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Abstract. Two entangled electron spins, or qubits, are analysed in terms of
ordinary three-dimensional space geometric properties, as are the angles between
their angular momenta. This formulation allows concurrence, a measure of
quantum entanglement, to be expressed as expectation values of trigonometric
functions of the azimuthal angle between the two angular momenta.

As quantum entanglement does not have a direct classical analogue and as it is not an observable
according to the usual rules of quantum mechanics, it is not obvious how it might be visualized
beyond the standard formalism. Nevertheless, numerous approaches have been developed so
far in order to intuitively analyse this problem in terms of some geometrical quantities. For
example, the entanglement of two spin-1/2 particles can be studied in terms of the distances
between states in high-dimensional manifolds [1, 2]; one can define entanglement geometrically
as the distance between a given state and the nearest separable state [3, 4], relate entanglement
to the geometrical structure of the quaternionic Hopf fibration [5]; or analyse it by the approach
of operator trigonometry [6]. A review of separability criteria and entanglement measures is
discussed geometrically in [7]. These geometric approaches rely predominantly on abstract
higher-dimensional spaces, not on usual R3.

Indeed, in general, quantities relating to spin-1/2 systems cannot be described in terms
of classical variables, in particular not in terms of usual geometrical coordinates. Still, to
some extent, geometric imagery is possible for a spin-1/2 state of a single electron which is
customarily parametrized in terms of the Bloch or Poincaré sphere, where polar and azimuthal
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angles can be interpreted as the Euler angles of a unity vector pointing along the spin direction.
One possible generalization of the Bloch sphere is the sphere model, which gives a geometrical
view of entanglement in terms of constraint functions describing the behaviour of the state of
one of the spins if measurements are made on the other [8].

The aim of this paper is, firstly, to visualize the quantum state of a pair of spin-1/2 particles
geometrically in ordinary three-dimensional (3D) space and, secondly, to express the quantum
entanglement measure concurrence [9] intuitively in terms of angles made by their angular
momenta.

The azimuthal angle φ and the orbital angular momentum L z = −i∂/∂φ are commonly
regarded as conjugate variables connected by the commutator [φ, L z] = i . However, the use of
this angle variable requires awareness because the position in space is a periodic function of φ,
which itself is not periodic [10]. A similar problem appears in the treatment of the phase variable
in a quantum mechanical harmonic oscillator. In particular, it was shown that Dirac’s [11]
assumption of a Hermitian operator φ̂ conjugate to the number operator leads to contradictions
[12]. A proper description of an angle or a phase variable requires that periodicity be taken into
account. It turns out that a simple way of locating the azimuthal position is to give cos φ and
sin φ instead of φ [13]. These operators are related by commutators [sin φ, L z] = i cos φ and
[cos φ, L z] = −i sin φ [10].

Here we investigate the role of azimuthal coordinates of two entangled electrons, or qubits.
We apply this picture to the case of a qubit pair described by a mixed state and then quantify
the quantum entanglement of the pair1. Qubits are not restricted to the real spin of electrons and
can represent any two-state quantum system, for example, entangled photons pairs [14], flux
qubits in superconducting rings [15], charge qubits in double quantum dots [16], flying qubits
in quantum point contacts [17] or two-qubit systems with different types of particles [18].

First we consider two qubits in a state with a vanishing total spin projection,

|9〉 = cos
ϑ

2
|↑↓〉 + eiϕ sin

ϑ

2
|↓↑〉. (1)

For convenience we use the notation where |↑↓〉, for example, represents the state where the
first particle (qubit) is in the ‘up’ state, i.e. in the direction of the z-axis, and the second qubit is
in the state ‘down’. For the Schmidt angle ϑ/2 we assume ϑ ∈ [0, π]. Spin operators are given
by S1(2) =

1
2(σ1(2)x , σ1(2)y, σ1(2)z) for the first and the second qubit, respectively, and σ are the

Pauli matrices.
Geometric view in ordinary 3D space of such an entangled qubit pair is gained by the

analysis of relative angles between the angular momenta. There are two main alternatives. The
first is the angle 8 made of the angular momenta as shown in figure 1. As the expectation value
of the corresponding cosine we take

〈cos 8〉 = 〈9|
S1 · S2√

S2
1S2

2

|9〉 =
1

3
(2 sin ϑ cos ϕ − 1), (2)

with the variance 1 cos 8 =
2
3

√
1 − sin2 ϑ cos2 ϕ vanishing for the singlet or the triplet state.

This is a well-known result, where the angular momenta can be visualized as antiparallel for the
case of the singlet and not quite parallel for the triplet qubit pair state where 8 ≈ 71◦.

1 Here we do not introduce any new entanglement measure—the entanglement is analysed by the Wootters
concurrence. The generalization to multiple qubit states is not considered. Such a generalization would in principle
be possible but the results would probably be cumbersome and would not lead to a clear visualization of the
entanglement, which is the main aim of this paper.
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Figure 1. Visualization of the angle 8 between the angular momenta of the first
and the second qubit and the difference of azimuthal angles, made by the angular
momenta projections onto the xy-plane, φ = φ1 − φ2.

