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� A model of three coupled quantum dots in a triangular geometry was studied.

� Varying gate potentials the system exhibits different many-electron ground states.
� The numerical renormalization group was used for analysis of electron transport.
� The Friedel sum rule reproduces the conductance for the whole gate potential range.
� A phase diagram was constructed with the regular and singular Fermi liquid phases.
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A system of three coupled quantum dots in a triangular geometry (TQD) with electron–electron inter-
action and symmetrically coupled to two leads is analyzed with respect to the electron transport by
means of the numerical renormalization group. Varying gate potentials this system exhibits extremely
rich range of regimes with different many-electron states with various local spin orderings. It is de-
monstrated how the Luttinger phase changes in a controlled manner which then via the Friedel sum rule
formula exactly reproduces the conductance through the TQD system. The analysis of the uncoupled TQD
molecule from the leads gives a reliable qualitative understanding of various relevant regimes and an
insight into the phase diagram with the regular Fermi liquid and singular-Fermi liquid phases.
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1. Introduction

The Kondo effect is a many-body phenomenon in which a lo-
calized spin is screened by a cloud of surrounding conducting
electrons [1]. The effect manifests itself in electron transport due
to an unusual scattering mechanism and it was observed in metals
with magnetic impurities as well as in nanostructures [2]. In
quantum dots the conductance shows universal dependences [3]
in agreement with theoretical studies based on a single impurity
Anderson model [4]. The problem is obviously richer for multi-dot
systems where one can expect interplay of the Kondo ground state
with internal magnetic orderings [5–9] as well as a quantum phase
transition [10–16]. There is a competition between the Kondo ef-
fect with various intra- and inter-dot electron correlations. The
simplest systems comprising these competitions are two-impurity
models which have been comprehensively considered in the
ka).
literature (see e.g. [17–25] and references therein).
In this paper we are interested in quantum dot trimers for

which many aspects have been already studied (see the review
[26]). According to Di Vincenzo et al. [27] trimers with three
electron spins can be good candidates for spin qubits which should
be more immune to decoherence processes and may be manipu-
lated by purely electrical pulses. Several groups [28–31] have un-
dertaken experiments to investigate dynamics and coherent ma-
nipulations in such systems. An interesting case is a triple quan-
tum dot system with a triangular symmetry (TQD) where spin
frustration occurs and the spin entanglement is sensitive to
breaking of the triangular symmetry [32–40]. Our recent transport
studies [41] concerned a special case of TQD with three electrons
in a TQD and they showed that due to the symmetry breaking the
zero-bias conductance changes abruptly from the unitary limit to
zero. This effect is driven by a transition between the ground
states with different internal spin–spin correlations.

Pustilnik and Glazman [42] showed that the conductance
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Fig. 1. Triangular triple quantum dot molecule attached to the leads.
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exhibits a transition from the unitary limit to zero with lowering a
temperature which results from interplay of electron scatterings
on a systemwith the triplet and singlet close to degeneracy. This is
an evidence of a two stage Kondo effect with the transition from
the fully screened Kondo regime at high temperatures to the un-
derscreened S¼1 Kondo effect at low temperatures. Varma et al.
[43] and Mehta et al. [44] using the renormalization group de-
monstrated that this is a transition from the regular Fermi liquid
(RFL) to the singular Fermi liquid (SFL). At low temperatures, the
spin S is partially screened to S S 1/2= −

⁎
. The residual magnetic

moment Sn couples ferromagnetically to the rest of conducting
electrons. It was shown also that the scattering matrix tends in a
singular manner to the unitary limit [44]. For S¼1 the phase shift
is /2δ π≈ plus some singular corrections caused by scatterings on
the residual spin Sn. A subtle interplay of various scatterings leads
to a breakdown of the Fermi-liquid picture. A fundamental char-
acteristic of the singular Fermi liquid is that the low-energy
properties are dominated by singularities as a function of energy
and temperature.

An interesting experimental exemplification of the un-
derscreened Kondo effect was performed by Parks et al. [45]. They
measured the conductance through individual cobalt complexes
with spin S 1= where controllable stretching of the molecule
changed its magnetic anisotropy and induced a transition to the
underscreened Kondo regime. Theoretical studies by Cornaglia
et al. [22] showed that stretching the molecule can also lead to a
Kosterlitz–Thouless quantum phase transition from a high-con-
ductance singular Fermi liquid to a low-conductance regular Fermi
liquid ground state.

