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T Rejec†, A Ramšak†‡ and J H Jefferson§
†J Stefan Institute, SI-1000 Ljubljana, Slovenia
‡Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
§DERA, St Andrews Road, Great Malvern, Worcestershire WR14 3PS, England

Received 21 February 2000

Abstract. We study the conductance threshold of clean nearly straight quantum wires in which
an electron is bound. We show that such a system exhibits spin-dependent conductance structures
on the rising edge to the first conductance plateau; one near 0.25(2e2/h), related to a singlet
resonance, and one near 0.75(2e2/h), related to a triplet resonance. As a quantitative example
we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a
weak bulge. From the scattering matrix we determine conductance via the Landauer–Büttiker
formalism. The conductance anomalies are robust and survive to temperatures of a few degrees.
With increasing in-plane magnetic field the conductance exhibits a plateau at e2/h, consistent with
recent experiments.

Following the pioneering work in [1, 2] many groups have now observed conductance steps
in various types of quantum wire. These first experiments were performed on gated two-
dimensional electron gas (2DEG) structures, while a similar behaviour of conductance is
exhibited in ‘hard-confined’ quantum wire structures, produced by cleaved edge over-growth
[3], epitaxial growth on ridges [4], heteroepitaxial growth on ‘v’-groove surfaces, [5] and most
recently in GaAs/AlδGa1−δAs narrow ‘v’-groove [6] and low-disorder [7] quantum wires.

These experiments strongly support the idea of ballistic conductance in quantum wires
and are in surprising agreement with the now standard Landauer–Büttiker formalism [8, 9]
neglecting electron interactions [10]. However, there are certain anomalies, some of which are
believed to be related to electron–electron interactions and appear to be spin-dependent. In
particular, already in early experiments a structure is seen in the rising edge of the conductance
curve [1], starting at around 0.7G0 with G0 = 2e2/h and merging with the first conductance
plateau with increasing energy. Under an increasing in-plane magnetic field, the structure
moves down, eventually merging with a new conductance plateau at e2/h in very high
fields [11, 12]. Theoretically this anomaly has not been adequately explained, despite several
proposed scenarios, including spin-polarized sub-bands [13], conductance suppression in a
Luttinger liquid with repulsive interaction and disorder [14] or local spin-polarized density-
functional theory [15]. Recently we have shown that these conductance anomalies near 0.7G0

and 0.25G0 are consistent with an electron being weakly bound in wires of circular cross-
section, giving rise to spin-dependent scattering resonances [16].

In this Letter we extend our previous work to planar quantum wires with a rectangular
cross-section and also analyse the effects of an external in-plane magnetic field. We consider
here, as an example, a small fluctuation in thickness of the wire in some region giving rise to a
weak bulge. Such a system may be regarded as an ‘open quantum dot’ in which one electron is
bound and inhibits the transport of conduction electrons via Coulomb repulsion. The problem
is analogous to treating the collision of an electron with a hydrogen atom as, e.g., described
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in [17] and studied 70 years ago by J R Oppenheimer and N F Mott [18]. The conductance is
obtained from the transmission probabilities for individual channels via the usual Landauer–
Büttiker formalism [8,9]. In the present two-electron problem, the relevant channels are singlet
and triplet, with transmission amplitudes ts and tt , respectively, and corresponding transmission
probabilities Ts(E) = |ts|2 and Tt(E) = |tt|2. The transmission amplitudes for particular spin
configurations of the target (bound electron) and scattered electron are further expressed in
terms of ts and tt as t↑↑→↑↑(E) = tt , t↓↑→↓↑(E) = 1

2 (ts + tt), and t↓↑→↑↓(E) = 1
2 (ts − tt),

where, for example, t↓↑→↑↓(E) is the transition amplitude from [↓,↑] to [↑,↓] spin states of
the [scattered,bound] electron. The conductance for unpolarized electrons is then the average
over the initial and the sum over the final configurations, G(E) = G0T (E), where
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Tt(E). (1)

