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Abstract. We consider exactly solvable manipulation of spin-qubits
confined in a moving harmonic trap and in the presence of the time
dependent Rashba interaction. Non-adiabatic Anandan phase for cyclic
time evolution is compared to the Wilczek-Zee adiabatic counterpart.
It is shown that the ratio of these two phases can for a chosen system
be any real number. Next we demonstrate the possibility of arbitrary
qubit transformation in a ring with spin-orbit interaction. Finally, we
present an example of exact analysis of spin-orbit dynamics influenced
by the Ornstein-Uhlenbeck coloured noise.

1 Introduction

Spintronics as a promissing new branch of electronics has the potential for realising
building blocks of a quantum computer via electron spin qubits. Implementation of
such qubits is feasible in gated semiconductor devices based on quantum dots and
quantum wires [1,2]. Qubit manipulation may be achieved through rotation of the
electron’s spin by the application of an external magnetic field [3] or by methods
where magnetic field is replaced by the usage of the spin-orbit interaction (SOI)
[4,5]. In spintronic devices the SOI is particularly suitable for qubit manipulation
since it can be tuned locally via electrostatic gates [6–15]. Systems with such electron
manipulation have been already experimentally realized in various semiconducting
devices [16–20].

Recently a scheme was proposed, where non-adiabatic qubit manipulation is
achieved by translating a qubit in one dimension [21,22] in the presence of time
dependent Rashba interaction [23,24]. For quantum dots with harmonic confining
potential the exact analytical solution enables also the analysis of the non-adiabatic
non-Abelian Anandan phase [25]. The qubit transformations in such linear systems
are limited to the cases of spin rotations around a fixed axis and most recently this
limitation posed by fixed axis was eliminated in transformations on a quantum ring
structure [26,27].

In view of the fact that exact solutions for qubit manipulation are known, also
the analysis of certain environment effects can be considered analytically [28]. Errors
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in the qubit manipulation can be caused by fluctuating electric fields, created by the
piezoelectric phonons [9,29–31] or due to phonon-mediated instabilities in molecular
systems with phonon assisted potential barriers, which introduce noise in the confin-
ing potentials [32,33]. Electrons could be also carried by the surface acoustic waves,
where the noise can arise due to time dependence in the electron-electron interaction
effects [34–36].

In this paper we concentrate on some explicit types of qubit transformation driv-
ings, in one dimension and in a ring system. In particular, after the introduction
we present the model in Section 2, show exact solutions of the time dependent
Schrödinger equation and analyse the Anandan phase. In Section 3 we demonstrate
the feasibility of arbitrary qubit transformation in a ring system. Finally, in Section 4
it is shown how the errors due to coloured noise in drivings can be analysed exactly.
Section 5 is devoted to the summary.

2 Anandan phase in a linear system

We concentrate on qubits represented as spin states of an electron in a harmonic
trap [21,22]. The position of the trap ξ(t) in the one-dimensional quantum wire is
time dependent and is controlled by the application of external electric fields. The
spin is controlled by the spin-orbit interaction related to the external electric field.
Hamiltonian of the system is

H(t) =
p2

2m∗
I +

m∗ω2

2
[x− ξ(t)]2I + α(t)pn · σ, (1)

where m∗ is the electron effective mass, ω is the frequency of the harmonic trap
and α(t) is the strength of the time dependent Rashba spin-orbit interaction. σ and
I are Pauli spin matrices and unity operator in spin space, respectively. The spin
rotation axis n is constant and depends on the crystal structure of the quasi-one-
dimensional material used and the direction of the applied electric field [16]. Exact
solution corresponding to the Hamiltonian in equation (1) is given by [21,22],

|Ψms(t)〉 = e−iωmtAα(t)Xξ(t)|ψm(x)〉|χs〉, (2)

where

Aα(t) = e−i[(φα(t)+m∗ȧc(t)ac(t)/ω
2)I+φ(t)n·σ/2]e−iȧc(t)pn·σ/ω

2
e−im

∗ac(t)xn·σ, (3)

Xξ(t) = e−iφξ(t)eim
∗[x−xc(t)]ẋc(t)e−ixc(t)pI. (4)

