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Abstract
A spin-qubit transformation protocol is proposed for an electron in a mesoscopic quantum ring
with tunable Rashba interaction controlled by the external electric field. The dynamics of an
electron driven around the ring by a series of Landau–Zenner-like transitions between a finite
number of local voltage gates is determined analytically. General single-qubit transformations are
demonstrated to be feasible in a dynamical basis of localized pseudo-spin states. It is also
demonstrated that by the use of suitable protocols based on changes of the Rashba interaction full
Bloch sphere can be covered. The challenges of a possible realization of the proposed system in
semiconductor heterostructures are discussed.

1. Introduction

The spintronics, a promising new branch of electronics based on electron’s spin as the information carrier
instead of its charge, has emerged in the last few decades. The use of spin promises several important
advantages in information processing, most notably longer coherence times and lower power consumption
compared to classical electronic devices [1–3]. What is even more important is that the spintronic devices
are among the most promising candidates for the realization of quantum computers with spin states being
used as qubits [4]. To avoid the use of the magnetic field for spin manipulation, the spin–orbit interaction
(SOI) [5, 6] might be used to control electron’s spin. Rashba type SOI [7], emerging as a consequence of
structural inversion asymmetry of the effective potential in the semiconductor heterostructure, seems
especially promising for this task since its magnitude can be artificially controlled by applying the external
electric field perpendicular to the plane of the heterostructure [8, 9]. Potential use of this phenomenon was
first demonstrated by SOI field effect transistor, proposed by Datta in 1990 [10], followed by several other
proposals for two-dimensional spintronic devices [1, 2, 11–14]. It should be pointed out that utilization of
SOI in spintronic devices eliminates the need for the use of magnetic field and therefore qubit errors from
fringing magnetic fields are not an issue.

For the use in quantum computation, the spin transformation would ideally be applied to a
single-electron qubit, trapped in a quantum dot, with its position determined by an external electric
potential [15]. Spin transformation for an arbitrary motion of an electron in one dimension system can be
expressed analytically [16, 17] which also allows for exact analysis of errors in qubit transformations due to
the noise in driving fields [18] and the effects of finite temperature [19]. Note, however, that since the
Rashba spin rotation axis in this system is perpendicular to the direction of electrons’ motion, strictly
one-dimensional motion, for example along a straight wire, provides only a limited range of possible spin
transformations [15].

This limitation is removed by allowing the electron to move in two dimensions [20–24]. The system of
electron on a quantum ring with the Rashba coupling is particularly convenient in this regard since it allows
for the study of spin transformations in a two-dimensional system using effectively one-dimensional
Hamiltonian [25]. As shown in reference [26], the motion of the electron around the ring with the Rashba
coupling, tuned using external gate voltage, can be used to realize an arbitrary single-qubit transformation
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Figure 1. Schematic representation of a quantum ring device with six voltage gates used to control the electron position.

in the qubit basis of Kramers states. However, the authors assumed that the position of external potential
can be shifted for an arbitrary azimuthal angle. This is usually not the case in realistic spintronic devices,
where the potential is typically defined using fixed external voltage gates, applied to the surface of the
semiconductor, as shown in figure 1. The minima of the potential can, therefore, occur only at specific
positions. To describe more realistic devices, this limiting factor should be taken into account.

The goal of this paper is to analyze the applicability of spin-transformation in a realistic quantum ring
devices using all-electric control via SOI of Rashba type. To do so, we analyze the transformation of
electron’s spin state when transferred from the site of one voltage gate to the site of its neighboring gate. In
the case of equidistant gates, forming a periodic potential, this can be done analytically, which makes the
paper somewhat technical in nature. As we show in this paper, the spin rotation is directly related to the
spin-dependent part of the hopping parameter, coupling the neighboring Wannier states in the
corresponding tight-binding model of periodic gate potential. To find an explicit analytic form of hopping
terms, we first calculate the Bloch functions on the ring, characterized by specific site-dependent
Rashba-induced spin orientation, and their energies. Corresponding Wannier states and their
nearest-neighbor hopping Hamiltonian, obtained by Fourier transformation of Bloch states and energies,
are further transformed by local spin rotations to obtain a basis of localized states, resembling the uniform
spin state of the electron, trapped at the site of each voltage gate. The hopping terms between the states of
this so-called spin Wannier basis is then expressed analytically by spin-rotation matrices, allowing a simple
analysis of spin transformations accompanying electron transition. Although the same results could be
obtained numerically, the analytic approach provides a more in-depth and intuitive understanding of spin
transformations. In addition to that, the analytic form of tight-binding Hamiltonian for electron in periodic
potential on a Rashba ring provides a solid foundation for further study of electron dynamics in similar
devices.

The results are verified by numerical calculation of spin rotation during the slow transition of the
electron between gates, showing that the use of Wannier hopping terms indeed results in correct spin
transformations. An analytic expression for the hopping term is then used to determine the parameters of
the system, allowing for the arbitrary single-qubit transformation of an electron as a result of its transition
around the ring. The paper is organized as follows: the model describing the electron on the ring is
introduced in section 2 and the Bloch states on the ring are derived by analytically solving the Schrödinger
equation in section 3. In section 4 the Wannier states on the ring are introduced and in section 5
transformed into spin Wannier basis. These finally enables the analysis of qubit transformations, which is
done in section 6, and section 7 is devoted to conclusions.

