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S1. Weyl and semi-Dirac regimes

To determine the nodes of the model Hamiltonian described in the main text we search for solutions of
ϵc,v = 0, or equivalently dx = dy = dz = 0. From dy = dz = 0, we observe that bky and ckz should take values
0 or π. Considering the constraint dx = 0, we obtain | cos(akx)| = |(γ ∓ ty ∓ tz)/tx| ≤ 1, where the upper
and lower signs correspond to bky, ckz = 0 and π, respectively. The nodes thus occur for values of γ that obey
−tx ± ty ± tz ≤ γ ≤ tx ± ty ± tz. For values of γ in the interior of that interval one finds pairs of Weyl-nodes,
whereas at extremal points (γ = ±tx ± ty ± tz) the Weyl-nodes merge resulting in semi-Dirac points (8 total).
These semi-Dirac points are located at time-reversal invariant momenta (TRIM). This is illustrated in Fig. S1,
where the regions of higher excitation densities Nc indicate the positions of Weyl and semi-Dirac nodes in the
Brillouin zone (BZ).

Let us examine the low-energy spectrum. We denote the positions of the four pairs of Weyl nodes as ±k
(±,±)
0 ,

where the + and − signs in the superscript correspond to bky, ckz = 0 and π, respectively. The nodes are

separated in the kx direction. Let 2k
(±,±)
0 (or 2k0 for brevity) denote the distance between them. We expand

energy ϵ(±,±)(q) ≡ ϵ(k
(±,±)
0 + q) up to the second order in the displacement vector q:

ϵ(±,±)(q) ≈
√(

(vxqx)2

2tx
cos(ak0) + vxqx sin(ak0)

)2

+ (vyqy)
2
+ (vzqz)

2
(S1.1)

where we introduced vx = atx, vy = bty, and vz = ctz. For sin(ak0) = 0, we have a semi-Dirac point at kx = 0
or π/a with a parabolic (q2x) and 2D conical (in the qy–qz plane) dispersion. For sin(ak0) ̸= 0, we have a pair
of Weyl nodes at kx = ±k0 with, in general, anisotropic linear dispersion that depends on k0.

The above derivation simplifies in the specific case we present in the paper, where a = b = c = 1 and
tx = ty = tz = 1. In this case, we identify five qualitatively different regimes:

• |γ| > 3: This regime corresponds to a gapped insulator phase, similar to the one presumably observed in
the ZrTe5.

• |γ| = 3: In this regime, we have a semi-DSM with a single semi-Dirac node. For γ = 3 it is at k0 = (0, 0, 0)
and for γ = −3 it is at k0 = (π, π, π).

• 1 < |γ| < 3: Within this regime, we encounter WSMs with one pair of Weyl nodes; for 1 < γ < 3 they are
at k0 = (± arccos(γ − 2), 0, 0) and for −3 < γ < −1 they are at k0 = (± arccos(γ + 2), π, π)

• |γ| = 1: This regime represents a semi-DSM with three semi-Dirac nodes. For γ = 1 they are at
k0 = (π, 0, 0), (0, π, 0) and (0, 0, π), while for γ = −1 they are at k0 = (0, π, π), (π, 0, π) and (π, π, 0).

• |γ| < 1: This regime corresponds to a WSM featuring two pairs of Weyl nodes which are at k0 =
(± arccos(γ), π, 0) and (± arccos(γ), 0, π).

Conical dispersion around the Weyl nodes becomes isotropic when k0 = π/2 (γ = ±2). In Fig. S2, an additional
chart, accompanying Fig. 2 of the main text, illustrates the energy spectra along high symmetry lines.
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Figure S1. Excitations Nc in the BZ of a primitive orthorhombic lattice with lattice constants a = b = c = 1 and hopping
parameters tx = 3, ty = 1, and tz = 0.6. Semi-Dirac points (8 in total) are highlighted with red labels (a,c,e,g,j,l,n,p).
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Figure S2. Energy spectra along high symmetry lines for various values of γ. The parabolic-2D-conical dispersion is
observed in (b) at X and Z, and in (e) at Γ.
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S2. Derivation of symmetry relation I(γ) = I(−γ)

