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Anomalies near the conductance threshold of clean semiconductor
quantum wires are explained in terms of singlet and triplet resonances
of conduction electrons with a single weakly-bound electron in the wire.
This is shown to be a universal effect for a wide range of situations in
which the effective single-electron confinement is weak. The dependence
on gate voltage, source-drain voltage and magnetic field is also explained
by this model. Speculation is made as to the possibility that these anom-
alies are a signature for a new kind of spin-polarised ground-state when
the electron density in the wire is low.

1. Introduction

Semiconductor quantum wires can be fabricated with effective wire widths
down to a few nanometers; for example, by heteroepitaxial growth on ‘v’-groove
surfaces [1], epitaxial growth on ridges [2], cleaved edge over-growth [3], etched
wires with gating [4], and gated two-dimensional electron gas (2DEG) structures
[5, 6]. More recently, there has been considerable interest in carbon nanotubes
for which the quantum wire cross-section can approach atomic dimensions. Such
structures have potential for opto-electronic applications, such as light-emitting
diodes, low-threshold lasers and single-electron devices.

Many groups have now observed conductance steps in all of these various
types of quantum wire, following the pioneering work in Refs. [5, 6]. Whilst
these experiments are broadly consistent with a simple non-interacting picture
7], there are certain anomalies, some of which are believed to be related to
electron-electron interactions and appear to be spin-dependent. In particular, a
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structure is seen in the rising edge of the conductance curve, starting at around
0.7(2e%/h) and merging with the first conductance plateau with increasing energy
[8]. This structure, already visible in the early experiments [5], can survive to
temperatures of a few degrees and also persists under increasing source-drain
bias, even when the conductance plateau has disappeared. Under increasing
in-plane magnetic field, the structure moves down, eventually merging with the
e?/h conductance plateau at very high fields. Theoretical work has attempted to
explain these observation in various ways, including conductance suppression in
a Luttinger liquid with repulsive interaction and disorder [9], local spin-polarized
density-functional theory [10] and spin-polarized sub-bands [11]. In some of the
more recent experiments, an anomaly is seen at lower energy with conductance
around 0.2(2e?/h) [12, 2]. This can also survive to a few degrees, though is less
robust than the 0.7 anomaly and is more readily suppressed by a magnetic field
[2].

In this paper, we suggest that these anomalies are related to weakly bound
states and resonant bound states within the wire. These would arise, for ex-
ample, if there is a small fluctuation in thickness of the wire in some region
giving rise to a weak bulge. If this bulge is very weak then only a single elec-
tron will be bound. We may thus regard this system as an ‘open’ quantum
dot in which the bound electron inhibits the transport of conduction electrons
via the Coulomb interaction. Near the conduction threshold, there will be a
Coulomb blockade and we show below that this also gives rise to a resonance,
analogous to that which occurs in the single-electron transistor [13]. This is a
generic effect arising from an electron bound in some region of the wire and such
binding may arise from a number of sources, which we do not consider explicitly.
For example, in addition to a weak thickness fluctuation, a smooth variation in
confining potential due to remote gates, contacts and depletion regions could
contribute to electron confinement along the wire or gated 2DEG. In this pa-
per we consider only very weak confinement near the conductance threshold for
which a single electron is bound. The confinement could even be due to elec-
tronic polarisation of the lattice caused by the electron itself in an otherwise
perfect wire. In the next Section we introduce the basic model and show that it
applies to a number of different situations and is in this sense universal, as are
the results which are a consequence of it. This is followed by a detailed ana-
lysis of the two-electron approximation in which one electron is weakly bound in
the wire and gives rise to spin-dependent scattering of the other, this scattering
problem being solved exactly. In Section 4 we then show how the solutions of
the scattering problem may be used to determine conductance by an extension
of the Landauer-Biittiker formula. This gives excellent agreement with a num-
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ber of experiments on different kinds of quantum wire. Section 5 deals with
magnetic field dependence of the anomalies and shows how they are related the
spin-split steps in a perfect quantum wires. Section 6 examines the dependence
of the anomalies on asymmetry introduced by finite source-drain voltage an fi-
nally in Section 7 we summarise and speculate on the possibility of a new kind
of spin-polarised ground state.

