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Abstract The zero-temperature linear response conductance through an interacting meso-
scopic region attached to noninteracting leads is investigated. We present a set
of formulas expressing the conductance in terms of the ground-state energy of an
auxiliary system, namely a ring threaded by a magnetic flux and containing the
correlated electron region. We prove that the formalism is exact if the ground
state of the system is a Fermi liquid. We show that in such systems the ground-
state energy is a universal function of the magnetic flux, where the conductance
is the relevant parameter. The method is illustrated with results for the trans-
port through an interacting quantum dot and a simple Aharonov-Bohm ring with
Kondo-Fano resonance physics.
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1. Introduction

In the last decade technological advances enabled controlled fabrication of
small regions connected to leads and the conductance, relating the current
through such a system to the voltage applied between the leads, proved to
be the most important property of such systems. There is a number of such ex-
amples, e.g. metallic islands prepared by e-beam lithography or small metallic
grains,[1] semiconductor quantum dots,[2] or a single large molecule such as a
carbon nanotube or DNA. It is possible to break a metallic contact and measure
the transport properties of an atomic-size bridge that forms in the break,[3] or
even measure the conductance of a single hydrogen molecule. [4] Recent mea-
surements of conductance through single molecules proved that strong electron
correlations can play an important role in such systems. [5]

The transport in noninteracting mesoscopic systems is theoretically well de-
scribed in the framework of the Landauer-Büttiker formalism. The conductance
G is at zero temperature determined with the Landauer-Büttiker formula [6]
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G = G0 |t (εF )|2 , G0 =
2e2

h
. (1)

The key quantity here is the single particle transmission amplitudet(εF ) for
electrons at the Fermi energy. The formula proved to be very useful and reli-
able, as long as electron-electron interaction in a sample is negligible. However,
the Landauer-B̈uttiker formalism cannot be directly applied to systems where
the interaction between electrons plays an important role. Several approaches
have been developed to allow one to treat such systems. The Kubo formal-
ism provides us with a conductance formula which is applicable in the linear
response regime and was intensively studied by Oguri.[7, 8] A more general
approach applicable also to non-equilibrium cases was developed by Meir and
Wingreen. [9] Recently, ab initio methods to study the transport through small
molecular junctions were also applied.[10]

2. Conductance formulas for Fermi liquid systems

The relevant system is schematically presented in Fig. 1(a). A mesoscopic
interacting region, which could be a molecule, a quantum dot, a quantum dot
array or a similar ’artificial molecule’ system, is attached to noninteracting leads.
As shown in Ref. [11] (hereafter referred to as RR), the conductance of such a
system can be determined solely from the ground-state energy of an auxiliary
system, formed by connecting the leads of the original system into a ring and
threaded by a magnetic flux, Fig. 1(b). The main advantage of this method is
the fact that it is often much easier to calculate the ground-state energy (for
example, using variational or quantum Monte Carlo methods) than the Green’s
function, which is needed in the Kubo and Keldysh approaches. The method
is applicable only to a certain class of systems, namely to those exhibiting
Fermi liquid properties, at zero temperature and in the linear response regime.
However, in this quite restrictive domain of validity, the method promises to be
easier to use than the methods mentioned above.

The basic property that characterizes Fermi liquid systems is that the states
of a noninteracting system of electrons are continuously transformed into states
of the interacting system as the interaction strength increases from zero to its
actual value.[12] One can then study the properties of such a system by means
of the perturbation theory, regarding the interaction strength as the perturbation
parameter. Dynamics of Fermi liquid systems at low temperature and in the
linear response regime is governed by quasiparticles. However, the question
how quasiparticles propagate in a correlated system is a non-trivial one. The
answer can be extracted from the Green’s function for a particular problem if
it is known. An alternative way, which we advocate in this paper, is to analyze
the excitation spectrum of a system directly. IfEM andEM+1 are the ground-
state energies of an interacting ring system containingM andM +1 electrons,
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Figure 1. (a) Schematic picture of a sample with interaction connected to noninteracting leads.
(b) The sample embedded in a ring formed by joining the left and right leads of the system (a).
Auxiliary magnetic fluxΦ = h̄

e
φ penetrates the ring.

respectively, the energy difference can be attributed to the first quasiparticle
energy level̃ε above the Fermi energy,

ε̃ = EM+1 − EM . (2)

The variation of the quasiparticle energy with flux threading the ring allows
us to determine the conductance of the system. The complete proof of the
formalism is given in RR and a brief overview is presented in the next Section.
Here we show how the method can be implemented in practice.