2. Model

The Hamiltonian, governing the electron on the ring in presence of Rashba coupling and external potential,
is given by [25]

H = ε
(
i∂ϕ + φm

)2 − αε

[
σρ(ϕ)

(
i∂ϕ + φm

)
+

i

2
σϕ(ϕ)

]
+ V(ϕ), (1)

with parameters
�

2

2mR2
≡ ε,

2mRαR

�
≡ α,

φ

φ0
≡ φm, (2)

where periodic angular coordinate ϕ ∈ [0, 2π] describes the position of the electron. R denotes the ring
radius, m the electron effective mass in a semiconductor, αR the Rashba coupling, φ magnetic flux through
the ring and φ0 magnetic flux quantum. Pauli operators in rotated spin frame are defined as
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σρ (ϕ) = σx cosϕ+ σy sinϕ,

σϕ (ϕ) = −σx sinϕ+ σy cosϕ,

where σx,y are ordinary Pauli matrices. In our model, V(ϕ) is a periodic potential with the period
ϕa = 2π/N, described as a sum of N potential wells W(ϕ), shifted to have minima at ϕ = nϕa,

V(ϕ) =
N∑

n=1

anW(ϕ − nϕa). (3)

Coefficients an describe the depth of the potential at each site and can be varied externally by the voltage
applied to each gate. These allow the transfer of the electron around the ring. To keep the electron located at
site n, the depth of the potential well on this site, an, should be set to sufficiently large value while all other
coefficients should be set to 0. To transfer the electron to the neighboring site, n ± 1, coefficients an±1

should be increased, respectively, while an is simultaneously set to 0. Note that extra top gates, not shown in
figure 1, would be needed for a global tuning of the Rashba coupling αR. The implementation of both sets
of voltage gates in a single device without interference between them might present a significant technical
challenge.

3. Schrödinger equation

The main goal of this paper is to calculate analytically how the spin orientation of the electron changes
during this process. As we show later, this information is encoded in the hopping terms for an electron
between gate positions, which can be extracted from Bloch states ψjs(ϕ) with their energies Ejs, obtained for
the case of equal binding potentials on all gate sites on the ring, an = 1. The Schrödinger equation for Bloch
states is

Hψjs(ϕ) = Ejsψjs(ϕ), (4)

where half-integer index j is used to denote the rotation symmetry of the wavefunction and s = ± 1
2 is a

pseudo-spin index. The symmetry properties of ring Hamiltonian equation (1) lead to an ansatz for Bloch
function, derived in appendix A,

ψjs(ϕ) = eiϕ(j− 1
2 σz) uj(ϕ)χ∗

s , (5)

with uj(ϕ) being periodic function of ϕ, uj(ϕ+ ϕa) = uj(ϕ). To find an exact form of periodic function
uj(ϕ) and spinor χ∗

s for the case of Rashba Hamiltonian equation (1), we transform it with a set of unitary
transformations, given in reference [27]

U = UαUzUφ = e−i ϕ2 �α·�σ ei ϕ2 σz e−iφmϕ, (6)

where �α = (−α, 0, 1) is an effective Rashba field and �σ =
(
σx,σy,σz

)
is the vector of standard Pauli

operators. The transformation does not affect the periodic potential V(ϕ) and the resulting Hamiltonian is
independent of spin

H′ = UHU† = −ε∂2
ϕ + V(ϕ) + ESO, (7)

with spin–orbit energy ESO = − 1
4εα

2. As explained in appendix A, this spin-independent form allows one
to seek the Bloch states in a manner very similar to the case of electron on a one-dimensional straight wire
with periodic potential, i.e. using the ansatz

ψ′
ks(ϕ) = eikϕ u′

k(ϕ)χ∗
s . (8)

The Bloch states of original Hamiltonian are then obtained by inverse transformation

ψks(ϕ) = U†ψ′
ks(ϕ). (9)

The values of k and eigenspinors χ∗
s are determined by applying non-trivial periodic boundary conditions,

ψks(ϕ) = ψks(ϕ+ 2π), resulting in [27]

χ∗
s = −e2πi(φm+k) ei ϕ2 �α·�σχ∗

s . (10)

The eigenproblem has two solutions, one for each pseudo-spin state s. Both can be compactly written as a
spin transformation of standard basis spinors, quantized along the z-axis, denoted χs, using an operator of
spin rotation around the y-axis, Uy(ϑα) = exp

(
−iϑα2 σy

)
,

χ∗
s = Uy(ϑα)χs, tan ϑα = −α. (11)

3
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Applied to boundary conditions equation (10), the spinors equation (11) determine the allowed values of k,
which also depend on pseudo-spin s.

ks = j − φm − sφα, j +
1

2
∈ Z, φα =

√
1 + α2. (12)

Expression φα represents a well-known Aharonov–Casher phase [28–30], which is typically used to
measure the strength of Rashba coupling in materials [31–33]. When applied in ansatz equation (9), these
results lead to the Bloch functions of the Rashba ring Hamiltonian equation (1) being expressed analytically
as

ψjs(ϕ) = eijϕ ujs(ϕ)U†
z (ϕ)U†

y (ϑα)χs. (13)

What is important is that the periodic part of the Bloch function ujs(ϕ) can be directly related to the
function u′

k(ϕ) for the case of one-dimensional system,

ujs(ϕ) = u′
k(ϕ), (14)

by substituting k → j − φm − sφα, given that the periodic part of Hamiltonian V(ϕ) is the same in both
cases. Note that when exponent eijϕ is combined with spin rotation U†

z (ϕ), the result is indeed compatible
with ansatz equation (5), derived in appendix A.

The energy of one-dimensional Bloch state in the limit of strong periodic potential (tight-binding limit)
is parametrised as Ek = E0 − 2t0 cos (kϕa), with mean band energy E0 and bandwidth 4t0 determined by
detailed shape of the potential [34]. The transformation between the one-dimensional and the ring
Hamiltonian allows the energy of the electron on the ring to be obtained by a simple substitution
introduced above, k → j − φm − sφα, into the expression for Ek, resulting in energy depending on both
angular momentum j and pseudo-spin s,

Ejs = E0 + ESO − 2t0 cos
(
ϕa

[
j − φm − sφα

])
. (15)

Since both Bloch states of equation (13) and energies equation (15) on the ring closely resemble their
one-dimensional counterparts, their transformation to Wannier states and their corresponding Hamiltonian
is obtained by a simple transformation, presented in the next section.

