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S1. Weyl and semi-Dirac regimes

To determine the nodes of the model Hamiltonian described in the main text we search for solutions of
€c,0 = 0, or equivalently d, = d, = d, = 0. From d, = d, = 0, we observe that bk, and ck, should take values
0 or m. Considering the constraint d, = 0, we obtain |cos(ak;)| = (v F ty F t.)/tz] < 1, where the upper
and lower signs correspond to bk, ck, = 0 and , respectively. The nodes thus occur for values of v that obey
—ty+t, £t, <y <ty +t, £¢.. For values of v in the interior of that interval one finds pairs of Weyl-nodes,
whereas at extremal points (y = £t, £ ¢, £t,) the Weyl-nodes merge resulting in semi-Dirac points (8 total).
These semi-Dirac points are located at time-reversal invariant momenta (TRIM). This is illustrated in Fig. S1,
where the regions of higher excitation densities N, indicate the positions of Weyl and semi-Dirac nodes in the
Brillouin zone (BZ).

Let us examine the low-energy spectrum. We denote the positions of the four pairs of Weyl nodes as ik(()i’i),
where the 4+ and — signs in the superscript correspond to bk,,ck. = 0 and =, respectively. The nodes are

+,+
§5(

separated in the k, direction. Let 2k or 2kq for brevity) denote the distance between them. We expand

energy &%) (q) = e(k(()i’i) + q) up to the second order in the displacement vector q:

) (q) = \/((vggwﬁ cos(ako) + Veqs sin(ako)) + (yqy)* + (v2¢2)° (S1.1)

where we introduced v, = at,, v, = bt,, and v, = ct,. For sin(akg) = 0, we have a semi-Dirac point at k; =0
or m/a with a parabolic (¢2) and 2D conical (in the g, ¢, plane) dispersion. For sin(akg) # 0, we have a pair
of Weyl nodes at k, = +k¢ with, in general, anisotropic linear dispersion that depends on k.

The above derivation simplifies in the specific case we present in the paper, where a = b = ¢ = 1 and
ty =ty =t, = 1. In this case, we identify five qualitatively different regimes:

e || > 3: This regime corresponds to a gapped insulator phase, similar to the one presumably observed in
the ZrTes.

e |v| = 3: In this regime, we have a semi-DSM with a single semi-Dirac node. For v = 3 it is at kg = (0,0, 0)
and for v = -3 it is at ko = (7, 7, 7).

e 1 < |vy| < 3: Within this regime, we encounter WSMs with one pair of Weyl nodes; for 1 < v < 3 they are
at ko = (L arccos(y — 2),0,0) and for —3 < v < —1 they are at kg = (£ arccos(y + 2), 7, 7)

e |y| = 1: This regime represents a semi-DSM with three semi-Dirac nodes. For v = 1 they are at
ko = (7,0,0), (0,7,0) and (0,0, 7), while for v = —1 they are at kg = (0,7, 7), (7,0, 7) and (7, m,0).

e || < 1: This regime corresponds to a WSM featuring two pairs of Weyl nodes which are at ko =
(£ arccos(7y), m,0) and (£ arccos(v),0, 7).

Conical dispersion around the Weyl nodes becomes isotropic when ky = 7/2 (v = £2). In Fig. S2, an additional
chart, accompanying Fig. 2 of the main text, illustrates the energy spectra along high symmetry lines.
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Figure S1. Excitations N, in the BZ of a primitive orthorhombic lattice with lattice constants a = b = ¢ = 1 and hopping
parameters t, = 3, ty = 1, and ¢, = 0.6. Semi-Dirac points (8 in total) are highlighted with red labels (a,c,e,g,j,1,n,p).
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Figure S2. Energy spectra along high symmetry lines for various values of . The parabolic-2D-conical dispersion is
observed in (b) at X and Z, and in (e) at I.