In this section we will use the notation ṽ = (vx,−vy, vz) where v is an arbitrary 3D vector.
From the symmetry relation stated in Eq. (1) of the main text, we obtain the following relationships:

ωmn(k,−γ) = ωmn(R− k̃, γ) (S2.1)

dmn(k,−γ) = −d̃mn(R− k̃, γ)eiφmn (S2.2)

pmn(k,−γ) = −p̃mn(R− k̃, γ)eiφmn (S2.3)

where the factor eiφmn represents an arbitrary gauge factor.
By inserting identities (S2.1)–(S2.3) into the SBE [i.e., Eq. (2) of the main text], we obtain:

ρkmn(t,−γ,E) = ρR−k̃
mn (t, γ,−Ẽ)e−iφmn . (S2.4)

Inserting the relations (S2.3) and (S2.4) into Eq. (3) of the main text, we obtain a relation for the total current:

J (−γ,E) = −J̃
(
γ,−Ẽ

)
, (S2.5)

which is gauge independent.
Additionally, by following similar steps as described above, we can establish that inversion symmetry leads

to the reversal of the total current when the direction of the electric field is reversed, i.e. E → −E results in
J → −J.
Combining these two results, we obtain:

J (−γ,E) = J̃
(
γ, Ẽ

)
. (S2.6)

In the specific case presented in our paper, where the driving pulse has z polarization, we have I(γ) = I(−γ),
and Iy(γ = 0) = 0.

S3. Dependence of response on ω0 and E0; BZ maps of contributions to the response

In Fig. S3 we show peak intensities of third anomalous harmonic as a function of γ for several pulse frequencies
ω0 and amplitudes of the electric field E0. For small ω0 and E0 one clearly sees response sharply peaking in the
proximity of the two semi-Dirac regimes, γ = 1 and γ = 3. In the intermediate Weyl regimes, the response is
suppressed, which is explained in terms of the cancelation of the response for each individual Weyl point as long
as it can be considered well-separated. The localization of the response next to the Weyl points for small ω0

and E0 is illustrated in the insets that show the third harmonic contribution to anomalous current as a function
of time and kx.
When E0 is increased, the total magnitude of the response is increased, correlating with the density of the

excitations (up to the saturation point Nc = 0.5) and their extent in the BZ that both increase (see Fig. S4).
The response increases also in the strict Weyl regime around γ = 2. This is rationalized by a weakening of the
well-separatedness criterion as seen in the insets of Fig. S3 with contributions to the third harmonic between
the two Weyl nodes that become more significant with increasing E0.
The dependence on ω0 is more subtle. With progressively increasing ω0 the magnitude of response in Fig. S3

drops and the γ dependence becomes significantly milder. We rationalize this by noting that as ω0 increases,
the resonant condition ℏωcv = nℏω0 (n ∈ N) [1] shifts further away from the nodes. The transition dipole
moments dvc decrease there [2]. As a result, for large ω0, the density of excitations reduces near the Weyl nodes
and increases somewhat away from them (see Fig. S4). Thus, with increasing ω0 one is less sensitive to the
low-energy details, and the response as a function of γ becomes more uniform. [We note that when changing
ω0, we have also scaled all the other temporal scales (T , τ , and T2) such that the characteristics of the pulse
remain unchanged.]
To illustrate how the response is distributed in the BZ, and to illustrate how localization of the response

to the Weyl node is affected by ω0, we show maps of the time evolution of the third harmonic contribution
to the current on Fig. S5 at γ = 2.1. Because we found that the current is nearly odd when kz is flipped
Jy(kx, ky, kz) ≃ −Jy(kx, ky,−kz), we show combined quantity Σy(k) = (Jy(kx, ky, kz) + Jy(kx, ky,−kz))/2.
These time evolutions are displayed as cross sections (ky–kz, kx–ky, and kx–kz), traversing near the Weyl
node at k0 = (1.47, 0, 0). Examining these results, we observe that the contributions to higher harmonics are
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Figure S3. Peak intensities of the third anomalous harmonic, Iy(ω = 3ω0), as a function of γ, for various electric
field carrier frequencies ω0 (columns) and amplitudes E0 (rows). Inset: Time series of sliced contributions to the third
harmonic of the anomalous current J3ω0

y (t, kx) =
∑

ky,kz
J3ω0
y (t,k). J0 indicates the maximal amplitude of J3ω0

y (t, kx)

for a given ω0, E0, and γ = 2.3. Dashed lines indicate the positions of Weyl nodes.