The main purpose of this paper is to consider the problem of
electronic correlations and the role of many-particle states in co-
herent transport through the TQD system in all range of electron
fillings. To this end, one first needs to study the isolated TQD, its
electronic structures and the ground state features with respect to
the local gate potential varying the number of electrons in the
system. Then it is possible to see the condition for a local moment
formation with spin S 1/2= and S¼1 as a prior presumption for
the Kondo screening. Especially we are interested in the quantum
phase transition between regular- and singular-Fermi liquid
ground states [34,37]. The calculations are performed with the
numerical renormalization group (NRG), by the NRG-Ljubljana
code [46].

We also rise the question whether the quantum phase transi-
tion between the different Fermi liquid ground states in the TQD
can be understood in terms of the Friedel–Luttinger sum rule. For a
two-level system, it was already shown [14,47,48] that the zero-
bias conductance can be expressed only in terms of the dot oc-
cupancy according to a Friedel–Luttinger sum rule, which is ap-
plicable to both the screened and underscreened Kondo effects.
Recently Žitko et al. [49] predicted an underscreened Kondo effect
due to dark states in the parallel double quantum dot system. We
expect similar effects in the triangular TQD system where internal
interference processes lead to the Fano resonance and formation of
many-body dark states [50–52].

The paper is organized as follows. In Section 2, electronic
structures of the isolated TQD for all electron fillings along with
their corresponding correlators are presented. The main part of the
paper is Section 3 which presents numerical results for the TQD
coupled with electrodes derived by means of NRG approach for
the correlators and conductance. We will show that the system
exhibits rich range of regimes with different many-electron states
and various local spin orderings which result in the Kondo cor-
relations with conducting electrons. Finally, in Section 4, the
conclusions are presented with a phase diagram for the regular
and singular-Fermi liquid constructed from the analysis of the
Luttinger phase changes derived via the Friedel sum rule formula
and the conductance.
2. Isolated triple dots

The considered system of triple quantum dots is presented in
Fig. 1. For the isolated TQD the Hamiltonian can be expressed as

H d d U n n

t d d d t d d h c. . .
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Here we assume that the size of the dots is small, their intrinsic
level spacing is large enough, and therefore one can confine con-
siderations just to a single energy level iϵ = ϵ (for i A B C, ,∈ { }). The
second term describes the intradot Coulomb repulsion for two
electrons with the opposite spins ,σ = ↑ ↓, where n d di i i=σ σ σ

†

denotes the electron number operator. The last term corresponds
to electron hopping between the dots for a symmetric case when
the hopping parameters t t tCA CB 1= = and t tAB 2= .

The main purpose of this section is an analysis of electronic
correlations in the isolated TQD system for any number of elec-
trons: from zero up to six electrons. We, therefore, derive an
electronic structure, find a ground state and all quantities char-
acterizing many body states (such as local charges, spin config-
urations and spin–spin correlations). Numerical results are pre-
sented in Fig. 2 as a function of a gate voltage which shifts the
position ϵ of the local levels. We distinguished two cases: weak
and strong coupling between the dots A and B (for t t1 2> and
t t1 2< , respectively) for which local charge and spin arrangements
are different. Lowering the position of ϵ we increase the number of
electrons in the system, which is seen on the top panels where the
charge plots are presented. One can see that the electron–hole
symmetry is broken in TQD; there is no mirror symmetry with
respect to the middle of the figures at U/2 0ϵ + = . It is worth to
mention that in the system one can expect dark states, the states
which are decoupled from one of the quantum dots [50–53,39].
For the case t t1 2< the dark state becomes the ground state for one
electron which is equally distributed between the dots A and B,
whereas the dot C is empty. Later whenwe attach electrodes to the
dot C, this state becomes decoupled from the electrodes and
therefore no current can flow through the system.

