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Spin-Polaron Wave Function for a Single Hole in
an Antiferromagnet
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The wave function of a single hole moving in a two-dimensional antiferromagnet
is derived from the Green’s function obtained within self-consistent Born approzi-
mation. Starting from the wave function various correlation functions which char-
acterize the distortion of the antiferromagnetic background around the hole can be
calculated. Both the t-J and the t-J; model are studied. Whereas for the t — J,
model these perturbations are essentially isotropic and decay erponentially with the
distance from the hole, their decay in the t—J model has power-law form. Moreover
the correlation functions in the t — J model are are highly anisotropic and depend
strongly on the momentum of the quasiparticle.
PACS numbers: 75.10 Jm, 75.50 Ee, 74.65.4+n

1. Introduction

The Green’s function for a hole moving in a fized spin background has been
discussed in the context of transition metal oxides in the late 60th by Bulaevskii et
all and by Brinkman and Rice.? In this case the Green’s function is local and fully
incoherent. The first prediction that the low- -energy charge excitations in the 2D
t — J model®

H=-t Y (wc,,+hc)+.}’2[8’5‘+ S(SFS;+S7shH ()

<ij>o <ij>

are propagating quasiparticles with a bandwidth of order J was made by Kane, Lee
and Read* and was confirmed by a number of exact diagonalization studies.5:6 The
problem is complicated due to the constraint on the fermion operators c' =¢ a( 1-
n; o) and by the fact that quantum fluctuations play a crucial role. Th:s model
has been widely studied particularly because it is considered to contain much of the
low-energy physics of the high-T,. superconductors.? Nevertheless fundamental
issues are still unclear such as the spin-dynamics and the form of the Fermi surface
at moderate doping. Even in the case of a single hole there are different views e.g.
whether the quasiparticle spectral weight is finite or vanishes in the thermodynamic
limit. In particular Anderson has argued that holes introduce a deformation in the
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spin-background which decays as power law and as a consequence the spectral weight
should vanish, — leading to non-Fermi liquid behaviour.®

We will describe here a slave fermion technique,®* which was successful in
reproducing the diagonalization results for the full Green’s function.® The main
aim of this work is to derive the wave function for the quasiparticle and to present a
quantitative picture of the shape and size of the quasiparticle. Results of correlation
functions describing the deformation of the spin-background around the hole will
be presented for the ¢-J model (o = 1 in Eq.(1)) as well as for the more simple
t-J; (a = 0) model which has no spin-dynamics and a simple classical Néel ground
state.

In a first step of the reformulation of the problem holes are described as spin-
less (slave) fermion operators, i.e. on the A sublattice a spinless fermion creation
operator is defined as h} = c;; while the corresponding operator ¢;; = h} S/ is
expressed as a composite operator, and similarly for the B-sublattice.!! The kinetic
energy then reads Hy = —t 2.‘,,‘ i (hih_}"Sj-‘ + h.c.), that is, each hop of the fermion
is connected with a spin-flip. ’Hle spin dynamics is described within linear spin
wave theory (LSW) which provides a satisfactory approximation for the 2D spin-
1/2 Heisenberg antiferromagnet. After performing the usual steps, i.e. Holstein-
Primakoff, i.e. S;" ~ a;, and Bogoliubov transformation, the ¢ — J Hamiltonian
takes the form:

1
Hiy=—=3 (Myqhl_ hral + Hc)+)  wqalaq. )
ﬁ kq q

% T Yy
operator and energy, ¥, = %(cos g + cosgy) and u,(v,) are the usual Bogoliubov
coherence factors.!! The kinetic energy in (1) appears now as the coupling term
to the spin waves with the matrix element given by Myq = 4¢(uqye-q + vq7x)-
Otherwise (2) is similar to the small polaron Hamiltonian except that a kinetic
energy term for the spinless fermions is absent. As for the copper oxides t > J this
is a strong coupling problem and a selfconsistent technique is required.

