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Abstract. We present studies of thermal entanglement of a three-spin system in triangular symmetry.
Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard
Hamiltonian, with super-exchange couplings modulated by an effective electric field. Additionally a ho-
mogenous magnetic field is applied to completely break the degeneracy of the system. We show that
entanglement is generated in the subspace of doublet states with different pairwise spin correlations for the
ground and excited states. For the doublets with the same spin orientation one can observe nonmonotonic
temperature dependence of entanglement due to competition between entanglement encoded in the ground
state and the excited state. The mixing of the states with an opposite spin orientation or with quadruplets
(unentangled states) always monotonically destroys entanglement. Pairwise entanglement is quantified us-
ing concurrence for which analytical formulae are derived in various thermal mixing scenarios. The electric
field plays a specific role – it breaks the symmetry of the system and changes spin correlations. Rotating
the electric field can create maximally entangled qubit pairs together with a separate spin (monogamy)
that survives in a relatively wide temperature range providing robust pairwise entanglement generation at
elevated temperatures.

1 Introduction

Entanglement is recognized to be a key resource in quan-
tum information processing tasks such as quantum com-
putation, teleportation and cryptography [1]. In recent
years the two-qubit entanglement which includes variety
of interactions have been studied extensively [2]. How-
ever, the three-qubit entanglement states have been re-
vealed to hold advantage over the two-qubit states in
quantum teleportation [3], dense coding [4] and quantum
cloning [5]. DiVincenzo et al. [6] proposed quantum com-
putations scheme to measure and control states by logi-
cal gates in a three-qubit spin system with exchange in-
teractions in quantum dots, in which logical qubits are
encoded in the doublet subspace (see also [7,8]). This
scheme uses the advantage of the decoherence-free sub-
space (DFS) theory in which quantum information en-
coded over the entangled subspace of system states is
robust against decoherence and error processes [9–13]. Re-
cently experimental efforts have been undertaken to fab-
ricate such triple quantum dot structures and to perform
coherent spin manipulations [14–16].

Fast reliable spin manipulation in quantum dots is
one of the most important challenges in spintronics and
semiconductor-based quantum information. Recent exper-
iments show that this goal can be better achieved in elec-
trically gated quantum dot qubits [17,18]. There have been
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ongoing theoretical studies to manipulate spin properties
of triple quantum dot systems [19–22] and to apply them
in the quantum information precessing controlled by ex-
ternal electric field [18,23]. For the quantum computing
most relevant is the ground-state entanglement and its
relation with the spin-spin correlation functions and chi-
rality. However, in realistic systems and for potential ap-
plication to quantum information processing, it is crucial
to understand also the entanglement stability at elevated
temperatures, which is one of the main goals of this paper.

One of the significant goals for quantum comput-
ing and quantum communication is to find an entangled
source in solid state systems at a finite temperature. The
problem of entanglement between two qubits interacting
via the Heisenberg interaction at a nonzero temperature
was investigated by Nielsen [24]. A similar problem of the
variation of entanglement with temperature and magnetic
field in a one dimension finite Heisenberg chain were stud-
ied by Arnesen et al. [25], and they used for the first time
the notion of thermal entanglement. Thereafter, the issue
of entanglement in thermal equilibrium states has been
the subject of a number of papers dealing with different
aspects of the problem [26–30].

Recently experimental efforts have been undertaken
to fabricate such triple quantum dot (TQD) struc-
tures [14–16] and to perform coherent spin manipulations
according to the scheme proposed by DiVincenzo et al. [6].
It was shown that the quantum states of a coded qubit in a
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Fig. 1. Scheme of three quantum dots (qubits) in triangular
symmetry under an effective electric filed E and a homogeneous
magnetic field B.

