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Abstract

We consider the spectral and initial value problem for the Lindblad—Gorini—
Kossakowski—Sudarshan master equation describing an open quantum system
of bosons and spins, where the bosonic parts of the Hamiltonian and Lindblad
jump operators are quadratic and linear respectively, while the spins couple
to bosons via mutually commuting spin operators. Needless to say, the spin
degrees of freedom can be replaced by any set of finite-level quantum systems.
A simple, yet non-trivial example of a single open spin-boson model is worked
out in some detail.

Keywords: third quantization, quadratic Hamiltonian, spin-boson model,
Lindblad master equation, decoherence

1. Introduction

Exact solutions of simple but nontrivial models describing characteristic physical phenom-
ena are paramount for understanding statistical physics in nonequilibrium. While there is an

abundance of

such exactly solvable nonequilibrium models in classical statistical mechanics

(see, e.g. a review paper [1]), very few explicit analytic approaches are known in the quantum
realm (e.g. review papers [2, 3]).
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A broad route to quantum nonequilibrium physics leads via the theory of open quantum
systems, especially in the many-body realm. Considering a large (many-body) quantum sys-
tem, one can often describe the dynamics of its (so-called central) parts within the frame-
work of the so-called Markov approximation, neglecting the back information flow from the
rest of the system (the so-called environment) to its central part. The differential equation
describing the density matrix of the central system within the Markov approximation and the
rotating-wave approximation [4] is the unique mathematical evolution law that preserves the
hermeticity, complete positivity, and trace of the density matrix, called the Lindblad—Gorini—
Kossakowski—Sudarshan [5, 6] equation, or Lindblad equation for short. We note that the
many-body Lindblad equation provides a perfect mathematical platform for preparing engin-
eered quantum states or quantum phases of matter within cold atom and ion trap setups [7, 8].

Some time ago, one of the authors developed canonical formalism of quantization over
operator spaces for the diagonalization of the generator of the many-body Lindblad equation—
the so-called Liouvillian superoperator, or completely solving the Lindbladian initial value
problem, for a general quadratic Hamiltonian and a set of Lindblad jump operators which
are linear in canonical creation/annihilation operators. The original proposal for fermionic
systems [9, 10] was later extended to bosonic systems [11] (see also [12] for a more abstract
discussion of quantization over operator spaces), and further developed by other authors [13—
15]. Specifically, the latter reference extended the technique to include quadratic Hermitian
jump operators, allowing the analytical treatment of nonequilibrium phase transitions [16]
and crossovers between ballistic and diffusive as well as quantum and classical transport [17,
18]. Note, however, that even within the class of linear jump operators, one can discuss non-
trivial critical phenomena in translationally invariant [19, 20] and so-called boundary-driven
systems [3, 21, 22] (in the latter, the jump processes are confined to the boundaries of the
system).

Experience has shown that the kinds of systems that can be treated efficiently under the
closed system (2nd quantization) formulation can also be treated efficiently under the open sys-
tem (3rd quantization) formulation. However, there is one type of system with very important
applications, e.g. in quantum optics, that has somehow been left out so far, namely spin-boson
systems. Some aspects of integrability and exact solvability of these systems in the closed sys-
tem framework have been extensively discussed in the literature (see, e.g. [23] for the Rabi
model and [24] for the Jaynes—Cummings and Dicke models). A recent case is the exactly
solvable model of an electron in a driven harmonic oscillator with Rashba coupling [25, 26].
The exact solution of this model enables reliable treatment of the system coupled to a thermal
bath [27]. It turns out that such a coupling of the time-dependent harmonic operator with spin
degrees of freedom generates different Lindblad operators combined with bosonic and spin
operators. The problem can be treated numerically [27], but an analytical approach to such
problems is possible, and this is precisely the goal of the present work.