S2. Derivation of symmetry relation Z(y) = Z(—v)

In this section we will use the notation v = (vg, —vy,v,) where v is an arbitrary 3D vector.
From the symmetry relation stated in Eq. (1) of the main text, we obtain the following relationships:

Winn (K, =) = Wmnn (R — f{a ) (S2.1)
dmn(ka _7) = _&mn(R - 1;, 7)6i¢mn (822)
Pmn (ka _’Y) = _f)mn(R - 1;7 ’Y)eigomn (823)

where the factor e*™» represents an arbitrary gauge factor.
By inserting identities (S2.1)—(S2.3) into the SBE [i.e., Eq. (2) of the main text], we obtain:

pi‘m(t, —,E) = pggk(t,% —E)efw’"". (S2.4)

Inserting the relations (52.3) and (S2.4) into Eq. (3) of the main text, we obtain a relation for the total current:

J(—E) = -3 (7,-E), (52.5)

which is gauge independent.

Additionally, by following similar steps as described above, we can establish that inversion symmetry leads
to the reversal of the total current when the direction of the electric field is reversed, i.e. E — —E results in
J—-J.

Combining these two results, we obtain:

J(—v,E)=17J (mﬁ)) . (52.6)

In the specific case presented in our paper, where the driving pulse has z polarization, we have Z(y) = Z(—v),
and Z,(y = 0) = 0.

S3. Dependence of response on wo and Fy; BZ maps of contributions to the response

In Fig. S3 we show peak intensities of third anomalous harmonic as a function of «y for several pulse frequencies
wo and amplitudes of the electric field Fy. For small wy and Ey one clearly sees response sharply peaking in the
proximity of the two semi-Dirac regimes, v = 1 and 7 = 3. In the intermediate Weyl regimes, the response is
suppressed, which is explained in terms of the cancelation of the response for each individual Weyl point as long
as it can be considered well-separated. The localization of the response next to the Weyl points for small wy
and Fj is illustrated in the insets that show the third harmonic contribution to anomalous current as a function
of time and k.

When Ej is increased, the total magnitude of the response is increased, correlating with the density of the
excitations (up to the saturation point N, = 0.5) and their extent in the BZ that both increase (see Fig. S4).
The response increases also in the strict Weyl regime around = 2. This is rationalized by a weakening of the
well-separatedness criterion as seen in the insets of Fig. S3 with contributions to the third harmonic between
the two Weyl nodes that become more significant with increasing Ey.

The dependence on wy is more subtle. With progressively increasing wy the magnitude of response in Fig. S3
drops and the v dependence becomes significantly milder. We rationalize this by noting that as wg increases,
the resonant condition hw., = nfwy (n € N) [1] shifts further away from the nodes. The transition dipole
moments d,. decrease there [2]. As a result, for large wy, the density of excitations reduces near the Weyl nodes
and increases somewhat away from them (see Fig. S4). Thus, with increasing wg one is less sensitive to the
low-energy details, and the response as a function of v becomes more uniform. [We note that when changing
wp, we have also scaled all the other temporal scales (T, 7, and T») such that the characteristics of the pulse
remain unchanged.]

To illustrate how the response is distributed in the BZ, and to illustrate how localization of the response
to the Weyl node is affected by wg, we show maps of the time evolution of the third harmonic contribution
to the current on Fig. S5 at v = 2.1. Because we found that the current is nearly odd when k, is flipped
Jy(ky, by, k) ~ —Jy(ky, ky, —k.), we show combined quantity X, (k) = (Jy(ks, ky, kz) + Jy(kz, ky, —k2))/2.
These time evolutions are displayed as cross sections (ky—k., ky—ky, and k,—k.), traversing near the Weyl
node at kg = (1.47,0,0). Examining these results, we observe that the contributions to higher harmonics are
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Figure S3. Peak intensities of the third anomalous harmonic, Zy(w = 3wo), as a function of v, for various electric
field carrier frequencies woy (columns) and amplitudes Ey (rows). Inset: Time series of sliced contributions to the third
harmonic of the anomalous current J3“° (¢, k,) = Zky.kz J30(t, k). Jo indicates the maximal amplitude of Jj“° (¢, k)
for a given wo, Fo, and v = 2.3. Dashed lines indicate the positions of Weyl nodes.
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Figure S4. Excitations N.(k) at ¢t = T'/2 for two different values of wp and Ey. Excitations are presented as cross sections
(ky—=k-, kx—ky, and ky—k.), traversing near the Weyl node at ko = (1.47,0,0). The parameter v is set to 2.1.
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Figure S5. Time evolution of the third harmonic (w = 3wg) of the combined quantity X,(k) = (Jy(ke,ky, k=) +
Jy(kz, ky, —kz))/2. The contours indicate the resonant conditions hwe, = nhwo for n =1,2,3...