The selfconsistent Born approximation for the fermion (holon) Green’s function

1
E —Xi(E)
amounts to the summation of all noncrossing diagrams. Here in contrast

to the ‘phonon’ polaron problem vertex corrections turn out to be of minor
importance.'*'? The self-energy

Here ay = u,a, — v af, and w, = sz.ﬁ(‘l —73 are the spin wave annihilation

Gx(E) = 3)

Tu(E) = % Y M2 (Gr—aE — we) @)
q

has to be solved selfconsistently. Typical numerical results for the spectral function
A(k,w) = —(1/7)ImG}(w) may be found in references [10-13]. The spectra show
a bound state ( quasiparticle ) at low energy and a broad incoherent continuum of
multi-magnon excitations distributed over an energy range of almost the free band
width W = 2zt.
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2. Quasiparticle Wave Function

Given the Green’s function in selfconsistent Born approximation (scBA) it would
be interesting to know the wave function of the quasiparticle which corresponds
to the pole in (3) at energy ex = Zi(ex). This wave function would allow us to
calculate in principle all correlation functions which define the perturbation of the
AF-background around the hole.

The quasiparticle wave function is the eigenstate of H

Hix = extx, (5)
which gives rise to the quasiparticle peak with weight Zy in the spectral represen-
tation for the Green’s function (3)

_ I< Yun | A 10>
GlR = 5 e,
s Zk ine
= == +GI(E). (6)
The spectral weight of the quasiparticle
Zx :l{ Y | -’l: | 0 >[2 (T)

can be quite small, however it should not scale to zero in the thermodynamic limit,
whereas the matrix elements coutributing to the incoherent part are of O(1/N) or
smaller.

In this section we present a derivation of the QP wave function ¢ on the same
level of approximation as the scBA for the Green’s function. In particular we will
prove that the QP weight derived from the wave function agrees with the result
calculated directly from the selfenergy.

Given the Hamiltonian (2) we expect the wave function | Y5 > to have the
form

1
1 Y >= ao(k)hﬂo > + \/_F E “1“‘: ql}hf-h“;ui” 2
1

1
+ ¥ Z a*(k, q1, qz)hk_,,_q,ﬂ;;a; 0>
9143

B oo (8)

where the coefficients a®(k, ¢1,...,¢s) are to be determined. The state |0 > is the
vacuum with respect to hole h; amd spinwave operators a,.

From the Schrodinger equation we obtain the following sequence of equations
for the expansion coefficients:

E'(k) = Y a'(k,a)Mis, = 0 (9)

1
(E — wg, )a'(k,q1) — a® (k) My, — E}';“z(’f, q1,92)Mi—g,4, = 0 (10)
2
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To obtain these equations which correspond to the noncrossing approximation for
the Green'’s function one has to adopt the following contraction rule (CR): When
one magnon is annihilated in the n-magnon component of the wave function (8)
only the contribution is considered where the last magnon in the sequence, i.e.
u“"., is annihilated. This is reminescent of the retraceable path approximation in
momentum space. The general equation for n > 0 reads:

(E — Wy “"h)a“(k: wany er) = a"_l(kt seuy Q)Mk.—a.h
1
N Z: a" (ks gng 1) Mi gy =0, (11)

fa41

where ky, =k — ¢ — ... — ¢n.
As first shown by Reiter’* this sequence of equations (9-11) has the general
solution

arH-l(k! i q,,_H) — a“(kl __.,q,,)Mk_"_+lG;-_+l(E —Wg — .. — w,‘“) . (12)

Substituting (12) into the last term on the l.h.s. of Eq. (11), we recognize that this
term is identical to the expression (4) for the selfenergy T times a”. This yields for

(11)

(B— . i—wy, — L (E— .. —wg. ) a™(k, ..y gn) — a" Yk, ..., Gn-1)Mi,_, q. =0
(13)
Since the prefactor of a" is the inverse of the Green’s function Gy (E—wg, —...—w,,)

this equation is identical to Eq. (12) with n replaced by n — 1. It only remains to
be shown that also (9) is solved. Equation (9) becomes

a)(E-Zi(E)) =0, (14)

which has a nontrivial solution a # 0 at the QP-energy E = ¢;.