2. Basic model

We consider a straight quantum wire with a small fluctuation in thickness
giving rise to a weak ‘bulge’ as shown in Figure 1. The precise details of the bulge
are largely unimportant for what follows, the main requirement being that the
change in the width of the wire is sufficiently gradual that inter-channel mixing
of the transverse modes is negligible and that only one electron may be bound
in the bulge region. The latter is always the case for a weak symmetric bulge,
which has at least one bound state which can only sustain one electron due to
Coulomb repulsion. The problem reduces to electrons moving in an effective
weak potential well if we confine ourselves (by choice of gate voltage) to the
Fermi energies for which no more than one transverse mode is occupied, i.e. the
conductance threshold and the first conductance step. This effective potential
well is shown in Figure 1. In fact the potential well may be due to an actual
potential fluctuation due to a remote gate or charged impurities, or even some
self-consistent effect due to the electrons themselves. We shall not consider
the possible cause of this weak potential further but emphasise that because
it may arise in many ways, the weak potential well model is very general with
widespread applicability

Consider now the motion of electrons in the wire near the conductance
threshold [14]. A single electron will be bound in the potential well.region and
the remaining electrons will undergo scattering from the localised electron via
the Coulomb interaction as they propagate from source to drain. At sufficiently
low Fermi energy, the electrons in the source contact will be totally reflected
by the bound electron due to Coulomb repulsion and there will be no current
from source to drain at 7 = 0. As the Fermi energy is raised, the energy of
the electrons in the source contact will be sufficiently high for them to overcome
the Coulomb repulsion of the bound electron and a current will low. In calcu-
lating this current we will make the approximation that the electrons flowing
from source to drain only interact with the bound electron via a screened Cou-
lomb interaction. This is a reasonable approximation provided that the electron
density is not too low in the region of interest, i.e. the rising edge to the first
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Figure 1. Schematic view of rectangular cross-section wire with bulge
and corresponding effective one-dimensional potential.

conductance plateau. More precisely, the mean density of electrons in the wire
(number per unit length) should be at least of order the inverse effective Bohr
radius of the material. We return to this point again in the final Section. Within
this approximation, the many-electron problem is reduced to an effective two-
electron problem in which one electron is bound and the other is a representative
electron at the Fermi energy in the leads. We show below that by solving this
two-electron problem exactly and summing over all electrons near the Fermi
energy we may compute the conductance.

3. Scattering problem in zero magnetic field

The two-electron problem in zero magnetic field is described by the effective
Schrodinger equation,

A
{— = (dm% + dm%) +v(z1) + v (x2) + Uz, 22) | (21, T2) = Etp(z1, 33),
(1)

where U(z1, T3) = €*/(4meeod(x1, z,) exp(—|z1 — 33|/p), with d(z,z,) given by
integrating over the Coulomb interaction over the lowest (nodeless) transverse
wavefunction in the yz plane. d(z1,z,) — |21 — 22| when d is much larger than
the width w of the wire, and d ~ w for z; = z,. The dielectric constant is
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taken as € = 12.5, appropriate for GaAs. Equation (1) is solved as a scattering
problem with boundary conditions that one electron is bound in the wire and
the other electron is in an unbound plane wave state asymptotically, i.e. there
is an incident and reflected plane wave near the source contact and a transmit-
ted plane wave moving towards the drain contact. In solving this scattering
problem it is important to take into account the indistinguishability of the two
electrons by antisymmetrising the states. Since in the case of two electrons,
the spin-orbitals factor into spin part and orbital part, it is most efficient to
deal with the orbital parts only since the effective Hamiltonian does not depend
explicitly on spin. Thus the scattering problem was solved for both symmetric
orbital wavefunctions corresponding to singlet states, and antisymmetric orbital
functions corresponding to triplet states. The finite difference method was used
in solving the equations, starting with the asymptotic outgoing plane wave for
the unbound electron, with the bound electron in the lowest allowed bound state
consistent with total spin. In these calculations the step-length was made pro-
gressively smaller to ensure convergence. We note that the choice of boundary
condition is only consistent if the total energy of the two-electron system is
sufficiently small, i.e. er < |go|, since this ensures that one electron remains
bound asymptotically. This condition is fulfilled for most cases of interest near
the conductance threshold. At higher energies, we would have to take into ac-
count quasi-inelastic processes in which either one or both electrons are unbound
asymptotically. This case is considered elsewhere [15].

