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ABSTRACT

Results for few holes in the quantum antiferromagnet, as obtained
within the {—J model by the methods of the exact diagonalization and the
cumulant expansion, are reviewed. In particular, we discuss properties
of a single hole, the origin of the binding of two holes and the behaviour
at higher doping.

1. INTRODUCTION

Systems of strongly correlated electrons have been extensively studied in
recent years mainly in connection with copper-oxide-based superconductors !, In
spite of a number of theoretical approaches applied to the models for such systems,
with an emphasis on the models for CuO; layers, some of the crucial questions
lack even a qualitative answer. In such a situation exact diagonalization studies
and perturbation expansion methods, as will be described in this talk, have proven
to be very valuable.

a

A possible approach to the understanding of strongly correlated electrons is
to start with an antiferromagnetic (AFM) insulator as a reference and introduce
charge carriers by doping a system with low concentration of holés. Holes are
strongly coupléd to the AFM spin background and behave as well defined mobile
quasiparticles (QP). Their individual static and dynamical properties, e.g. effective
masses, related spin distortions of the AFM background etc., form the basis for the
understanding of the QP interactions and of the possible superconducting pairing.

Among the madels for strongly correlated systems the { — J model 2 repre-
sents conceptually the simplest modcl,-taking into account the essential ingredi-
ants: mobile character of fermions and a strong on-site electron-electron repulsion,

H=—t Z (CI’CJ',,.-I-C}‘C",)-E‘J E S,"S;J', (1)
<ij> <ij>
describing the hopping of electrons in the presence of empty sites in a spin system

with the AFM Heisenberg interaction, where §; = Ly c_?‘&',,ac.-,:. Here, c!
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arc projected fermion operators, taking into account the requirement of strong
correlation that a double occupancy of sites is not allowed.

The ¢ — J model has been and remains the subject of numerous theoretical
studies, with an emphasis on d = 2 systems. The properties of a single hole in pla-
nar AFM seem to be now at least qualitatively understood due to analytical 345,
in particular selfconsistent ® approaches, and due to numerical exact diagonaliza-
tion studies 7*°, Beyond the Nagaoka regime at very small J/t < 1 the dynamics
of a hole is governed by spin flips in the AFM background 58, i.e. m* o< 1/J. Less
clear is the existence and the origin of the real space binding of two holes in an
AFM, as observed in exact diagonalization studies ™'® even for modest J/t > 0.2.
Regime of finite ( larger ) concentration of holes z, which is most relevant for
oxide superconductors, has been treated with various mean-field, variational and
field-theory approaches 2. The relation of these analytical approaches to the exact
results for small systems 10 is still rather unclear. However these questions are
mainly beyond the scope of this review.

So far even a clear qualitative understanding of a phase diagram in a param-

- eter space J/t — z is missing. Whereas at J/t < 1 and z < 1 a Nagaoka - type

behaviour with short-range ferromagnetic (FM) correlations seems to dominate,
instabilities in the form of phase separation are expected for J 3> 1 11,

2. EXACT DIAGONALIZATION AND CUMULANT EXPANSION METHOD

The essential limitation of the exact diagonalization approachis in the small-
ness of systems which can beinvestigated. The allowed size of the system is roughly
determined by the number of quantum states N,q, representing the basis for the

_ ground state wavefunction |¥;). For most efficient numercal approaches it is

required that IV,; be substantially smaller than the available computer memory.

The complexity can be thus estimated from the total number of states N?, = m",

where m is the number of quantum states per unit cell and N is the number of

cells. This shows a clear motivation for studies of simplest models of correlated

systems, i.e. of the { — J model with the smallest basis m = 3 and a typical

size N = 16, as compared to the single band Hubbard model with m = 4 (where

recently also results for N = 16 were obtained !?) and to the two (three) band
model with m = 64.