Figure S4. Excitations Nc(k) at t = T/2 for two different values of ω0 and E0. Excitations are presented as cross sections
(ky–kz, kx–ky, and kx–kz), traversing near the Weyl node at k0 = (1.47, 0, 0). The parameter γ is set to 2.1.
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Figure S5. Time evolution of the third harmonic (ω = 3ω0) of the combined quantity Σy(k) = (Jy(kx, ky, kz) +
Jy(kx, ky,−kz))/2. The contours indicate the resonant conditions ℏωcv = nℏω0 for n = 1, 2, 3 . . .
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Figure S6. Time evolution of the fifth harmonic (ω = 5ω0) of the combined quantity Σy(k) = (Jy(kx, ky, kz) +
Jy(kx, ky,−kz))/2. The contours indicate the resonant conditions ℏωcv = nℏω0 for n = 1, 2, 3 . . .
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concentrated near the Weyl node in the well-separated regime (ω0 = 0.2 eV). However, for ω0 = 0.8 eV, these
contributions are present even at k far from k0, again indicating that the assumption of well-separated nodes
does not apply for large ω0.

The observations on the localization of contributions, when ω0 is small, can also be made for higher harmonics.
The fifth harmonic is shown in Fig. S6. Although oscillations are faster compared to the third harmonic (note
that the snapshots are taken at shorter time intervals as in Fig. S5). As expected, the frequencies of these
oscillations are ω = mω0, where m denotes the harmonic order, specifically 3 and 5.

S4. C2z rotational symmetry and vanishing anomalous current for a well-separated Weyl node

In this section, we investigate the behavior of a well-separated Weyl node characterized by linear dispersion
in the low-energy limit, following the approach outlined in Ref. [2]. The Hamiltonian for an anisotropic Weyl
cone is given by H(q) =

∑
i viqiσi, where vi are the Fermi velocities, q = (qx, qy, qz)

T is the displacement vector
from the Weyl node, and σi are Pauli matrices. Suppose we apply an electric field in the z direction. In this
case, the Hamiltonian preserves the C2z rotational symmetry in the qx–qy plane, given by:

σzH(q(t))σz = H(q′(t)), (S4.1)

where we use the notation q(t) = q+A(t), q′(t) = q′ +A(t), and q′ = (−qx,−qy, qz).
Now let us derive the anomalous current produced by a well-separated node. Using the notation Nc/v = ρcc/vv

and P = ρvc = ρ∗cv (omitting superscripts q for brevity), we rewrite the SBE, Eq. (2) of the main text, as:

∂tNc(t) = −∂tNv(t) = 2E(t) · Im{dcvP (t)} (S4.2)

∂tP (t) = [iωcv − 1/T2 + iE(t) · (dcc − dvv)]P (t)

+ iE(t) · d∗
cv (1− 2Nc(t)) . (S4.3)

For z polarization of the electric field, we have (dcc − dvv)z = 0 (see Ref. [2]). Now, let us consider the
transformation q → q′ which leads to transformations:

Ez → Ez (S4.4)

ωmn → ωmn (S4.5)

(dcv)y → (dcv)y (S4.6)

(dcv)z → −(dcv)z. (S4.7)

Combining this with the initial conditions Nv(0) = 1, Nc(0) = P (0) = 0, we conclude that the density matrix
elements transform as Nc/v → Nc/v and P → −P .
Next, we rewrite the contributions to the anomalous current Jy(q) as:

Jy(q) = −
∑
m

(Vm)yNm + 2ωcvIm{(dcv)yP} (S4.8)

where Vc = −Vv = pcc = ∇qϵc = q/ϵc is evaluated near the Weyl node, where the dispersion is linear. The y
component of Vc transforms as (Vc)y → −(Vc)y. Together with Eq. (S4.6) and the transformations for Nc/v

and P , we find Jy(q) = −Jy(q
′). This implies that the contributions to the total anomalous current cancel in

pairs for each well-separated Weyl node:

Jy =
∑
q

Jy(q) =
1

2

∑
q

Jy(q) +
∑
q′

Jy(q
′)


=

1

2

∑
q

(Jy(q) + Jy(q
′)) = 0. (S4.9)

S5. Tilted cones in WSM

In this section, we introduce an additional term in the Hamiltonian to describe the tilt of the Weyl cones.
The modified Hamiltonian, denoted as H ′(k), is given by

H ′(k) = d0(k)I +H(k), (S5.1)
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where H(k) is the original Hamiltonian, and I is the 2 × 2 identity matrix. The function d0(k) represents
an arbitrary periodic function of the crystal momentum k. We choose this function in a way that it tilts the
Weyl cones while maintaining the occupancy of the energy bands unchanged, resulting in a tilted type-I Weyl
semimetal. A specific example of such a function is d0 = δ(cos(kx)− γ), where δ is a parameter that quantifies
the tilt along the kx direction.

The introduction of d0(k) causes a shift in the energy spectrum, given by ϵ′c,v(k) = d0(k)+ ϵc,v(k). However,
despite this modification, the corresponding wavefunctions remain unchanged: |n,k⟩′ = |n,k⟩. Additionally, the
transition frequencies and transition dipole moments are also unaffected, namely ω′k

mn = ωk
mn and d′k

mn = dk
mn.

Furthermore, the off-diagonal elements (m ̸= n) of the group-velocity matrix are also unaffected:

p′k
mn = id′k

mnω
′k
mn = idk

mnω
k
mn = pk

mn, (S5.2)

however, the diagonal elements (m = n) change as follows:

p′k
mm = V′k

m = ∇kϵ
′k
m = ∇k(d

k
0 + ϵkm) = ∇kd

k
0 +Vk

m. (S5.3)

When considering the time evolution of the density matrix (Eq. (2) of the main text) under the influence of
the tilted Hamiltonian H ′(k), we find that if the initial conditions satisfy ρ′kmn(t = 0) = ρkmn(t = 0), which is
true in the type-I Weyl semimetal, then the density matrix at any time t remains the same for both the original
and tilted Hamiltonians, ρ′kmn(t) = ρkmn(t).

Next, we consider the current density J′(t). By substituting the expressions (S5.2) and (S5.3) into the Eq.
(3), we obtain the current density under the tilt as:

J′(t) = −
∑
k

∑
m

(V′k(t)
m ρ′kmm(t)) +

∑
m̸=n

(p′k(t)
nm ρ′kmn(t))

 = J(t)−
∑
k

[∑
m

∇k(t)d
k(t)
0 ρkmm(t)

]
(a)
= J(t)−

∑
k

∇kd
k
0 → J(t)−

∫
BZ

∇kd
k
0 dVk

(b)
= J(t)−

∫
∂BZ

dk0 dSk
(c)
= J(t). (S5.4)

In the above derivation, BZ denotes the Brillouin zone, and ∂BZ represents its boundary. Several relations have
been employed in this process, including: (a)

∑
m ρkmm = 1, (b) the Gauss theorem, and (c) the periodicity of

dk0 . Equation (S5.4) illustrates that the tilt induced by d0 does not alter the total current.

Note that the above argumentation relies on a single occupancy at every momentum point. However, this
condition does not apply to over-tilted, type-II WSMs that exhibit hyperboloidal electron and hole pockets [3]
where the occupancy is double or zero, respectively. We leave further investigation of type-II WSMs for future
studies.

S6. Decoupled left- and right-handed Weyl spinors

The linearized regime of well-separated Weyl nodes discussed in the main text is analogous to the model out-
lined in Ref. [2]. In this reference, the authors explicitly treat two decoupled Hamiltonians, each corresponding
to a distinct, left and right, chirality of the Weyl spinor. As mentioned in the main text, our findings differ
from those reported in Ref. [2], specifically regarding the anomalous higher-order responses. The objective of
this section is to clarify this matter.

It is crucial to note that the finite nature of the first harmonic stems from topologically non-trivial 2D slices,
characterized by a non-zero Chern number, located between the Weyl nodes. Following Ref. [2], this corresponds
to the fourth term in Eq. (22) which, upon integration, yields a linear response. However, the remaining terms
in Eq. (22) of Ref. [2] are multiplied by either Nc (excitations) or P (interband polarization), which invalidates
the application of the same topological argument used for the first harmonic also to the higher ones.