The key property of ring systems presented in Fig. 1(b) is the universality ex-
pressed in the variation of the ground-state energy with auxiliary magnetic flux
through the ring. Here we assume a system obeys the time reversal symmetry.
The more general case is presented in the last Section. For an even number
of electrons in the system and a large number of sites in the ringN → ∞ the
ground-state energy takes a universal form

E (φ)− E

(
π

2

)
=

∆
π2

(
arccos2 (∓√g cosφ)− π2

4

)
, (3)

where the average level spacing at the Fermi energy∆ = [Nρ (εF )]−1 is deter-
mined by the density of states at the Fermi energy in an infinite noninteracting
leadρ (εF ) andg = G/G0 is the dimensionless conductance. For systems with
an odd number of electrons, the ground-state energy is given with

E (φ)− E

(
π

2

)
=

∆
π2

arcsin2 (
√

g cosφ) . (4)

It should be mentioned that the ground-state energy of an interacting ring system
exactly corresponds to the expression for persistent currents in noninteracting
rings, as derived by Gogolin. [14] The only parameter determining the ground-
state energy is the conductanceg of the original system, Fig. 1(a). In Fig. 2 the
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ground-state energy as a function of the fluxφ for even and odd numbers of
electrons is presented. It should be pointed out that as successive quasiparticle
levels are being occupied, the pointsφ = 0 andφ = π interchange their roles
(as is also the case for noninteracting systems), and that the periodicity in even
and odd cases areπ andπ/2, respectively.
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Figure 2. The ground-state energy of an interacting system as a function of fluxφ for an even
(a) and an odd (b) number of electrons forg going from 0 to 1 in steps of 0.1 andN →∞.

If the ground state of the system in Fig. 1(b) is known, the conductance of
the original open system can be extracted from Eq. (3) [or Eq. (4)]. There are
several ways how to determineg from Eq. (3). The simplest seems to be the
use of the relation

g = sin2
(

π

2
E (π)−E (0)

∆

)
, (5)

whereE(0) andE(π) are the ground-state energies of the ring system forφ = 0
andφ = π, respectively. The first advantage of this formula is the fact that the
energies can be calculated using periodic and antiperiodic boundary conditions,
respectively, and thus the wave functions of the system can be taken real. Addi-
tional advantage is fast convergence withN , as briefly discussed in the last Sec-
tion. This formula was derived in theg → 0 limit asg =

(
π

2∆ [E (π)− E (0)]
)2

by Favand and Mila for noninteracting systems and applied to interacting Hub-
bard chains.[15] More recently, a similar approach was performed in Ref. [16].
In Fig. 3(a) the use of formula Eq. (5) is schematically presented.

The derivative of the ground-state energy with respect to flux gives the per-
sistent current in the ringj(φ) = e

h̄
∂E
∂φ . [17] The second formula relates the

conductance to the persistent current atφ = π
2 ,

g =
(

π

∆
h̄

e
j

(
π

2

))2

. (6)

This relation was recently derived for noninteracting systems [18] and success-
fully applied to systems with interaction.[18, 19]
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Figure 3 The conductance
can be extracted from: (a) the
two-point formula, Eq. (5), (b)
the persistent current formula,
Eq. (6), or (c) the charge stiff-
ness formula, Eq. (7).