Here, we essentially provide a small extension of the third quantization method that allows
us to include additional quantum degrees of freedom with a finite-dimensional Hilbert space,
provided that these degrees of freedom enter the Hamiltonian and jump operators only through
commuting operators. Further, a concrete example, a 1-dimensional spin-boson model, is
worked out in detail. The time evolution of the expectation value of spin is derived in the
limit of weakly coupled bosonic and spin degrees of freedom. Remarkably, numerical results
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suggest a closed-form expression for the time evolution which is universally valid even for
strong couplings; however, analytical proof of this conjecture remains an open question.

2. Formal solution

This paper aims to solve the following Lindblad—Gorini—Kossakowski—Sudarshan master
equation for n particles:

dp

o = Lri=—ilHpl+ Y (Luptf —{L]Ly.p}), (1)
1

where H and L,, are the Hamiltonian and Lindblad operators, respectively. p is the density
operator describing the state of the n particles. The operators H and L, are given by:

H=d -‘Ha+a Ka+td -Ka' +0-Qat+a Qg )
L,=1,-a+k,-a'+w, o, 3)

where a and a' are n-dimensional vectors of canonical bosonic annihilation/creation operators,
and ¢ is an n-dimensional vector of mutually commuting Hermitian operators, with a finite
discrete spectrum. We also assume that [a;,0;/] = 0. H, K, and Q are n X n matrices with
complex entries. The matrix H is Hermitian (H' = H), the matrix K is symmetric (K = K7),
and the matrix €2 is arbitrary. The vectors /,,, k., and w, are n-dimensional vectors of generally
complex constants.

Below we follow the notation and formalism developed in [11] extending n bosonic degrees
of freedom with additional # finite level quantum systems (e.g. spins where o; can be con-
sidered as their z—projections). We introduce operators a, ; and a;, j» sometimes referred to
as superoperators, acting over a linear vector space of density matrices, where v = 0,1 and
j=1,..,n

A AL .7 AL iR
do,j =4aj Qy; =4a; —4a; ,
L AR ~r _ AR L
arj=a; , ayj=a —a . 4)

We stress that a@,,; is not related to the Hermitian adjoint &I ;j (not even with a possible

redefinition of an inner product). Here, the superscripts L and R indicate the left- and right-
multiplication maps

bhp) = |bp), BR|p) = |pb), where b Eaj7a;, or j. Q)

The operators (4) satisfy the almost-canonical commutation relations:

~ ~t

I:&UJ’&;LJ(] = 5u,u5j,k7 [&uJa&u,k] = [azI/Jva;L,k] =0. (6)
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In terms of these operators, we rewrite the Liouvillean as follows:
L=—if"+if*+)" (2I:MLLLR A fHRLLR) )
n
=—iay-Hay+ia; -Ha, +ia-K(2a,+a;) —iag-K(2a, +ag)

—ia)-Qfet +io® - Qal —i (a"—cr )-Qa,+ia, - Qf (a —a")
+a0 ( )aOJral (NfM)a1+El’~(I: *L)Q1+Ql'(LT*L)QO
fgo EQO al La, +2a0 N&ll 420 - Wk — gl - Wot — of - Wk
+a,- (F, ) (JL—J )+a1 (F E) (O’ fal‘) fgéjlgl‘féf -EoR
—ay-F(o" —20") —a -F (c* —24"), ®)

where we define n x n matrices:

M::le‘@zﬂ :MT’ N:= ka@ku :NT’ L:= ZZM®EM’
Iz Iz

m

Wi:zwy@)@u:“ﬁ’ E;:Zlu(g@w F::ZISM@E#. )
p i .