To illustrate the different behavior between the first and higher harmonics in numerics, we reproduced the
analysis presented in Fig. 3 of Ref. [2]. Our results are displayed in Fig. S7, illustrating the anomalous
harmonics using three different integration region cut-offs, αcut. The selected cut-offs offer evidence that higher
harmonics diminish as αcut is increased, whereas the first harmonic remains unchanged.

In the analytical treatment presented in Ref. [2], one has to carefully evaluate Eq. (23) (the fifth term of Eq.
(22)), specifically when approximating Nc(k0, t). Despite the cancellation around Weyl nodes (as indicated by
the sgn function in Eq. (24) of Ref. [2]), the substitution of Nc(k0, t) with Nc(k0w, t) renders contributions far
from the Weyl nodes as finite, while excitations actually vanish there (as depicted in Fig. 1 of Ref. [2]).
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Figure S7. Results for the parameters of Ref. [2] for various cut-off values αcut.

To resolve these issues, it is crucial to establish the rotational symmetry with respect to each isolated Weyl
node, Eq. (6) of the main text, where contributions to anomalous higher-order harmonics cancel out in pairs.
Specifically, this reduces the relevant integration interval in Eq. (24) of Ref. [2] to (Λ− 2b,Λ):

jy(t) =
2Ez(t)

(2π)3

∫
d3k0

(k0x + b)Nc(k0, t)[
(k0x + b)2 + k20y + k20z

]3/2 (S6.1)

=
2Ez(t)

(2π)2

∫ Λ

Λ−2b

dk0x

∫ ∞

0

k⊥dk⊥
(k0x + b)Nc(k0, t)

[k2⊥ + (k0x + b)2]
3/2

. (S6.2)

Further, evaluating the upper bound of jy by using the substitution Nc(k0, t) → Nmax
c (t), where Nmax

c (t) =
maxk0x∈(Λ−2b,Λ) [Nc(k0, t)], we get

jy(t) ≤
2Ez(t)

(2π)2

∫ Λ

Λ−2b

dk0x

∫ ∞

0

k⊥dk⊥
(k0x + b)Nmax

c (t)

[k2⊥ + (k0x + b)2]
3/2

(S6.3)

=
b

π2
Ez(t)N

max
c (t) → 0. (S6.4)

In the final step we have considered the limit Λ → ∞. The same reasoning applies to the first three terms in
Eq. (22) of Ref. [2], demonstrating that the anomalous higher-order harmonics vanish in the limit Λ → ∞ for
the decoupled Weyl Hamiltonian.
Regarding Ref. [2], let us conclude with a comment on the significance of the separation between Weyl

nodes and nonlinearities in the spectrum concerning the generation of anomalous higher-order harmonics. As
established above, in the decoupled Weyl Hamiltonian, the anomalous higher-order response remains invariant,
i.e. zero, under the separation between Weyl nodes. However, the introduction of nonlinearities leads to a finite
anomalous higher-order response. Thus, in this simplified depiction, the importance of deviations from strict
linearity for AHHG becomes clear.

S7. Normal harmonics

In Fig. S8 we show the results for normal harmonics for different values of γ, corresponding to Fig. 3 in the
main text.

S8. Mirror symmetry

In this section, we introduce the notation v⊥ = (−vx, vy, vz), where v represents an arbitrary 3D vector.
The Hamiltonian in the paper exhibits mirror symmetry: H(k) = H(k⊥). From this symmetry, we deduce:

J (k⊥,E⊥) = J(k,E)⊥. (S8.1)

Consider the polarization in the z direction. Then, E⊥ = E holds, leading to:

Jx =
∑
k

Jx(k,E) =
∑
kx>0

(Jx(k,E) + Jx(k⊥,E)) = 0, (S8.2)
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Figure S8. Normal spectrum Iz for γ = 1, 2 and 3 (corresponding to 3 semi-Dirac nodes, 1 pair of Weyl nodes, and 1
semi-Dirac node, respectively).

i.e. there is no response in the direction of the Weyl node separation vector when the polarization of the laser
is perpendicular to it.
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