TQD indeed can be manipulated by tuning the gate volt-
ages. Laird et al. [16] demonstrated experimentally the
initialization, coherent exchange, and readout of a coded
qubit based on TQD with three electrons by adopting
a specific pulsing technique [17] that was first exploited
to demonstrate coherent exchange and readout in a dou-
ble dot system. Also TQD system with a triangular sym-
metry to observe spin frustration [31] was created and
a state of single electron spin using single shot readout
technique [32] was measured. Measuring single spins in
many spins systems is the next goal that would allow to
check results presented in this paper. To our knowledge,
although several studies in the literature describe the en-
tanglement in a three-qubit system [30], the thermal en-
tanglement manipulated by an external electric field has
not been considered so far. Here we present both analyti-
cal and numerical analysis of the thermal entanglement
of triple quantum dots as a three-spin qubit described
by an effective Heisenberg Hamiltonian at thermal equi-
librium in the presence of both external magnetic and
electric fields whose magnitude and direction provide ad-
ditional degrees of freedom to control the entanglement.
Since there is no unique measure of entanglement for tri-
partite entanglement [33,34], we have calculated monotone
concurrence [35] as a measure of entanglement between
two qubits of the three-qubit spin system. Then we study
the combined influence of magnetic field strength and
direction of electric field on entanglement of the system.

We also determine critical temperature T0 for a cho-
sen set of parameters of the system, beyond which concur-
rence vanishes in agreement with reference [36]. However,
the concurrence can be a nonmonotonic function of tem-
perature: at low temperatures regime the thermal mixing
destroys the entanglement, while at higher temperatures
one still can observe partial restoration of the entangle-
ment. The studies add a new useful tool for manipulating
the entanglement of the three-qubit Heisenberg model.

2 Model of three spins in a quantum
dot system

We consider a model of three quantum dots (sites)
in triangular geometry (Fig. 1) with three electrons,
and the system is under influence of a homogeneous

magnetic field. The system is described by the Hubbard
Hamiltonian [21,23]:

Ĥ =
∑

i,σ

ε̃iniσ + t
∑

i�=j,σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓

− gμBBz

∑

i,σ

σniσ . (1)

We assume that at each quantum dot a single energy level
εi is accessible for electrons. In an experiment the position
of εi can be shifted in a fully controllable way by potentials
applied to local gates. Since the symmetry of the system
is essential in our considerations, it is more suitable to
introduce an effective electric field E and express εi ≡
ε̃0 +eE ·ri (see Fig. 1). Here, e denotes the electron charge
and ri is the vector to the i-quantum dot. Later we will
use ε̃0 ≡ ε1 + ε2 + ε3 = 0 and express the polarization
term as ε̃i ≡ eE · ri = gE cos[θ + (i− 1)2π/3], gE = eEr,
ri = r – a length of ri, θ – an angle between the electric
field E and r1. The second term in equation (1) describes
the electron hopping between the nearest quantum dots.
To make our considerations more transparent we assume
that hopping is the same tij = t for each pair {ij}. The
third term is the onsite Coulomb interaction of electrons
with opposite spins on the quantum dots. The last term
is the spin interaction with an external magnetic field –
the Zeeman term. Here μB denotes the Bohr magneton,
g is the electron g-factor and the magnetic field Bz is
taken to be in the plane of the system – along the z-axis.
(The magnetic field oriented perpendicular to the plane
can lead to circulation of spin supercurrents which make
the bipartite concurrence uniform [23]. This aspect will
not be considered in the paper.)

If the onsite Coulomb interaction U is much greater
than the other parameters t and gE , we can operate in the
space of singly occupied states transforming the Hubbard
Hamiltonian to an effective Heisenberg Hamiltonian

Ĥeff =
∑

i<j

Jij

(
Si · Sj − 1

4

)
− h

∑

i

Szi , (2)

where h = gμBBz. The first term describes the superex-
change coupling [37] (see also [38]) between spins with the
parameter Jij calculated to the third order in t/U [39]:

Jij =
4t2

U
+

4t2(ε̃j − ε̃i)2

U3
+

8t3(2ε̃m − ε̃i − ε̃j)
U3

, (3)

where i, j,m are 3 different indices of the quantum dots
and ε̃i is the local single electron level shifted by the elec-
tric field. (The parameters Jij can be derived also for a
general case with different hoppings tij – see [39].) The
electric field is responsible for symmetry breaking in the
system varying the superexchange parameters Jij .