Here ψm(x) represents the m-th eigenstate of a harmonic oscillator with energy
ωm = (m+ 1/2)ω and |χs〉 is a spinor of the electron in the eigenbasis of opera-
tor σz. The solution is determined by two unitary transformations, of spin part Aα
and charge contribution Xξ which translate the system into the “moving frame” of
both SOI and position and transform the Hamiltonian equation (1) into a simple time
independent harmonic oscillator Hamiltonian. The phase φξ(t) = −

∫ t
0
Lξ(t′)dt′ is the

coordinate action integral, with Lξ(t) = m∗ẋ2
c(t)/2−m∗ω2[xc(t)− ξ(t)]2/2 being the

Lagrange function of a driven harmonic oscillator and xc(t) is the solution to the
equation of motion of a classical driven oscillator

ẍc(t) + ω2xc(t) = ω2ξ(t). (5)

Another phase factor is the SOI action integral phase φα(t) = −
∫ t

0
Lα(t′)dt′, where

Lα(t) = m∗ȧ2
c(t)/(2ω

2) −m∗[ac(t) − α(t)]2/2 + m∗α2(t)/2 is the Lagrange function
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Fig. 1. Contours [ξ(t)/ξ0, α(t)/α0] and [ξ(t)/ξ0, ac(t)/α0]. Panels (a), (b), (c) correspond to
different values of ω∆T = π, 15π/8, 9π/4, respectively. Note the reversed direction of motion
ac[ξ] in (b) resulting in the negative Anandan phase.

of another driven oscillator, satisfying

äc(t) + ω2ac(t) = ω2α(t). (6)

Spin-qubits are rotated around n by terms proportional to operators ac(t)x,
ȧc(t)p and the phase φ(t). Here we consider only cyclic drivings and cyclic resposes,
characterised by conditions ξ(t + T ) = ξ(t), α(t + T ) = α(t), xc(t + T ) = xc(t),
ac(t+ T ) = ac(t) and ẋc(t+ T ) = ẋc(t), ȧc(t+ T ) = ȧc(t). The angle of spin rotation
is then given by the Anandan phase [22,25],

φ = φ(T ) = −2m∗
∫ T

0

ȧc(t)ξ(t)dt = 2m∗
∮
C
ac[ξ]dξ, (7)

where ac[ξ] represents the contour C in 2D parametric space [ξ(t), ac(t)] for 0 ≤ t ≤ T .
Thus the spin rotation angle is determined by the area enclosed by C. In the limit of
a very slow motion this contour will reduce to the driving curve α[ξ] and in this limit
the area enclosed by the contour represents the Wilczek-Zee non-Abelian phase [37],
i.e., the adiabatic result φ(T )→ φad in the limit T →∞.

A challenging question here is: “Which – the Anandan phase φ or the adiabatic
φad phase – is for a particular driving curve larger?” A simple general rule for a given
driving does not seem to be available without explicitly comparing the solutions.
However, in order to elucidate this question to some extent generally we consider a
family of contours of broken circular shapes represented by driving parametrized as

ξ(t) = ξ0 sin (ωt/2)Θ(t)Θ(2T1 − t),
α(t) = α0ξ(t−∆T )/ξ0, (8)

where Θ(t) is the Heaviside step function, T1 = 2π/ω and ∆T is the time delay. The
driving is applied periodically with the cycle period T = 2T1 + ∆T . The responses
are periodic and within one cycle given by

xc(t) =
2
3
ξ0 [2 sin (ωt/2)− sin(ωt)]Θ(t)Θ(2T1 − t),

ac(t) = α0xc(t−∆T )/ξ0.