In most diagonalization procedures 7=1° the Lanczos method is used, where
the ground state energy Ey and the wavefunction |¥o) are calculated. It is then
straightforward to use |¥o) for the evaluation of static expectation values or cor-
relation fu_m‘:tions. The Lanczos method can be easily extended also to the calcu-
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lation of dynamical quantities ?, in particular response functions as the frequency
dependent conductivity o(w) !4, dynamical spin correlation functions ! etc.

One of disadvantages of small finite sizes is also a small set of allowed E
points in the Brillouin zone . This set can be expanded into a continuous variation
by introducing into the kinetic term phase factors, corresponding to the effect of
a vector potential 15:1¢

Ho=-t), (% el ey + hoc.), ' (2)
<ij>a

where 71;; is the unit vector between neighbouring sites. Varying § = 6k the entire
Brillouin zone can be probed.

The ¢ — J model as such is nonperturbative in both limit ' J/t <« 1 and
J/t > 1. An expansion can be performed if the spin exchange J is assumed to be
anisotropic. Hence we divide the t — J model into the unperturbed (Ising) part

=-J Y SiS; )

<ij>

and the perturbation H' = Hy + H,,

Bo=—tY e, H=11% sts7, 4)
ij

ije

with the fermion hopping part H; and the spin-flip part H,.

An expansion in {/J and 7 is now possible, in particular for a small finite
number of holes in a reference Néel AFM. We present here results 17 for a single
hole Ny =1 and a hole pair N = 2. We follow the standard cumulant expansion
procedure for the ground state energy '®. The final result for n holes 7 is the

geries for the energy e,, expressed rclative to the undoped AFM ground energy
for chosen E

B = =T Y anm(B)F)™ (%)

For a single hole Nj, =1 the unperturbed (lo.calizcd) ground state | §; > of

Hj represents just a hole in a reference Néel spin state. For Nj = 2 the ground
state of Hy is a bound pair of holes, i.e. the Néel configuration | @ > with two
neighbouring empty sites,

| 8i,r >=cijcisrt | 8>, (6)
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where T = z4, z—, y+, y—. The above states are used to construct the local
states having the s,p,d - type rotational symmetries, e.g.

1960 >= 81 0ies > + | Bige > + 1 Biae >+ | Big— >),

100 >= 20100t > = [ Bige >+ [ Oiee > = [Biye>).  (7)

Due to the translational symmetry, the properly chosen unperturbed (as well as
intermediate) states are of the Bloch-type | @;), characterized by the momentum
k.

The fermionic sign does not appear for Ny = 1, while it already plays an
essential role for Ny = 2. Still it is not necessary to follow the sign through all
intermediate state, since it can be deduced from the final state. Namely, a pair of
holes (in its initial state | 0; , >) behaves as an oriented bond. Both holes can be
tagged and remain distinguishable, hence the overall sign of the final stage depends
merely on the final position and on the orientation of the bond. The analogy of
states | 0; » > with p - type wavefunctions for two spinless fermions is thus evident,
although the many-body state is much more involved in the intermediate state.

We also note that there are close similaritics between the cumulant expan-
sion as discussed and the exact diagonalization of small systems using the Lanczos
method. The Lanczos method with M steps, starting from a reference Néel state,
is essentially equivalent to the cumulant expansion of the same order. For small
systems with a limited total number of quantum basis states there are no serious
limitations in the number of Lanczos steps, results are however dominated by fi-
nite size effects. On the other hand, for larger systems the Lanczos method would
generate on each step a p.rohibitive number of new basis states, mainly due to
unlinked processes. In this respect the cumulant expansion is more efficient, since
only linked processes contribute. In this way larger ( infinite ) systems can be
studied. Still the number of processes ( diagrams ) increases very fast with the
order. The cumulant expansion can thus supplement the exact diagonalization
results, yielding the finite size corrections !7 and allowing for more transparent
interpretation by considering different contributions order by order. In our calcu-
lations we reach up to n =12 order in {/J and m = 6 in v for N}, = 1,2. Various
techniques, in particular the method of Padé approx.i'mants, can be used to extend
analytically the power series onto the whole regime of J/t and 7.