When two electrons appear in the TQD they can form a singlet
or a triplet state which are mobile (delocalized on three dots). For
both considered cases, t t1 2> and t t1 2< , the triplet has lower
energy which is seen in the middle panel for the total spin with
S 2tot

2 = . Symmetrically for four electrons the ground state is the

singlet with S 0tot
2 = . In the calculations we take the hopping

parameters t1 and t2 positive, but when one changes their sign the
position of the triplet and the singlet is exchanged. In the calcu-
lations we take into account a whole space of electron states, in-
cluding excited states with double electron occupancy, the states
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Fig. 2. Total ntot and local ni charges (a), total Stot
2 and local Si

2 length of
spins (b) and inter-dot spin-spin correlations S Si j〈 · 〉 (c) as a function of gate-voltage

U/2ϵ + derived for the isolated TQD with the interdot coupling
t D t D/ 0.01 / 0.0051 2= > = and strong intradot Coulomb interactions U D/ 0.2= in
units of the half-bandwidth of the conduction band D¼1. Notice that in the middle
of the plot, for n 3tot = , the ground state is the doublet DT

Sz| 〉 with S 3/4tot
2 = and

ferromagnetic correlations between the spins A and B, S S 0A B〈 · 〉 > . The system does
not have the electron–hole symmetry: for n 2tot = the ground state is triplet with
S 2tot

2 = and ferromagnetic correlations between the spins, S S 0i j〈 · 〉 > , while for
n 4tot = the ground state is singlet with S 0tot

2 = and antiferromagnetic corre-
lations between the spins, S S 0i j〈 · 〉 < .
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which participate in superexchange coupling between the spins.
However, for two (four) electrons in TQD kinetics of charges
dominates in the ground state properties and superexchange
processes play a minor role [54].

In the middle of the plot (around U/2 0ϵ + = ) the ground state
is for three electrons in TQD. Now charge kinetics is suppressed
(due to large U and Pauli exclusion principle), therefore super-
exchange processes dominate [39–41,52]. The ground state is gi-
ven by doublet states. Projecting into the singly occupied sub-
space, the doublet spin states with S 1/2z =+ can be written as

D 1/ 2 , 2S A B A B C
1/2| 〉 = (| ↑ ↓ 〉 − | ↓ ↑ 〉) ⊗ | ↑ 〉 ( )

3D 1/ 6 2 .T A B C A B A B C
1/2 ( )| 〉 = [ | ↑ ↑ 〉 ⊗ | ↓ 〉 − (| ↑ ↓ 〉 + | ↓ ↑ 〉) ⊗ | ↑ 〉]

It is seen that the state DS| 〉 is composed from singlet on the AB
bond and an electron at the dot C, whereas DT| 〉 is composed from
triplets on the AB bond and an electron with spins ↑ and ↓ at the
dot C. From Fig. 2 one can see that for t t1 2> the ground state is
DT| 〉 for which the spin–spin correlations at the AB bond are po-
sitive, S S 1/4A B〈 · 〉 = , and S S S S 1/2A C B C〈 · 〉 = 〈 · 〉 = − . For the case
t t1 2< , Fig. 3, one can see maximal entanglement between the
spins A and B, S S 3/4A B〈 · 〉 = − , whereas the spin C is decoupled,
S S S S 0A C B C〈 · 〉 = 〈 · 〉 = . Here we have an example of monogamy of
entanglement [55]. According to the monogamy concept when
two quantum objects, e.g. the spins A and B, are maximally en-
tangled they cannot be entangled with any third party object. For a
general case when the hopping parameters t tAC BC≠ the ground
state is a coherent mixture of the both cases for DS| 〉 and DT| 〉.
3. NRG studies of tripled dot coupled with electrodes

The numerical renormalization-group is a universal method to
study impurity problems, in particular the Kondo effect, where
correct description of the screening of the impurity spin by the
conduction-band electrons at low temperature scales is essential
[46,1,56–60]. The essence of the method is a logarithmic dis-
cretization of states and a mapping to a one-dimensional chain
Hamiltonian with exponentially decreasing hopping constants
which enables diagonalization iteratively and to keep only the
states with the lowest lying energy eigenvalues. The energy scales
are separated since the matrix elements between the states on
vastly different energy scales are very small and may be neglected.

In this work numerical results were obtained by the NRG cal-
culations using the discretization and the iteration parameters as
in Ref. [41] where the NRG Ljubljana code [46] was used, an im-
plementation of the NRG using Mathematica and Cþþ . The
Mathematica part of the code is used for the initialization of the
problem: using an input of Hamiltonian and operators of interest
in the form of second-quantization expressions, it automatically
generates the eigenvalues and eigenvectors in all symmetry-
adapted subspaces of the full space, as well as the matrix re-
presentations of all required operators. All results presented in this
paper are fully converged, since the three-impurity single-channel
quantum impurity problem studied here can be analyzed using
relatively modest numerical requirements [41].