The knowledge of the Green’s function (3) is sufficient to calculate from (12)
iteratively the coefficients a"(k,q1,...gn). The coefficient a®(k) which determines
the QP-weight Z; = (a®(k))? follows from the normalization of the wave function

<Pelee> = ) |a(ky.ntn) =1

n=0

= {ao(l‘})z{l + %E(Mk'ﬂc;k_ﬂ(q — wh})z

1
¥ N2 Z(Mkhck—h (€x — wq, ))2 z (Mk“vlafzck:(q‘ —Wg — Wy, ))2

q143

g s } (15)
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If one calculates the derivative 8Zi(E)/0E from Eq. (4) one recognizes that!®

T (E
< ¥ | Y >=(a})?- (1 = %J) ' (16)
E=¢,
As 1} is normalized to 1, this implies
1
2 =(a})’ = —35 (17)
T

which is identical to the QP-spectral weight as calulated from G. This accomplishes
the prove of the internal consistency of G and 4. It should be emphasized that the
above derivation does not rely on the assumption that the coupling term in the
Hamiltonian is small.

3. Polaron in the ¢t — J, Model

A first question one may ask is: "How many magnons are involved in the
formation of the polaron”. As the coupling between hole and spin-excitatitions
is the kinetic energy of the ¢-J, model, small values of J,/t correspond to strong
coupling, where many magnons will be excited. In order to estimate the number n
of magnon terms needed in the wave function we have calculated the norm Ay

Mo = (¥ = 3 A (18)

m=0

as a function of J/t and for different n. The distribution Aim} can be interpreted
as a probability distribution that m magnons are excited in the wave function.
According to Eq. (15) this distribution is given by

(m) _ Zx 2 2 2
AV =5 Y faSi-aua - H-aiman (19)
Qi iQem

where gx q = MxqGi-q(w — wq) with w = ¢, and Aio) =2k

In the Ising limit of the model (a = 0) the analysis becomes simple because
the equations for the self-energy in scBA become independent on k and reduce to
one equation Iy(w) = 4t?[w — 2J — Ty (w — 2J)]7! . This equation can then be
expressed in a recurrence form

A = A (2Gy (e — 2mJ)). (20)

In Fig. la the norm A is shown for various n as a function of J/t.The crossover
between the weak and the strong coupling regime may be located at J/t ~ 0.3.
Below this value the number of magnon terms needed to fullfil the sum rule Ny =1
increases dramatically. In Fig. 1b we present the distribution AE") for several values
of J,/t.

The average number of magnons can be calculated knowing AE:")

nmag = (E] Y aleqg¥M) = Y ma(™. (21)
q m
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Fig. 1. (a) N versus J/t for the ¢ — J, model, where n denotes the order of
magnon terms kept in the wave function; (b) A&") for different J,/t.

In the Ising limit np,,, is identical to the average number of local spin deviations,
(X:S+S7) = (X;ala;) and is proportional to the average string length [, of
flipped spins in the Néel state created by the motion of the hole. For J/t < 1
one may assume a linear string potential which implies nmqy o lay o< (t/J)Y3.
In Fig. 2 npma, is shown as a function of J/t calculated with up to 40 magnon
terms in the wave function. For J/t < 1 our result is in quantitative agreement
with npnay = 1.4(1/J)Y/3 calculated by Mattis and Chen.'® In the opposite limit
J/t > 1 only the leading term m = 1 in the wave function is relevant, therefore the
asymptotic result is nmq, o (8/J)2.

The spatial distribution of spin-deviations around the hole is given by the
correlation function

Nr = (W71 mial paier | ¥() = (no(ahan)), (22)