The solutions of the scattering problem gives the singlet and triplet trans-
mission coefficients for an ‘incident’ electron at the Fermi energy. Typical trans-
mission probabilities are shown in Figure 2 near the conductance threshold in
which the Fermi energy is gradually increased by application of a gate voltage.
We see that in all cases, the transmission undergoes a resonance (becomes unity)
at a certain Fermi energy/gate voltage and that this resonance peak is sharper
for the triplet than for the singlet. Furthermore, the resonances shift to lower
energy with increased screening. This behaviour may be understood as follows.
As the unbound electron moves towards the bound electron it sees a progress-
ively increasing screened Coulomb potential until it enters the weak potential
well region when there is a small decrease in total energy, since the decrease in
the one-electron potential energies of the two electrons outweighs their increase
in energy due to Coulomb repulsion. For a symmetric potential well this clearly
leads to a double-barrier structure, as shown in Figure 3. For an asymmetric
potential, we also get a double barrier provided that the asymmetry is not too
large (see also Section 6). Associated with this double barrier structure will
be at least one resonance, as indicated in Figure 3. Furthermore, for a weak
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Figure 2. Typical singlet (a) and triplet (b) transmission probabilities.

- Figure 3. Scattering of conduction electron from localised electron
showing effective Coulomb double barrier and resonant bound state.

potential well, which is the case of interest with our ‘clean’ quantum wires,
there will be only one such resonance. This partly explains the transmission
results since with such a double barrier structure there will always be an en-
ergy for which there is perfect transmission. However, we emphasise that this is
not a double barrier in the usual sense of a variation in one-electron potential,
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but depends intrinsically on the repulsion between the two electrons—there is
no such double barrier and resonance for non-interacting electrons. The spin-
dependence of these resonances is a little more subtle but may be understood
within the framework of an effective Anderson impurity model. Consider the
effect of gradually switching on the Coulomb interaction. For a range of para-
meter sets which correspond to a very weak bulge/confining potential, there are
two bound states for one electron. With no interaction both electrons may thus
occupy one of 4 states (3 singlets and a triplet). If we now switch on a small
Coulomb interaction then the lowest two-electron state will be a singlet, derived
from both electrons in the lowest one-electron state. We may regard one elec-
tron as occupying the lowest bound-state level and the other electron of opposite
spin also in this same orbital state but energy U higher, where U is the intra-
‘atomic’ Coulomb matrix element, as in the Anderson impurity model [16]. As
the Coulomb interaction is increased, U eventually exceeds the binding energy
and this higher level becomes a virtual bound state giving rise to a resonance in
transmission. An estimate of the energy of the virtual bound state is given by
the Anderson-Coulomb matrix element with both electrons in the one-electron
orbital ¢y, i.e., U = [dzdz'|vo(z)|*|o(z")|?U(z,2’). We have computed this
and obtained reasonable agreement with the exact result. We can in addition
approximate the full scattering problem by solving the Hartree-Fock equations
without iteration in which one of the electrons again occupies 1. The agreement
1s also very good and reproduces all the resonance features. When both electrons
have the same spin, they must occupy different orbitals in the dot region when
the Coulomb interaction is switched off. With small Coulomb interaction the
resulting triplet is the lowest two-electron excited state and this develops into a
resonant bound state with the full Coulomb interaction, with energy at approx-
imately Ey + U; — Ji, where Ej is the energy of the second one-electron state
with U; and J; the respective Coulomb and exchange integrals. We can now see
why the singlet resonance is somewhat sharper than the triplet in Figure 2; this
18 simply because it is lower in energy and closer to a ‘real’ bound state. This is
also the reason why screening pushes the resonances to lower energy, since the
Coulomb integrals become smaller.

4. Conductance in zero magnetic field

Conductance arising from ballistic transport of non-interacting electrons in a
one-dimensional quantum wire may be calculated using the Landauer-Biittiker
formula [17],

_2é? Of(ep —¢,T)
¢=" / T(e)=E0 02 (2)
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Figure 4. Conductance in units of 2¢2 /h vs Fermi energy in meV for
various single-electron confinement potentials. Insets schematically rep-
resent confinement potentials together with depth Vig in meV.

where 7 () is the transmission probability for an unbound electron of energy
near the Fermi energy er in the source lead and f(e,T) = [1 +exp(e/ kgT)]~!is
the usual Fermi function which describes the thermal distribution of electrons in
the leads. At zero temperature the Fermi function is a step function and hence
G — 2—;3']'(8;1), which for a perfect wire gives the well-known step function from
zero to a conductance plateau at G = % We may extend this formula to the
case described in the previous Section in which one electron is bound in the wire
and the remaining electrons are transmitted with energy-dependent probability,
as shown for example in Figure 2. Let P, be the probability that the bound
electron has spin o. It follows directly that the conductance due to all spin-up
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electrons in the leads is given by the extended Landauer Biittiker formula:

¢ 0 -, T
61 =< [1BTne) + Ty (e L2 D,

where 7;; is the transmission probability when the bound electron is spin up
and 77, is the transmission probability when the bound electron is spin down.
We have a similar expression for spin-down electrons in the leads and hence the
total conductance is

de. (3)

E)] af(eFa'; £, T)

The transition probabilities 771 and 77, are different since in the former case the
conduction and bound electrons both have the same spin (up) before and after
scattering whereas in the latter case there are two possible final states, with or
without spin flip, i.e.

T =0 LI, D+ LTI D,

where t is the transition operator connecting ingoing and outgoing states. For
the zero magnetic field case, for which we clearly have P; = P, = 1/2, G may
be written in a simpler form by transforming to singlet and triplet states with

62
G == [[ATir(e) + AT (o) + PiTis(e) + PuTi(

Soe=d) 1.8, | >
_ T:l _‘l:'n _lT:l)‘i’ll)T)
|s) = 7 , |ty = =
and hence 0+ 18 ) — o)
B _—ls
| T:l) - \/E ’ ‘ l:T) \/‘2‘
giving
)= 7;;7;,

where 7, = [(s|t[s)|?, 7 = |(t|t|t)|* = T3; = T},. Hence, finally,

2e? 3 1
G= 7 {Z'E(E) + 17;(6)

af({:'p — T)
Oe

which reduces to the non-interacting case (2) in the appropriate limit for which
7, = 1T, = 7. Equation (4) clearly shows the origin of the anomalies in con-

2 2 i )
s 22 when either 7; or 7; are close to unity.

de (4)

4 h

| These anomalies are shown in Figure 4 for typical effective confining potentials
| and temperatures. For ease of comparison we have chosen wires with small ex-

pansions in thickness as shown in the insets together with confining potential
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Veg in meV. We see that the effect of temperature is to smooth out the reson-
ance features into small shoulders, as observed in experiment. Furthermore, the
singlet resonance is less pronounced or even unresolvable for the ‘more perfect’
wires [Figures 4(b)—(d)], whereas the case with the largest deviation in width
(a) clearly shows the singlet resonance. This behaviour is simply due to the
narrowness of the lower-energy singlet resonance which inhibits its resolution,
except for case (a) in which the increase in energy of the triplet resonance has

u - . 2 2
already pushed it into the plateau region where G' ~ <-.

5. Finite magnetic field

The effect of a finite magnetic field along the length of the wire is to Zeeman-
split the energy of spin-up and spin-down electrons, i.e. we add to the Hamilto-
nian of (1) the Zeeman term % g*upB(01.+02,). Near the conductance threshold,
the localised electron will be in its lowest spin-down Zeeman state before each
scattering event and hence, from equation (3), the conductance becomes

G(ep, B,T) = (5)

=& [ +en) + e —en) L= 5T, -

B 1 1 Of(er — &, T)
=y /[7}(5+€B)+~2-’1§(6—53)+§’I;(E—EB) 5

where we have used 7),(e, B) = 7} (e + €p,0) = 7};(¢ + €p) and Tq,(e,B) =
Tr1(e — €8,0) = Ty (e — ), where ep = 3g*upB. This follows from the fact
that a spin up (down) electron in the lead will have its energy raised (lowered)
by ep. We have included the spin-flip term in this equation, which assumes that
the scattered electron, which lies 2¢5 below the Fermi energy, is not reflected by
the collector. This necessitates inelastic processes in the collector and the ap-
proximation may break down in some circumstances which we shall not consider
further here. However, at low temperatures and in a high magnetic field, the
number of higher-energy spin-up electrons in the lead becomes negligible near
the threshold and we get

de

2 _
Glep, B,T) = % f Teen) 2 (EF(% 2P (6)

This is plotted in Figure 5 for 7' = 3 K together with the corresponding results
for non-interacting electrons and a straight wire. We see that these curves are
very similar with a plateau at e?/h but with the interacting case displaced to
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the right (due to the Coulomb repulsion) and showing a slight but distinctive
dip, due to the broad triplet resonance. This curve is very similar to high-field
experimental curves on gated 2DEG wires which show the “0.7” anomaly [8],
further supporting the view that an electron is weakly bound in the wire.