The states for three spins can be constructed from the
two spin states, singlets and triplets, by adding an elec-
tron [21,40]. As a result one gets the quadruplet mani-
fold and two doublet states with the total spin S = 3/2
and S = 1/2, respectively. The quadruplet states with
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Sz = +3/2,+1/2 are:

|Q3/2〉 =| ↑↑↑〉, (4)

|Q1/2〉 =
1√
3

(| ↓↑↑〉 + | ↑↓↑〉 + | ↑↑↓〉) , (5)

and similarly the states |Q−3/2〉, |Q−1/2〉 with the opposite
spin direction. The quadruplet states with Sz = ±1/2 are
the W states. The doublet states (1/2DSz ) with Sz = ±1/2
can be constructed from the base states:

|D1/2〉1 =
1√
2

(| ↑↑↓〉 − | ↑↓↑〉) , (6)

|D1/2〉2 =
1√
6

(2| ↓↑↑〉 − | ↑↑↓〉 − | ↑↓↑〉) , (7)

and similarly the states |D−1/2〉1, |D−1/2〉2 with the op-
posite spin direction. Notice that |DSz〉1 is constructed
from the singlet on the sites {23} and adding an electron
to the site 1, while |DSz〉2 is built from triplets on the
sites {23} and adding an electron to the site 1. These base
states constitute a doublet subspace used in DiVincenzo’s
scheme [6] for quantum computation based on three quan-
tum semiconducting dot qubits (see also [8]). All four
doublet eigenstates in the system can be expressed as:

|D±
Sz
〉 = cosϕ± |DSz〉1 + sinϕ± |DSz〉2. (8)

The phase ϕ± is given by the relation:

cotϕ± =
J12 − 2J23 + J31 ± 2Δ√

3(J31 − J12)
, (9)

where Δ is given by equation (13). The symmetry of ϕ±
depends on the choice of the base of doublet states
equations (6) and (7).

The existence of electric and magnetic field breaks the
fourfold degeneracy of quadruplet and doublet states in
the symmetric system. Solving the eigenvalue problem
for the effective Hamiltonian equation (2) one finds the
energies:

EQSz
= − hSz, (10)

ED±
Sz

= − 3
2
J ± 1

2
Δ− hSz, (11)

for quadruplet and doublets, respectively. Here,

J =(J12 + J23 + J31)/3, (12)

Δ =
√
J2

12 + J2
23 + J2

31 − J12J31 − J12J23 − J31J23. (13)

Δ is responsible for splitting of eigenstates due to the pres-
ence of electric field. Therefore we call this effect as the
spin Stark effect [23]. A scheme of energy levels split by
the magnetic field h is shown in Figure 2.

Experimentally it is possible to obtain similar sys-
tem of three quantum dots [41] but in reality it will
never be perfectly symmetrical resulting in different hop-
ping integrals tij and different Ui on each dot. However

c 

Fig. 2. Scheme of energy levels with the Zeeman splitting of
the doublet (D±

±1/2
) and the quadruplet (Q±3/2,±1/2) states.

Red dashed arrows show two considered situations of thermal
mixing of states with raising temperature in the system. The
first one is for weak magnetic field h � Δ and the second is
for strong magnetic field (Δ � h < 3J0/2). Here J0 ≡ 4t2/U
and we assume Δ � J0.

if the canonical transformation is used for the general
case [39] one can nevertheless get any desired value of Jij

by modifying local dot potentials ε̃i.
Notice that there are no processes for transition be-

tween the subspaces with the total spin S = 1/2 and
S = 3/2 for our model (2). The doublet subspace is the de-
coherence free subspace (DFS) [12,13] and entanglement
encoded in this subspace is robust against decoherence
with electrodes (an external bath system). This is a main
advantage of the quantum computation scheme proposed
by DiVincenzo et al. [6].