To get rid of terms linear in @ and a' weusea simple affine map

—a+s, a —a' +s' (10

1>

n anT
where s,s’ are constant n-vectors to be determined. Let us define b ( a, g') =
A A s T
(go,gl,g(/),gl) ,d=(s,s’ )T: (go,gl,go,;l) andg = (QL,QR) . The Liouvillean can be com-
pactly written in a matrix form

ﬁ:@—g)-s(b d)+tr() r (11
where
-:< 0 _X> s (12)
_1(iH-N+M -2K-L+L’ 1)
3 \2K-L+LT —iH-N+M
| (2K -L—L" N ,
2( 2NT 2iKLLT> =V (14)

In order to eliminate the linear terms, we must fulfill the following condition for the vector d:

F-E—-iQ" -F+E+iQ
= T = AT
2Sd— —Go, where G.— | FHE-  F-E+i (15)
_F_-E—i OF
2F —-F-E+iQ"
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To obtain d one has to solve the above linear system. If S is nonsingular, then we can express
it explicitly as d = —%S_IGQ. Further, we can calculate the last term in equation (11), which
is related to the asymptotic rate of decoherence in our system:

I'=d-Sd—o" W (c®—c") - (c* - oF) - Wa"
1 _
= Z@GTS*IGQf (" =) (We* —Wa'). (16)
The term tr(X) in equation (11) stems from reordering of operators a,,; and a,) ;. Note that the
assumed nonsingularity of the matrix S is also related to the uniqueness of the nonequilibrium
steady state [10]. Here, we focus on this regime and do not delve into the possible scenario of
a singular matrix S which we leave for a future study.

By literally following the procedure introduced in [11], we successfully transform the
Liouvillean into its final form:

2n

L=-2) B¢/ -T (17)
r=1

where

(=P'(a-s9-2z@'-s)), ¢=pP'@"-s). (18)

The rapidities 5, and the matrix P are obtained from the diagonalization of the matrix X,
namely:

X =PAP !, A =diag{B1,...,m}, (19)
and the matrix Z is a solution of the continuous Lyapunov equation
X'Z+7X =Y. (20)

If all the rapidities have a non-negative real part, VRe 3, > 0, one can obtain nonequilibrium
steady states [NESS?) and all the corresponding decay modes |©},) (m € Z7" is a multi-index)
of the Liouvillean for each combination of joint eigenvalues (s%, s®) = s of the hermitian oper-
ators (a*,a®), such that

(ﬁ+r) INESSS) = 0, 1)
or more precisely

{,[NESS*) =0, (22)
and

L£16%) = (M —T)165), (23)
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where

C;/ m,
‘®Z> = H (\/n% INESS*), Am = _szrﬁr- (24)

r

Note that |©;,) generally do not constitute an orthogonal basis.
Given an initial condition |pg) = 3" |g5) ® |s¥)(s¥|, with |55) being the bosonic part, the
solution to the time-dependent problem for the density matrix is given by:

p(0) =Y cge=Te) (25)

where coefficients ¢y solve the set of linear systems for each joint eigenvalue s:

EEDIACHE (26)

where |©3,) is the bosonic part of |©3,), i.e. |O5) = |O5) @ [sF) (sR|.

3. Example

Let us consider a 1-dimensional system (n = 1) with two Lindblad operators, L; = a 4 z,0°
and L, = z,0%, and a Hamiltonian H = wa'a + cac® + aa’o?, where w € R and z;1,25,a € C.
Here, o¢ is the Pauli matrix for the spin degree of freedom, and terms with « represent, for
example, the coupling of the spin to an inhomogeneous magnetic field for the real part of «
and the Rashba coupling for the imaginary part [25-27].

Thus, in accordance with the previous section, we have H=w, @ = a,M =1,W = |z, |2 +
|z2>, E=17;, and K= N = L = F = 0. Subsequently, employing our established formalism,
we proceed to compute:

1 14w 0 o o 0 X
B I N
GT— _ 21—l 71—k -1 — ik 0

Zi+ia —n+ia 0 -Z1+ia)’

As w € R, the matrices X and S are non-singular, implying a non-degenerate NESS.