At T = 0 the charge stiffness is an important quantity describing the charge
transport in correlated systems.[20] It is defined as the second derivative of the
ground-state energy of the system with respect to the flux in the minimum of
the energy vs. flux curve,D = N

2 ∂2E/∂φ2
∣∣
E=min.[21] The sensitivity of

the ground state energy to flux has been applied also in the context of electron
localisation.[22] One can also define the corresponding quantity for the energy
maximum asD̃ = −N

2 ∂2E/∂φ2
∣∣
E=max. From Eq. (3) the conductance can

be related to the charge stiffness with an implicit relation,

1
∆

∂2E

∂φ2

∣∣∣∣∣
E=min, max

= ± 2
π2

√
g

1− g
arccos (±√g) . (7)
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Figure 4 Conductance vs.
charge stiffness usingD at
the energy minimum (full
line) and D̃ at the maxi-
mum (dashed line). Note the
quadratic dependenceg ∝ D2

for g → 0.

Here the upper and the lower signs correspond to the second derivative at
a minimum and at a maximum of the energy vs. flux curve, respectively.
In general, this equation has to be solved numerically and the solutions are
presented in Fig. 4. In the limit of a very small conductance and in the vicinity
of the unitary limit, analytic formulas are available

g =





[2πρ (εF ) D]2 , g → 0,(
1
2 + 3π

4 [2πρ (εF ) D]
)2

, g → 1.
(8)

Note that there is a quadratic relation between the conductance and the charge
stiffness in the low conductance limit. The corresponding formulas for the
maximum of the energy vs. flux curve are

g =





[
2πρ (εF ) D̃

]2
, g → 0,

(
1− 2

[2πρ(εF )D̃]2
)2

, g → 1.
(9)

It should be stressed that the validity of all formulas presented in this Section
is based on an assumption that the number of sites in the ring is sufficiently
large according to the condition [11]

N À 1
ρ (εF )

∂
√

g (εF )
∂εF

. (10)

This means that ifg (εF ) exhibits sharp resonances, as is the case, e.g., in chaotic
systems,[23] the calculation has to be performed on a large auxiliary ring system
and in such cases the method might be impractical compared to other methods.
On the other hand, for systems with strong interaction the method promises to
be extremely efficient already for ring systems of a moderate size. [24, 16, 19]
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3. Proof of the formalism

The complete proof of the formalism is presented in RR, here we briefly
describe the main steps. The proof strongly relies on an assumption that the
ground state of the system under investigation is a Fermi liquid.[25]

We start with the linear response conductance of a general interacting system
of the type shown in Fig. 1(a). The conductance can be calculated from the
Kubo formula [26]

g = lim
ω→0

iπ

ω + iδ
ΠII (ω + iδ) , (11)

whereΠII (ω + iδ) is the retarded current-current correlation function. For
Fermi liquid systems, the current-current correlation function can be calculated
within the perturbation theory. AtT = 0, only the bubble diagram gives a
non-vanishing contribution [8] and the conductance can be expressed in terms
of the Green’s functionGn′n (z) of the system,

g =
∣∣∣∣

1
−iπρ (εF )

e−ikF (n′−n)Gn′n (εF + iδ)
∣∣∣∣
2

, (12)

wheren andn′ are sites in the left and the right lead, respectively.
In Fermi liquid systems obeying the time-reversal symmetry,[13] the imag-

inary part of the retarded self-energy atT = 0 vanishes at the Fermi energy
and is quadratic for frequencies close to the Fermi energy.[27] Using the Fermi
energy as the origin of the energy scale, i.e.ω − εF → ω, we can express this
as

ImΣij (ω + iδ) ∝ ω2. (13)

Close to the Fermi energy, the self-energy can be expanded in powers ofω
resulting in an approximation to the Green’s function,

G−1 (ω + iδ) = ω1−H(0) −Σ (0 + iδ)−
−ω

∂Σ (ω + iδ)
∂ω

∣∣∣∣
ω=0

+O
(
ω2

)
. (14)

HereH(0) contains matrix elements of the noninteracting part of the Hamil-
tonian. The Green’s function forω close to the Fermi energy can then be
expressed as

G−1 (ω + iδ) = Z−1/2G̃−1 (ω + iδ)Z−1/2 +O
(
ω2

)
, (15)

where we defined the quasiparticle Green’s function

G̃−1 (ω + iδ) = ω1− H̃ (16)
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as the Green’s function of anoninteracting quasiparticleHamiltonian

H̃ = Z1/2
[
H(0) + Σ (0 + iδ)

]
Z1/2, (17)

and introduced the renormalization factor matrixZ. Matrix elements ofZ differ
from those of an identity matrix only if they correspond to sites of the central
region.