3. SINGLE QUASIPARTICLE PROPERTIES

Let us first discuss the lowest branch of the energy dispersion for a single QP
61(5-:'). Inat—J modelona N =4 x4 lattice it appears that the ground state of
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a single QP is degenerate at k= (£x/2,£7/2) (A point), ko = (WI,U) (X point)
and kg = (0,7) 2. Introducing the continuous k variation via the phase method,
it appears that minimum energy state is actually outside the high symmetry point,
i.e. the minimum is near the line A—X for J/t < 118, This effect can be explained

by the fact that a single hole in a finite system rather simulates the effect of finite

doping. .
One of the most important quantitities characterizing the QP is its coherent

mass enhancement tensor g and the corresponding coherent hopping integral t2,
defined through the dispersion

8%¢,(ko + P)

o &
t 3 = !c = E“*“th:G' {8)

On the other hand < Hy >= =2 d t can be used as a definition of the incoherent
effective hopping ¢;. In a system with periodic boundary conditions both effective
hoppings are related via the optical conductivity sum rule !¢

- - <lFm j ‘I’ >= - =
=g- 3 R lIZ 2 i Moy, ©

m#ED

Let us first discuss the QP massesind = 1 and d = 2 system. In order to determine
.12 and t} we have studied 1° single hole states in a d = 1 chain by diagonalizing
exactly using the Lanczos method systems with up to N = 20 sites, and then
performing the scaling to N — oo . Results show that the coherent hopping is
nearly unperturbed 1 ~ ¢ in the whole range of J/t and thus unaffected by the
AFM short range spin correlations. In particular, for J = 2 an exact solution
is obtained by the Bethe Ansatz method 1% with 2/t = 0.938. This property of
the t — J model on a chain can be understood starting from the limit J/t — 0
where the incoherent hopping equals the free value t7/t = 1 *. At the same time
[H,j] = 0 so that the current j is conserved. Eq.(8) then implies that t; = t;. The
equality does not seem to persist for finite J/t > 0, but the difference has been
found to be very small in the entire regime J/t, i.e. (82 —7)/i2 < 0.02.
Alternative explanation is related to the observation that for odd chains
the mobile hole cannot spoil the AFM correlations. Hence we are dealing with a
very mobile holon representing a typical domain wall (soliton) in the d =1 AFM.
Also for even chains with an additional spinon in a system, the current is almost
conserved. : -
This indicates that the QP behaviour is essentially different from d = 2,
where the ratio t;/t; o J/t approaches zero *~7 for J/t — 0 outside the regime
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of the Nagaoka FM polaron J/t < 1, and the coherent contribution to o(w)
is vanishing in this limit. The latter result is now qualitatively established by
several approaches. Since the exact diagonalization results are deficient due to
quite evident finite size effects, we present here the cumulant expansion analysis
17 which clarifies the origin of mass renormalization and its anisotropy.

In the Ising case 4 = 0 the QP coherent mass is extremely high since up to
the m = 6 order in hopping * the hole has to return to the starting site. Le., the
QP is bound to the origin by a string of overturned spins. For 4 > 0 the dispersion
appears already in low orders (n,m). The lowest process involves two hops and
a connected spin flip which clears the path before or after the hole passage. The
corresponding coeflicient is :

16 16
a1 = ﬁ(cos gr + cos ¢,)* — T (9)
showing a minimum along the AFM zone boundary. This is just the degeneracy of

the exact diagonalization studies of the 4 x 4 system "®. The degeneracy is lifted
in the cumulant expansion in all higher orders, e.g.

az,2 = 0.0781 — 0.4029(cos g + cos q,)* + 0.1896(cos gz — cos &)y (10)

We notice that all a,; terms introduce only a weak perturbation to the simple
formi, Eq.(9), while a, 2 terms lead to a substantial stabilization of the QP ground
state at the A point, consistent with partial diagonalization of larger systems **
and with the selfconsistent approaches 5:°. Results of a2 more complete analysis up
to n =12 and m = 6, supplemented by the extrapolation to the regime J/t < 1
using the Padé approximant, are given in Ref.(17). In Fig.1 we present only the
final result for the mass enhancement tensor, i.e. for the longitudinal gy ( pllq’)
and for the mass ratio p) /pj. Whereas the ratio does not change qualitatively in

the whole regime of J/t, p increase in both limits, in particular for J/t < 1 we
get gy ~2.3t/J.