Various contours [ξ(t)/ξ0, ac(t)/α0] ∼ C and [ξ(t)/ξ0, α(t)/α0] ∼ Cad are for different
∆T presented in Figure 1. In the panel Figure 1b note the reversion of the direction
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Fig. 2. In panel (a) the Anandan phase φ and the Wilczek-Zee (adiabatic) phase φad are
plotted as a function of the delay ω∆T . The phases are scaled by the factor m∗ξ0α0. Note
two points of equality where φ = φad and that the phases change sign at different ∆T . In
panel (b) the ratio φ/φad is presented. Note the pole at ω∆T = 2π, where φad = 0. Arrows
indicate values of ω∆T corresponding to special cases shown in Figure 1.

of motion along contour C with respect to Cad which results in negative Anandan
phase. In all panels the beginning and the end of a cycle is at ξ/ξ0 = 1 and α = 0
with xc(0) = ẋc(0) = 0 and ac(0) = ȧc(0) = 0.

The quantum phases φ and φad, calculated as a function of the delay ω∆T , are
presented in Figure 2a. There are two important points to be noted: (i) Both curves
are similar in the sense that particular phase for small ∆T is negative and by progres-
sively larger time delay at some point changes sign and finally vanishes at ∆T = 2T1,
where there is no overlap between ξ(t) and ac(t). (ii) The phase curves intersect,
which proves that φ and φad can be equal for some type of driving and, moreover,
the ratio φ/φad, shown in Figure 2b, can take any value, positive or negative. Since
the amplitudes of drivings, ξ0 and α0, are additional free parameters, one can by
changing ∆T tune the phases independently of each other to any value.

3 Arbitrary qubit transformations

Spin transformations of an electron, driven along a straight wire, are limited to rota-
tions around a fixed axis n, meaning that electron’s spin cannot be rotated for an
arbitrary angle. One way to lift this restriction is to move the electron in two spatial
dimensions. Here we consider ring systems as one of the simplest choices.

Cylindrical coordinates r and ϕ are a natural parametrisation to describe the elec-
tron moving along a ring. The restriction of electron’s motion to the ring is achieved
by strong binding potential in the radial direction, resulting in the electron occupying
the lowest radial eigenstate. Angular part of the wavefunction is then governed by an
effective Hamiltonian [38]

H =
p2
ϕ

2m∗
I + α(t)

(
σρpϕ −

i

2
1
R
σϕ

)
+ V (ϕ, t)I. (9)

This Hamiltonian is effectively one-dimensional, describing the motion of the electron
along the periodic coordinate ϕ with its conjugate momentum pϕ = −i 1

R
∂
∂ϕ . The spin

operators in the cylindrical coordinate system are given by

σρ (ϕ) = σx cosϕ+ σy sinϕ, (10)
σϕ (ϕ) = − σx sinϕ+ σy cosϕ. (11)
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Fig. 3. (a) Schematic presentation of the system. The position of the electron (green point),
confined by potential well V (purple) on a ring of radius R, is described by coordinate ϕ. (b)
One representation of the qubit Hadamard transformation on the Bloch sphere, using the
Rashba-dependent rotations U†i . First the electron at some α1 is shifted by an angle ∆ϕ1,
causing a rotation around the axis n1 (red path). The Rashba coupling is then adiabatically
changed to α2 and the electron is shifted by ∆ϕ2 causing additional rotation around n2
(blue path).

Time dependent potential V (ϕ, t) is a small perturbation to the confining potential,
restricting the electron to the ring, and is used to manipulate the electron’s position
on the ring. Like in Section 2, the motion of the electron is driven by an electric
field locally expressed as the harmonic potential with time dependent position as is
schematically shown in Figure 3a, with

V (ϕ, t) =
m∗ω2

2
[ϕ− ξ(t)]2 . (12)

In order to solve the Schrödinger equation, we first transform the Hamiltonian
with a time independent transformation

Zϕ = exp
(
−iϕ

2
σz

)
, (13)

which maps the spin operators from cylindrical to Cartesian coordinates. This results
in a Hamiltonian, very similar to equation (1),

H ′(t) = Z†ϕH(t)Zϕ =
p2
ϕ

2m∗
I +

m∗R2ω2

2
[ϕ− ξ(t)]2I + pα(t) · σ +

1
8m∗R2

I. (14)

Contrary to the Hamiltonian for a linear system, H ′(t) has a time-dependent
rotation axis α(t) = (α(t), 0,−1) that can be manipulated by tuning the Rashba
coupling. For such system, solutions of Schrödinger equation cannot be found using
the transformations Aα and Xξ. However, analytical solutions can be found for
two special cases of driving α(t) and ξ(t), the first one being for a constant
Rashba coupling while the minimum of the harmonic potential is moving, and
the second being an adiabatic change of the Rashba coupling in a static potential
[26,27].