The reason for introducing the quasiparticle Hamiltonian is to obtain an
alternative expression for the conductance in terms of the quasiparticle Green’s
function. Eq. (15) relates the values of the true and the quasiparticle Green’s
function at the Fermi energy,

G (0 + iδ) = Z1/2G̃ (0 + iδ)Z1/2. (18)

Specifically,Gn′n (0 + iδ) = G̃n′n (0 + iδ) if both n andn′ are sites in the
leads, as a consequence of the properties of the renormalization factor matrixZ
discussed above. Eq. (12) then tells us that the zero-temperature conductance
of a Fermi liquid system is identical to the zero-temperature conductance of a
noninteracting system defined with the quasiparticle Hamiltonian for a given
value of the Fermi energy.

These conclusions are valid if the central region is coupled to semi-infinite
leads. Here we generalize the concept of quasiparticles to a finite ring system
with N sites andM electrons, threaded by a magnetic fluxφ. One can define
the quasiparticle Hamiltonian for such a system,

H̃ (N, φ; M) = Z1/2
[
H(0) (N, φ) + Σ (0 + iδ)

]
Z1/2. (19)

Here the self-energy and the renormalization factor matrix are determined in
the thermodynamic limit where, as we prove in RR, they are independent ofφ
and correspond to those of an infinite two-lead system.

Suppose now that we knew the exact values of the renormalized matrix
elements in the quasiparticle Hamiltonian (19). As this is a noninteracting
Hamiltonian, we could then apply the conductance formulas presented in the
previous Section (the proof of validity of energy formulas for noninteracting
systems is given in RR and the corresponding result for persistent currents in
Ref. [14]). Such a procedure would provide us with the exact conductance of the
original interacting system. However, to obtain the values of the renormalized
matrix elements, one needs to calculate the self-energy of the system, which is
a difficult many-body problem. In RR we study the excitation spectrum of a
finite ring system with interaction and threaded with a magnetic flux. We show
that

E (N, φ; M + 1)−E (N, φ; M) =

= ε̃ (N, φ; M ; 1) +O
(
N− 3

2

)
, (20)
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whereE (N, φ; M) andE (N, φ; M + 1) are the ground-state energies of the
interacting Hamiltonian for a ring system withN sites and fluxφ, containing
M andM + 1 electrons, respectively, and̃ε (N,φ; M ; 1) is the energy of the
first single-electron level above the Fermi energy of the finite ring quasiparticle
Hamiltonian (19). The error in Eq. (20) is small enough that the proof of the
ground-state energy formulas for noninteracting systems, which involves only
the properties of a set of neighboring single-electron energy levels, remains
valid also for interacting Fermi liquid systems, provided a system is a Fermi
liquid for all values of the Fermi energy below its actual value.

4. Examples

Noninteracting system

In this Section we discuss the convergence properties of the conductance
formulas. As the first example we take a double-barrier potential scattering
problem presented in Fig. 5. Results of various formulas for different number
of sites in the ring are presented in Fig. 6.

Figure 5. A double barrier noninteracting system. The height of the barriers is0.5t, wheret
is the hopping matrix element between neighboring sites.

−1.5 −1

ε
F
 / t

0

(b)exact
N = 50
N = 100
N = 200
N = 400

−2 −1.5 −1

ε
F
 / t

0

0

1

G
/G

0

(a)

Figure 6. (a) The conductance through the system in Fig. 5 calculated from the two-point for-
mula, Eq. (5), and (b) from the persistent current formula, Eq. (6). Note the different convergence
behavior of the two formulas.

The exact zero-temperature conductance for this system exhibits a sharp
resonance peak superimposed on a smooth background conductance. We notice
immediately that as the number of sites in the ring increases, the convergence
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is generally faster in the region where the conductance is smooth than in the
resonance region, which is consistent with the condition Eq. (10). Comparing
the results obtained employing the two-point formula Eq. (5) and the persistent
current formula Eq. (6) we observe that the convergence is better for the two-
point formula expressing the conductance in terms of the difference of the
energies atφ = 0 andφ = π. From the computational point of view there is
an additional advantage of the two-point formula. In this case, all the matrix
elements can be made real if one chooses such a vector potential that only one
hopping matrix element if modified by the flux as then the additional phase
factor ise±iπ = −1.