wo =02eV, Eg=0.043 V/A wo = 0.8 eV, Eg =0.043 V/A

plane: plane: plane: plane: plane: plane:
ky-k-, kz-ky, kx-k-,
ky = 1.52 k. =0.05 k, = 0.05

=7I/?

L6¥°0

A %

Tt
i N Vi ‘

§$Q%§

1050

€0G°0

Jielisielisls

©©@®®©@©®

ISERE

3 0 w 0 Z T
-7.5 =50 =25 0.0 2.5 5.0 7.5 -2 -1 0 1 2
Eg“)o (k) x10—6 ZZWO (k) «%10—10

Figure S6. Time evolution of the fifth harmonic (w = 5wo) of the combined quantity 3,(k) = (Jy(ke,ky, k=) +
Jy(kz, ky, —kz))/2. The contours indicate the resonant conditions hwe, = nhwo for n =1,2,3...



concentrated near the Weyl node in the well-separated regime (wp = 0.2 eV). However, for wy = 0.8 €V, these
contributions are present even at k far from kg, again indicating that the assumption of well-separated nodes
does not apply for large wy.

The observations on the localization of contributions, when wy is small, can also be made for higher harmonics.
The fifth harmonic is shown in Fig. S6. Although oscillations are faster compared to the third harmonic (note
that the snapshots are taken at shorter time intervals as in Fig. S5). As expected, the frequencies of these
oscillations are w = mwyg, where m denotes the harmonic order, specifically 3 and 5.

S4. (O, rotational symmetry and vanishing anomalous current for a well-separated Weyl node

In this section, we investigate the behavior of a well-separated Weyl node characterized by linear dispersion
in the low-energy limit, following the approach outlined in Ref. [2]. The Hamiltonian for an anisotropic Weyl
cone is given by H(q) = Y, v;¢;0;, where v; are the Fermi velocities, q = (¢, gy, ¢.)” is the displacement vector
from the Weyl node, and o; are Pauli matrices. Suppose we apply an electric field in the z direction. In this
case, the Hamiltonian preserves the Cs, rotational symmetry in the g,—¢, plane, given by:

o H(a(t))o. = H(d(1)), (S4.1)

where we use the notation q(t) = q+ A(t), d'(t) =q' + A(¢), and ' = (—qz, — Gy, ¢2)-
Now let us derive the anomalous current produced by a well-separated node. Using the notation N/, = pec/vo
and P = p,. = p}, (omitting superscripts q for brevity), we rewrite the SBE, Eq. (2) of the main text, as:

BN (1) = —9,Ny(t) = 2E(t) - Im{den P(1)} (S4.2)
atp(t) = [iwcv - 1/T2 + ZE(t) : (dcc - dvv)] P(t)
FPE®) - d2, (1 — 2N.(1) . (S4.3)

For z polarization of the electric field, we have (dce — dyy). = 0 (see Ref. [2]). Now, let us consider the
transformation q — q’ which leads to transformations:

E, — FE,
Wimn — Wmn
(dev)y = (dew)y
(dev)z = —(deo)=-
Combining this with the initial conditions N,(0) = 1, N.(0) = P(0) = 0, we conclude that the density matrix

elements transform as N.;, —+ N/, and P — —P.
Next, we rewrite the contributions to the anomalous current J,(q) as:

Jy(@) == (Vin)y N + 2werIm{(dey )y P} (S4.8)

where V., = =V, = p.c = Vqe. = g/, is evaluated near the Weyl node, where the dispersion is linear. The y
component of V. transforms as (V.), —+ —(V.),. Together with Eq. (54.6) and the transformations for N/,
and P, we find J,(q) = —Jy(q'). This implies that the contributions to the total anomalous current cancel in
pairs for each well-separated Weyl node:

POEACIEE D YRACIRD SEACY

= 23 U@ + A a) =0 (51.9)

Jy

S5. Tilted cones in WSM

In this section, we introduce an additional term in the Hamiltonian to describe the tilt of the Weyl cones.
The modified Hamiltonian, denoted as H’(k), is given by

H'(k) = do(k)I + H(k), (S5.1)



where H (k) is the original Hamiltonian, and I is the 2 x 2 identity matrix. The function dy(k) represents
an arbitrary periodic function of the crystal momentum k. We choose this function in a way that it tilts the
Weyl cones while maintaining the occupancy of the energy bands unchanged, resulting in a tilted type-I Weyl
semimetal. A specific example of such a function is dy = §(cos(k;) — ), where § is a parameter that quantifies
the tilt along the k, direction.

The introduction of do(k) causes a shift in the energy spectrum, given by e , (k) = do(k) + €., (k). However,
despite this modification, the corresponding wavefunctions remain unchanged: |n, k)’ = |n, k) Additionally, the
transition frequencies and transition dipole moments are also unaffected, namely w’X, = wk —and d’%, = dk

mn mn-*
Furthermore, the off-diagonal elements (m # n) of the group-velocity matrix are also unaffected

pfnl;n = Zd/k o = de . p}r(mu (852)

mn ’Vﬂ n mn ’l’f 1243

however, the diagonal elements (m = n) change as follows:
pk =V = VK = Vi (d§ + ) = Vids + VK. (S5.3)

When considering the time evolution of the density matrix (Eq. (2) of the main text) under the influence of
the tilted Hamiltonian H’(k), we find that if the initial conditions satisfy p/X, (¢t = 0) = pX, . (t = 0), which is
true in the type-1 Weyl semimetal, then the density matrix at any time ¢ remains the same for both the original
and tilted Hamiltonians, p/X, (t) = pk, (¢).

Next, we consider the current density J'(t). By substituting the expressions (S5.2) and (S5.3) into the Eq.
(3), we obtain the current density under the tilt as:

() == | D (Vo) + D (one pn (8) | = Z [ka ndo " ol (2)

k m m#n

@ 3¢ kado — J(t / VidS dvie 2 3(t) — /6BZ d5ds, 9 3(t). (S5.4)

In the above derivation, BZ denotes the Brillouin zone, and OBZ represents its boundary. Several relations have
been employed in this process, including: (a) >, pk. =1, (b) the Gauss theorem, and (c) the periodicity of
d¥. Equation (S5.4) illustrates that the tilt induced by dy does not alter the total current.

Note that the above argumentation relies on a single occupancy at every momentum point. However, this
condition does not apply to over-tilted, type-II WSMs that exhibit hyperboloidal electron and hole pockets [3]
where the occupancy is double or zero, respectively. We leave further investigation of type-II WSMs for future
studies.

S6. Decoupled left- and right-handed Weyl spinors

The linearized regime of well-separated Weyl nodes discussed in the main text is analogous to the model out-
lined in Ref. [2]. In this reference, the authors explicitly treat two decoupled Hamiltonians, each corresponding
to a distinct, left and right, chirality of the Weyl spinor. As mentioned in the main text, our findings differ
from those reported in Ref. [2], specifically regarding the anomalous higher-order responses. The objective of
this section is to clarify this matter.