3.1. NRG results of correlators

In the following we present and discuss numerical results ob-
tained by means of the NRG code for the quantities characterizing
the charge and the spin correlations of the TQD system as a
function of the gate-voltage which shifts the position of U/2ϵ + .
The TQD system is symmetrically coupled to the leads, L RΓ Γ Γ= = ,
and all results are shown in the strong Coulomb repulsion regime
U/ 20Γ = , at a low temperature T D/ 10 13= − where the half-
bandwidth of the conduction band D¼1 is the largest parameter.

Figs. 4 and 5 present the correlators plotted versus the gate-
voltage for two different cases t t1 2> and t t1 2< , respectively.
Compared with the isolated TQD, with Figs. 2 and 3, now the plots
show natural broadening caused by charge fluctuations between
TQD and the electrodes. However one can also see a series of
jumps, which correspond to level crossing between different
electron ground states when charging of the TQD system is
changed.

3.1.1. Ferromagnetic case
Let us first consider the t t1 2> case, presented in Fig. 4, in detail.

From the right-hand side the first jumps in the correlators corre-
spond to charging of TQD with two electrons. In Fig. 4(a) one can
see that the plot of n nA B〈 〉 = 〈 〉 shows a sharp jump at

U/2 0.103ϵ + ≈ , when the second electron enters suddenly in the
dots A and B. In this situation the triplet state is formed, which is
seen in the plots for Stot

2 and S Si j· , Fig. 4(b). The length of the

total spin Stot
2 achieves its maximal value about 2, and the spin–

spin correlations S Si j· are positive. These results suggest an un-
derscreened S¼1 Kondo effect.
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Fig. 3. The quantities: ntot , ni (a), Stot
2 , Si

2 (b) and S Si j〈 · 〉 (c) with respect to
U/2ϵ + for the case t D t D/ 0.005 / 0.011 2= < = for the isolated TQD. In the middle of

the plot, where n 3tot = , the ground state is the doublet DS
Sz| 〉 with perfect en-

tanglement between the spins A and B, S S 3/4A B〈 · 〉 = − , whereas the spin C is
decoupled, S S S S 0.A C B C〈 · 〉 = 〈 · 〉 = Notice that for n 1tot = the dark state occurs for
which the dot C is empty and the electron is distributed between the dots A and B.
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2 (b) and S Si j〈 · 〉 (c) derived with
respect to U/2ϵ + by the NRG method for the case t D t D/ 0.01 / 0.0051 2= > = . The
coupling of TQD with the electrodes is taken as D/ 0.012Γ = and U D/ 0.2= . Com-
pared to the low U D/ results here transitions between different regimes are gradual
except at particular points U/2 0.103ϵ + ≈ and 0.07− , the transition from 2 to
3 electron state where the triplet state is formed and the crossover from 3 to
4 electrons, respectively. The formation of local moments is evident from panel
(b) and spin–spin arrangements from panel (c).

S.B. Tooski et al. / Physica E 75 (2016) 345–352348
For the case of the half-filled TQD one can see that Si
2 satu-

rates and it is closed to 3/4, indicating the doublet state with the
spin S 1/2= . Notice that in this voltage range the correlations
S SA B· between the spins at the dots A and B are ferromagnetic and
the length of the total spin S SS S 1A B AB AB

2〈( + ) 〉 = ( + ) reaches its
maximal value 2, Fig. 4b.

The second sharp transitions occur in the plots at
U/2 0.07ϵ + ≈ − , which correspond to a crossover from the three-

electron to the four-electron charge state. Both of the total spin
squares Stot

2〈 〉 and S SA B
2〈( + ) 〉 change sharply from their maximal

to minimal values, while the spin–spin correlators S SA B· change
abruptly from ferromagnetic to antiferromagnetic. These results
indicate the singlet ground state formation. In this situation, one
can anticipate a quantum phase transition between the fully
screened and the underscreened Kondo effect, which as we will
show later can be manifested itself in the electronic transport.

Lowering the gate-voltage more, Stot
2〈 〉 reaches 3/4 for five

electrons in TQD. This indicates the local moment formation for
five electrons in TQD, where one can expect fully screened S 1/2=
Kondo effect.