In order to describe the time evolution of the system, we further transform the
Hamiltonian using the transformation U†(t) = AαXξ as in Section 2 but with a
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different form of the operator

Aα = exp
(
−iϕ

2
α · σ

)
, (15)

leading to a Hamiltonian of harmonic oscillator with a time-dependent spin-orbit
energy shift

H ′′(t) = UH ′(t)U† =
p2
ϕ

2m∗
+
m∗R2ω2

2
ϕ2 +

m∗α(t)2

2
. (16)

If the Rashba coupling is constant, the time-dependent wavefunction of the system
can be described in a similar manner as for the linear system – a combination of
eigenstates, evolving as

|Ψms(t)〉 = e−iωmtZϕAαXξ(t)|ψm(ϕ)〉|χs〉. (17)

To describe the case of adiabatically changing Rashba coupling, it is convenient
to find a basis of Kramers states, centred at some ξ1,

|Ψ̃msξ1(t)〉 = e−iωmtZϕXξ1Aα(t)|ψm(ϕ)〉Yϑ̃α(t)|χs〉, (18)

for which the time evolution is manifested only as a change of the parameter α(t) in
the operator Aα(t) and in

Yϑ̃α(t) = e−iϑ̃α(t)σy . (19)

The rotation angle ϑ̃α(t) due to the change of the Rashba coupling can be calcu-
lated numerically and is mostly negligible in realistic systems. If the Kramers states
|Ψ̃msξ1(t)〉 are treated as a qubit basis, the adiabatic change of the Rashba coupling
only affects the basis states, but not the coefficients of the expansion cs in the Kramers
basis,

|ψ(ϕ, t)〉 = eiφα(t)
∑
s

cs|Ψ̃msξ1(t)〉. (20)

Driving of the electron along the ring by an external potential can also be
expressed in terms of the Kramers states. If the position of the electron’s wave-
function before (ξi−1) and after the shift of potential minimum (ξi) is fixed, the
transformation of the wavefunction can be written as

|ψ(ϕ, t)〉 =
∑
s

ci−1,s|Ψ̃msξi−1(t)〉 → |ψ(ϕ, t)〉 =
∑
s

ci,s|Ψ̃msξi(t)〉, (21)

where coefficients cs transform as ci+1,s =
∑
s′ χ
†
sU
†
i χs′ci,s′ . Writing Kramers states

in the basis equation (17) shows that the operator U†i is a spin rotation for the angle
γi around the axis ni that is tilted for ϑαi around y direction,

U†i = e−i
γi
2 ni·σ, ni = (sinϑαi , 0, cosϑαi), (22)

ϑαi = ϑ̃αi − arctan (2m∗Rαi) , γi = −∆ϕi
√

1 + (2m∗Rαi)
2
. (23)

αi is the value of the Rashba coupling during the shift from positions ξi and ξi+1.
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Fig. 4. Sectors of the Bloch sphere that are covered by one (a) or two (b) rotations of the
electron on the ring, for factor of Rashba coupling amplification k = 5. Black lines represent
transformations reached by N = 2 shifts of the electron position. Area shaded by dark red
corresponds to N = 3 and light red to N = 4. For our set of N , the white area in (a) can
be covered by two rotations. Numerical calculations were performed on a 200× 200 grid.

If the Kramers states are considered as a qubit basis and the coefficients cis
parametrized as points r = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) on the Bloch sphere,

(ci,↑, ci,↓) =
(

cos
Θ

2
, eiΦ sin

Θ

2

)
, (24)

the rotation U†i is a simple rotation on the sphere, which gives an intuitive insight
into the qubit transformations.