At finite temperatures the conductance is calculated using a generalized Landauer–Büttiker
formula [19]

G(E) = G0

∫
T (ε)

[
−∂f (ε−E, T )

∂ε

]
dε (2)

where f (ε, T ) = [1 + exp(ε/kBT )]−1 is the usual Fermi function.
For simplicity, quantitative treatment of quantum wires is restricted to the geometry shown

in figure 1, with confinement in the x- and y-direction and electron propagation in the z-
direction. This is similar to wires produced in ‘v’-grooves as reported by Kaufman et al [6]
with thicknesses in the range 10–20 nm. The wire shape under consideration is symmetric
around the z-axis with constant potential, V (x, y, z) = 0 within a boundary shown in figure 1,
and confining potential V0 > 0 elsewhere. As shown in figure 1 the wire has thickness a3 and
a single bulge.
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Figure 1. Geometry of a near perfect wire or ‘open quantum dot’, parametrized as x0(z) =
1
2 [a0 + (a1 − a0) cos2 πz/a2] for |z| � 1

2 a2 and x0(z) ≡ 1
2 a0 otherwise.

In order to obtain precise results, we choose parameters appropriate to GaAs for the wire
and AlδGa1−δAs for the barrier with δ such that V0 = 0.4 eV, which is close to the cross-over
to an indirect gap. Band non-parabolicity is neglected and we use the GaAs effective mass,
m∗ = 0.067m0, neglecting its variation across the boundary. The corresponding one-electron
Schrödinger equation reads

− h̄2

2m∗ ∇2�(x, y, z) + V�(x, y, z) = (E0 + E)�(x, y, z) (3)
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where E is electron energy measured from the lowest transverse channel in the straight part
of the wire with energy E0 (which is V0-dependent, with E0 = h2/(8m∗)(a−2

0 + a−2
3 ) for

V0 → ∞). The wave function is expanded in elementary modes or channels, � (x, y, z) =∑
n �n (x, z) χ (y)ψn (z), where the basis functions�n(x, z) are orthogonal solutions of one-

dimensional (1D) Schrödinger equations in the x-direction for fixed z. We choose a3 � a0

and hence only the lowest y-channel solution, χ (y), is relevant.
If such a wire is connected to metallic source-drain contacts, electrons can flow into the

wire region. At least one electron will become bound in the bulge region of the wire. The
number of bound electrons depends on both the Fermi energy and the relative size of the
bulge (i.e. parameters a1 and a2). The single electron problem may be reduced to a quasi-
1D N -component differential equation [20, 21]. From the solution of the scattering problem,
the conductance is calculated from the usual Landauer–Büttiker formula. For a1/a0 � 1
many channels are needed, while for a1 ∼ a0 the inter-channel mixing can be neglected and
the conductance is very similar to that of a perfect straight wire with conductance steps in
multiples of G0. For energies E < 0, the solutions of equation (3) are bound states.

We consider the interacting electron problem with wire parameters in a range which
ensures that only one electron occupies a bound state and that restriction to a single channel
near the conduction edge is an excellent approximation. This is the case when the bulge
is sufficiently weak, with a1 � a0. The electron wave function is then determined from a
1D Schrödinger equation for ψ0(z) as in [21]. Within the single-channel approximation we
consider the interacting two-electron problem in which one electron is bound in the quantum
dot region. It should be noted that the existence of a single-electron bound state is guaranteed
in 1D and in this sense is a universal feature. With the chosen parameter range, a second
electron cannot be bound due to the effective 1D Coulomb repulsion U(z, z′) between the
electrons

U
(
z, z′

) = e2

4πεε0

∫∫∫∫ ∣∣�0 (x, z)�0
(
x ′, z′

)
χ (y) χ

(
y ′)∣∣2

dxdx ′dydy ′√
(x − x ′)2 + (y − y ′)2 + (z− z′)2

. (4)

The dielectric constant is taken as ε = 12.5, appropriate for GaAs. We solve the two-electron
scattering problem exactly, subject to the boundary condition that the asymptotic states consist
of one bound electron in the ground state and one free electron.