Anderson impurity model

As a nontrivial example of the use of the formalism we calculate the zero-
temperature conductance of a single impurity Anderson model realized as a
quantum dot attached to leads as shown in Fig. 7.

t’ t’

εd

U

Figure 7. The Anderson impurity model realized as a quantum dot coupled to two leads. The
dot is described with the energy levelεd and the Coulomb energy of a doubly occupied levelU .
t′ is the hopping between the dot and leads.

−0.8 0 0.8
(ε

d
+U/2)/t

0
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G
/G

0

Bethe ansatz
Variational, 3
Variational, 7

Figure 8 The zero-
temperature conductance
calculated from ground-state
energy vs. magnetic flux in
a finite ring system using the
variational method described
in RR with 3 and 7 basis
functions. For comparison,
the exact Bethe ansatz result
is presented with a dashed
line. The system is shown in
Fig. 7, with U = 0.64t and
t′ = 0.2t.

In Fig. 8 the results are compared to exact conductance of the Bethe ansatz
approach.[29] To calculate the conductance, Eq. (5) was used, with the ground-
state energies atφ = 0 andφ = π obtained using a variational method described
in RR. For each position of theεd level relative to the Fermi energy, we increased
the number of sites in the ring until the conductance converged. The number
of sites needed to achieve the convergence was the lowest in the empty orbital
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regime and the highest (about 1000 for the system shown in Fig. 8) in the Kondo
regime. This is a consequence of Eq. (10) as a narrow resonance related to the
Kondo resonance appears in the transmission probability of the quasiparticle
Hamiltonian (17) in the Kondo regime.

Interacting Aharonov Bohm rings

One can generalize the conductance formulas to systems which exhibit time
reversal asymmetry, such as is e.g. an Aharonov-Bohm (AB) type of system
presented in Fig. 9(a).[13]

0φ

φΑΒeit
2
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1t

1

t
0

Φ =0ΑΒ

ΦΑΒ≠0
(c) ε

φ
−π 0 π
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ΑΒ3Φ
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ΦΑΒ2

ΦΑΒ1

ΑΒ3Φ

Φ

N

N−1

1

2

Figure 9. (a) Interacting mesoscopic region (gray-shaded sites), threaded by magnetic flux
and coupled to noninteracting leads. (b) Auxiliary ring system. (c) Behavior of energy levels as
the flux threading the ring is varied. (d) Example system with a quantum dot embedded in an
AB ring.

If there is no AB flux threading the mesoscopic region, the time reversal
symmetry is restored and the energy is an even function ofφ. In the general
case, the energy extremum is shifted to a non-trivial pointφ0 (εF ), as illus-
trated in Fig. 9(c). The ground-state energy is then generalized toE(φ) =
π−2∆ arccos2

(∓√g cos [φ− φ0 (εF )]
)
+ const. for an even number of elec-

trons in a system and toE(φ) = π−2∆arcsin2
(√

g cos [φ− φ0 (εF )]
)
+const.

for an odd number of electrons in a system. From the former expression, the
transmission probability can be extracted, and the conductance is given by [13]

g = sin2
(

π

2
E (φ0 + π)− E (φ0)

∆

)
, (21)

whereφ0 ≡ φ0 (εF ) is determined by the position of the minimum (or max-
imum) in the energy vs. flux curve. The conductance can also be calculated
from the more convenient four-point formula [32]

g = sin2
(
π

2
E(π)−E(0)

∆

)
+sin2

(
π

2
E(π/2)−E(−π/2)

∆

)
, (22)
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andφ0 is determined with the expression

φ0 = − arctan
sin

(
π
2

E(π/2)−E(−π/2)
∆

)

sin
(

π
2

E(π)−E(0)
∆

) . (23)

If no AB flux is present in the mesoscopic region, we recover the two-point
formula Eq. (5) sinceE (π/2) = E (−π/2) in this case.