Given that X = A is already diagonal (P =1I), the rapidities are 5, = (1+w)/2.
Moreover, since Y =0, we also find that Z = 0, and consequently, from equation (18), we
conclude that (CA , é Nt = b—d. Solving the linear system (15) for d we get

d" = (=", —nio® 0 (F = ") - (0" —o*)) (28)

where ny = (z1 £i@)/(1 £ iw), and for brevity we omitted the superscript z in 0. Finally, for
the asymptotic decoherence, we obtain

I'=(of—0") (yor —=50%), v=mi-(1+iv) - |a - |2l (29)

For each sector s = (s&,s%) € {—1,1}%, we can compute the NESS which satisfies the con-
straint (22):

INESS?) = |a") (o] @ |s")(s"], (30)

6
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1
where |alR) with a“R = —p s“R are coherent states, ie. |a) =e~loI/2%, Z5lD). and
|sE) (s®| represents the spin degree of freedom. The form of |[NESS*) indicates the genera-
tion of entanglement between the bosonic and spin degrees of freedom (as further discussed
in section 3.1).

3.1 Initial condition and the expectation value of spin

In this section, we present the calculation for the time evolution of the expectation value of
spin, (o# (1)) =tr(c*p(t)) (1 = x,y,2), given an initial condition.

Utilizing equations (26) and (30), the determination of coefficients c;, involves solving the
system of linear equations:

BN

AT e

") (|, Vs, 31)

m

where ¢/ = at —a® +7_ (st — s®) and ¢ = &% — a" 4 1_ (sR — s~). We examine a scenario
where the system is initially in the product state |pg) = |0)(0| ® 1(I+ o0*), i.e. with the
bosonic part in the ground state and spin pointing in the x direction where o¢ = (c*(r = 0)).
Although the above linear system for ¢y can be solved numerically for arbitrary values of 74
and m, we will proceed with an analytical treatment for the slowest decay modes, i.e. m; > < 1,
in the regime |n4| < 1.

To obtain the coefficients ¢y, we perform a Taylor expansion of the expression (31) up to
quadratic terms in 74. This expansion results in a 4 x 4 system of equations to solve for each

s = (st,s%):
lag 1 n/SR ﬁ/sL 14+ |77/|2SLSR 0%070)
2 s
0 e A B U s I | KR!
0 ¢ _ SL _ /SLSR 1— SL + /SR C; ) (32)
: " m ' st 10
In|?s"s" —nst — s 177 i)

where §= (1 —5s"5%)/2, n=1n4, n’ =n- — (n- —n4)s"s® and 7 = 2Re(n77’) + [n|*s"s"
The solution for the coefficients is given by:

o) 1+ |n|2sts® + 2Re (n77") (—1 + |n|*s=s®) + 4|7’ |?
s ~ _ _ _ N2 _
Con | Mo} i (1 —nn' = (') + Inn’Iz) s*
2 2 _ ) _
€10 n(lfnn’f(nn’) +|77?7’|2)SL
1) In|? (1+2Re (ni")) sts®
1— (2Re (n477-) — [+ ) (1 —s"5%)
K = SR
~ 70 e : (33)
2 77+S
|4 [2s"s®

where M = ¢! /(1 + |nii’ (3 + 2Re(i}"))).
After computing the coefficients, it becomes evident that the dynamics produce
entanglement between the bosonic and spin degrees of freedom, as suggested earlier.

7
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One approach to observe this is by explicitly expressing the asymptotic behavior,
t— oot |p(t)) < e Z;C%O7O)|NESS§> me U (2 a, ) ay |+ 5% a_)(a_]), where 6o =

00 (1 —4Re(+7-) + 2|4 P) and Jas) = L (|=ms) @ 1) £ [+2) © 1)), which shows

that the state is entangled. However, note that the coherent states |47, ) are not orthogonal.
To determine the time evolution of (o*(¢)), it is necessary to compute the expectation values

of o for the slowest decay modes. Following the notation in [11],i.e. (A|p) = tr(Ap), we have:

_ 2
("16%0,0)) = F—stme™ ",

_ 2
(O'x|@%()7])> = 6(75",5’*)6 20l (7]+77/)SR7

— 2 — —
(0716¢1 ) = (—seame M (i +7)s, (34)

where § is the Kronecker delta. The final result in the limit |1+ | — O for the slowest decay
modes (A,0) = 0, A0,1) = A(1,0) = —1 +iw) is then:

(o (1) =) s (01O~ oo (1-4Re (77 (1=~ 1)) )T, (35)

S,m

where equation (29) evaluates to

I'=—4Re(7)
=4 (wIm(ny-) —Re(nii-) +|z >+ |Zz|2)
> 4(wla| =)’/ (14+w?) +4[l* >0 (36)

where the first inequality is a consequence of the Cauchy-Schwarz inequality. The real and
imaginary parts of 77— equal to

Re (ny7-) = ((1—w?) (lz1]* — |of*) +4wRe (z1a)) / (1 +w2)2, (37)
m(ny7) = (=20 (ja P = |of?) +2 (1 —w?) Re(zia)) / (1+42)*. (38)

Taking the logarithm of expression (35) and approximating it for |n4| < 1, yields

log ((o* (1)) /o) = —4Re (nmf (1 - e—<1+"wﬁ)) T (39)

Surprisingly, this expression holds for every 7, regardless of their magnitude (see section 3.3),
however, comprehending this generalization surpasses the current treatment and remains an
open question. Also, it is essential to emphasize that equations (35) and (39) are valid only for
the specific initial condition | g) ~ |0)(0|. For different initial conditions, such as | jg) ~ |n)(n|
with 7 = 0, one must include higher orders of m in the computation of the coefficients ¢z to
obtain the correct result.

Introducing an argument ¢ of the complex number 7, 7_, i.e. ny7_ = |[n47_|e'?, allows
us to rewrite the resulting expression (39) as

log (0 (1)) /) = —Aln+ 7| (cos (¢) — e cos (wr — 6)) — T

_ cos(wr—¢) _,
= —4R )|1-———F —TIr 40
e (n41 )( cos(@) ¢ ) (40)
Clearly, for large ¢, the solution exhibits exponential decay with an asymptotic decay rate I".

Regarding the behavior of the quantities present in the final expression, namely Re(7n7_),
¢, and T', with respect to w, refer to appendix.
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3.2. Limiting cases

Here, we explore several limiting cases of the expression (40) with respect to 7 and w.
As suggested above, in the limit # — oo, the expectation value of spin decays exponentially
with time:

log ((0* (1)) /o) = —4Re (11.7-) ~I'. @)
On the other hand, in the limit # — 0, equation (39) reduces to
log ((o*(1))/00) = =4 (|1 |* + |22*) £+ 2 (|a1[* = []?) 7 (42)

where we retained terms up to the second order in ¢. Interestingly, up to the quadratic order
in ¢, the time evolution of the expectation value of spin does not depend on w. Moreover, by
restricting ourselves solely to the linear order, the time evolution becomes independent of o
as well, effectively governed by an effective Liouvillean [leff, where Het = 0 (or Hgp = wa'a)
and Ler = +/|21]* + |22]?0%.

Next, we investigate the limits in w. To obtain simpler results, we also consider « to be
proportional to w.

In the limit w — 0 we get:

e — |z1)* = |a]* +2iRe (z1a) 2225 |71 )%, (43)
2R axXw
¢ — arctan ( ze(zla)2> 0, (44)
|z1]* — |
I'—4(jaf +|2) == 4], (45)
and thus
log ({0 (1)) /o) === —4|z |2 (1 —e*t) —4|z2|2t. (46)

Clearly, the last limit o oc w — 0 implies H — 0. Taking the limit # — O recovers equation (42).
If we take the limit w — oo while considering o o< w, we observe:

ni- == ([ol /w)?, (47)
¢ =20, (48)
L 2% 4 (|5 + |2 + (Jal /)’ - 2Re (ma/w)) (49)
and
2
log ({0 (1)) Jop) =2 —4%(1—(%05 (wt))—Tt. (50)