3 Spin correlations and entanglement

We assume that the considered spin system is in thermal
equilibrium with the environment and is described by the
density matrix [42]:

ρ =
8∑

α=1

zα|ψα〉〈ψα|, (14)

where zα = e−βEα/Z are the Boltzmann factors with
Z =

∑
α zα, β = 1/kBT , Eα are eigenenergies and the

corresponding eigenvectors are |ψα〉 ∈ {|D−
1/2〉, |D−

−1/2〉,
|D+

1/2〉, |D+
−1/2〉, |Q3/2〉, |Q1/2〉, |Q−1/2〉, |Q−3/2〉}. We

would like to study entanglement between spins on two
sites {ij} in the considered three qubit system. To this
end we use the reduced density matrix ρij = Trm �=i,j [ρ],
which in the standard basis {↑↑, ↑↓, ↓↑, ↓↓} is expressed as:

ρij =

⎛

⎜⎜⎜⎝

μij 0 0 0

0 ξij γij 0

0 γij νij 0

0 0 0 δij

⎞

⎟⎟⎟⎠ . (15)
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Explicitly for the effective Heisenberg Hamiltonian equa-
tion (2) the elements γij , μij and δij are expressed as:

μij =
1
3

[(
zD+

1/2
−zD−

1/2

)
cos

(
θ̃ij

)
+zD1/2

]
+ zQ3/2 +

zQ1/2

3
,

γij =
[
(zD+ − zD−) 2 cos

(
θ̃ij

)
− zD

]
+
zQ1/2 + zQ−1/2

3
,

δij =
1
3

[(
zD+

−1/2
− zD−

−1/2

)
cos

(
θ̃ij

)
+ zD−1/2

]

+ zQ−3/2 +
zQ−1/2

3
, (16)

where

zD ≡ zD−
−1/2

+ zD+
−1/2

+ zD−
+1/2

+ zD+
+1/2

,

zD± ≡ zD±
−1/2

+ zD±
+1/2

,

zD±1/2 ≡ zD+
±1/2

+ zD−
±1/2

. (17)

In equation (16) θ̃ij = 2ϕ− + qij , ϕ− is the phase
given by equation (9) and qij = {0,−2π/3, 2π/3} for site
pairs {ij} = {23, 13, 12}, respectively. The form of qij
comes from the chosen symmetry of the base states equa-
tions (6) and (7). In derivation of equation (16) the rela-
tion: cos (2ϕ− + qij) = − cos (2ϕ+ + qij) was used which
can be proved using equations (9) and (13).

We use concurrence Cij as a measure of pair-wise en-
tanglement [35], which is given by Cij = max{Λij =
λmax − ∑

i λi, 0}, where λi are eigenvalues of the matrix
ρij · ρ̃ij and ρ̃ij = (σy

⊗
σy) ·ρ∗ij · (σy

⊗
σy) is spin flipped

matrix. For spin rings and the density matrix of the form
equation (15) concurrence can be expressed as [43]:

Cij = 2 max
{
|γij | −

√
μijδij , 0

}
. (18)

In further investigations of thermal entanglement we use
the parameters equation (16) for the effective Heisenberg
model equation (2) with superexchange couplings. The
exact solutions of thermal concurrence together with the
analysis of several special cases and relationships between
spin correlation function and concurrence will be pre-
sented below. It is worth to notice that these results
are valid for general case of any Heisenberg model, in
which one can change symmetry of the spin system by
a modulation of exchange couplings Jij .

3.1 Ground state

First we present studies for entanglement in the ground
state, which will be a reference system for further stud-
ies of thermal entanglement when temperature leads to
mixing with excited states. For magnetic field 0 < h <
3J0/2 the ground state is |D−

1/2〉 = cosϕ− |D1/2〉1 +
sinϕ− |D1/2〉2 (see Fig. 2). The symmetry of the system
is controlled by orientation of the electric field, by its an-
gle θ. Using equations (18) and (16) one can easily show
that Cij reads:

Cij =
1
3

∣∣∣2 cos
(
θ̃ij

)
+ 1

∣∣∣ . (19)

0 Π
3

2 Π
3 Π 4 Π

3
5 Π
3 2 Π

0

0.2

0.4

0.6

0.8

1
C23

1

2

3 Θ = 0

1

2

3 Θ = Π

Θ

Fig. 3. Plot of concurrence C23 for the doublet ground state
|D−

1/2〉 as a function of angle θ of electric field. The insets show

the orientation of electric field (red arrow) in relation to the
considered pair for θ = 0 and θ = π, when concurrence becomes
maximal C23 = 1 and C23 = 1/3, respectively. Parameters used
for computation: U = 20, gE = 1, t = 1.

