. 

5. Generalisation and discussion 

While the presentation has referred to a Hamiltonian system with one freedom only, 
it is straightforward, by adding indices in the appendix, to generalise to any N freedom 
system admitting action angle variables 4, 8, ( 1  s j s N )  that is any integrable system. 
All N of the action functions 4 are then adiabatic invariants and each angle variable 
0, suffers extra change on closed adiabatic excursion of the Hamiltonian. The 2-form 
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for this extra change is 

As emphasised in the introduction, while 1 -freedom systems are necessarily 
integrable, N-freedom systems are not. There is no generalisation of (22) to N-freedom 
systems with the'generic mixed structure of chaos and tori, indeed there are no known 
adiabatic invariants in that case. 

While it is likely that angle variable changes have long been required and calculated 
correctly in particular contexts, in celestial mechanics for example, they have probably 
been found by rather ad hoc methods like that used in the rotating hoop illustration 
earlier. This paper has sought to present the effect in its generality. The other (indeed 
the original) motivation, the possible connection with the semiclassical limit of Berry's 
phase A 4  has not been further mentioned, but the standard relationship for the time 
evolution of 0 and 4 in a static Hamiltonian 

d %  d H  d 

suggests the relationship 

A 0  = -h dc$ldI. (24) 
This is indeed the conclusion of semiclassical analysis (Berry 1985). 

Another connection between the present classical analysis and quantum mechanics, 
for 1-freedom systems, arises from the trick of treating the wavefunction + ( x )  and 
its derivative f ( x )  as 'position' and 'momentum' in a bogus 'phase space'. The time 
independent Schrodinger equation for given energy E then becomes a Newton's 
equation for $, with x playing the role of 'time', and an x dependent (i.e. 'time' 
dependent) linear restoring force ( E  - V ) $ .  If V ( x )  is a slowly varying function of x 
then the quadratic Hamiltonian analysis of the second illustration earlier, is directly 
applicable. This is one way of viewing a recent analysis of phase holonomy arising 
not from slow time variation of a quantum Hamiltonian but from slow space variation- 
that is, phase holonomy in WKB theory (Wilkinson 1984). 
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Appendix 

The formula (9) for the angle 2-form d(d%)  which is manifestly independent of the 
arbitrarinesss in the definition of angle variables may be derived as follows. As in the 
main text, q, p are fixed phase plane coordinates and I ( q , p ,  R )  and 0 ( q , p ,  R )  are 
parameter dependent functions of them. The symbol d stands for exterior differenti- 
ation in parameter space R (not phase space q, p ) .  It is convenient for the derivation 
to distinguish the value, Io say, of the conserved action from the action function I .  
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The task is now to eliminate dB from this average. An expression for ade /ae  can 
be obtained and used. (This derivative is not equal to d ( M / a e ) = O  because d and 
a l a e  do not commute.) The expression derives from the fact that the variables I, 8 
remain canonical; { I ,  e }  = 1 for all R so that by exterior differentiation 

Integrating this with respect to 6 supplies de, which inserted into the average (dB A d l )  
gives 

where an integration by parts has been performed, the integrated part vanishing by 
virtue of the (exact) Liouville relation used in (4) 

d e  
dl -  = ( d l )  = 0. I:" 2rr 

The expression (A7) is, as can easily be verified; independent of the choice of origin 
of 8. It can be simplified by inspection. The integrand is the product of two functions 
evaluated at different angles. Keeping first their separation ,y fixed and then integrating 
over all x (invoking the independence of origin) we obtain 

(dB A d l )  = lo2' (- adl( 8 )  
a i  

Some final manipulations now remain to remove the operation a / a l  which is still 
angle coordinate dependent. On the one b.and the 257 term in (A91 can be seen to 
vanish because the average of the (wedge) product is then the product of the averages, 
each of which vanish by (A8). On the other hand by the substitution x f = 2 r r - x  (A9) 
can be rewritten 

using the cyclic nature of 8. Taking half the sum of the two expressions, (A9) without 
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the 257, and (AlO), we obtain 

where the antisymmetry of the wedge product has been used and alar has been 
extracted from the average brackets and converted to d ld l ,  as is then legitimate. 

Finally then we have the required result 

The generalised analysis for an N-freedom system is a straightforward matter of 
adding indices to the above and yields (22). For example (A4) becomes 

d 
dI0l 

d( de,) = -(de, A dI1). 

Since this intermediate expression is often useful in calculations it is worth noting that 
it can be rewritten, by use of the constancy of the Poisson brackets for all R, d{ I,, I , }  = 
d{ I ,  e,} = d{  Oil e,} = 0, in the more symmetric form 

d d(d8,) =-- (de ,  A dI!) .  
dIoj 

This form corresponds most closely to that obtained by Berry (1985) who uses q and 
p as functions of fixed phase space coordinates I ,  8 instead of vice versa. Like (A14), 
(A15) yields the result (22) directly. 
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