In figure 2(a) we show plots at zero temperature of Ts(E) and Tt (E) for a typical wire with
the geometry of figure 1. The thin dotted line represents the non-interacting result, independent
of spin. In figure 2(b) the conductanceG(E)/G0 is shown, as calculated from equation (2) for
various temperatures. The resonances have a strong temperature dependence and, in particular,
the sharper singlet resonance is more readily washed out at finite temperatures. However, it
should be noted that resonances survive to relatively high temperatures, because the width of
the wire, which dictates the energy scale, is small (a0 = 10 nm) [21]. Note that for weak
coupling, the energy scale is set by the x-energy of the lowest channel, ∼ a−2

0 , and hence the
conductance versus Ea2

0 with Ua0 fixed is roughly independent of a0 (the scaling would be
exact for V0 → ∞).

The effect of elevated temperatures is mainly to smear the resonances. The effect of a
magnetic field on conductance is much more subtle [4, 11] and a complete general theory
is not presently available. For the special case of an in-plane magnetic field (parallel to the
x-z plane), however, an estimate can be obtained as follows. We assume that the bound
electron in the initial state is polarized with spin ↓. This assumes that the bound electron
will reach its lowest Zeeman state between scattering events, whereas the effect of the field
on the electrons in the leads near the Fermi energy will be to simply change their densities of
states, as in Pauli paramagnetism. Thus the energy of the localized electron will be lowered
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Figure 2. (a) Zero temperature singlet transmission probability Ts (E), and triplet Tt (E) with full
and dashed lines, respectively. The energy E is measured from the lowest transverse channel in
the straight part of the wire. The dotted line represents the corresponding non-interacting result.
(b) Total conductance, G(E), for the temperature range T � 10 K, where resonances are still
discernible. The thin lines show the corresponding non-interacting result.

by EB = 1
2g

∗µBB, whereas the electron densities will be ρ↑(E,B) = ρ↑(E − EB, 0) and
ρ↓(E,B) = ρ↓(E+EB, 0). Although the densities of up and down spin electrons are no longer
equal in finite magnetic fields, the conductances of each spin species will be independent of
their densities in the Landauer–Büttiker formula, due to the usual cancelation with group
velocity. Hence, assuming that the transmission amplitudes have the same dependence on
kinetic energy as in zero field, the conductance is G(E,B) = G0T (E,B), where

T (E,B) = 1

2
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+
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∣∣2

)

= 1

2
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1

4
[Ts(E − EB) + Tt(E − EB)]. (5)

We have included the spin-flip term in this equation, which assumes that the scattered
electron, which lies 2EB below the Fermi energy, is not reflected by the collector. This
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Figure 3. (a) G(E,B) in a high magnetic field, equation (6), shown together with the non-
interacting result (dashed) and the corresponding result for a perfectly straight wire (dotted). (b)
G(E,B) for T = 3 K and the geometry of the wire shown in figure 2. Successive traces represent
results for EB incremented in steps 'EB = 0.5 meV and for clarity have been horizontally offset
by 2EB . Also shown is the non-interacting result (dashed) and perfect straight wire result (dotted)
for EB = 2 meV.

necessitates inelastic processes in the collector and the approximation may break down in
some circumstances which we shall not consider further here.

In any case, t↑↓→↓↑(E − EB) = t↑↓→↑↓(E − EB) = 0 when E � EB , for which we get
from equation (5)

G(E,B) = e2

h
Tt(E + EB). (6)

