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Several convenient formulas for the entanglement of two indistinguishable delocalized spin-1 /2 particles are
introduced. These generalize the standard formula for concurrence, valid only in the limit of localized or
distinguishable particles. Several illustrative examples are given.
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Entanglement is a well-defined quantity for two distin-
guishable qubits in a nonfactorizable quantum state, where it
may be uniquely defined through von Neuman entropy and
concurrence �1–4�. However, among the realistic systems of
major physical interest, electron qubits have the potential for
a much richer variety of entanglement measure choices due
to both their charge and spin degrees of freedom. For ex-
ample, in lattice fermion models such as the Hubbard dimer,
entanglement is sensitive to the interplay between charge
hopping and the avoidance of double occupancy due to Hub-
bard repulsion, which results in an effective Heisenberg in-
teraction between adjacent spins �5�. In systems of identical
particles the main challenge is to define an appropriate en-
tanglement measure that adequately deals with multiple-
occupancy states �6–11�. In the case of fermions such a mea-
sure must also account for the effect of exchange �12� as well
as of mutual electron repulsion.

Entangled fermionic qubits can be created with electron-
hole pairs in a Fermi sea �13� and in the scattering of two
distinguishable particles �14�. A spin-independent scheme for
detecting orbital entanglement of two-quasiparticle excita-
tions of a mesoscopic normal-superconductor system was
also proposed recently �15�.

A consensus regarding the appropriate generalization of
entanglement measure which would consider spin and orbital
entanglement of electrons on the same footing has not, how-
ever, been reached yet. In any realistic solid-state device,
spin entanglement is intimately related to the orbital degrees
of freedom of the carriers, which cannot be ignored, even in
otherwise pure spin-entanglement observations. In this paper
we introduce spin-entanglement measure formulas valid for
real electrons and show how, in general, spin entanglement
depends in an essential way on spatially delocalized orbitals.

For two distinguishable particles A and B, each described
with single spin-1/2 �or pseudospin� states s=↑ or ↓ and in a
pure state ��AB�=�ss��ss��s�A�s��B concurrence as a measure
of entanglement is given by �2�

C = 2��↑↑�↓↓ − �↑↓�↓↑� . �1�

Concurrence is related to the density matrix of a pair of spins
�4� and can be expressed in terms of spin-spin correlators
��AB�SA

�SB
���AB� and expectation values ��AB�SA�B�

� ��AB�,
where SA�B�

� for �=x ,y ,z are spin operators corresponding to
spin A or B, respectively. This approach has proved to be

efficient in the analysis of entanglement in various spin-
chain systems with interaction �16–19�.

Consider now the general problem of two interacting elec-
trons in a pure state. It is clear that in some circumstances
this system reduces approximately to an equivalent system of
two interacting spins, for which the above entanglement for-
mula is appropriate. Furthermore, in the general case, en-
tanglement between the spins of the fermions relates to mea-
surements of spin irrespective of their orbital motion. We
consider therefore spin entanglement for a general class of
two-electron states on a lattice of the form

��� = �
i,j=1

N 	�ij
↑↓ci↑

† cj↓
† +

1

2
��ij

↑↑ci↑
† cj↑

† + �ij
↓↓ci↓

† cj↓
† �
�0� , �2�

where cis
† creates an electron with spin s on site i and N is the

total number of sites. The system in question could be, for
example, a tight-binding lattice containing two valence elec-
trons occupying nondegenerate atomic orbitals, or two elec-
trons in the conduction band of a semiconductor, for which
the sites represent finite-difference grid points. In either case,
the interaction between the electrons is included together
with any externally applied potential.

The two electrons are in separate regions of space �mea-
surement domains� �A� and �B� as illustrated in Fig. 1�a�.
Entanglement might be produced, for example, when two
initially unentangled electrons in wave packets approach
each other and interact �Fig. 1�b�� and then again become
well separated into distinct regions �A� and �B� �Fig. 1�c��.
Here one should realize that in real measurements of en-
tanglement, indistinguishable electrons would be detected
and the formalism relevant to distinguishable spins is not
directly applicable. Nevertheless, complete information re-
garding the spin properties of such a fermionic system is
contained in spin correlation functions for the two domains.
The spin-measuring apparatus would measure spin correla-
tion functions for two domains �A� and �B� rather than for
two distinguishable spins A and B.