Comparing with a spin-spin correlation function:

〈Si · Sj〉 =
1
4

[
−2 cos

(
θ̃ij

)
− 1

]
(20)

one finds the following relation [23]:

Cij =
4
3
|〈Si · Sj〉|. (21)

As a result it appears that in this case, the concurrence
and the expectation value for the spin correlation function
contain the same quantum information.

The plot of concurrence C23 equation (19) as a func-
tion of θ is shown in Figure 3. Here we choose the pair {23}
because it is most convenient for the doublet basis equa-
tions (6)–(7). Due to the symmetry one can obtain iden-
tical plots for C12 and C13 shifting the plot for C23 by
θ = ±2π/3. The parameters for numerical computations
were taken: Coulomb repulsion U = 20, hopping integral
t = 1 and electric field strength gE = 1, which ensure
the requirement of U 	 t, gE for the canonical trans-
formation to Heisenberg Hamiltonian. For this strength
of the electric field the parameter θ̃23 ≈ θ. One can see
that the concurrence reaches maximum C23 = 1 when
the electric field is perpendicular to the considered pair
and oriented towards the site 1. Then the local elec-
tron energy is minimal and the coupling J23 is maximal,
J23 > J12 = J13. In this case the ground state of the sys-
tem becomes |D1/2〉1, equation (6), which describes sin-
glet on the pair {23} and separated spin at the site 1.
This means monogamy, because the concurrence between
the other sites, C12 = C13 = 0 [44]. Two minima C23 = 0
at θ = 2π/3 and 4π/3 correspond to singlets on pairs {12}
and {13}, respectively. Additionally one can see local max-
imum of Cij = 1/3 at θ = π corresponding to the situation
when the local electron energy is maximal and the cou-
pling J23 is minimal, J23 < J12 = J13, with the ground
state |D1/2〉2, equation (7), and the correlation between

http://www.epj.org
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the spins is ferromagnetic, 〈S2 · S3〉 = +1/4. Notice that
switching the orientation of electric field from θ = 0 to
θ = π causes a rotation of DiVincenzo’s qubit from the
state |D1/2〉1 to |D1/2〉2. In the following we will inves-
tigate how these features survive thermal mixing with
excited states.

3.2 Mixed states

For finite temperature T > 0 we assume that the sys-
tem is in thermal equilibrium and the states are popu-
lated according the Boltzmann factor zα. Note that for
a non-degenerate ground state the thermal entanglement
at T = 0 is identical to the entanglement of the ground
state considered in previous subsection. The arrangement
of eigenenergies Eα in this case mainly depends on the
magnetic field h (see Fig. 2). On the other hand the dou-
blet states |D±

±1/2〉, equation (8), depend on the angle of
electric field θ which modulates parameters ϕ± and corre-
sponding θ̃ij . We would like to show how the concurrence
Cij(θ) for the ground state equation (19) changes with an
increase of temperature T , resulting in mixing with ex-
cited states, for different magnetic fields h. In particular,
two cases of weak and strong magnetic field will be consid-
ered, as they correspond to different order of eigenstates
that qualitatively change system thermal properties and
entanglement.

