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Several effective models, as derived from a general two-band Hubbard model for CuO, layers in
oxide superconductors, are studied. In particular, we compare the Hubbard model with the hole-
spin models (unsymmetrized and symmetrized) and a generalized effective single-band (z-J) model.
The exact calculation of energy spectra on a chain of four cells shows that states for a single addi-
tional hole are quite well reproduced by reduced models, taking into account the renormalization of
constants. Less satisfactory is the agreement for the undoped system, especially for small charge-
transfer energies. The same analytical procedure is applied to the square lattice system, where the
parameters are estimated also from the levels of a single CuO, group. The results for quasiparticle
spectra indicate that corrections to the t-J model are even smaller than in the case of the single-band

Hubbard model.

I. INTRODUCTION

Due to their relevance for oxide superconductors (SC),
models for strongly correlated electronic systems are at
present at the center of theoretical investigations in con-
densed matter physics.! For the description of electrons
in CuO, layers, which are the essential ingredient of SC
having highest T, several microscopic models have been
proposed and studied so far. The most realistic seems to
be the Hubbard model, incorporating several bands,? in
particular the hybridized Cu dxz_ » and O p, orbitals.

In the following we shall restrict ourselves to the con-
sideration of the latter model, although the physics would
be quite different, if, e.g., the nonhybridizing orbitals
would become essential.> The general Hubbard model is
appropriate for the interpretation of electron spectrosco-
py results* etc., it is, however, too complicated for the
model studies of quasiparticle properties and even more
for the study of SC properties. A large number of orbit-
als per unit cell thus prevents the exact diagonalization of
systems with reasonable sizes, it makes the analytical
analysis less transparent, etc. Assuming that by doping
the reference substance, i.e., La,CuO, or Y,BaCu;Oq, the
holes enter predominantly on O orbitals,” a coupled
hole-spin model has been derived®’ and studied by
several authors.® !9 The advantage of this model is that
it incorporates in a natural way the relevant degrees of
freedom: the localized spins at Cu sites, relevant for the
reference substance, and the mobile charge carrier holes.
Also, it allows in principle a perturbational treatment of
single- and two-hole properties, although the coupling of
both degrees is not weak. Even more extensively studied
is the single-band effective model, the so-called ¢-J model,
derived originally as the representation of strongly corre-
lated electrons in the single-band Hubbard model, !!"!?
but expected to account well also for the properties of
CuO, layers.!* The t-J model, describing the hopping of
fermions with the exclusion of doubly occupied sites, has
the smallest basis of states per cell and is therefore suit-
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able also for numerical calculations.!* On the other
hand, the model is nonperturbative in character although
an expression in the transverse exchange coupling has
been employed by several authors. 15-17

Our aim is to perform a quantitative comparison of
these models. We restrict ourselves to the regime of low
doping, so that we in fact analyze only the models for the
undoped system and the states of a single additional hole.
Analytically the reduction of the initial Hubbard model
to the hole-spin models can be performed within the per-
turbation theory®’ using the hybridization energy as a
small parameter. Although the latter requirement is not
always fulfilled, we nevertheless retain in the reduced
model only the simplest invariants. The underlying idea
is that higher-order perturbation corrections mainly re-
normalize the model parameters. We test this assump-
tion by comparing low-lying states, as obtained for all
discussed models, by the exact diagonalization of a small
one-dimensional system. We show that the effective
models, i.e., the hole-spin model and the 7-J model, quan-
titatively account very well for single-hole states. In par-
ticular, the agreement remains satisfactory even for
smaller charge-transfer energies, i.e., in the mixed valence
regime. On the other hand, for the reference (undoped)
system the mapping on the Heisenberg spin model be-
comes more questionable in the same regime, since re-
sults can differ even qualitatively. In this way, the value
of the charge-transfer energy will be crucially needed for
the proper determination of the physical regime, as also
recognized by other authors.*”13

For the square-lattice case the analogous exact diago-
nalizations were not performed due to the exceeding nu-
merical effort.'®!® We, however, rely on the one-
dimensional results and on the results for a single CuO,
group,®!® and use them as the basis for the analytical
symmetrization of the hole-spin model and the reduction
to a generalized ¢-J model.

In Sec. IT we present the models and show the relations
between parameters as obtained within the perturbation
analysis. Section III is devoted to the quantitative com-
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parison of results for all models on a one-dimensional
chain. Since the dependence on the charge-transfer ener-
gy is most pronounced, we study both the mixed valence
and the charge-transfer regime. In Sec. IV models are
compared for a single CuO, group, while the analytical
procedure is repeated for a real square-lattice system.
Discussion and conclusions are given in Sec. V.