If the time reversal symmetry is broken due to AB flux, Eq. (13) is not valid
and the proof of the previous Section has to be reconsidered. Repeating the
steps as presented in detail in RR, the proof is restored and basically unchanged
if the self energy obeys the relation

1
2i

[Σij (ω + iδ)− Σij (ω − iδ)] ∝ ω2. (24)

It follows that the linear response conductance of an interacting AB system at
zero temperature is given by the four-point formula Eq. (22). The condition
Eq. (24) is fulfilled if the system is a Fermi liquid.

−1.5 −1 −0.5 0 0.5

ε
d
/t

0

0

1

G
/G

0

200
400
800
1600
3200
6400
NRG

φΑΒ = π/4

Figure 10 Zero-temperature
linear response conductance of
the system in Fig. 9(d) as a
function of level positionεd

for various number of ring
sitesN andφAB = π/4. The
dotted line is the NRG result
from Ref. [31]. Parameters:
t1 = 0.177t0 (Γ = 0.125t0),
t2 = 0.298t0, U = t0 = 8Γ.

In order to demonstrate the practical value of the method, we quantitatively
analyze the conductance through an Aharonov-Bohm ring with a quantum dot
placed in one of the arms[30, 31] as presented in Fig. 9(d). In Fig. 10 a conver-
gence test of the method is shown. The convergence withN is fast in the empty
orbital regime and becomes progressively slower asεd shifts toward the Kondo
regime, as was also the case for a quantum dot attached to leads. The converged
conductance curve is in excellent agreement with the numerical renormalization
group result of Ref. [31].

5. Summary

We have demonstrated how the zero-temperature conductance of a sample
with electron-electron interaction, attached to noninteracting leads can be de-
termined. The method is extremely simple and is based on several formulas
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relating the conductance to the ground-state energy of an auxiliary ring system.
The conductance is determined from the ground-state energy of an interacting
system, while in more traditional approaches, one needs to know the Green’s
function of the system. The advantage of the present method comes from the
fact that the ground-state energy is often relatively simple to obtain by various
numerical approaches, including variational methods. Let us summarize the
key points of the method:

(1) The “open” problem of the conductance through a sample coupled to
semi-infinite leads is mapped on to a ”closed” problem, namely a ring threaded
by a magnetic flux and containing the same correlated electron region.

(2) For the case of a Fermi liquid interacting system, even with broken time-
reversal symmetry, it is shown that the zero-temperature conductance can be
deduced from the variation of the ground state energy with the flux in a large,
but finite ring system.

(3) In order to prove this, the concept of Fermi liquid quasiparticles is ex-
tended to finite, but large systems. The conductance formulas give the con-
ductance of a system of noninteracting quasiparticles, which is equal to the
conductance of the original interacting system.

(4) The results of our method are compared to results of other approaches for
problems such as the transport through a quantum dot containing interacting
electrons. The comparison shows an excellent quantitative agreement with
exact Bethe ansatz results. We have demonstrated the usefulness of the formula
also by applying it to a prototype system exhibiting Kondo-Fano behavior.
Results based on the four-point formula confirm the results of the numerical
renormalization group method.
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Low Temp. Phys.17, 31 (1974).

[26] R. Kubo, J. Phys. Soc. Jpn.12, 570 (1957).

[27] K. Yamada and K. Yosida, Prog. Theor. Phys.76, 621 (1986); A. Oguri, J. Phys. Soc. Jpn.
66, 1427 (1997).

[28] D. S. Fisher and P. A. Lee, Phys. Rev. B23, 6851 (1981).

[29] P. B. Wiegman and A. M. Tsvelick, Pis’ma Zh. Eksp. Teor. Fiz.35, 100 (1982); J. Phys.
C 16, 2281 (1983).

[30] B. R. Bułka and P. Stefanski, Phys. Rev. Lett.86, 5128 (2001).

[31] W. Hofstetter, J. K̈onig and H. Schoeller, Phys. Rev. Lett.87, 156803 (2001).

[32] It is also possible to calculate the conductance from the ground-state energies at three
distinct values of fluxφ by solving equations numerically.