If o does not scale with w, we simply obtain log ({c(¢))/09) = —4(|z1|> + |z2|?)t, which cor-
responds to the linear term in equation (42). Notably, this expression remains valid even for
large r.
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\‘:‘ 0 = w=0, a=0.0
é w=1, a=0.5
Q 9 ] - w=2, a=1.0
e 2 ;
~ - w=5, a=2.5
=

—4 7 \,
!
5o
&
2 ]
= T T T T T

0 1 2 3 4 5 6

t

Figure 1. Time evolutions of the expectation value (o*(¢)) for different values of w
and @ = w/2 (z; = 1, zo = 0). The presented solutions were obtained using analytical
expression (39) and are graphically indistinguishable from numerical results obtained
via QuTiP.

3.3. Comparison with the numerical results

To validate our findings, we utilized the QuTiP Python library [28, 29], which allows for
the computation of the time evolution of the density matrix following the Lindblad master
equation.

As the parameter z, contributes trivially to decoherence, we disregarded it in our calcu-
lations by setting it to 0. We simplify the presentation by displaying outcomes for various
w ranging from 0 to 5, with &« = w/2 and z; = 1, which is depicted in figure 1. Note that in
the presented solutions we subtracted the asymptotic decoherence —I't which dominates for
large t.

The numerical computations (QuTiP) for the time dependence of (c*(¢)) align with the
conjectured analytical expression (39) within numerical precision, O(107%). This consistency
holds even for parameter choices far from the limit n4 — 0, such as z; = 1 and w=0.

4. Conclusion

In conclusion, our study delved into the dynamics of a quantum system that exhibits quad-
ratic behavior in bosonic degrees of freedom and linearity in additional commuting (classical)
degrees of freedom, employing the formalism of third quantization. In particular, we succeeded
in diagonalizing the Liouville superoperator and obtaining nonequilibrium steady states and
the corresponding decay modes for various combinations of eigenvalues of the mutually com-
muting Hermitian operators.

A special case involves a harmonic oscillator coupled through Rashba interaction to the
spin degree of freedom, which we solved exactly in the limit 7+ — 0. Our analysis reveals
a transient process in the expectation value of spin, ultimately converging to an exponential
decay with a rate I, highlighting the system’s long-term relaxation behavior. Additionally,
we explored various limiting scenarios, recovering well-known time dependency for the
Lindbladian L ~ ¢¢ in two distinct limits:  — 0 and w — oco. Although we have numerically
verified our solutions, a complete analytic proof of generality remains an open question.

The results presented provide valuable contributions to understanding the dynamics of
open quantum systems and provide a basis for further studies of related physical phenomena
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in which spin degrees of freedom are coupled with bosonic ones. For example, these find-
ings could be significant for understanding decoherence in spin systems coupled to a bosonic
thermal bath and confined in quadratic potential traps [27]. Such studies could provide import-
ant insights into the behavior of quantum systems under realistic experimental conditions and
pave the way for advances in quantum technology and quantum information processing.
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Appendix. Dependence of Re(747—), ¢, and ' on w

Figure A1 illustrates the behavior of Re(74.7— ), ¢, and I" as functions of w. We set z; = 1 and
follow a similar approach as in section 3.2, assuming « to be proportional to w, specifically
a =wé (¢ € C). For simplicity, we omit z, as it only trivially affects I'. Note that when & =1,
we obtain I' = 0, or more generally, I' = 0 holds for o« = wz; and z, = 0.

|= Re(mi7-)/1211> = ¢/ =T/
14 14 1.0
¢ =-0.5 ¢ =0.0 & =05
0+ i
04 0.5
—14
0.0
-2 e —1 1 R — —
1.0 21 4
- £=10 =15 4 ¢ =200
0.5 1 bﬁ_— 27
1_.
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Figure A1. Various examples of the dependence of Re(n+7—), ¢, and " on w for dif-
ferent choices of £ (z1 = 1, z2 = 0, o = wé).
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