We performed a comprehensive numerical analysis of the transformation, which
revealed that any qubit transformation can be realized using the described time
evolution by properly adjusting the distances of electron shift and the accompanying
values of the Rashba coupling. An example of such a transformation is shown in
Figure 3b, where the Hadamard-like gate is applied to transform the qubit state
|0〉 → 1√

2
(|0〉 − |1〉). Figure 4 shows all possible rotation angles on a Bloch sphere

for a qubit, that was initially the eigenstate of spin along the z-axis. The Bloch
sphere coverage was calculated using the Monte-Carlo simulation and it shows that
any qubit transformation is possible to achieve. Panel Figure 4a shows sectors of the
Bloch sphere that can be reached by one motion and Figure 4b by two motions of
the electron around the ring at various numbers of changes of the Rashba coupling
during the revolution.

4 Effects of coloured noise on qubit transformations

For qubit transformations performed in linear systems, discussed in Section 2, the
angle of spin rotation is proportional to the area in parametric space [ξ, ac] that is
enclosed by the contour ac[ξ]. In real situations, noise in driving functions α(t) and
ξ(t) will unavoidably arise due to electrostatic noise in gate potentials. Therefore,
it is important to analyse the stability of the qubit transformation with respect to
small deviations of drivings. The change in the angle of rotation is characterised by
the change of the contour ac[ξ]. Analogue effects are present also in ring systems
discussed in Section 3. Here we show how to calculate and characterise the noise in
ac(t), while the corresponding results for the position x (or ϕ in the case of ring
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Fig. 5. All figures correspond to spin-orbit response ac(t)/α0 to a sinusoidal driving with

n = 8 and with a Gaussian white noise (τα → 0) with noise intensity σα/α0 = 1
20
ω−1/2. In

(a) the dashed line marks the driving function without noise, the red one response to driving
without noise and thin black lines the different realisations of response to noisy driving, one
of which is marked with blue. In (b) the probability distribution of the final error in ac(T )/α0

is shown with red curve corresponding to analytical result and black lines to numerical one.
In (c) the autocorrelation function of ac(t) is shown and in (d) one realisation of noise in
ac(t) (note the amplitude progressively increasing with time).

systems) can easily be derived in the same manner. Once this is analysed, one can
analytically predict the angle of spin rotation error since analytic results for qubit
transformations are known.

We model the noise as an additive coloured noise, α(t) = α0(t)+δα(t), α0(t) being
the noiseless driving function and δα(t) the superimposed noise with vanishing mean
〈δα(t)〉 and with the time autocorrelation function 〈δα(t′)δα(t′′)〉 = σ2

α

2τα
e|t
′−t′′|/τα

characteristic for Ornstein-Uhlenbeck processes [39–42]. σ2
α is the noise intensity and

τα the correlation time. As a general solution of equation (6) ac(t) is given by

ac(t) = ω

∫ t

0

sin[ω(t− t′)]α(t′)dt′. (25)

In Figure 5 an explicit example of noise in ac(t) is shown. The driving is of
sinusoidal form

α0(t) = α0 cos(2πt/Tn), (26)

with transformation times T = Tn = nT1, where T1 = 2π/ω is the period of the
confining potential and n > 1. Driving in figures is for n = 8. The noise added is a
short correlation one (τα → 0) which corresponds to Gaussian white noise with σα.
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Numerical calculation of ac(t) was done by summing over discrete values,

ac(t) = a0
c(t) +

N∑
i=1

αiai, (27)

where ai = ω sin[ω(t− ti)], ti = i∆t, ∆t = T/(N − 1) and αi is equal to the integral
of the noise in a short time interval αi =

∫ ti+∆t

ti
δα(t′) dt′. It is a stohastic normally

distributed value with zero mean and with variance σ2
α∆t [44]. Figure 5a shows the

driving noiseless function α0(t) marked with black dashed line and red curve cor-
responds to a0

c(t) spin-orbit response to this noiseless driving. Blue line represents
the response ac(t) to one realisation of noisy driving α(t). Some other responses to
different noise realisations are marked with thin black lines. Final deviations of ac(T )
from noiseless a0