3.1.2. Antiferromagnetic case
Let us turn to the case t t1 2< presented in Fig. 5. The behavior of

the average charge ni is similar to the previous case. However, for
the case with one electron at TQD one has n n 0A B〈 〉 = 〈 〉 = due to
the dark state formation. Later, at U/2 0.105ϵ + ≈ , when the sec-
ond electron enters suddenly in the dots A and B all quantities
exhibit sharp jumps. One can also see that Stot

2 reaches its
maximal value about 2 when two electrons form the mobile triplet
state. In this situation one can expect the underscreened S¼1
Kondo effect for both the ferromagnetic and antiferromagnetic
cases. The region with the triplets is separated by two sharp
changes in the plots on the right-hand side of the figure which
corresponds to fluctuations between the one-electron and the
two-electron states at U/2 0.105ϵ + ≈ , as well as between the
two-electron and the three-electron states at U/2 0.09ϵ + ≈ . We
show later that the second sharp transition is related to the
quantum phase transition between the underscreened and fully
screened Kondo effect. In the middle of the plot there is a region
with three electrons in TQD, where Si

2 is closed to 3/4. In this

region, S SA B
2〈( + ) 〉 is near zero and S S 3/4A B· ≈ − due to the

formation of the singlet state between dots A and B. The spin at the
dot C is unentangled with the others and it can form a Kondo
cloud with spins of conducting electrons. The behavior of four and
five electrons is similar to the ferromagnetic case.

3.2. NRG studies of transport

Rich structure of possible states of the TQD system discussed in
Section 3.1 reflects itself in the conductance properties. One of the
aims of this paper is also a quantitative analysis of the Friedel–
Luttinger sum rule (FLSR), which connects the conductance by the
occupancy of the system and the Luttinger integral, as discussed in
detail in Refs. [14,47,48]. In particular, the zero-bias conductance at
zero temperature is given by

G G sin , 4F0
2 δ= (ϵ ) ( )
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2 → .

Fig. 6. The conductance G calculated directly form the spectral function by NRG
method as a function of gate-voltage U/2ϵ + for U D/ 0.2= , D/ 0.012Γ = , t D/ 0.011 = ,
and t D/ 0.0052 = . It is compared with the conductance deduced from the Friedel–
Luttinger sum rule, Eq. (4), to indicate the phases of the system.
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where G e h2 /0
2= is the conductance quantum, the phase shift

Fδ (ϵ ) depends on the occupation of the impurity nimp and the
Luttinger integral IL:

n I
2

. 5F imp Lδ π(ϵ ) = + ( )

Luttinger and Ward [61] argued that IL¼0 for Fermi liquid systems,
in our case therefore IL¼0 in the regular Fermi liquid (RFL) phase,
whereas I /2L π= in the singular Fermi liquid (SFL) phase. As such,
the Luttinger integral can be the hallmark of both the RFL and the
SFL phases in a rather deep sense. These results should have an
immediate consequence on the zero-bias conductance G in both of
the phases. Therefore, we analyze the TQD system in detail by
comparing the conductance calculated directly from the spectral
function with the conductance deduced from the Friedel–Luttinger
sum rule. This can be considered as a way to determine the cor-
responding phase for each of the ground states. As discussed later,
the detail investigation of the conductance presents the ground
state characteristics and their corresponding quantum phase
transitions which separate the RFL and the SFL ground states.

3.2.1. Ferromagnetic case
With the reference to the analysis of correlation functions we

present results for two distinct regimes. For the t t1 2> case Fig. 6
presents the gate-voltage dependence of the conductance calcu-
lated by the NRG. Here at U/2 0.11ϵ + ≈ the system undergoes a
transition from one-electron ground state with the total spin
S 1/2= to two-electron ground state with the total spin S¼1
where the underscreened Kondo effect is expected, as known from
the results for the corresponding correlators in Fig. 4. At this point,
a Fano resonance reflects with a small sharp peak and deep in G.
Interesting problems arise due to the screening of the magnetic
moment S¼1 for the two-electron ground state of the TQD by
conduction band electrons. The question is, whether the Kondo
effect appears for the TQD system with two electrons, and if so,
how is it related to the ground state of the isolated system? We
apply the FLSR formula and compare the results with G obtained
directly from the NRG. To be specific, we observe that the con-
ductance satisfies the relation G G n/ sin /2tot0

2 π= ( ) for one-elec-
tron ground state or G G n/ cos /2tot0

2 π= ( ) for the two-electron
ground state case. This means that TQD as a whole behaves as a
magnetic impurity.