This is plotted in figure 3(a) for T = 3 K together with the corresponding results for non-
interacting electrons and a straight wire. We see that these curves are very similar, with a plateau
at e2/h but with the interacting case displaced to the right (due to the Coulomb repulsion) and
showing a slight dip, due to the broad triplet resonance. This curve is very similar to high-
field experimental curves on gated 2DEG wires which show the ‘0.7’ anomaly [12], further
supporting the view that an electron is weakly bound in the wire. In figure 3(b) G(E,B) for
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T = 3 K is presented for a magnetic field increasing from zero in steps with'EB = 0.5 meV,
and for clarity the curves have been shifted by 2EB to the right with increasingEB . We present
results for a0 = 10 nm, but note that EB also obeys the above mentioned scaling EBa2

0 with
varying a0. Magnetic fields which would give substantial effects in e.g. narrow ‘v’-groove
wires [6], would have to be very large, since EB = 1 meV corresponds to large g∗B ∼ 35 T.
However, due to ‘EBa2

0’ scaling, the corresponding value for a wider wire with a0 ∼ 50 nm
would be only ∼ 1.4 T. Also plotted in figure 3(b) for comparison are the corresponding
results for the non-interacting electron case (dotted) and the perfectly straight wire (dashed),
with EB = 2 meV. In this figure we have indicated with a dot the points E = EB . To the
left of these points G satisfies equation (6), whereas at high energies t↑↓→↑↓ and t↑↓→↓↑ are
non-zero in equation (5). As argued above, these parts of the curves should be treated with
caution, though they are expected to be more reliable at lower fields.

In summary, we have shown that quantum wires with weak longitudinal confinement, or
open quantum dots, can give rise to spin-dependent, Coulomb blockade resonances when a
single electron is bound in the confined region. This is a universal effect in one-dimensional
systems with very weak longitudinal confinement. The emergence of a specific structure at
G(E) ∼ 1

4G0 andG ∼ 3
4G0 is a consequence of the singlet and triplet nature of the resonances,

and the probability ratio 1:3 for singlet and triplet scattering and as such is a universal effect. A
comprehensive numerical investigation of open quantum dots using a wide range of parameters
shows that singlet resonances are always at lower energies than the triplets, in accordance with
the corresponding theorem for bound states [22]. With an increasing in-plane magnetic field,
the resonances shift their position and a plateau G(E) ∼ e2/h emerges. The effect of a
magnetic field is observable only in relatively wider quantum wires, due to the intrinsic energy
scale ∝ a−2

0 .
Finally, we speculate on how these results might change if more than one electron is

confined longitudinally in the wire. This possibility could arise, for example, in long, near
perfect wires with a long weak confinement region. Theoretically this becomes a more
complicated spin-dependent scattering problem [17]. The conductance would then again
show resonance anomalies with positions determined by the weights of the spin states. The
generalized Landauer–Büttiker formula for such cases was discussed recently by Flambaum
and Kuchiev [23], who also derived independently the formula for the singlet/triplet case
discussed above and in [16]. In the case when two electrons are bound, i.e. a conduction
electron scattering from two bound electrons in the confinement region, the relevant resonant
states of three electrons will be doublets and quartets. When the length of the longitudinal
confinement region is somewhat greater than a Bohr radius, we are in the quasi-1D strong
correlation regime for which we expect a low lying manifold of spin states, well separated
from higher-lying states and described by a Heisenberg model, as in a 1D quantum dot with
3 electrons. This spin manifold contains 23 = 8 states, which split into two doublets and a
quartet; we expect a doublet to be lowest in accordance with the Lieb–Mattis theorem. This is
consistent with the exchange being antiferromagnetic, which is the case in a truly closed 1D
quantum dot with 3 electrons, for which the quartet is highest in energy [24]. If this picture
holds for the resonant bound states, then we should get two doublet resonances with weight
1/4 each, followed by the quartet at highest energy with weight 1/2. This latter resonance
will give a conductance anomaly near e2/h. Furthermore, this resonance will be broader than
the doublet resonances since it is somewhat higher in energy than the two singlets and is thus
expected to be more pronounced at finite temperatures. Conductance anomalies close to e2/h

have been observed very recently in long, clean and nominally straight wires [7]. This is
consistent with the above scenario, though we must await detailed calculations in this strong
correlation regime for a more complete picture.
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