Using equations (18) and (16) we derive a general for-
mula for the concurrence taking into account mixing with
all states:

Cij =
1
3

[∣∣zD − 2(zQ−1/2 + zQ+1/2) − 2(zD+ − zD−)

× cos(θ̃ij)
∣∣ − 2

√
K↓

ijK
↑
ij

]
, (22)

where

K↑
ij = zD+1/2 + zQ+1/2 + 3zQ+3/2

−
(
zD−

+1/2
− zD+

+1/2

)
cos

(
θ̃ij

)
(23)

and similarly K↓
ij with opposite spin direction. Here the

Boltzmann coefficients are described by equation (17).
Because the electric field acts only on doublets states,
the concurrence equation (22) becomes independent on θ
when the doublets |D−

Sz
〉 and |D+

Sz
〉 are thermally mixed,

i.e., for zD− ≈ zD+ .
Dependence of the concurrence on magnetic field is

presented on the h-T plots in Figure 4 for the case θ = 0
and π, which correspond to the electric field E perpendicu-
lar to the bond {23} and directed from and to the site 1, re-
spectively. In the absence of the magnetic field (h = 0) the
states with opposite spin orientations are degenerated and
equally populated. In the ground state the concurrence is
given by Cij(T = 0, h = 0) = max{cos(θ̃ij), 0}. Switching
on the magnetic field removes degeneracy and results in
a large increase of concurrence up to h < Δ. For higher

Fig. 4. Contour plot for concurrence C23 in the h-T plane for
an angle (a) θ = 0 and (b) θ = π of electric field. The dashed
(red) curve corresponds to T0 when C23 = 0 and the white
area shows the unentangled region with C12 = 0. Parameters
used for computation: U = 20, gE = 1, t = 1, which give
J0 ≡ 4t2/U = 0.2, Δ ≈ 0.006 = 0.03J0 .

magnetic fields the doublets |D−
1/2〉 and |D+

1/2〉 with the
same spin orientations play a crucial role in low temper-
atures. Concurrence Cij(T ) increases with h, because the
larger Zeeman splitting makes weaker thermal mixing. For
a very large magnetic field, h > 3J0/2, the unentangled
quadruplet Q3/2 is the ground state and hence the concur-
rence diminishes for very strong magnetic fields [25,45]. In
this range the concurrence is exponentially small due to
thermal excitations to the doublets.

An interesting result is presented in Figure 4b where
the concurrence shows a nonmonotonic temperature de-
pendence, first at low temperatures it decreases to zero
and one observes restoration of entanglement at high tem-
peratures. We show below that this is an effect of a specific
interplay between entanglement of the ground state |D−

1/2〉
and the excited state |D+

1/2〉.
Figure 5 shows contour plots of C23 in the plane of θ

and T for two different values of magnetic field h, weak
(h < Δ) and strong (Δ � h < 3J0/2). One can see two
local maxima C23 = 1 and C23 = 1/3 for the angles θ = 0
and θ = π, as well as two minima with C23 = 0 at θ = 2π/3
and 4π/3. For weak magnetic field C23(T ) monotonously
decreases with an increase of T , while for high magnetic
field C23(T ) is a nonmonotonic function at θ = π but
it is still monotonic at θ = 0. Let us analyze thermal
entanglement in these two cases in details.
Weak magnetic field. At low temperatures one can con-
sider mixing of two states only: the ground state |D−

1/2〉.
These states have the same symmetry (with the same
phase ϕ−) but opposite spin orientation. In this case

http://www.epj.org
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Fig. 5. Contour plot for concurrence C23 in the θ-T plane (a)
for a weak [h = 0.5Δ ≈ 0.015J0 ], and (b) strong (h = 1.4J0)
magnetic field. The two magnetic field regimes correspond to
dashed arrows on energy plot 2. Parameters are the same as
in Figure 4.

one can take into account only the Boltzmann coeffi-
cients zD−

1/2
and zD−

−1/2
in equation (22) and write the

concurrence as:

Cij = max
{

1
3

∣∣∣2 cos
(
θ̃ij

)
+ 1

∣∣∣

− 2
3
√
zD−

1/2
zD−

−1/2

[
1 − cos

(
θ̃ij

)]
, 0

}
. (24)

Comparing this result with the concurrence equation (19)
for the ground state one can see that the second term
in equation (24) describes reduction of the concurrence
due to thermal mixing of the states. Notice that for
cos(θ̃ij) = 1 the mixing term vanishes and Cij = 1 is sus-
tained. It means that thermal entanglement is resistant
to temperature rise till the higher energy states (|D+

±1/2〉)
become populated.