We take here ntot as the total number of electrons in TQD
which is equal to nimp in Eq. (5). The results perfectly agree with
one or the other case which confirms also that the FLSR is satisfied
for the total number of electrons rather than the local number of
electrons, i.e. the number of electrons at the dot C.

In Section 2, it has been shown that one- and two-electron
ground states are qualitatively different, each corresponding to a
different spin configuration. Therefore, these states are expected to
be separated by a quantum phase transition. Moreover, the con-
ductance reaches its maximal value G G/ 10 = when there are two
electrons in TQD. In fact, the screened and underscreened Kondo
regimes can often be differentiated via their conductance [12].

We note also that the conductance smoothly crosses from two-
electron to three-electron ground state, without a quantum phase
transition. This is already expected from the smooth transition for the
corresponding correlators, presented in Fig. 4. In the previous section
it has shown that for the t t1 2> case, three-electron ground state is a
doublet with the total spin S 1/2= . In this situation, there should be
some kind of the Kondo effect due to the presence of local magnetic
moment S 1/2= . Since the total spin is S 1/2= , one should obtain
the usual single-impurity Kondo effect where G G n/ sin /2tot0

2 π= ( )
is expected. However, this situation does not occur and the con-
ductance satisfies the relation G G n/ cos /2tot0

2 π= ( ), indicating the
underscreened Kondo effect.

Next we observe a sharp transition in G from 0 to G0.8 0 at
U/2 0.07ϵ + ≈ − . It is related to the level-crossing between three-

and four-electron ground states (see the correlators in Figs. 2 and
4). The transition in G finds its counterpart in the jumps of the
total impurity occupancy ntot and the spin square Stot

2 as well as

the spin–spin correlators S Si j· . It is remarkable that the transition

occurs precisely at the point where S SA B
2〈( + ) 〉 changes from 2 to

0, signaling the transition in the local moment from S 1AB = to 0,
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see Fig. 4. This is again the transition between the SFL and the RFL
phase exhibited with a sharp transition from G G n/ cos /2tot0

2 π= ( )
to nsin /2tot

2 π( ) due to the fundamentally distinct ground states.
This effect should be detected in experimental observation of the
conductance.

As already shown in Section 2 the four-electron ground state is
a singlet with no local moment, whereas five-electron ground
state is a state with S 1/2= . This should lead to the valley in the
conductance for four-electron ground state where G 0≈ – as it has
been already expected. However, G reaches its maximal value
when there is precisely five electrons in the TQD. This is mani-
festation of the typical Kondo effect with the fully screened spin
S 1/2= . With a further lowering of the gate-voltage the system
enters into the mixed valence regime and finally to the full-orbital
regime (with six electrons) where G is reduced to zero.

Considering the case with t t1 2> we summarize that the ground
state of TQD is the SFL for two and three electrons, whereas for the
other electron fillings the ground state is the RFL.

3.2.2. Antiferromagnetic case
As it is known from the results for correlation functions, Fig. 5, for

the t t1 2< case the structure of states changes. In Fig. 7 is presented
conductance in this regime, as a function of the gate-voltage, with
the same values of parameters as in Fig. 6. For one electron, the
system can be in the dark state where the probability to find the
electron in dot C is zero, and consequently the transport through the
dot [62] is blocked, in agreement with the earlier results [53,50]. As
in the previous case appears the quantum phase transition between
the RFL phase and the SFL phase at the crossing point U/2 0.11ϵ + ≈
from one-electron to two-electron ground state. In this case the
transition is signaled by a change of the conductance from the re-
lation G G n/ sin /2tot0

2 π= ( ) to G G n/ cos /2tot0
2 π= ( ). At

U/2 0.092ϵ + ≈ , another quantum phase transition takes place, from
the SFL to the RFL ground state, which manifests in the conductance
change from G G n/ cos /2tot0

2 π= ( ) to G G n/ sin /2tot0
2 π= ( ). This

transition occurs at the level-crossing between the two- and three-
electron ground states. A sharp transition in G is accompanied by
jumps in its counterparts, namely in the AB correlators S SA B· , from a
ferromagnetic coupling with S S 0.2A B· = to an antiferromagnetic
coupling S S 0.75A B· = − , as well as in Stot