II. MODELS

Assuming that in CuO, layers Cu dx2—y2 orbitals and
O p, orbitals are essential for the electronic properties,
we adopt the two-band Hubbard model for such a system,

as first introduced by Emery, ?
pd 2 C,s jS+A 2 n
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Here, operators c,-I(c s ) Tepresent a creation (annihilation)
of holes on Cu sites, i.e., on d sublattice (i Ed), or on the
O sites (i €p), respectively. The corresponding vacuum
are filled electronic shells Cu d!° and O p®. Terms in Eq.
(2.1) can be interpreted as follows: the hybridization (z,;)
contribution from the hopping between neighboring sites
(ij), the charge-transfer (A) term, the Hubbard on-site
repulsion with U;c,=U,,, U;c4= Uy, and the intersite
repulsion (V) term. Symbol (ij) denotes the summa-
tion over the pairs of neighboring sites. In the hybridiza-
tion term we do not introduce the explicit relative phases
of p-d orbitals, since they can be transformed out’ by
redefining the p sublattice operators c;(i €Ep) with phase
factors exp(iQ-R;), Q=(, ).

For the undoped system (i.e., for 7=1/cell) with A>0
and Uy, >>1,,; it is expected that the model (2.1) can be
described by the Heisenberg model for spin degrees on
Cu sites. Additional holes introduced by doping (mainly)
on O sites can be however mobile, hopping between
neighboring O sites since A< U,. For this case, the
mobile holes and localized spins on Cu sites are the
relevant degrees of freedom and the coupled hole-spin
model®” has been derived, treating t,q as the smallest
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Sites 7, j now refer to the d sublattice, while /,m €i are O
sites being neighbors to the ith Cu site. It should be not-
ed that in the V', term we have included also the diagonal
!l =m contribution, so that ¥, is expected to remain
smaller. In Eq. (2.2) we have omitted several terms
which lead only to energy shifts. Within the lowest order
in t,;, parameters in H,; can be expressed in terms of the
original ones in Hyp,

41 1,2
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In the realistic situation the perturbation analysis can
serve only as a guide, especially in the mixed valence re-
gime where f,;/AX 1. The question of how well H,
represents the initial Hy,,, will be discussed in Secs. III
and IV.

The disadvantage of H,, is that it contains two sublat-
tices (p and d) and that the strongest hole-spin coupling
is via the hole hopping (V) term. These problems can be
eliminated by introducing ordinary Wannier functions
centered on d sites corresponding to the free hole hop-
ping (7) term. In the CuO, layer problem there are two
such functions per cell, so that the unitary transforma-
tion to new orthogonal operators ¢! can be generally
written as

Cix= E wi?llcls ’

/

(2.5)

where i now refer to Cu sites. The explicit forms for
w; ¥ will be specified in Secs. III and IV.

The transformation of H, ps to new symmetrized H g, is
now straightforward. We however retain in H,, only a
few lowest terms which we will quantify later. Also we
are neglecting terms involving antisymmetric w/; orbitals
that will be justified in Sec. IV. So we denote ¢j, =¢;; and
get the symmetrized hole-spin model

sym =J 2 S S ——tO 2 ClS jS+st S +VIES S +t1 2 %O'SSNS,( is jS +~T~ )+t2 2 %oss"siﬁjs‘vks’ )

(i, ))s (i, 7)

(i,/)s,s’ (i,j#k)
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where the last term represents the hopping between next-nearest-neighbor (NNN) cells jk through the intermediate cell
i. All summations are now only over cell indices /, j, k. The largest term is expected to be the Kondo coupling (¥) term,
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whereas the holes move via the free hopping (¢,) term and the spin-dependent (¢, ) term.
When V is large a reduction to the subspace of mobile singlets is natural. !> The local singlet state, formed out of the
local d hole and the symmetrized p hole, can be used as a new vacuum

~ 1 ~
0;) =\/—§(ciTTCiTl AT

2.7)

Neglecting the participation of the higher-energy triplet state, the H,, can be now rewritten solely in terms of d (Cu
site) fermions hopping from the site j onto empty sites |0; ), the process being a representation of the exchange of the
singlet between cells i,j. We thus obtain the generalized t-J model