The reduction term is proportional to
[zD−

1/2
zD−

−1/2
]1/2 ≈ e−βh/2. This result may be com-

pared to the one obtained by Gunlycke et al. [46] for
the Ising model in a perpendicular magnetic field, where
the thermal mixture of two pure qubit states cause the
reduction of concurrence proportional to e−βh. Such a
result is valid for any thermal mixing of pure states |ψn〉
with no spin-flip overlap, i.e. for 〈ψn|σy

⊗
σy |ψm〉 = 0.

In our case, however, spin-flip overlap of mixed stated
does exist and the reduction of entanglement is lower,
as e−βh/2.

At high temperatures kBT 	 h all states are popu-
lated and one may assume total mixing between the states

with the opposite spins i.e.: zD−
1/2

= zD−
−1/2

= z−, zD+
1/2

=
zD+

−1/2
= z+ as well as zQ±3/2 = zQ±1/2 = zQ. Then a

mixed state of the system can be written in the form:
ρ = z−ρ− + z+ρ

+ + zQρ
Q, where ρ± =

∑
Sz

|D±
Sz
〉〈D±

Sz
|

and ρQ =
∑

Sz
|QSz〉〈QSZ |. Partial concurrences of those

constituent states: Cij(ρ±,Q) = max{Λ±,Q
ij , 0} can be

used to express concurrence Cij(ρ):

Cij = max
{
z+Λ

+
ij + z−Λ−

ij + 3zQΛ
Q
ij , 0

}
, (25)

where Λ±,Q
ij = 2 (|γij | − |μij |), equation (18). It shows

that concurrence is expressed as thermal redistribution
with additional factor 3 for quadruplet states. Using
equation (16) we get:

Cij = max
{

(z− − z+) cos
(
θ̃ij

)
− zQ, 0

}
. (26)

Strong magnetic field. For the case of strong magnetic field
(Δ < h < 3J0/2) we have at low temperatures a mixture
of two lowest states D−

1/2 and D+
1/2 with the same spin

orientation. The symmetry of these states is different and
characterized by different phases ϕ− and ϕ+. In this limit
the concurrence equation (22) can be expressed as:

Cij =
1
3

∣∣∣
(
zD−

1/2
− zD+

1/2

)
2 cos

(
θ̃ij

)
+

(
zD−

1/2
+ zD+

1/2

)∣∣∣ .
(27)

Here the dependence on θ̃ij exhibits specific interplay be-
tween entanglement in the doublet states. For cos(θ̃ij) > 0
(i.e. for θ ∈ [0, 2π/3] and θ ∈ [4π/3, 2π] in the case pre-
sented in Fig. 5) the concurrence decreases monotonously
with increasing T . On the other hand, if cos(θ̃ij) < 0
(for θ ∈ [2π/3, 4π/3] in Fig. 5), the entanglement dom-
inated by the excited state is larger than the one of the
ground state. In this range the expectation value of the
spin correlation function 〈Si · Sj〉D−

1/2
> 0 for the state

|D−
1/2〉, whereas the expectation value 〈Si · Sj〉D+

1/2
< 0

for the state |D+
1/2〉. The specific interplay between entan-

glement of both states leads to a reduction of Cij to zero
for small T , and its reconstruction for higher T as entan-
glement coming from the excited state becomes dominant.
One can calculate the critical temperature kBT0 = Δ/ ln 3
at which Cij = 0 due to perfect compensation of the both
contributions from the state D−

1/2 and D+
1/2.

Similar situation when entanglement is restored one
can observe for very strong magnetic field h > 3J0/2 with
quadruplet |Q3/2〉 as the ground state [25,45]. Quadruplet
is unentangled state but for higher T doublets become
populated which results restoration of concurrence.
Spin-spin correlation functions. One can also find the for-
mula for spin-spin correlation functions for the mixed state
equation (18) which reads:

〈Si · Sj〉 =
1
4

(
−zD + zQ + 2 (zD+ − zD−) cos

(
θ̃ij

))
.