c(T ) are shown in Figure 5b as a normalised histogram (black bins)
calculated from 107 noise realisations. Red curve corresponds to analytic result of
the probability density function as is calculated in the following. As seen from the
histogram, the response ac(T ), an integral of stochastic variables, is normally dis-
tributed stochastic quantity in accordance with the central limit theorem. However,
by looking at the nontrivial autocorrelation function 〈ac(T )ac(T − t)〉 in Figure 5c
which oscillates with diminishing amplitude, the variance of distribution σ2

a seems
to be nontrivial in time-dependence. This can be further speculated from Figure 5d
which shows bare noise in spin-orbit response δac(t) as a function of time and it is
evident that it oscillates with confining potential frequency and grows in amplitude.
We evaluate σ2

a as equal-times autocorrelation function [40,43],

σ2
a(t) = ω2 lim

∆t→0
〈
∫ t

0

sin[ω(t− t′)]δα(t′)dt′
∫ t+∆t

0

sin[ω(t− t′′)]δα(t′′)dt′′〉. (28)

This is calculated as an integral after leaving in average 〈〉 the only stochastic term
δα(t′)δα(t′′) and evaluating it as the time autocorrelation function. For the Ornstein-
Uhlenbeck noise considered here the integrals can be evaluated analytically and the
final result is that ac(t) is distributed normally with the time dependent variance

σ2
a(t) =

ωσ2
α

4(1 + ω2τ2
α)2

[−4ω2τ2
αe
−t/τα(ωτα cosωt+ sinωt)

+ 2ωt− ωτα + ω3τ2
α(2t+ 3τα) + (1 + ω2τ2

α)(ωτα cos 2ωt− sin 2ωt)]. (29)

In short correlation time limit the expression simplifies to the white noise result,
σ2
a(t) = 1

4ωσ
2
α (2ωt− sin 2ωt). For large ωt the noise amplitude diverges and the rea-

son is that the Lorentzian noise power spectrum σ2
α/[1 + (2πfτα)2] considered here

consists of different driving frequencies including the resonant value ω = 2πf which,
similar to the one-dimensional random walk problem [40], results in the asymp-
totic response σ2

a(t) ∝ t. This indicates that fast transformations are preferable since
less noise is produced. Qualitatively the same arguments are valid also for qubit
transformations on ring systems considered in Section 3.

5 Summary

Holonomic spin manipulation in linear systems is feasible if one can control the
position ξ(t) of the electron confining potential and the strength of the Rashba cou-
pling α(t). In the space of these two driving parameters [ξ, α] an arbitrary contour
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determines the angle of the qubit rotation in the case of adiabatic transformation.
For a broad range of integrable drivings exact solutions are possible and a natural
question arises: Which one of the non-adiabatic and adiabatic transformations leads
to larger or smaller qubit rotation? In this paper we demonstrated that the answer
crucially depends on the contour in spaces [ξ, α] and [ξ, ac]. In particular, we showed
that compared to the adiabatic result some non-adiabatic transformation angles can
be larger, while for other transformations smaller. Both angles can also be equal for
some contours. There seems to be no general rule.

The main drawback of qubit transformations in linear systems is the restriction to
transformations represented by rotations around a fixed axis. This limitation is lifted
if the electron can be moved on a ring system. Exact solutions of qubit dynamics are
available, however, the corresponding equations do not allow to analytically determine
driving parameters for arbitrary final qubit state. This was the motivation to analyse
various driving schemes numerically and we demonstrated that an arbitrary final
state on the Bloch sphere is reachable providing corresponding drivings.

To conclude, we examined in detail also the influence on qubit transformations
due to the noise in drivings. Since analytical treatment of several driving schemes is
possible one can analyse also the effects of noise exactly. We demonstrated how the
errors in driving give rise to variance in the spin-orbit response function. It is shown
how one can analyse the effects of a general coloured noise and as an example, we show
the result for the Ornstein-Uhlenbeck noise, also in the limit of short correlation times
(white noise). Analytical results for autocorrelation function and time dependent
errors are tested numerically.

A.R. and L.U. acknowledge partial support from the Slovenian Research Agency under
contract no. P1-0044 and T.Č. the support by the National Natural Science Foundation of
China (NSFC) Grant No. 11650110443.
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