4. Wannier states

As explained in the introduction, the spin transformations, accompanying the electron’s transition between
sites on a ring, will be expressed in terms of nearest-neighbor hopping terms. These are obtained by the
Fourier transformation of Bloch states into the basis of localized Wannier functions [34],

φns(ϕ) =
1√
N

N− 1
2∑

j= 1
2

e−in(j− 1
2 ) ϕaψjs(ϕ)

= ei ϕ2 wns(ϕ)U†
z (ϕ)U†

y (ϑα)χs.

Note that since summation is taken over half-integer j values, the phase coefficients e−in(j− 1
2 )ϕa are such that

j − 1
2 is an integer, as is usual for the Fourier transformation. We used the fact that transformations U†

z and
U†

y do not depend on s, so the envelope function wns(ϕ), describing the charge density of the wavefunction,
is a Fourier transformation of ujs(ϕ),

wns(ϕ) =
1√
N

∑
j

ei(j− 1
2 )(ϕ−nϕa) ujs(ϕ). (16)

The expectation value of spin of the Wannier function

〈�s 〉ns =
�

2

∫ π

−π

|wns(ϕ)|2χ†
s Uy(ϑα)Uz(ϕ)�σU†

z (ϕ)U†
y (ϑα)χs dϕ

= �s

∫ π

−π

|wns(ϕ)|2 (sinϑα cosϕ, sinϑα sinϕ, cosϑα) dϕ.

is mostly determined by spin rotations Uz(ϕ) and Uy(ϑα). If the periodic potential is strong, functions
wns(ϕ) are strongly localized around positions ϕ = nϕa and expectation values of spin can reliably be
approximated by

〈�s 〉ns = �s (sinϑα cos (nϕa) , sinϑα sin (nϕa) , cosϑα) . (17)

4
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Figure 2. Schematic representation of the Wannier state |φns〉 as an electron, localized at a minimum of periodic potential, with
tilted spin.

The expression resembles the spin structure in clean Rashba rings, reported by Frustaglia and Richter [35],
but evaluated at discrete points on the ring, specified by ϕ = nϕa. This leads to very intuitive interpretation
of the Wannier states and their spin properties. The electron in the Wannier state |φns〉 is localized around
the position nϕa with spin tilted from z direction towards the centre of the ring for s = 1/2 and from −z
direction away from the centre for s = −1/2, as shown in figure 2.

The matrix elements of Hamiltonian H in the Wannier basis Hmnss′ = 〈φms|H |φns′ 〉 are obtained as the
Fourier transformation of energy Ejs,

Hmnss′ =
1

N
δss′

N− 1
2∑

j= 1
2

ei(j− 1
2 )(m−n)ϕa Ejs. (18)

Since j only appears in cosine terms in Ejs, the transformed Hamiltonian can be exactly evaluated,

Hmns = E0 + ESO − tsδm,n+1 − t∗s δm,n−1, (19)

with pseudo-spin dependent hopping term

ts = t0 eiϕa( 1
2 −φm−sφα). (20)

The Hamiltonian H in the basis of the Wannier states therefore correspond to a tight-binding model with
spin dependent hopping term ts,

H = E0 + ESO −
∑

ns

(
ts |φn+1,s〉 〈φns|+ t∗s |φn−1,s〉 〈φns|

)
. (21)

5. Spin Wannier basis

Application of hopping terms ts in equation (21), although simple, is not the best way to study spin
transformations. Since ts couples states |φns〉 with a non-trivial spin properties equation (17), the
interpretation of the effect of hopping on electron’s spin orientation is more complicated. This issue is
tackled here by introducing a basis of localized states with uniform spin orientation, as follows.

Since the spin properties of Wannier functions |φns〉 depend on the strength of the Rashba coupling,
these states are not the best choice for the analysis of spin transformations of the electron. It is more
convenient to construct a new basis states as a local superposition of Wannier states at the same site n,
so-called spin Wannier basis,

φ̃ns(ϕ) =
∑

s′

cns′sφns′(ϕ). (22)

with spin properties independent of spin–orbit coupling, resembling uniform spin states. We construct
these states in a way that their expectation values of spin are as close as possible to the values for uniform
spin states,

〈�s 〉ns =
〈
φ̃ns

∣∣∣�s ∣∣∣φ̃ns

〉
≈ �s�ez, (23)

as explained in appendix B. To emphasize that this basis resembles uniform spin states, we sometimes use
arrows ↑ and ↓ as the pseudo-spin index s instead of ± 1

2 , respectively. The coefficients of linear
superposition of such states

5
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|ψ〉 = cos

(
θ

2

) ∣∣∣φ̃n↑

〉
+ eiχ sin

(
θ

2

) ∣∣∣φ̃n↓

〉
(24)

can then be directly related to the direction the vector of spin expectation values on the Bloch sphere, θ and
χ,

〈ψ|�s |ψ〉 ≈ �

2
(sin θ cosχ, sin θ sinχ, cos θ) , (25)

which significantly simplifies the analysis of spin transformations and makes the states
∣∣∣φ̃ns

〉
a suitable

qubit basis.
The coefficients cnss′ are determined by projecting the original Wannier states to the basis of uniform

spin states, as show in appendix B. In the limit of strongly localized states |φns〉, the coefficients simplify to

cnss′ = e−in ϕa
2 Unss′ , (26)

where the matrix U can be expressed with spin rotations Uz(ϕ) and Uy(ϑα), introduced in the Hamiltonian
transformation equation (6),

Unss′ = χ†
s Uy(ϑα)Uz(nϕa)χs′ . (27)

Even though this result is not exact, these coefficients represent a good approximation of uniform spin
states even for the case of shallow potential wells, as is demonstrated numerically in figure B2 in appendix
B.