In this paper, we concentrate on the properties of another geometric element, the azimuthal
angle difference φ = φ1 − φ2 made of angular momenta projections onto the xy-plane (figure 1).
Here φ1(2) can be visualized as the azimuthal angle of the first or the second qubit, respectively.
We define two operators corresponding to cos φ and sin φ,

ĉos φ ≡
S1x S2x + S1y S2y√

(S2
1x + S2

1y)(S2
2x + S2

2y)
, (3)

ŝin φ ≡
S1y S2x − S1x S2y√

(S2
1x + S2

1y)(S2
2x + S2

2y)
. (4)

These operators obey commutator relations analogous to the orbital momentum case [10, 13],

[ŝin φ, δSz] = i ĉos φ, (5)

[ĉos φ, δSz] = −i ŝin φ, (6)

where the relative angular momentum δSz = S1z − S2z plays the role of L z in the case of orbital
motion, which supports the view that φ corresponds to the relative azimuthal angle.

There are two pairs of eigenstates and eigenvalues for these operators,

ĉos φ (|↑↓〉 ± |↓↑〉) = ±(|↑↓〉 ± |↓↑〉), (7)

ŝin φ (|↑↓〉 ± i |↓↑〉) = ±(|↑↓〉 ± i |↓↑〉). (8)

For the triplet and the singlet state the projections of angular momenta make angles 0 and π ,
respectively, and the momenta for eigenstates of ŝin φ are perpendicular.

Note that these results imply that there are only four possible values for angle φ, contrary
to the naive intuition that ϕ in equation (1) corresponds to φ, at least for the perfectly entangled
qubit pairs, i.e. states with ϑ =

π

2 . Such an interpretation follows from a heuristic argument:
consider a triplet state |↑↓〉 + |↓↑〉, where angle φ is zero. Then by the unitary transformation
exp(−iϕS1z) rotates the first spin around the z-axis for angle ϕ. The outcome is the state
proportional to |9〉; therefore one would expect that the angular momenta then make angle
φ = ϕ. Below will be given alternative arguments that this view indeed can be considered
correct.
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As discussed for the case of orbital motion, a proper definition of angle operator φ̂ is
impossible due to the problem of periodicity [10, 11]2. However, one can define a pair of
operators as in ordinary trigonometry,

φ̂c ≡ arccos ĉos φ =
π

2
(1 − ĉos φ), (9)

φ̂s ≡ arcsin ŝin φ =
π

2
ŝin φ. (10)

The operator φ̂c is actually the operator for the ‘absolute value of the angle’, φ̂c ≡ ˆ|φ|, due to
the periodicity properties of trigonometric functions defined on the interval [0, π]. φ̂c does not
represent any new information as it can be by the Taylor expansion and the known properties of
the Pauli matrices reexpressed in terms of ĉos φ. The operator φ̂s is expressed by ŝin φ and also
cannot be considered as a proper angle operator, because the inverse sine maps onto [−π

2 , π

2 ].
In total, there are four possible eigenvalues for the angle operators: φ = 0, π and ±

π

2 for φ̂c and
φ̂s, respectively, as expected for the four eigenvectors in equations (7) and (8).

The interpretation of the expectation values for the angle operators would require, due to
the periodicity property, the resolving of a double mapping, which cannot be done in a unique
way. It is sufficient to study the cosine and sine operators and a direct evaluation reveals

〈9|ĉos φ|9〉 = C cos ϕ, (11)

〈9|ŝin φ|9〉 = C sin ϕ, (12)

where C = sin ϑ . For perfectly entangled qubit pairs these two equations simplify to intuitive
forms, 〈ĉos φ〉 = cos ϕ and 〈ŝin φ〉 = sin ϕ, which in this formulation supports the anticipated
view that φ = ϕ for fully entangled states. Identical results were also found in a recent analysis
of quantum entanglement in the de Broglie–Bohm interpretation of quantum mechanics [19].

Quantum entanglement can be quantified by various measures [20], one of them being
the entanglement of formation [21], which is the asymptotic conversion rate to maximally
entangled states from an ensemble of copies of a non-maximally entangled state [22]. By the
Wootters formula [9] is the entanglement of formation simply related to an associated quantity,
the concurrence C , introduced in equation (11).