4. QUASIPARTICLE INTERACTION

An information on the QP interaction can be gained by studying the ground
state of two QP. We calculate the latter by solving the t — J model with N, = 2
holes on a 4 x 4 lattice ™. In the whole regime of J/t the Ny = 2 ground state
was found to be a spin singlet § = 0 and triply degenerate, corresponding to
ky = (0,0),(0,),(r,0). A test of the pair binding is the binding energy

Ay = €2 — 26, (11)
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- Fig. 1 Mass enhancement p vs.J/t for two different anisotropies 4. The mass

ratio gy /py is shown by a dotted curve.

where we should assume in €; and ¢; the appropriate ¢),§2 corresponding to the
ground states of N) = 1,2, respectively. Additional information can be gained
from the hole density correlation function 78

9(R) = (TLolna(0)na(R)| Lo). (12)

Ag and the density correlations g(fi], presented in Fig. 2, clearly indicate on the
bound state of a hole pair at J/t > 0.2. The hole density correlations fall off with
the distance, whereas Ay ~ —J in this regime.

A gradual change to an entirely different state is evident also fmm the spin
correlations C(R) = (¥,|5(0) - §(R)|¥o). They become FM - like for nearest
neighboursat J/t < 0.1. Such a situation can be simply explained by the formation
of two oppositely polarized FM spin polarons which repel each other, what is
consistent with the attractive-repulsive transition observed in g(R).

To understand the origin of the hole binding, the cumulant expansion !7
offers a systematic approach where different contributions can be clearly located.
Although the expansion starts at J/t"» 1 and v <. 1, exact diagonalization results
support the idea that there is no essential change in the binding mechanism up
to J/t ~ 0.2 where a transition to a different (Nagaoka-type) regime happens.
Within our perturbation expansion we evaluate the power series for Ay,

i
Ao=J Z c“'m[j)“‘y"', (13)
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FIG. 2 Hole - density correlations g(R) vs. J/t for Ni = 2, from Ref.(7).

Our results for ¢, m (obtained up to m = 6 and n = 8) show that at least for
J/t > 1 the hole - pair ground state corresponds to the d - type symmetry and
q2 =0.

The binding of two static holes, with ¢ = 0,n = 0 can be explained with
the simple broken bond argument 7, i.e. a hole pair ( holes on neighbouring
sites ) breaks T AFM bonds, while separated holes break 8 bonds. This would
amount to the binding Ay/J = by = -—%. Corrections for £ = 0 as determined
by co,m coefficients are all negative but small, yielding for the isotropic 4 = 1 case
Ag/J = —0.2764. '

For finite hopping t > 0 we first notice that within the ordern =2,m =10
there is an attractive contribution, but also a large degeneracy of the ground
state. The origin of this effect is due to the fact that a hole pair is quite mobile,
in contrast to a single hole. Since the bond behaves as an oriented entity, there is
an important interference between partial states of the wavefunction.

Higher order n > 2,m = 0 terms lift the degeneracy and the ¢ = 0,d state
remains the lowest one for a hole pair. In this respect n > 2 terms already present
finite size corrections to the exact diagonalization results for the 4 x 4 system T8,
where the ground state is triply degenerate. cn,m values for v > 0 indicate that
in the leading order spin fluctuations enhance the binding. Using again a Padé
approximant for the extension of series we get for Ag/J the result presented in
Fig.3. In the J/t < 1 regime it shows even a relative enhancement over the static
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hole case, both for ¥ = 0 and v = 1. The exact diagonalization clearly yields a
larger binding for 4 = 1 , what can be attributed to the finite size effects. It
should be however noted that at J/t < 1 a crossover to a different single hole and

hole pair state is expected leading to the unbinding of a hole pair 7.
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FIG. 3 Hole-pair binding energy Aq/J vs. J/i for ¥ = 0 (dashed line) and y =1
(full line). Results obtained by the exact diagonalization of a 4 x 4 system are
presented by light and heavy dots, respectively.