— i '
HtJ—J 2 Si.sj—t 2 di&djs—t 2 djj;dks+§ E
iy j) (i, j)s (i, k)s

with d,-1=c,-s(l—n,-_s) operators satisfying the require-
ment of, at most, singly occupied sites. In Eq. (2.8) we in-
cluded the NNN hopping terms, i.e., the (¢') spin-
independent hopping between NNN sites (j,k) and the
(£) hopping dependent on the intermediate spin S;.
Within the lowest-order parameters in the H,; model can
be related to those in Eq. (2.6) by calculating new matrix
elements taking into account the redefined local vacuum,
Eq. (2.7). However, we can evaluate also the contribu-
tions of the second-order processes, where the intermedi-
ate state is the local triplet state, formed by the d hole
and the p hole, an energy V above the local singlet state.
The procedure of the calculation is in principle identical
to that used in deriving the hole-spin model. The result is
22 2

%tl’ tl:_%LV_’ gz%tz—.—tf ’
where 7=1/V2(t,+1t,). It should be noted that the
sign is reversed in hopping terms due to the exchanged
role of mobile fermions in the models (2.6) and (2.8).

t=—1t,— (2.9)

III. ONE-DIMENSIONAL SYSTEMS

In order to perform the quantitative comparison of
different models, introduced in Sec. II, we first study the
d=1 system on a chain. We expect that relations be-
tween parameters of discussed models would not be cru-
cially dependent on the dimensionality of the lattice, al-
though the final physical behavior of d=1 and d=2 sys-
tems would be essentially different. We adopt the view
that effective models should reproduce as well as possible
the low-energy properties of the original Hubbard model.
Hence we compare directly the low-energy spectra and
the character of states, as obtained by the exact diagonal-
ization of small systems. In particular, we choose the
chain of Ny=4 cells, where the number of low-lying ener-
gy levels is still reasonable. It should be noted that in
d=1 the models correspond to a system of the CuO chain
with a single O p orbital per cell.

The first question is how well is the Hubbard model,
Eq. (2.1), represented by the Heisenberg spin Hamiltoni-
an for the undoped system, i.e., for N, =4 holes (fer-
mions) in our case. In the following we fix some parame-
ters in the model (2.1) to realistic values;>* in particular,
we take 1,;,=1.4 (eV), Uy =7, and U,,=1. Here and
further on we express all quantities in units of eV. Since

1 . T
—2-("55' S.d; dks’
(i, j#k)ss’

i (2.8)
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A is not known reliably enough* and moreover it
influences substantially the results, we treat several values
0<A <4 corresponding to regimes of mixed valence
ARO as well as to the charge-transfer regime
tyg <<ASUy. We considered as well the dependence on
the repulsion 0<¥;<1 and 0< U, <4; however, no
significant effects were found for the undoped system nor
for the spectra of a single added hole, so we discuss in the
following mainly the ¥V, =0 and U, =1 results.

The lowest-lying energy levels of the Hubbard model of
N, =4 on a chain of Ny=4 cells are represented in Fig. 1,
shown relative to the spin singlet S=0, ¢=0 ground
state. At larger A=4 the levels map very well on those of
the Heisenberg model, which would be for Ny=4 just
equidistant with an energy difference AE =J, while S=1,
g ==1m/2 and S=0, q = levels would be degenerate.
The best-fitted value J=0.2 is however smaller than the
perturbative result (2.3) with J=0.35. The mapping on
the Heisenberg model becomes substantially worse on de-
creasing A. The level scheme is very perturbed in the
mixed valence regime A <2, also the values obtained for
the exchange coupling J>0.35 are quite unphysical. Fi-
nally at A—O even the character of the ground state
changes since the S=1, ¢ == state appears to have the
lowest energy and an explanation for this effect is still
lacking. It should be noted that at smaller A <2 a sub-
stantial improvement cannot be achieved even by includ-
ing the next-neighbor interactions S;-S; ., in the Heisen-
berg model. Hence corrections beyond the two-spin in-
teraction are needed, which makes the mapping on a spin
model less useful. It should, however, be stressed that the
disagreement between the levels of the general Hubbard
model and those of effective models appear to be the larg-
est for the undoped system. Since the experiments yield
for the CuO, layers J =0.1 ¢V, ?° this would be an indica-
tion that the system is in the charge-transfer regime
A>>t,, (due possibly to smaller effective #,,) or that the
coupling J as determined from the low-energy spectra
differs from J as would be obtained from high-energy spin
excitations. Hence a proper understanding of the un-
doped system is still needed.