Entanglement of two qubits can therefore be visualized in terms of functions of a simple
geometric quantity—the difference of azimuthal angles of the angular momenta—by a simple
relation

C =

√
〈ĉos φ〉2 + 〈ŝin φ〉2. (13)

This expression offers a clear interpretation that the concurrence is small if the angles are spread
randomly, leading to small cosine and sine averages. The concurrence is close to unity if angles
are packed at some common angle difference ϕ such that the sum of squared averages of cosine
and sine adds close to unity. As a measure of angle spreading can serve the variances for cosine
and sine operators, to C related by the expression

(1 ĉos φ)2 + (1 ŝin φ)2
= 2 − C2. (14)

2 Note that the commutator equation [φ̂, S1z − S2z] = iI , where I is the identity operator, cannot be satisfied by
any 4 × 4 matrix φ̂, contrary to the orbital motion case where [φ, −i∂/∂φ] = i .
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Larger concurrence thus signals lower fluctuations of cosine and sine. However, even for
perfectly entangled states with C = 1 the sum of variances (14) is non-zero, because |9〉 is
never an eigenstate of cosine and sine operators simultaneously3.

The state |9〉 is related to the state

|9̃〉 = cos
ϑ̃

2
|↑↑〉 + eiϕ̃ sin

ϑ̃

2
|↓↓〉, (15)

where the spin of the second qubit is reversed by the unitary transformation exp(−iπ S2y),
and ϑ → ϑ̃ , ϕ + π → ϕ̃. The formalism based on cosine and sine operators can be applied
in a similar manner as for the case of |9〉. The main distinction is that for states (15) the
sum of azimuthal angles, φ̃ = φ1 + φ2, is important, not the difference φ. The corresponding
trigonometric operators

ĉos φ̃ ≡
S1x S2x − S1y S2y√

(S2
1x + S2

1y)(S2
2x + S2

2y)
, (16)

ŝin φ̃ ≡
S1y S2x + S1x S2y√

(S2
1x + S2

1y)(S2
2x + S2

2y)
(17)

together with Sz = S1z + S2z exhibit similar commutation relations to equations (5) and (6). All
results valid for φ can be mutatis mutandis applied to φ̃ and are not shown here. We present here
only the concurrence C̃ = sin ϑ̃ ,

C̃ =

√
〈ĉos φ̃〉2 + 〈ŝin φ̃〉2. (18)

It should be noted that C = 0 for |9̃〉 and C̃ = 0 for |9〉.
Finally, we can express the concurrence Cρ for a system of two qubits in a mixed state

given by the density matrix

ρ =

∑
i

pi |9i〉〈9i | +
∑

j

p̃ j |9̃ j〉〈9̃ j |, (19)

which represents systems with a conserved square of total spin projection, since [ρ, S2
z ] = 0.

For this class of systems the concurrence is given by [23, 24]

Cρ = max(0, C − 2
√

〈P↑

1 P↑

2 〉〈P↓

1 P↓

2 〉, C̃ − 2
√

〈P↑

1 P↓

2 〉〈P↓

1 P↑

2 〉), (20)

where Pm
1(2) =

1
2 ± S1(2)z is the projector onto the spin state m =↑, ↓, respectively. The

expectation values are evaluated as is customary for mixed states, for example, 〈ĉos φ〉 =

Tr ρ ĉos φ or 〈P↓

1 P↓

2 〉 =
∑

j p̃ j sin2 ϑ̃ j

2 .
To summarize, we have analysed a pair of entangled qubits in terms of observables

expressed by trigonometric functions of relative angles made of spin vectors of two qubits.
Following the approach developed for the analysis of angles and angular momenta of orbital
motion, we applied analogous operators corresponding to cosine and sine of azimuthal angles
difference φ = φ1 − φ2 for the case of spin-1/2. In terms of such operators we constructed

3 Note the exact operator relation ĉos φ
2
= ŝin φ

2
= I , where I is the identity operator, leading to 〈ĉos φ

2
+

ŝin φ
2
〉 = 2.
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appropriate azimuthal angle operators, which reveals that for states with vanishing total spin
projection there are four eigenstates of angle operators, with eigenvalues φ = 0, ±

π

2 , π . The
analysis of the expectation values of trigonometric operators gives support to an argument that
the phase factor ϕ in the wave function (1) corresponds to φ.

Average cosine and sine of this angle are plainly related to the concurrence, a measure
of the degree of quantum entanglement. In particular, the concurrence is exactly given by
C = 〈ĉos φ〉, for ϕ = 0, and is also related to the corresponding variance 1 ĉos φ =

√
1 − C2.

A higher degree of entanglement can thus be visualized as a highly correlated distribution of
angular momenta making azimuthal angles close to ϕ and with suppressed fluctuations with
progressively increasing entanglement. An analogous analysis was performed for the space
spanned by the basis vectors |↑↑〉 and |↓↓〉. Here the relevant geometric quantity is the sum
of azimuthal angles, φ1 + φ2, and the concurrence is given in terms of the average cosine of this
angle.

The analysis of qubits in pure states was generalized to systems described by mixed states
and as the final result the concurrence is expressed in terms of trigonometric operators for a
rather general class of systems. Although in any explicit quantification of the entanglement
the expressions reduce to the manipulation of ordinary Pauli spin operators, we believe that
the present approach of the application of geometrical quantities offers a new insight into the
phenomenon of quantum entanglement, which is due to the lack of a direct classical analogue
not recognized in standard formal approaches.
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