Concurrence as a measure of entanglement for two elec-
trons is related to the eigenvalues of the non-Hermitian ma-
trix ��̃, where � is reduced density matrix given in terms of
the electron spin correlations corresponding to the domains,
and �̃ is the time-reversed density matrix as in Ref. �4�. In
general the eigenvalues of ��̃ can be determined only nu-
merically and a closed form for concurrence cannot be ob-
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tained, unless the system exhibits additional symmetries.
Possible symmetries are conveniently studied through spin-
spin correlation functions. We express spin operators for do-
mains �A� and �B� with fermionic operators as the sum of
operators for sites i within the domain �A� �or �B��, i.e.,
SA

� = 1
2�i��A��ss�cis

† �ss�
� cis�, where �� are Pauli matrices. For

axially symmetric problems �20�, where ���SA�B�
�=x,y���=0 and

���SA�B�
z SB�A�

�=x,y���=0, concurrence may be written as

C = max�0,C↑↓,C"� ,

C↑↓ = 2��SA
+SB

−�� − 2��PA
↑PB

↑��PA
↓PB

↓� ,

C" = 2��SA
+SB

+�� − 2��PA
↑PB

↓��PA
↓PB

↑� , �3�

where SA�B�
+ = �SA�B�

− �†=�i�A�B�ci↑
† ci↓ are spin raising operators

for domain �A� or �B� and PA�B�
s =�i�A�B�nis�1−ni,−s�, with

nis=cis
† cis, are spin-s projectors operating in domain �A� �or

�B��. Fermionic expectation values required in Eq. �3� are
then given in terms of the amplitudes in the normalized ���
as

�SA
+SB

−� = �
�ij�

�ij
↑↓*� ji

↑↓,

�SA
+SB

+� = �
�ij�

�ij
↑↑*�ij

↓↓,

�PA
↑PB

↓� = �
�ij�

��ij
↑↓�2,

�PA
↓PB

↑� = �
�ij�

�� ji
↑↓�2, �4�

where the summation in Eq. �4� extends over all pairs
�ij� such that i� �A� and j� �B�. In analogy to the Bell
basis �1� one can introduce 	ij

± = ��ij
↑↓±� ji

↑↓� /�2 and

ij

± = ��ij
↑↑±�ij

↓↓� /�2. 	ij
±, e.g., are the amplitudes for creating

two electrons in a delocalized singlet or triplet state with
zero total spin projection. It then follows from Eqs. �3� and
�4� that the electrons are completely entangled, when either
�i� 	ij

− = �c	ij
+, 
ij

± =0, or �ii� 
ij
− = �c
ij

+, 	ij
± =0, where c is a real

constant. In the general case �i.e., without spin symmetries�
C=1 if ��� is a linear combination of AB-entangled pair
states, ���=��ij��ij��=1

4 b��ij ,��, where �ij ,�� are the Bell
states �21� corresponding to pairs �ij� and b� are constants
with ���=1

4 b�
2 �=��ij���ij�2=1.

When ��� is an eigenstate of the total spin projection Stot
z ,

Eqs. �3� and �4� simplify further. In particular, C=0 if
Stot

z = ±1, while for Stot
z =0 the concurrence is given solely

with the overlap between ��� and the particular

AB-spin-flipped state ��̃�=SA
+SB

−���, i.e.,

C = C↑↓ = ��
�ij�

��	ij
+�2 − �	ij

−�2�� . �5�

If the probabilities for singlet and triplet are equal, the con-
currence formula reduces to C=2�Im ��ij��	ij

+�*	ij
− � and if

	ij
+ =	ij

−e�
, to C= �sin 
�. If the state ��� corresponds to
the system in continuum space, i→r= �x ,y ,z�, the only
change is that summations are replaced by integrations of
	±= �r1 ,r2 ;Stot ��� over the corresponding measurement do-
mains, e.g., C= �
�A�
�B���	+�2− �	−�2�d3r1d3r2�.