4. MANY - HOLE STATES

Whether some characteristics of a single QP and the nature of QP interac-
tion remain valid even at finite (higher) concentration of holes is one of the central
questions in the theory of strongly correlated systems. Some aspects of this prob-
lem have been tested by the exact diagonalization. The system with N, = 3,4
holes on a 4 x 4 lattice has been investigated by the present authors %11, Note

- that Nj = 4, corresponds to the concentration z = N /N = 0.25, representing in
real copper oxides the materials with highest T..

For Ny = 4 we find for J/t > 0.2 the ground state to be again a spin
singlet § = 0. A clear effect of higher doping is the reduction of spin correlations
C(R) with z '°. Whercas at low doping = < {5 corrclations are qualitatively
consistent with C(?) in a layered quantum AFM, at high doping z = 1 ATM

correlations remain (only) among nearest neighbours /2 = 1. This result agrees
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with experiments !? and with a simple argument that the average distance between
holes determines the AFM correlation length, i.e. § %

An information on the collective state of holes in a Ny = 4 system can
be gained from the [our-point density correlations ! which show that the model
becomes unstable against the hole droplet formation for J/t > 1, which is an
manifestation of the phase separation instability '* in a t — J model, So far
we have no indications for such scparation in the physical regime J/t < 1. In
particular the cumulant expansion method clearly shows that the introduction of
hopping t > 0 prevents the binding of more holes N = 3,4 etc. into a droplet, in
contrast to the case of a hole-pair Ni = 2. .
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FIG. 4 The momentum distribution function fi; for Ny = 4 holes on a 4 x 4 lattice
at: a) J =0,b) J/t =0.1,c) J/t = 0.8 and d) J/t = 10.

A possibility of the Fermi-liquid behavior at higher doping is one of the most
interesting open questions in correlated systems. Our results ! for a small system
can add some qualitative insight.through the fermionic momentum distribution fiz.
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In Fig. 4 we show i; in our system with fixed Ny = 4,i.e. with Ny = N=N;, =12
fermions, for various values of J/t. At J = 0 with highly polarized (§ = 5) ground
state (Fig. 4a), i is similar to the distribution for noninteracting spinless fermions.
At J/t = 0.1, A is more continuously decreasing from ¢ = (0,0) towards the
Brillouin zone edge. The shape of the distribution function is weakly dependent
on J/t in the corresponding interval 0.048 < J/t < 0.35. The latter holds also in
the region 0.35 < J/t < 1.00. From Fig. 4c we notice however ( J/t = 0.8 ) that
here 7i; is very close to the one expected in a Fermi liquid. The volume of the
inner region with fiy 2 1 corresponds qualitatively to the volume for noninteracting
fermions. The less occupied region fi; < 0.5 contains also the point ¢ = (%, T).
This latter result is consistent with photoemission experiments 2° and can be
interpreted simply using the fact that single holes preferably enter the §= (5,
state at low doping. At very large J/t 2 10 the situation is qualitatively different
as shown in Fig. 1d. The distribution is almost constant for all ¢ indicating the
localization of fermions and the formation of hole rich droplets. The analogous
variation of n; is expected as a function of doping. Namely, at z €« 1and J/t <1
the holes are nearly self-trapped due to the large coherent mass, and 7z would
appear nearly constant. )

Four-point density correlations also indicate on the possibility of the paired
state in the regime 0.4 < J/t < 1.0, where pairs with the interhole distance
R = /2 and R = 1 are the most probable. Still there are gradual changes in
character of hole pairing. Whereas for Ny = 2 the pairing correlation functions
are clearly dominated by the d-wave character %, the s - wave function increase
with doping and reaches the value of thé d- type function in the most relevant
regime z = 0.25 11,
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