Since the spin Wannier state
∣∣∣φ̃ns

〉
is a local superposition of original Wannier states |φns〉, with the same

n, the Hamiltonian in this basis will still have a form of nearest neighbor hopping, but with coupling terms
t̃nss′ being position-dependent and also mixing the pseudo-spin states,

H = E0 + ESO −
∑
nss′

(
t̃+nss′

∣∣∣φ̃n+1,s

〉〈
φ̃ns′

∣∣∣+ t̃−nss′

∣∣∣φ̃n−1,s

〉〈
φ̃ns′

∣∣∣) . (28)

Hopping terms t̃±nss′ are calculated by transforming ts equation (20) with the matrix Un equation (27)

t̃±nss′ = t0 e±iϕaφmχ†
s U†

z (nϕa ± ϕa)U†
α(±ϕa)Uz(nϕa)χs′

= t0 e±iϕaφm

(
e∓

1
2 iϕa (cφ + icαsφ) isαsφe−iϕa(n± 1

2 )

isαsφeiϕa(n± 1
2 ) e±

1
2 ϕa (cφ − icαsφ)

)
ss′

,
(29)

where
sα = sinϑα sφ = sin

(ϕa

2
φα

)
,

cα = cosϑα cφ = cos
(ϕa

2
φα

)
.

Although not obvious at first glance, the Hamiltonian equation (28) is Hermitian when applied to the basis

of states
∣∣∣φ̃ns

〉
with appropriate periodic boundary conditions on a ring.

The hopping terms t̃±nss′ are quite complex, but still expressed in analytical form, comprising three
spin-rotation matrices. In contrast to ts, describing the transformation of pseudo-spin states |φns〉 with
relatively complex spin properties (see figure 2), the interpretation of terms t̃±nss′ is much more direct,

describing real spin rotations, expressed in spin Wannier basis
∣∣∣φ̃ns

〉
. Consequently, this allows a much

simpler analysis of spin rotations, accompanying electrons movement between voltage gate sites, and also a
construction of arbitrary single-qubit transformations. This will be further explored in the next section by
the introduction of suitable qubit basis and demonstration of system capabilities in performing controlled
qubit transformations.

6. Qubit transformations

We define qubit basis as Wannier pseudo-spin pair on the site n = 0,

|0〉 =
∣∣∣φ̃0↑

〉
, |1〉 =

∣∣∣φ̃0↓

〉
. (30)

We also define the Bloch sphere, corresponding to this basis, defined by polar and azimuthal angles Θ and
Φ, which correspond to the qubit state

|ψQ〉 = cos

(
Θ

2

)
|0〉+ eiΦ sin

(
Θ

2

)
|1〉 . (31)

6
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Single qubit transformation is achieved by transferring the electron around the ring by controlled
changes of gate potentials at different sites. To transfer the electron from one site to its neighboring site, we
slowly decrease the depth of potential well on the first site and increase the depth of the potential on the site
onto which we want to transfer the electron. Such charge transfer has already been demonstrated
experimentally for N = 4 sites [36]. From mathematical perspective, this results in a Landau–Zenner-like

transition of the electron from the superposition of spin Wannier states
∣∣∣φ̃ns

〉
on the initial site to the

superposition of spin Wannier states
∣∣∣φ̃n+1,s

〉
on the final site, as analysed in appendix C.

As in the case of the Landau–Zenner transition, the probability of finding the electron on the initial site
will drop to zero only in a case of slow change of the local potential. Even in this limit, however, the
resulting transition is not trivial, since the coefficients of the spin superposition change during the
transition. The change is described by the hopping term for spin Wannier basis equation (29). If the
electron is initially in a state on-site n

|ψinit〉 =
∑

s

cs

∣∣∣φ̃ns

〉
, (32)

the Landau–Zenner transition from site n to n + 1, denoted Tn→n+1, will result in the final state (see
appendix C)

|ψfin〉 = Tn→n+1 |ψinit〉 =
∑

s

ds

∣∣∣φ̃n+1,s

〉
(33)

with new coefficients ds calculated from the hopping term t̃+nss′ equation (29):

ds =
∑

s′

1

t0
t̃+nss′cs′ . (34)

Note that the 2 × 2 matrix
Ũ+

nss′(α) = t̃+nss′/t0 (35)

is unitary, as is seen from equation (29), which means that each transition can be seen as a rotation on the
Bloch sphere. Note that the transformation of coefficients depends on the strength of the Rashba coupling
α, determining the axis of spin rotation U†

α in hopping term equation (29).
The sequence of Landau–Zenner transitions equation (33) between neighboring sites can bring the

electron around the entire ring, resulting in the final state being a superposition of the same spin Wannier

states
∣∣∣φ̃N+n,s

〉
=

∣∣∣φ̃ns

〉
as the initial state

|ψfin〉 =
∑

s

ds

∣∣∣φ̃ns

〉
. (36)

The coefficients describing the final state are calculated as

ds =
∑

s′
Ufull,ss′cs′ , (37)

with transformation Ufull being a product of spin transformation for each transition between neighboring
sites.

Ufull = Ũ+
N−1(αN−1) · Ũ+

N−2(αN−2) · · · Ũ+
1 (α1)Ũ+

0 (α0). (38)

Since the Rashba coupling αi can be adjusted between two consequential Landau–Zenner transitions, this
gives a wide range of parameters that can be tuned to achieve desired qubit transformation.

Using the definition of t̃+nss′ equation (29) and allowing m revolutions of the electron around the ring

with N sites, the qubit transformation Ũ full can be written in a simplified manner (the rotations U†
z cancel

out) using only spin transformations U†
α equation (6),

Ufull,ss′ = (−1)mχ†
s U†

αm×N−1
(ϕa) · · ·U†

α0
(ϕa)χs′ , (39)

where each factor corresponds to an electron’s transition between sites at the Rashba coupling strength αi,
with i = 0, 1, . . . , m × N − 1. Note that the phase factor (−1)m (arising from U†

z (2π) = −1) depends on
the number of electron’s revolutions around the ring, but does not physically affect the spin transformation.