6. Dependence on source-drain bias

The existence of the conductance anomalies described above is a direct con-
sequence of an effective double-barrier potential seen by the conduction electrons
propagating from source to drain contacts under the influence of a bound elec-
tron. For a symmetric one-electron confining potential, the existence of a bound
state is guaranteed but this is not necessarily the case when the confinement is
asymmetric. Such asymmetry in the confining potential may be easily achieved
under a finite source drain bias and indeed, this was reported in some of the ex-
periments on gated quantum wires [8, 18]. These experiments show that as the
source-drain bias is increased from zero, an anomaly appears at G ~ 0.25(2¢%/h),
coexisting with the 0.7(2e¢?/h) anomaly. This sharpens as the bias is increased
and, in the example of [18], for V4 ~ 6 mV the 0.25 anomaly is very pronounced
whilst the 0.7 anomaly has disappeared. Eventually, at much larger bias,; the
remaining anomaly also disappears but only when the conductance steps them-
selves are on the point of disappearing, showing that the singlet anomaly is
extremely robust. This behaviour is consistent with our model since under bias
the triplet resonant bound-state will eventually disappear because the confining
potential in the z-direction will only accommodate a single one-electron bound
state, giving rise to a singlet resonance only. This is shown schematically in
Figure 6 where we also indicate the surviving becoming broader with increasing
bias resulting in a more pronounced step, as observed.

7. Summary and discussion

In summary, we have shown that quantum wires with weak longitudinal
confinement, or open quantum dots, can give rise to spin-dependent, Coulomb
blockade resonances when a single electron is bound in the confined region. This
s a universal effect in one-dimensional systems with very weak longitudinal con-
finement. The emergence of a specific structure at G(E) ~ ;11-2—;? and G ~ %2’%; is
a consequence of the singlet and triplet nature of the resonances and the probab-
ility ratio 1:3 for singlet and triplet scattering and as such is a universal effect.
A comprehensive numerical investigation of open quantum dots using a wide

range of parameters shows that singlet resonances are always at lower energies
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Figure 5. Change in conductance (in units of 2¢2/h) when a high mag-
netic field along the wire is switched on. (a) B = 0 showing singlet and
triplet anomalies as the Fermi energy is changed. (b) Large B showing
Zeeman splitting and the experimentally observed characteristic reson-
ance of spin-polarised electrons.

Source Drain

Figure 6. Effective double barrier showing the singlet and triplet res-
onances with very small source-drain bias (a) and large source-drain bias

(b).

than the triplets, in accordance with the corresponding theorem for bound states
[19]. With increasing in-plane magnetic field, the resonances shift their position
and eventually merge in the conductance plateau at G ~ e¢?/h. With increas-
ing source-drain bias we have shown why the higher triplet resonance weakens
at the expense of the singlet, with the latter surviving to the point where the
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conductance steps themselves disappear.