In order to illustrate how these concurrence formulas
can be applied in practice, as the first example we consider
two interacting electrons on a one-dimensional lattice with
N→� and with the Hamiltonian H0=−t0�is�cis

† ci+1,s+H.c.�
+�ijss�Uijnisnjs�.

To be specific, let one electron with spin ↑ be confined
initially to the region A �i�−L� and the other electron to
region B �i�L� with opposite spin �Fig. 2�a��. The simplest
initial state is two wave packets with vanishing momentum
uncertainty �k→0, the left with momentum k�0 and the
right with q�0. After collision the electrons move apart with
probability amplitude tkq for non-spin-flip scattering and
spin-flip amplitude rkq. More general initial wave packets are
defined with momentum amplitudes �k and �̄q for spin ↑ and
↓, respectively. Concurrence Eq. �5� after the collision is then
expressed as

C = 2�� � tkq
* rkq��k�2��̄q�2dkdq� , �6�

which simplifies to C�2�tkqrkq� for sharp-momentum-
resolution wave packets, with k=−q=k0. Note that C=1
when spin-flip and non-spin-flip amplitudes coincide in ac-
cord with recent analysis of flying and static qubit entangle-
ment �22–24� or of scattering of distinguishable particles
�14�.

Consider the prototype finite-range interaction,
Uij =

1
2U�m=0

M 
�i−j�,m. The Hubbard model �M =0� can be
solved analytically in one dimension �25� and the amplitudes
are tkq=1+rkq= �sin k−sin q� / ��sin k−sin q�+ �U / �2t0��. In
Fig. 2�a� concurrence is presented for wave packets
with well-defined momentum k0 for U= t0, together with a
longer-range-interaction case, M =3, for sharp momentum
�full line� and for a Gaussian initial amplitude �̄k=�−k with

FIG. 1. �Color online� �a� In each of the domains �A� and �B� the
probability of finding one electron is equal, nA=nB=1. �b� Interact-
ing electrons with possible exchange, �c� separated electrons, and
�d� several measurement domains nA+nC=nB=1.
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�k=� /10 �dashed line�. An interesting observation here is
substantial reduction of concurrence due to the coherent av-
eraging in Eq. �6�. Additionally, electrons will be completely
entangled at some kinetic energy comparable with the repul-
sion U�2t0�1−cos k0�, where spin-flip and non-spin-flip
amplitudes coincide.

The concurrence formula Eq. �5� is derived for electronic
states when double occupancy is negligible, i.e., �ii

↑↓→0,
which in our case is strictly satisfied only asymptotically
when the electrons are far apart. However, Eq. �5� can be
evaluated at any time t and the resulting C�t� can serve as a
measure of entanglement during the transition from initial to
final state. In Fig. 2�b� we present the time dependence of
C�t� for some typical k0, with M =5 and U=2t0. Oscillation
with t can be interpreted as response to the finite-time dura-
tion of electron-electron interaction and the model can be
approximately mapped onto an effective Heisenberg model,
for which concurrence oscillates as C�t�= �sin Jefft�, where
Jeff is the effective antiferromagnetic coupling between the
electrons.

Another important example is the concurrence of flying
and static qubits in experiments in which the system is pre-
pared with a static electron bound in some confining poten-

tial �region �B�� and a flying electron injected in some distant
region �A� �22,23�. Contrary to the previous case with trans-
lation symmetry, after the collision there are nonvanishing
amplitudes for transmission �into region �C�� and reflection
�back into region �A��, as shown in Fig. 1�d�.