By using the qubit states |ψQ〉 equation (31) as the initial state |ψinit〉 equation (32), the final state |ψfin〉
equation (36) is also a qubit and equation (39) therefore represents a controlled qubit transformation. It is
instructive to see it as a combination of rotations on the Bloch sphere, spanned by qubit basis, where each
transition of the electron, described by transformation U†

αn
(ϕa) = exp

(
1
2 iϕa�αn · �σ

)
, causes a rotation

around axis �αn = (−αn, 0, 1) by the angle χn = ϕa

√
1 + α2

n. The result is very similar to the one found in

7
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Figure 3. An example of qubit Z-gate transformation. (a) Movement of the system in parametric space with coordinates being
electron’s position ϕ and Rashba coupling α, transforming the initial state |ψin〉 = |0〉 (red dot) to the final state |ψfin〉 = |1〉
(blue dot). Before each shift of electron using Landau–Zenner transition, the value of Rashba coupling is adjusted to the
appropriate value, calculated using Monte-Carlo simulation. (b) Resulting spin transformations are represented as a rotations
around axes, determined by the Rashba coupling. Orange, green and purple solid and dashed lines on (a) correspond to the
rotational axes and spin rotation paths on (b).

reference [26], but in the present case, the shifts in electrons position ϕa are fixed and the strength of
Rashba coupling during each transition can be tuned. Note that the present case is much closer to the
model of a possible realistic device, where the electron would be transferred between the potential minima,
defined by potential gates at fixed positions.

To verify that the described procedure can really be used to realize a qubit gate, we performed
comprehensive numerical calculations, similar as in reference [26]. By writing the full transformation in a
qubit basis as a matrix

Ufull =

⎛
⎜⎜⎝

cos

(
Θ

2

)
− sin

(
Θ

2

)

eiΦ sin

(
Θ

2

)
eiΦ cos

(
Θ

2

)
⎞
⎟⎟⎠ (40)

the transformation can be described by angles Θ and Φ. The parameters correspond to the polar
coordinates of qubit on a Bloch sphere, obtained by transforming the initial state |0〉 by applying
transformation Ufull. Since any SU(2) transformation can be uniquely mapped to a point on a Bloch sphere,
the coverage of Bloch sphere surface by the points (Θ, Φ), corresponding to transformation Ufull, is a good
way to measure whether the specific qubit transformation can be realized. The transformation is
determined by a set of Rashba parameter values αi, which can take values between intrinsic, non-amplified
value αin and amplified value αmax = Kααin with Kα depending on the material used. As in reference [26]
we choose the ring size R in such a way that αin = 1/

√
Kα and αmax =

√
Kα (see equation (1)), providing

the maximal angle between rotation axis corresponding to these two values of α. For each number of sites
on a ring N, the number of revolutions m and maximal amplification factor Kα, parameters that are
determined by device architecture and material, a set of numbers [α0, . . . ,αN×m−1] determines the qubit
transformation, parametrized by Θ and Φ. If we can for each pair of Θ and Φ find a set [α0, . . . ,αN×m−1],
this means that any qubit transformation can be achieved.

As an example of spin rotation, we performed the Z-gate qubit transformation, corresponding to Θ = π
and arbitrary Φ. This transformation can be realized on a ring with N = 6 sites with m = 1 revolution of
the electron around the ring and Rashba amplification factor Kα = 5. The transformation is schematically
presented in figure 3. Figure 3(a) shows how values of the Rashba coupling need to be changed between the
shifts of electron position. On figure 3(b) the rotations of electron spin is schematically presented on the
Bloch sphere with arrows representing the rotation axis of each spin rotation, with colours and dashing
corresponding to the ones in figure 3(a). Although this representation is very instructive, note that only the
initial (red dot) and final (blue dot) state on the Bloch sphere correspond to qubit states, defined as being
located at site n = 0. The intermediate points on Bloch sphere are defined in a space, corresponding to the
rotation Ufull and can be related to actual physical states only if the full rotation Ufull is decomposed back
into single-transition rotations Ũ+

nss′(αn) equation (38) and the intermediate results are expressed in spin

Wannier basis
∣∣∣φ̃ns

〉
.

To determine which parts of the Bloch sphere can be covered at specific choice of N, m and Kα, the
Monte-Carlo simulation is used. NMC = 3 × 1011 sets [α0, . . . ,αN×m−1] were randomly generated for each
combination of N, m and Kα, each of them resulting in a point (Θ,Φ) on the Bloch sphere. Plotting the
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Figure 4. Areas of Bloch sphere covered at different values of Rashba amplification factor Kα for a ring with N = 6 sites. Panel
(a) shows results for m = 1 revolution of electron around the ring and (b) for m = 2 revolutions. For m = 1 a part of the sphere
remains uncovered at Kα = 5 while for m = 2, all the sphere is covered even at Kα = 4.

points (Φ, cosΘ) in a 2D diagram shows which parts of the Bloch sphere can be covered at chosen values of
N, m and Kα. The results of such Monte-Carlo procedure are presented in figure 4 for N = 6 sites and
various values of m and Kα. Figure 4(a) shows the coverage of the Bloch sphere for m = 1 electron
revolution with black part showing the surface available at the Rashba amplification factor Kα = 2, dark
blue at Kα = 3, medium blue at Kα = 4 and light blue at Kα = 5. The qubit transformations,
corresponding to white part of Bloch sphere on figure 4(a), can only be achieved at amplification factors
Kα > 5, which is difficult to obtain in realistic devices. The same diagram for m = 2 revolutions is
presented in figure 4(b). We see that in that case, any qubit transformation can be obtained even at lower
amplification factor Kα = 4.

The dependence of achievable qubit transformations on parameters N, m and Kα is further explored in
figure 5, which shows the percentage of the Bloch sphere that can potentially be covered at specific values of
the parameters. We see that the number of revolutions of the electron around the ring is far more important
than the number of sites. For m = 2 revolutions, arbitrary single-qubit rotation can be achieved (fully
covered Bloch sphere) with amplification factor Kα ≈ 4, while for N = 4 and m = 3 the factor Kα can be as
low as 3.