(28)
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Comparing general formula for concurrence equation (22)
and spin-spin correlation functions equation (28) one can
see that it is not possible to simply relate them in a gen-
eral case. However, at small temperature T and magnetic
field Δ < h < 3J0/2 only doublets |D±

+1/2〉 with spin up
are populated (see the energy plot in Fig. 2) and the rela-
tion between Cij and 〈Si · Sj〉 can be expressed as: Cij =
4
3 |〈Si · Sj〉| as for the case of ground state equation (21).
On the other hand, in the case of very small h� T when
the Zeeman spitting is negligible and the states with op-
posite spin direction are equally populated, the relation
changes to Cij = max

{−2〈Si · Sj〉 − 1
2 , 0

}
[26]. In the

general case the relation between Cij and 〈Si · Sj〉 lies
somewhere between those two extrema

max
{
−2〈Si · Sj〉 − 1

2
, 0

}
≤ Cij ≤ 4

3
|〈Si · Sj〉| . (29)

4 Summary

Summarizing, we have investigated thermal pairwise en-
tanglement in a triangular system of three coherently
coupled semiconducting quantum dots. Spin correla-
tions have been described within the effective Heisenberg
Hamiltonian in which exchange coupling constants are de-
rived from the Hubbard model using the canonical pertur-
bation theory and tracing out double occupied states. The
investigations included the Zeeman splitting caused by the
magnetic field as well as symmetry breaking by the elec-
tric field (the spin Stark effect). We have shown that spin
entanglement is generated by the doublet states. Rotating
the electric field one can change the entanglement, creat-
ing maximum entanglement in a chosen pair of qubits to-
gether with a separate uncoupled spin (a spin dark state).
For a specific symmetry one can set the system in the
ground state either in state |D1/2〉1 (for θ = 0) or in state
|D1/2〉2 (for θ = π) and by manipulating the orientation
θ of the electric field one can easily prepare the qubit in
a desired state on the Bloch sphere. Our studies of entan-
glement indicate that the poles on the Bloch sphere (cor-
responding for |D1/2〉1 and |D1/2〉2) are the most stable
and easiest to prepare (see Fig. 3).

In small clusters of coupled electrons with strong
Coulomb repulsion it is not uncommon to find states cor-
responding to perfectly entangled qubit pairs. However,
in general such states can be unstable with respect to
charge fluctuations, coupling to energetically near states
excited due to elevated temperature, small external mag-
netic fields or due to the coupling to external charge reser-
voirs. In this paper we concentrated on the properties of
charge-transfer isolated TQD, but in contact with ther-
mal bath in the presence of an external magnetic field,
while the analysis of the influence of the charge-transfer
coupling to external leads will be presented elsewhere.

As expected, at finite temperatures the entanglement
will in general be reduced due to thermal mixing with
excited states. In particular, our studies show that the
state |D1/2〉1 is robust on thermal mixing and stable for

relatively large temperatures (see Figs. 4 and 5). In con-
trast the state |D1/2〉2 is less stable on temperature. For
a high temperature the excited states (with different pair-
wise correlations between spins) will come into the play.
Concurrence depends on relative thermal occupation of
both states and it can be a nonmonotonic function of tem-
perature. At the regime of very low temperatures and not
too large magnetic field (the ground state is doublet), ther-
mal mixing reduces the concurrence. However, at higher
temperatures, the entanglement can be restored due to
spin correlations in the excited state. As expected, ther-
mal mixing between the doublets with opposite spin orien-
tation, Sz = +1/2 and Sz = −1/2, reduces the entangle-
ment. Quadruplets (the unentangled states) lead to total
destruction of entanglement.

This work was supported by the National Science Centre un-
der the contract DEC-2012/05/B/ST3 /03208 and by the
EU project Marie Curie ITN NanoCTM. A.R. would like
to acknowledge also support from ARRS under contract
No. P1-0044.
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