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Abstract

We calculate spectral functions within the t–J model as relevant to cuprates in the regime from low to optimum doping. On

the basis of equations of motion for projected operators an effective spin–fermion coupling is derived. The self-energy due to

short-wavelength transverse spin fluctuations is shown to lead to a modified self-consistent Born approximation, which can

explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin

fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates

the Fermi surface. q 2002 Elsevier Science Ltd. All rights reserved.
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Here we concentrate on some of the experimental facts

revealing the nature of quasiparticles (QP) and pseudogap in

underdoped cuprates. Several quantities, in particular the

uniform susceptibility, the Hall constant, the specific heat,

show the (large) pseudogap scale T p [1], consistent with the

angle resolved photoemission (ARPES) revealing a spectral

function A(k,v ) with a hump at ,100 meV observed in

Bi2Sr2CaCu2O2þd (BSCCO) near the momentum k ¼ ðp; 0Þ

[2,3]. QP dispersing through the Fermi surface (FS) are

resolved by ARPES in BSCCO only in parts of the large FS,

in particular along the nodal (0,0)– (p,p) direction,

indicating that the rest of the large FS are either fully or

effectively gaped. Some aspects of the pseudogap have been

found in the phenomenological spin–fermion models [4].

The renormalization group studies of the Hubbard model [5,

6] also indicate the breakdown of the standard Fermi liquid

and the truncation of the FS. That such features also emerge

from prototype models of correlated electrons has been

confirmed in numerical studies of spectral functions in the

Hubbard [7] and in the t–J model [8–10], which both show

the appearance of the pseudogap at low doping.

Our aim is to capture these features within an analytical

treatment of a single band model. The most difficult aspect

in the latter is inherent strong coupling between mobile

fermions and spin degrees, for which it is hard to find even a

proper phenomenological model. In the following, we show

that such an effective spin–fermion model can be derived

via equations of motion (EQM) and dividing the coupling

into short and long-wavelength spin fluctuations.

We study the planar t–J model

H ¼ 2
X
i; j;s

tij ~c
†
js ~cis þ J

X
kijl

Si·Sj 2
1

4
ninj

� �
; ð1Þ

where we take into account possible longer range hopping,

i.e. besides tij ¼ t for n.n. hopping also tij ¼ t0 for n.n.n.

neighbors on a square lattice. The latter appears to be

relevant in the study as shown later. We evaluate the single-

particle propagator in this model explicitly taking into

account that fermionic operators are projected ones not

allowing for double occupancy of sites, e.g. ~c†
is ¼ ð1 2

ni;2sÞc
†
is: We use EQM directly for projected operators [11]

and represent them in variables relevant for a paramagnetic

metallic state with kSil ¼ 0 and electron concentration

knil ¼ ce ¼ 1 2 ch: EQM for ~cks can be used to construct

approximations for the electron propagator Gðk;vÞ

[11–13], which can be represented as

Gðk;vÞ ¼
a

vþ m2 zk 2 Sðk;vÞ
; ð2Þ

where the renormalization a ¼ ð1 þ chÞ=2 is a consequence

of a projected basis, and zk ¼ 24h1tgk 2 4h2t0g0k is the

‘free’ propagation term emerging from the EQM, with gk ¼

ðcos kx þ cos kyÞ=2 and g0k ¼ cos kx cos ky: Here hj ¼ aþ

kSz
0Sz

j l=a is determined by spin correlations. The central

quantity for further consideration is the self-energy

Sðk;vÞ ¼ RCks;Cþ
ksS

irr
v =a; where iCks ¼ ½~cks;H�2 zk ~cks;

and only the ‘irreducible’ part of the correlation function
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should be taken into account in the evaluation of S. In

finding an approximation for S, we assume that we are

dealing with the paramagnet with pronounced AFM SRO

with the dominant wave vector Q ¼ ðp;pÞ and the AFM

correlation length j . 1 with corresponding k ¼ 1=j: EQM

naturally indicate on an effective coupling between fermions

and spin degrees, however, the role of short- and longer-

range spin fluctuations is quite different.