7. Discussion and conclusion

The results presented here indicate that well-controlled arbitrary transformations of qubits, defined as
localized pseudo-spin states of electron on a ring, could be achieved in a quantum ring system where the
position of the electron is controlled by a finite number of voltage gates. The efficiency of such an approach,
however, depends on several parameters. As discussed in the previous section, the number of shifts of
electrons position depends strongly on the maximum amplification factor of the Rashba coupling,
achievable in specific material by an external electric field. In simple III–V semiconductor heterostructures,
the amplification factors of about Kα = 2 are feasible [37, 38], which would lead to a larger number of
electron revolutions around the ring. In more exotic systems, for example, InAs nanowires [39], a much
larger amplification factor of Kα = 6 was measured, however, it is not clear whether such a system is
suitable for construction of the quantum ring considered in our study.

The time efficiency of the proposed transformation is to a large extent determined by the size of the ring
used. At realistic values of Rashba parameters, the radius of about 100 nm is required to provide maximal
efficiency of qubit transformations [26], resulting in characteristic energy of electron being about
ε ∼ 100μV and characteristic time τ 0 = �/ε ∼ 10−11 s. As shown in appendix C, the effective
Landau–Zenner transitions are achieved at transition times of few tens of characteristic times, which still
allows for several thousand electron transitions during spin relaxation time of 100μs, typical in
semiconductor heterostructures [40]. Due to the limitations of current state-of-the-art technology, however,
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Figure 5. The coverage of Bloch sphere at different numbers of ring sites N and electron’s revolutions around the ring m as a
function of Rashba amplification factor Kα. For m = 1 revolution of electron, the Bloch sphere cannot be covered for realistic
values of Kα, while for larger m, this can be achieved for Kα as low as 4.

a somewhat larger rings with diameters of about 500 nm to 1 μm might be more realistic in actual device.
This would result in a somewhat larger characteristic time τ 0 and smaller efficiency of qubit
transformations than those considered in section 6. The increased ring size would therefore affect the time
efficiency of the proposed device, while its general functionality would remain the same.

Note, however, that the Landau–Zenner type transition was chosen in our study due to its simplicity to
demonstrate the spin transformations during electrons revolution around the ring. In realistic applications,
more efficient and faster ways of electron transport would most likely be applied, which are more
demanding for theoretical description but are based on the same phenomena as discussed in this paper.
Several other aspects should be taken into account when designing real devices, such as effects of
temperature, decoherence due to spin-charge hybridization [19], and most importantly the effects of local
gate potential, used for the electron transport, on the magnitude of Rashba coupling, which might have an
important effect on the spin properties of pseudo-spin states used as qubit basis. Although these effects
might change the detailed behaviour of the analyzed system, its ability to perform spin transformations,
presented in the paper, would probably not change significantly. The realization of the device as a part of
universal quantum computer, fulfilling all 5 DiVincenzo criteria, might pose additional challenges,
especially the implementation of qubit initialization, read-out and two-qubit gates [41]. The well developed
technology of electron charge and spin manipulation in semiconductors provides a wide array of possible
technical solutions to these challenges and the detailed study of their implementation would be an
interesting topic for further research.
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Appendix A. Bloch states on Rashba ring

To find the correct form of Bloch states for an electron on a Rashba ring, described by Hamiltonian
equation (1), the symmetry properties of the system are compared to the system of an electron moving in
one-dimensional periodic potential, described by the Hamiltonian

H1D = − �
2

2m
∂2

x + V1D(x), (A.1)

composed of kinetic energy and periodic potential V1D(x). The Bloch states of such Hamiltonians are
typically written as ψk(x) = eikxuk(x) with uk(x) being periodic function [34]. The specific form of Bloch
functions is a consequence of translation symmetry of periodic potential, which can be described as
invariance of the Hamiltonian H1D to the transformation T(x0) = exp

(
−ix0p/�

)
, where x0 is a period of

one-dimensional potential V1D(x) and p = −i�∂x,

T(x0)H1DT†(x0) = H1D. (A.2)

Since the Bloch function ψk(x) should have the same symmetry, the transformation only changes its phase,

T(x0)ψk(x) = e−ikx0ψk(ϕ). (A.3)
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The ansatz for Bloch function of an electron in periodic one-dimensional potential is therefore [34]

ψk(x) = eikxuk(x), (A.4)

where uk(x) is a periodic function of x, uk(x + x0) = uk(x).
The symmetry of electron states on the Rashba ring, described by Hamiltonian equation (1) is a bit

more complicated, since it comprises both translation in azimuthal angle by ϕa and spin rotation around
the z-axis by the same angle [27]. The transformation Trot(ϕa), corresponding to this symmetry, is
generated by the operator

Jz = Lz + sz = �

(
−i∂ϕ +

1

2
σz

)
, Trot(ϕa) = e−i ϕaJz

� . (A.5)

Similarly to the one-dimensional system, the transformation should only change the phase of the ring Bloch
function ψj(ϕ),

Trot(ϕa)ψj(ϕ) = e−ijϕa ψj(ϕ). (A.6)

This is indeed true if the ring Bloch function is written as an ansatz, similar to its one-dimensional
counterpart equation (A.4),

ψjs(ϕ) = eiϕ(j− 1
2 σz) uj(ϕ)χ∗

s , (A.7)

with function uj(ϕ) being periodic in ϕ, uj(ϕ+ ϕa) = uj(ϕ). Note that since Trot is a spin operator, the
Bloch function is accompanied by some spinor χ∗

s , describing the spin part of the wavefunction, with
pseudo-spin index being s = ± 1

2 . The periodic scalar function uj(ϕ) depends on half-integer quantum
number j, which is related to the total angular momentum of the electron.