2 (from 2 to 0.4).
In the previous section has been shown that in three-electron case

the spins on the dots A and B form a singlet with S S 0A B
2〈( + ) 〉 = . In

this situation, one gets the same conductance as in the usual S 1/2=
single impurity Kondo effect due to the decoupling of the dots A and B
from the central dot S S S S 0A C B C· = · = , see Fig. 5. At U/2 0.07ϵ + ≈
the system undergoes a crossover from three- to four-electron ground
state without a quantum phase transition which is in contrast to the
t t1 2> case. This has been already expected from the smooth evolution
Fig. 7. The conductance G calculated directly form the spectral function by NRG
method as a function of gate-voltage U/2ϵ + for U D/ 0.2= , D/ 0.012Γ = ,
t D/ 0.0051 = , and t D/ 0.012 = . It is compared with the conductance deduced from the
Friedel–Luttinger sum rule, Eq. (4), to indicate the phases of the system.
of the correlators (see Fig. 5).
The behavior of the conductance in the region of four- and five-

electron ground states is similar to the t t1 2> case considered in
the previous section.
4. Summary

The TQD molecule considered in this paper is an interesting
example since in a single system only by changing the chemical
potential or local bias one can sweep through a rich range of dif-
ferent spin configurations regarding the whole system or only the
subsystems. Two distinct cases are considered here, characterized
as (anti)ferromagnetic with respect to the subsystem A–B, each
exhibit specific spin entanglement. The evolution of the con-
ductance can be explained by the Friedel–Luttinger sum rule
which is applicable to both the regular- and singular-Fermi liquid
phases. The FLSR relates the conductance to the impurity charge
and the Luttinger integral. It has been confirmed numerically that
the Luttinger integral takes a value characteristic to the quantum
phases of the system, i.e. IL¼0 in the regular-Fermi liquid (RFL)
phase and I /2L π= in the singular-Fermi liquid (SFL) phase.

Our results are summarized in Fig. 8 which presents the phase
diagram for the RFL and SFL. As a function of U/Γ is shown the bias
regime U/2ϵ + where the sine- or cosine- conductance relation
indicates RFL of SFL regimes. Bullets represent precise values of the
crossover as determined by careful NRG analysis and lines re-
present the guide to the eye only. Note that the results for con-
ductance presented in Figs. 6 and 7 correspond to strong Coulomb
interactions with U/ 16Γ = . The phase diagrams in Fig. 8 should be
considered together with Fig. 9 showing internal orderings in the
isolated TQD for all electron fillings. The SFL phase has been de-
tected when the triplet state with S¼1 is formed in the TQD
molecule. SFL appears also for the case t t1 2> with three electrons
when the ground state is DT

1/2| 〉, Eq. (3). In this situation there is a
specific ferromagnetic coupling between spins in the A–B sub-
system which manifests itself in conductance as well.

It is worth to notice that in the TQD system the ground state
Fig. 8. Phase diagram obtained by means of the NRG code for the TQD molecule
coupled with the electrodes, D/ 0.012Γ = , where solid curves separate regular
Fermi liquid and singular Fermi liquid regions. (a) presents the case with
t D/ 0.011 = , t D/ 0.0052 = , while (b) the case: t D/ 0.0051 = and t D/ 0.012 = .



Fig. 9. Phase diagram for the isolated TQD molecule showing various charged
states for (a) t D/ 0.011 = and t D/ 0.0052 = , (b) t D/ 0.0051 = and t D/ 0.012 = .
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appears with the total spin S¼0, 1/2 and 1, which can be under-
stood by Hund's rules [63]. For heavy atoms higher orbital states
can be degenerate but Coulomb and spin–orbit interactions re-
move the degeneracy, and due to the Pauli principle a high spin
ground state becomes favorable. In the TQD with the perfect tri-
angular symmetry and in the absence of electron interactions two
orbital states with opposite wave vectors are degenerate. Fig. 9
shows the ground state diagram for the isolated TQD with respect
to the intra-dot Coulomb interactions U and for all electron fillings.
For two electrons and small U the ground state is the singlet, but it
can be changed to the triplet for U/ 2.4Γ ≲ and U/ 1.4Γ ≲ for t t1 2>
and t t1 2< , respectively. Unfortunately we could not detect such
the transition in the NRG calculations in this regime. We observed
a sharp transition of conductance with ϵ, when the electron
number n changes 1 2 3→ → , but the transition range was too
small to distinguish difference in the sine- or cosine-relations.
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