In an undoped AFM system the spectral function of an

added hole is quite well described within the self-consistent

Born approximation (SCBA) [14–16], where the strong

hole–magnon coupling induced by the hopping t-term leads

to a broad background representing the incoherent hopping

and a quite narrow QP dispersion determined by J. Our

EQM formalism naturally reproduces SCBA in an undoped

system and it is easy to generalize the equations for finite

doping ch . 0 where we have also electron-like QP above

the Fermi energy (v . 0). In 2D the AFM long-range order

is broken at T . 0 and ch . 0, still spin fluctuations are

magnon-like with a dispersion vq for q . k and ~q . k

where ~q ¼ q 2 Q: The paramagnon contribution to the self-

energy can be written as

Spmðk;vÞ ¼
16t2

N

X
q;~q.k

ðuqgk2q þ vqgkÞ
2

� ½G2ðk2q;vþvqÞ þ Gþðk þ q;v2 vqÞ�;

ð3Þ

where ðuq; vqÞ ¼ ð1;2signðgqÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J ^ vqÞ=2vq

p
and G ^

refer to the Green’s functions corresponding to electron

(v . 0) and hole (v , 0) QP excitations, respectively.

We are dealing with a paramagnet without the AFM

long-range order, therefore it is essential to consider also the

coupling to longitudinal spin fluctuations which for ~q , k

appear to be quite uncoupled, therefore we express the

longitudinal contribution as in Refs. [11–13],

Slfðk;vÞ ¼
1

aN

X
q

~m2
kq

ðð dv1 dv2

p
gðv1;v2Þ

�
A0ðk 2 q;v1Þx

00ðq;v2Þ

v2 v1 2 v2

; ð4Þ

where xðq;vÞ is the dynamical spin susceptibility,

A0ðk;vÞ ¼ 2ða=pÞImðvþ m2 zk 2 SpmÞ
21; gðv1;v2Þ ¼

½thðv1=2TÞ þ cthðv2=2TÞ�=2 and ~mkq ¼ 2Jgq þ
1
2
ðe0

k2q þ

e0
kÞ with e0

k ¼ 24tgk 2 4t0g0k [13].

In Slf only the part corresponding to irreducible

diagrams should enter, so there are restrictions on proper

decoupling. We use in Eq. (4), the most appropriate and

simplest approximation to insert the unrenormalized

A0ðk;vÞ; i.e. the spectral function without a self-consistent

consideration of Slf but with Spm fully taken into account.

Such an approximation has been introduced in the theory of

a pseudogap in CDW systems [17], used also in related

works analyzing the role spin fluctuations [18,19], and

recently more extensively examined in Ref. [20].

So far we do not have a corresponding theory for the spin

response at ch . 0 and T . 0, so x(k,v ) is assumed as a

phenomenological input, bound by the sum rule

1

N

X
q

ð1

0
cth

bv

2

� �
x00ðq;vÞdv ¼

p

4
ð1 2 chÞ: ð5Þ

The response should qualitatively correspond to a para-

magnet close to the AFM instability, so it is assumed of the

form

x00ðq;vÞ /
fðv; TÞ

ð~q2 þ k2Þ v2 þ v2
k

� � ; ð6Þ

where fðv;TÞ / v would be appropriate for a nearly AFM

Fermi liquid [4,19] or an undoped AFM in 2D. The self-

consistent set of equations for G is closed with S ¼

Spm þ Slf : For given chemical potential, m, the FS emerges

as a solution determined by the relation zkF
þ S0ðkF ; 0Þ ¼

m: We should note that at given m, electron concentration ce

as calculated from the density of states NðvÞ ¼ ð1=NÞ �P
k Aðk;vÞ integrated for v , 0, does not in general

coincide with the one evaluated from the FS volume, ~ce ¼

VFS=V0: Nevertheless, apart from the fact that within the t–J

model validity of the Luttinger theorem is anyhow under

question [21], in the regimes of large FS both quantities

appear to be quite close. The position of the FS is mainly

determined by zk and Spm; while in this respect Slf is less

crucial. We choose further on parameters J ¼ 0:3t; t0 ¼

20:2t and k ¼
ffiffiffi
ch

p
while h1 and h2 are determined as a

function of ch from model calculations [22]. We use N ¼

32 £ 32 points in the Brillouin zone and broadening e=t ¼

0:02:

In Fig. 1, we present hole concentration ch vs the

chemical potential m/t as obtained from Eq. (3). We solve

the equation by iteration. With labels (a), (b) and (c) are

Fig. 1. Hole concentration ch as a function of the chemical potential

m=t for J=t ¼ 0:3; t0=t ¼ 20:2 and N ¼ 32 £ 32 sites in the Brillouin

zone. Note selected cases presented further on (a) ch ¼ 0:28; (b)

ch ¼ 0:21; (c) ch ¼ 0:16 and (d) ch ¼ 0:04:
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indicated special cases presented in next figures. At

ch , 0.12 we observe in the equations an instability signaled

by oscillatory behavior instead of convergence and a unique

solution cannot be obtained in the region indicated by the

dashed line. However, at lower doping, ch , 0.05, the

solution converges again and a typical result is indicated

with (d). The region of instability coincides with the

transition from the large to a small FS, as presented below.

In Fig. 2 are presented spectral functions Aðk;vÞ along

the principal directions in the Brillouin zone for Fig. 1(a),

(c) and (d). It is evident that Spm leads to strong damping of

hole QP and quite incoherent momentum-independent

spectrum A(k,v ) for vp2J which qualitatively repro-

duces ARPES and numerical results [10]. Electron QP (at

v . 0) are in general very different, i.e. with much weaker

damping arising only from Spm: At low doping ch , 0.05

we find the regime of small (pocket-like) FS.

The shape of the FS is most clearly presented with

contour plot of the electron momentum distribution

function ~nðkÞ ¼ a21
Ð0
21 Aðk;vÞdv: Results for a

characteristic development of the FS with ch are

shown in Fig. 3. At ch , cph , 0:05 solutions are

consistent with a small pocket-like FS (d), whereby

this behavior is enhanced by t0 , 0 as realized in other

model studies [23]. On increasing doping, the FS rather

abruptly changes from a small into a large one as

suggested from the results of SCBA [24,25]. The

smallness of ch
p has the origin in quite weak dispersion

dominated by J and t0 at ch ! 0 which is overshadowed

by much larger zk at moderate doping, where the FS is

large and its shape is controlled by t0/t. Figures (a), (b)

and (c) correspond to higher doping with common large

FS topology. However, in the intermediate doping

regime (b) and (c), the pseudogap is pronounced at

momenta around (p,0) point. The gap is more

pronounced in (c) because of longer AFM correlation

length j (smaller k ). In Fig. 4, the development of the

PG is presented for ch ¼ 0:21 (case (b)). Here k ¼ 0:4

and the PG is not fully developed yet. With increasing

j—for this doping somewhat unrealistic values—the gap

opens. At lower doping, case (c) in Fig. 3 the gap is

opened what also shows up the form of the FS which

tends to avoid points (p,0), (0,p).

In conclusion, we have presented a theory for the

spectral functions within the t–J model where the

double-occupancy constraint is taken explicitly into

account and used to derive an effective spin–fermion

Fig. 2. Spectral functions A(k,v ) along principal lines in the

Brillouin zone. For convenience of presentation the functions are

clipped at Aðk;vÞ ¼ 1:0: Labels (a), (c) and (d) correspond to

selected cases in Fig. 1.

Fig. 3. Electron momentum distribution function ~nðkÞ for various ch

as selected in Fig. 1.
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coupling. The coupling to transverse AFM paramagnons

is strong, nevertheless it can be well treated within a

generalized SCBA. On the other hand, the coupling to

longitudinal AFM fluctuations, ~mkq; is moderate near FS

for low doping and leads to a pseudogap. The latter is,

however, not in contradiction with the existence of a

large FS, and should show up in integrated photo-

emission and ARPES results as well as in the uniform

susceptibility and in the specific heat.
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Proceedings of the NATO ARW on Open Problems in

Strongly Correlated Electron Systems, Kluwer Academic

Publishers, Dordrecht, 2001.

Fig. 4. Spectral functions A(k,v ) for ch ¼ 0:21 (Fig. 1(b)) for

different k. The functions are clipped at Aðk;vÞ ¼ 2:0: Note the

opening of the gap at k ¼ ðp; 0Þ with decreasing k.
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