As shown in section 3, the spin-dependent ring Hamiltonian equation (1) can be transformed into
simplified form using a set of spin transformations U from equation (6), U = UαUzUφ. Since the spin part
of the symmetry transformation Trot is already applied to the transformed Hamiltonian H′ equation (7) in
form of a rotation Uz = exp

(
iϕ
�

sz

)
, H′ is invariant under ordinary one-dimensional translation operator,

similar to equation (A.3), T(ϕa) = exp
(
−iϕapϕ/�

)
. This means that H′ can for all practical purposes be

treated as a Hamiltonian of one-dimensional system H1D equation (A.2) and the Bloch states of this
transformed Hamiltonian will therefore take a form similar to the one-dimensional Bloch state
equation (A.4)

ψ′
ks(ϕ) = eikϕ u′

k(ϕ)χ∗
s , (A.8)

but with added spin part χ∗
s . This form differs from equation (A.7) since k in the exponent is a number

instead of spin operator. However, once transformed with inverse trasformation U† equation (6), the
function takes a form of ansatz equation (A.7) with correct symmetry properties. As for one-dimensional
case, the function u′

k(ϕ) is periodic and determined solely by detailed shape of periodic potential V(ϕ) [34],
while the spinors χ∗

s and allowed values of k are determined by the periodic boundary conditions of original
Bloch functions, ψjs(ϕ) = ψjs(ϕ+ 2π) [27].

Appendix B. Properties of Wannier spin basis

To calculate the coefficients cnss′ , transforming Wannier states |φns〉 into spin Wannier basis
∣∣∣φ̃ns

〉
, we first

construct the basis of uniform spin states |ηns〉, localized at the sites of potential wells,

ηns(ϕ) = zn(ϕ)χs (B.1)

with orbital part zn(ϕ) being arbitrary normalized function, strongly localized around coordinate ϕ = nϕa,
and spin part being uniform spinor χ↑ or χ↓, quantized along z-axis.

We want the spin Wannier basis
∣∣∣φ̃ns

〉
to resemble these states,

|ηns〉 ≈
∣∣∣φ̃ns

〉
=

∑
s′

cns′s |φns′ 〉 , (B.2)

so to calculate the coefficients, we simply multiply the equation (B.2) from the left with Wannier state
〈φns′′ |,

〈φns′′|ηns〉 ≈ cns′′s. (B.3)

When the definition of Wannier states equation (16) is used in the equation, we get

cns′s ≈
∫

e−i ϕ2 w∗
ns′(ϕ)zn(ϕ)

[
χ†

s′Uy(ϑα)Uz(ϕ)χs

]
dϕ. (B.4)
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Figure B1. Comparison of spin Wannier basis functions φ̃ns(ϕ) and bound states η̃ns(ϕ) in Gaussian periodic potential at site
n = 1 with V0 = 10ε and σ = 0.1 and Rashba coupling α = 1.5, calculated numerically on Nnum = 240 sites grid. Panel (a)
shows functions φ̃ns(ϕ) and η̃ns(ϕ) for pseudo-spin s = 1

2 and panel (b) for pseudo-spin s = − 1
2 . Inset figure in (b) shows the

periodic potential (green) used to calculate Wannier states φ̃ns , and single potential well (dashed blue) used to calculate bound
states η̃ns.

Figure B2. The length of vector of expectation values of spin and its angle from the z axis for spin Wannier basis states φ̃ns as a
function of potential strength V0 for different values of Rashba coupling.

If we assume strong periodic potential, than wns(ϕ) is narrowly spread around ϕ = nϕa. The integration in
equation (B.4) therefore results in elimination of orbital parts of wavefunctions and substitution ϕ→ nϕa

in spin rotations. Also since wns(ϕ) and zn(ϕ) are generally not orthonormal, the coefficients must be
renormalized. This leads to

cns′s ≡ e−
nϕa

2 χ†
s′Uy(ϑα)Uz(nϕa)χs. (B.5)

The approximations are rewarded with the fact that the expression is simple and independent of the details
of the periodic potential used.

In order to demonstrate that the coefficients result in a sufficiently good basis functions, we calculate
numerically Bloch functions and Wannier functions for the case of periodic potential

V(ϕ) =
N∑

n=1

W(ϕ− nϕa), (B.6)

constructed as a sum of N = 6 potential wells of Gaussian shape,

W(ϕ) = − V0√
2πσ

e−
ϕ2

2σ2 . (B.7)

The potential V(ϕ) is characterised by the potential depth V0, corresponding to an integral of the potential
over one potential minima, V0 =

∫ π

−π W(ϕ) dϕ, and its width σ.
Figure B1 shows a plot of real and imaginary part of both spin components of both spin Wannier states,

φ̃1↑(ϕ) and φ̃1↓(ϕ), on site n = 1, for potential strength V0 = 10ε and Rashba coupling α = 1.5, calculated
numerically on a grid with Ngrid = 240 sites. As we can see, for both functions one spin component is
dominant and the other one is negligible, which is what we expect from spin basis. This is the case even
though the width of the functions is quite large compared to the inter-site spacing, which indicates that the
choice of coefficients equation (B.5) gives good results even when the assumptions taken in their derivation
are not fulfilled.
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Spin Wannier states on figure B1 are also compared with the bound state η̃ns(ϕ) in a single Gaussian
potential well equation (B.7) of the same depth and width, which is relevant for the transition of electron
between sites, further discussed in appendix C.

To verify that the spin properties of spin Wannier basis
∣∣∣φ̃ns

〉
correspond to criterion equation (23), we

numerically calculate the expectation values of all three spin components

〈�s 〉 =
〈
φ̃ns

∣∣∣�s ∣∣∣φ̃ns

〉
≡

(
〈sx〉 ,

〈
sy

〉
, 〈sz〉

)
. (B.8)

To compare the spin properties of spin Wannier basis with that of uniform spin state, we calculate the
normalized length of the vector 〈�s 〉 and the cosine of the angle that vector 〈�s 〉 spans with the z-axis:

〈L〉 = 2 |〈�s 〉| /�, 〈cosΘ〉 = 〈sz〉
|〈�s 〉| . (B.9)

For uniform spin state, both values are unity. Numerical calculated values of both quantities for a state∣∣∣φ̃1↑

〉
at same N, σ and Ngrid as used for figure B1 are plotted in figure B2 as a function of potential strength

V0 for various values of α.
As seen in figure B2, in the absence of SO coupling, numerically calculated 〈L〉 and 〈cos Θ〉 are both 1,

which indicates that in this limit, spin Wannier basis states
∣∣∣φ̃ns

〉
are actually uniform spin states. When the

Rashba coupling is present, the parameters are no longer exactly one, but quickly approach this value when
potential is increasing, indicating that spin Wannier basis, obtained with coefficients cnss′ equation (B.5) is
indeed a very good approximation for uniform spin states.