It is crucial to note that the finite nature of the first harmonic stems from topologically non-trivial 2D slices,
characterized by a non-zero Chern number, located between the Weyl nodes. Following Ref. [2], this corresponds
to the fourth term in Eq. (22) which, upon integration, yields a linear response. However, the remaining terms
in Eq. (22) of Ref. [2] are multiplied by either N, (excitations) or P (interband polarlzatlon) which invalidates
the application of the same topological argument used for the first harmonic also to the higher ones.

To illustrate the different behavior between the first and higher harmonics in numerics, we reproduced the
analysis presented in Fig. 3 of Ref. [2]. Our results are displayed in Fig. S7, illustrating the anomalous
harmonics using three different integration region cut-offs, a,:. The selected cut-offs offer evidence that higher
harmonics diminish as a.,; is increased, whereas the first harmonic remains unchanged.

In the analytical treatment presented in Ref. [2], one has to carefully evaluate Eq. (23) (the fifth term of Eq.
(22)), specifically when approximating N.(ko,t). Despite the cancellation around Weyl nodes (as indicated by
the sgn function in Eq. (24) of Ref. [2]), the substitution of N.(ko,?) with N.(kow,?) renders contributions far
from the Weyl nodes as finite, while excitations actually vanish there (as depicted in Fig. 1 of Ref. [2]).
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Figure S7. Results for the parameters of Ref. [2] for various cut-off values acus.

To resolve these issues, it is crucial to establish the rotational symmetry with respect to each isolated Weyl
node, Eq. (6) of the main text, where contributions to anomalous higher-order harmonics cancel out in pairs.
Specifically, this reduces the relevant integration interval in Eq. (24) of Ref. [2] to (A — 2b, A):

) 2FE,(t) 3 (koz + b) Ne(ko, t)
y t) = d’k 2 S6.1
WO = e / [(kos + )2 + k3, + k3.]"/ o
. 2Ez (t) A e (kOx + b) Nc(k07 t)
- (2n)? /A_zb dkoz/o fudhs k2 + (ko +b)2*/ (56:2)

Further, evaluating the upper bound of j, by using the substitution N.(ko,t) — N**(t), where N **(t) =
maxy,. e(a—25,4) [Ve(ko, )], we get

, 2E.(t) [P > (koa +b) N2 (t)
]y(t) < (27)? /A—2b dkOa:/O kidky [ki T (koe +b)2]3/2 (56.3)
= %Ez(t)]\/vénax(t) — 0. (S6.4)

In the final step we have considered the limit A — oo. The same reasoning applies to the first three terms in
Eq. (22) of Ref. [2], demonstrating that the anomalous higher-order harmonics vanish in the limit A — oo for
the decoupled Weyl Hamiltonian.

Regarding Ref. [2], let us conclude with a comment on the significance of the separation between Weyl
nodes and nonlinearities in the spectrum concerning the generation of anomalous higher-order harmonics. As
established above, in the decoupled Weyl Hamiltonian, the anomalous higher-order response remains invariant,
i.e. zero, under the separation between Weyl nodes. However, the introduction of nonlinearities leads to a finite
anomalous higher-order response. Thus, in this simplified depiction, the importance of deviations from strict
linearity for AHHG becomes clear.

S7. Normal harmonics

In Fig. S8 we show the results for normal harmonics for different values of -, corresponding to Fig. 3 in the
main text.

S8. Mirror symmetry
In this section, we introduce the notation v | = (—v,,vy,v.), where v represents an arbitrary 3D vector.
The Hamiltonian in the paper exhibits mirror symmetry: H(k) = H(k, ). From this symmetry, we deduce:
Jk, ,E))=JKkE),. (S8.1)
Consider the polarization in the z direction. Then, E; = E holds, leading to:

Jo =Y J(k,E)= Y (J.(k;E)+ Ju(ki,E)) =0, (S8.2)
k kx>0
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Figure S8. Normal spectrum Z, for v = 1, 2 and 3 (corresponding to 3 semi-Dirac nodes, 1 pair of Weyl nodes, and 1
semi-Dirac node, respectively).

i.e. there is no response in the direction of the Weyl node separation vector when the polarization of the laser
is perpendicular to it.
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