Finally, we speculate on the exciting possibility that these anomalies in con-
duction are themselves a signature for a new kind of conducting state in ultra-
clean wires close to the conduction threshold. Indeed, there is some experimental
evidence for this in that the anomalies discussed above merge into a conductance
step at €2/h under quite moderate magnetic fields and in the cleanest samples
this behaviour is sometimes even seen in zero magnetic field. This suggests that
there may be an underlying spin-polarised state associated with the propagating
electrons in the quasi-1D region. Such a spin-polarised state would appear to
violate the Lieb-Mattis theorem and would also need to be made consistent with
our above explanation in terms of singlet and triplet resonances. In this respect
we emphasise that the above theory must break down at very low electron dens-
ity in the wire such that the mean separation between electrons in the wire is
somewhat greater than the effective Bohr radius, the so-called strong correla-
tion regime. In practical situations it is very difficult to avoid some kind of weak
potential fluctuation which traps one electron. Indeed this may ultimately be
impossible since even in a nominally perfect wire, the presence of a single elec-
tron will polarise its environment leading to a potential well which will bind the
electron giving rise to a Coulomb blockade for the remaining electrons. The main
question is whether or not this confinement is sufficiently large for the electron
density to exceed the inverse Bohr radius when the wire begins to conduct. If
the density remains low at this conductance threshold then we cannot ignore the
mutual interaction between all electrons in the wire region, or even treat them
self-consistently. In this situation, a more appropriate picture would be one in
which the Coulomb repulsion dominates and maintains roughly equal separation
between the electrons as in a Wigner chain. However, this would be a ‘sliding’
Wigner chain, carrying the current from source to drain contacts. How could this
lead to a spin-polarised state? The precise details of this difficult problem are
unknown at present but we do know of closed systems where spin-polarisation
does indeed give rise to quasi-1D spin-polarised states. An example is the case of
three electrons in a ring or a disc in the strong correlation regime for which the
ground state is S = 3/2 and corresponds to all three electrons rotating together,
as in a rigid rotor. A similar behaviour occurs for three electrons in a square
confining potential which again has a spin-polarised ground state [20]. The im-
portant feature of these results is that the spin alignment is a kinetic-energy
effect associated with the simultaneous propagation of the electrons and not a
ferromagnetic exchange interaction between them. This can be seen directly by
introducing a barrier which inhibits the movement of the electrons, resulting in a
low-spin ground state. Thus there is an intrinsic relationship between motion of
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strongly correlated electrons and spin polarisation which may be the underlying
cause of a new conducting state in quantum wires, but more research is needed
to further develop and quantify these ideas. Further experiments in which the
widths of quantum wires and/or the confinement potentials are engineered to
control longitudinal confinement should throw also further light on the problem
of spin-dependent ballistic transport.

Acknowledgements

The authors wish to acknowledge K.J.Thomas, A.V.Khaetskii, C.J.Lambert
and M.Pepper for helpful comments. This work was part-funded by the U.K.
Ministry of Defence and the EU.

References

[1] M.Walther, E.Kapon, D.M.Hwang, E.Colas, and L.Nunes, Phys. Rev., B45
(1992) 6333; M.Grundmann et al., Semicond. Sci. Tech., 9 (1994) 1939;
R.Rinaldi et al., Phys. Rev. Lett., 73 (1994) 2899.

[2] P.Ramvall et al., Appl. Phys. Lett., 71 (1997) 918.

[3] A.Yacoby et al., Phys. Rev. Lett., 77 (1996) 4612.

[4] A.Kristensen et al., Contributed paper for ICPS24, Jerusalem, August 2-7, 1998.
[5] B.J.van Wees et al., Phys. Rev. Lett., 60 (1998) 848.

[6] D.A.-Wharam et al., J. Phys., C21 (1988) L209.

[7] H.van Houten, C.W.J.Beenakker, and B.J.van Wees, in Semiconductors and Se-
mimetals, p.9, edited by R.K.Willardson, A.C.Beer, and E.R.Weber, Academic
Press (1992). ;

(8] K.J.Thomas et al., Phys. Rev. Lett., 77 (1996) 135; Phys. Rev., B58 (1998)
4846; Phys. Rev., B59 (1999) 12252.

[9] D.L.Maslov, Phys. Rev., B52 (1995) R14368.
(10] Chuan-Kui Wang and K.-F.Berggren, Phys. Rev., B57 (1998) 4552.
[11] G.Fasol and H.Sakaki, Jpn. J. Appl. Phys., bf 33 (1994) 879.
[12] D.Kaufman et al., Phys. Rev., B59 (1999) R10433.
[13] U.Meirav et al., Z. Phys., B85 (1991) 357.

[14] T.Rejec, A.Ramsak, and J.H.Jefferson, Phys. Rev., B62 (2000) 12985; T.Rejec,
A.Ramsak, and J.H.Jefferson, J. Phys.: Condens. Matter, 12 (2000) L233.

(15] T.Rejec, A.Ramsak and J.H.Jefferson, preprint.
[16] P.W.Anderson, Phys. Rev., 124 (1961) 41.

(17] R.Landauer, IBM J. Res. Dev., 1 (1957) 223; 32 (1988) 306; M.Biittiker, Phys.
Rev. Lett., 57 (1986) 1761.




Spin-dependent Anomalies in the Conduction Edge of ... 87

i (18] N.K.Patel et al., Phys. Rev., B44 (1991) 13549; K.J.Thomas et al., Phil. Mag.,
| B77 (1998) 1213.

(19] E.Lieb and D.Mattis, Phys. Rev., 125 (1962) 164.
[20] J.H.Jefferson and W.Hausler, Phys. Rev., B54 (1996) 4936.