Appendix C. Landau–Zenner transitions

Here we discuss the procedure of transferring the electron between two neighboring ring sites by changing
the depth of local potential minimum.

As we see in figure B1 the spin Wannier basis functions
∣∣∣φ̃ns

〉
, calculated with coefficients

equation (B.5), are in fact very similar in shape to the bound states of the electron in the potential,
consisting of only one potential well, labelled |η̃ns〉. We therefore assume for the rest of the discussion that

the spin Wannier states and bound states are equivalent and that
∣∣∣φ̃ns

〉
is also a stationary state of the

potential with single potential minima at site n.
The Landau–Zenner transition between neighboring potential minima is realized in the following

manner. We assume the initial potential on a ring to be a single potential minimum at site n,

V(ϕ, t = 0) = W(ϕ − nϕa). (C.1)

with the electron initially in a superposition of spin Wannier basis states on the same site

|ψinit〉 =
∑

s

cs

∣∣∣φ̃ns

〉
. (C.2)

We then start to slowly decrease the depth of the potential at site n and increase the depth at site n + 1,

V(ϕ, t) = (1 − βt)W(ϕ− nϕa) + βtW(ϕ− (n + 1)ϕa). (C.3)

If voltage change rate β is small �β � V0, this results in slow transition of electron from the superposition
of spin Wannier states on site n to the superposition of states on site n + 1 [42],

|ψ(t)〉 =
∑

s

cs(t)
∣∣∣φ̃ns

〉
+
∑

s

ds(t)
∣∣∣φ̃n+1,s

〉
. (C.4)

The probability of finding the electron on site n or n + 1 depends on magnitude of cs(t) and ds(t),

Pn(t) =
∑

s

|cs(t)|2, Pn+1(t) =
∑

s

|ds(t)|2, (C.5)

and during slow transition, the value Pn will change from 1 to 0 and Pn+1 from 0 to 1.
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Figure C1. Numerically calculated time dependence of parameters Pn+1(t), θd(t) and φd(t) during Landau–Zenner transition
(solid lines), compared with analytically predicted results after transition (dashed line), for the transition between sites n = 3 and
n + 1 = 4. Panel (a) shows the case of Rashba coupling α = 1 and panel (b) for α = 2. The transition was calculated in the
potential of Gaussian shape equation (B.7) with inter-site distance ϕa = 2π/6, with the initial depth of the potential well
V0 = 15ε and width σ = 0.1 on a computational grid of Ngrid = 90 sites. The rate of potential change was set to β = ω0

40 , where
ω0 = ε/� is a natural frequency of the system. Time dependency of local potential on sites n and n + 1 is shown on inset figure in
panel (b) in red and blue, respectively.

What is important for the spin transformation is the relation between coefficients of state in spin
Wannier basis before (cn) and after (dn) electron transition. The lowest order term of time evolution

operator T(t) = exp(−i Ht
�

), coupling the states
∣∣∣φ̃ns

〉
and

∣∣∣φ̃n+1,s

〉
, is proportional to hopping matrix t̃+nss′

equation (29). The state after the Landau–Zenner transition is also normalized, which leads us to the
prediction that the coefficients of the final state in spin Wannier basis are related to initial coefficients as

ds =
∑

s′

1

t0
t̃+nss′cs′ . (C.6)

We verified this result by numerical calculation of the coefficients d↑(t) and d↓(t). The results are
presented in figure C1 as the probability Pn+1(t) of finding the electron on site n + 1, and the direction of a
vector of expectation values of Pauli matrices, calculated from coefficients ds,

〈σi〉d(t) =
∑

ss′
d∗

s (t)σiss′ds′(t), (C.7)

expressed by angle θd and φd:

θd(t) = arccos

(
〈σz〉d(t)

|〈�σ〉d| (t)

)
, φd(t) = arctan

(〈
σy

〉
d
(t)

〈σx〉d(t)

)
. (C.8)

The values Pn+1(t) and θd(t) and φd(t) determine the coefficients dns(t) up to a complex phase and therefore
contain all physically relevant information. Since the spin Wannier states are basically equivalent to the
uniform spin states (see appendix B), the expectation values 〈σi〉 are closely related to the actual spin
expectation values,

〈si〉 = 〈ψ| si |ψ〉 ≈
�

2
〈σi〉d. (C.9)

By plotting the values Pn+1(t) and θd(t) and φd(t) we therefore extract all physically relevant information
about electron’s position and its spin orientation.

The time dependence of relevant quantities is plotted as solid lines in figure C1. The dashed lines are the
values, calculated from the coefficients ds, predicted in equation (C.6), which result in expectation values of
the Pauli vector

〈�σ〉 =

⎛
⎜⎝

2sαsφ
(
sϕa cφ − cϕa cαsφ

)
2sαsφ

(
sϕa cαsφ + cϕa cφ

)
c2
α + s2

α

(
c2
φ − s2

φ

)
⎞
⎟⎠ , (C.10)

with sα, cα, sφ and cφ defined in equation (30) and

sϕa = sinϕa, cϕa = cosϕa. (C.11)

From figure C1 it is evident that the numerical results agree very well with the theoretical prediction,
from which we conclude that the equation for coefficients of state in spin Wannier basis after the

14



New J. Phys. 22 (2020) 083048 A Kregar and A Ramšak

Landau–Zenner transition equation (C.6) is indeed a good approximation for the analysis of spin
transformations.
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