where n; = hlh; is the density operator for holes. Fig. 3 shows the distribution
of bosons around the hole, Ng = {no{akan}), calculated in the Ising limit for
Ji/t = 0.002 and 0.4. Within LSW approximation {nu(a;—{an}) is equivalent to
(no (S Sr)). The correlation function Ng can therefore be used as a suitable
definition of the spin polaron and consequently of its spatial size. For the spatial
dependence we found Nr o exp(—(R/R,)*?]. The size of the polaron can be
characterized by a radius R, which encloses a given fraction p = Y Re R, Nr/fmag
of the polaron. For p > 0.5 and J/t > 0.002 we obtained the scaling R, o (t/J)/°
with Rog ~ 2 for J/t = 0.2. The total number of bosons, and the scaling of the
polaron size as well as its asymptotical R dependence are consistent with the picture
of the random motion of the hole confined by a linear string potential. The average
path length!7 scales as { o Ntor  J~1/3 and as a consequence of the 2-dimensional
random-walk of the hole the radius follows as R, o {1/2.
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Fig. 2. Total number of spin-deviations contributing to the spin-polaron in the
case of the t-J; model
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Fig. 3. Spatial distribution of spin deviations around the hole for the t-J, model
(a) J; = 0.002 (log-scale) and (b) 0.4 (linear scale).
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To conclude this Section we mention the approximations that have been made
implicitely in the present treatment of the ¢-J, model: (i) Comparing with the so
called retraceable path approximation by Brinkman and Rice? our approach neglects
the constraint that a hole can visit in a single step only (z — 1) neighbors and is
not allowed to move back to the site from which it came. This constraint can also
be incorporated and for a discussion concerning the Green’s function we refer to
Ref.[11] . (ii) As in the retraceable-path approximation processes are droped where
holes perform loops. Such processes introduce a momentum dependence into the
problem, but they are unimportant as long as J; is not small.

While the approximation (i) is of quantitative importance for the ¢t — J, model,
e.g. the spectral weight in ImG(w) extends over an w-range of 8t instead of about
7t when this approximation is not made, the same approximation appears to be of
minor importance in the ¢t — J model,!! which we will discuss now.

4. Role of Quantum Fluctuations: The t — J Model

The important new features of the ¢ — J model are (i) the spin-dynamics
described by antiferromagnetic spin waves, which have linear dispersion around
g = (0,0) and (=, x), respectively. (ii) The ground state of the model in 2D is a
quantum Néel state, i.e. more complex than the simple classical Néel ground state
of the t — J; model. An immediate consequence of (i) is that a spin-deviation which
is created by the hopping hole will move away from the hole in form of a spin-wave
until it is reabsorbed at a later instance.

In Fig. 4a the norm N} versus J/t for the ¢ — J model is shown for differ-
ent number n of magnons kept in the wave function. For J = 0.4 three magnon
contributions in the wave function are required to fullfil the norm. In Fig. 4b
Ng = (no(agar)) — Naru is shown for J/t = 0.4 and k = (x/2,7/2). Here we
have subtracted the large contribution N4par = 0.197 from quantum fluctuations
in the ground state in the absence of the hole. The shape of the polaron is extended
in the direction of the QP momentum which reflects a quasi one-dimensional motion
of the polaron. This is consistent with the asymmetry of the QP energy band in the
“hole pocket”, where the effective next-nearest neighbor hopping for the (1, 1) direc-
tion is ~ 5x that of the (1,—1) direction.!%!! The asymmetry is most pronounced
at k = (x/2,x/2), and gradually vanishes away from the QP energy minimum and
disappears at k = 0 and k = («,0).

Various more complicated spin-correlation functions were studied recently for
the t-J model and we refer to the original reference [11]. All correlation functions
show a pronounced spatial dependence which strongly depends on the momentum
of the quasiparticle. All correlation functions were found to be in close agreement
with results from diagonalization studies. Since the magnetic excitations wq vanish
linearly with q, perturbations decay as power laws. For example Np ~ R2
Explicit results for other correlation function are given in Ref.[11].

It is the random motion of the hole on scale ¢t which leads to the large increase
of spin-fluctuations around the hole. This is the origin of the rapid disappearance of
antiferromagnetic long-range order at quite small doping concentrations!® and the
strong spin-wave renormalization.!®2% Apart from this rapid incoherent motion,
the polaron as an entity propagates coherently with a dispersion of order J.
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Fig. 4. (a) N versus J/t for the ¢t — J model and (b) Spatial distribution of spin
deviations around the hole for J = 0.4 and k = (7/2, x/2).

5. Summary

We have derived the wave function of a quasiparticle in an antiferromagnet
within selfconsistent Born approximation. Various correlation functions calculated
from this wave function show that the scBA gives an accurate picture of the relax-
ation of the spin system around the hole.

Finally we would like to mention that electron-phonon coupling can be incorpo-
rated in this framework on the same footing as the coupling to spin-fluctuations.?!
Since the role of electron-phonon interactions in high-T, superconductors is still a
topic of debate, this feature will perhaps prove useful to shed light on the interplay
between strong correlations and electron-phonon interactions.
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