Let the initial state be prepared as 	ij
± = �bigj ±gibj� /�2,

where bi is the orbital state of the bound electron with spin ↓
centered around i�0. Similarly, gj �
�ke

��k�j+L�−�kt�dk is the
initial orbital state of the propagating electron with spin ↑,
centered around i�−L and moving in the positive i direction
with momentum amplitude �k peaked at k�k0, and
with momentum uncertainty �k→0. Here we consider
elastic scattering with amplitudes after the collision,
	ij

± =r±�biaj ±aibj�+ t±�bicj ±cibj�, where r±�k0� and t±�k0� are
singlet �triplet� reflection and transmission amplitudes and
aj, cj are normalized wave packets with mean momentum
−k0 and k0, respectively.

Two basic experimental setups are possible when elec-
trons are detected in different measurement domains, �AB� or
�BC�. The concurrence corresponding to reflected qubits is
then

CAB =
2��SA

+SB
−��

nAnB
�

�r+
2�k0� − r−

2�k0��
�r+�k0��2 + �r−�k0��2

, �7�

where nA= ��s,i��A�nis�, nB=1 �26�. The concurrence for
transmitted qubits, CBC, is given by an analogous expression
with A→C, and consequently with r± replaced with t±. If the
measuring apparatus captures both reflected and transmitted
electrons �i� �A�� �C�, j� �B��, the concurrence is given by
CAC,B= ��r+−r−�*�r++r−�+ �t+− t−��t++ t−�*� and no additional
renormalization is required. Equation �7� also follows di-
rectly from Eq. �1� if appropriately applied to scattering
states �22,23�. However, for finite �k, CAB �and correspond-
ingly CBC or CAC,B� has to be rederived from Eq. �5�,

CAB =

�� �r+
2�k� − r−

2�k����k�2dk�
� ��r+�k��2 + �r−�k��2���k�2dk

. �8�

FIG. 3. �Color online� Concurrence corresponding to various
domains for infinite-U Anderson model with �+U=−t0, t1= t0 /4,
and �k→0. Dash-dotted line represents the singlet transmission
probability �t+�2.

FIG. 2. �Color online� �a� C for �i� the Hubbard model �M =0�
for U= t0 and �k=0; �ii� �M =3� for �k=0 �full line� and � /10
�dashed�. �b� C�t� for Gaussian packets with various k0 and M =5,
U=2t0, and �k=� /20. At t=0 the separation between the packets is
2L=10/�k.

ENTANGLEMENT OF TWO DELOCALIZED ELECTRONS PHYSICAL REVIEW A 74, 010304�R� �2006�

RAPID COMMUNICATIONS

010304-3



In order to demonstrate the basic properties of CAB and
CBC we consider here the Anderson model, H=H0+�s��n0s

− �t1− t0��c−1s
† c0s+c0s

† c1s+H.c.��, where H0 is the Hubbard
Hamiltonian in which U=0 except for the impurity site,
��0 is the impurity energy level, and t1 is the hopping ma-
trix element connecting the impurity site i=0 with left and
right leads.

In the large-U regime, U ,−�� t0, the static electron
is strongly localized, bi�
i0. Electrons in the triplet
channel are reflected, r−=− 1

�2
, t−=0, while singlet scattering

amplitudes exhibit “charge transfer” resonance:
t+= 1

�2
+r+= �

�2
�k / ��k−�0+ ��k� with �k=−2t0 cos k,

�0= ��+U� / �1−2t1
2 / t0

2�, and �k=2t1
2�4t0

2−�k
2�1/2 / �t0

2−2t1
2�

�27�. “Transmitted” concurrence is due to the missing triplet
amplitude, trivially, CBC�1. Reflected electrons are com-
pletely entangled at the singlet resonance energy but “total”
concurrence CAC,B=0 there, as shown in Fig. 3.

The main result of this work is the closed-form formulas

of the Wootters entanglement measure defined for two delo-
calized electrons. The proposed approach enables simple
analysis of entanglement for a variety of realistic problems,
from scattering of flying and static qubits represented as
wave packets with finite energy resolution, to time evolution
of static qubits due to electron-electron interaction or to ex-
ternally applied fields. Further application to systems de-
scribed with mixed states or with more than two electrons is
possible; however, an appropriate definition of entanglement
valid also for systems with non-negliglible double occupancy
remains open.
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