Let us proceed to the comparison of low-energy spec-
tra for a doped system with one single additional hole,
n,=1. In Figs. 2 and 3 we present the results for
different models corresponding to two charge-transfer en-
ergies A=4 and 2, respectively, for a system of N,=4
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FIG. 1. The lowest-lying energy levels of Hy,,, for N, =4 holes on a chain of N, =4 cells, shown relative to the S=0, q=0 state.

cells. The energies are given relative to the lowest energy
state for such a system. In the Hubbard model (2.1) the
diagonalization is thus performed for N, =5 holes and
only the lowest-lying branches with total spins § =1,3,2
are shown. Comparing Figs. 2(a) and 3(a) we notice that
differences between A =4 and 2 cases are merely quantita-
tive. Thus the energy scale is somewhat expanded for
A =2, whereas the pairs of excited states with § = and

2 tend to merge as A—0. In both cases the ground state
appears tobe S =4, g =7/2.

In Figs. 2(b) and 3(b) the spectra for a single hole
n, =1 in the hole-spin model (2.2) are presented. Here, J
has been fixed from the analysis of the undoped system,
ie., J=0.2 (A=4) and J=0.35 (A=2), while other pa-
rameters have been chosen so that the spectra would fit
best to those of the Hubbard model. From the figures we

(a) (b)

(c) (d) (e)

FIG. 2. The lowest-lying branches for a system of N, =5 holes on a chain of N,=4 cells for different models corresponding to
charge-transfer energy A=4. @ represent the S =% energy levels; O correspond to the S = %, and A to the S =% levels, respectively.

The solid lines between the points are only a guide to the eye. (a) Hubbard model; (b) hole-spin model; (c) symmetrized hole-spin

model; (d) Kondo-lattice model; (e) generalized #-J model.
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(c) (d) (e)

FIG. 3. The same as in Fig. 2 but for the mixed valence regime A=2.

see that indeed a satisfactory qualitative and quantitative
agreement can be reached, especially for larger A=4.
The parameters which were used are presented in Table I,
where in the parentheses we give the perturbation
analysis results, Egs. (2.3) and (2.4). The perturbation re-
sults for parameters remain qualitatively correct in spite
of 1,4 /A and 1,4 /(Uygy — A) not being small;'>* however,
the values are substantially renormalized due to higher-
order effects. This is evident for the largest and the most
important V| coupling, which is reduced by =40%.

Wannier functions (2.5) for the symmetrized model can
be given explicitly for the chain (of infinite length)

ik(R,~R;)__ simr(R,—-R,»)

W(RI—R,) ’ (31)

1
w,=—-e
MOON <4
where / and i refer to the p and d sites, respectively.

Hence parameters in the symmetrized hole-spin model
(2.6) can be expressed as

e 8 _ 8
to=t, t1—3—772(2V1+V2)’ t2——“é—7:2‘(2V1—3V2),
(3.2)
v=2arv,+v,, v=-0v +sv
=— 1 2 ), =— 1 2) . (3.3)
T 97

The parameter set used in Figs. 2(c) and 3(c), which is
giving the best agreement with original spectra, is

TABLE 1. The parameters of H,, which were used in Figs.
2(b) and 3(b). (In the parentheses are given the perturbation
- analysis values.)

presented in Table II. In parentheses we present the
values (if they are not the same) obtained from Egs. (3.2)
and (3.3). The difference between calculated and fitted ¢,
t, can be to a large extent attributed to finite-size effects,
since Wannier functions (3.1) are defined for Nj— o sys-
tem. As seen from Figs. 2(b) and 2(c) and Figs. 3(b) and
3(c), the terms left out in Eq. (2.6) clearly do not disturb
the agreement between unsymmetrized and the sym-
metrized model. It should be also noted that the hopping
is still dominated by the spin-dependent ¢, term. Spin-
flip hopping is also the reason why spectra are less satis-
factorily reproduced by the Kondo lattice model,%%°
where one takes into account only the local interaction V
and an effective free-hole hopping ¢&f, but V'=¢,=t,=0.
Here we fix the parameter ¢§f =1, +2t,=1.1 so that from
Eq. (2.9), both the symmetrized hole-spin model (2.6) and
the Kondo lattice model, give the same value of ¢ in the
t-J model. Within the Kondo lattice model the
differences between branches remain qualitatively
correct, see Figs. 2(d) and 3(d), still the q dependences are
quite perturbed. In particular, a q=0 state appears to be
of the lowest energy in the relevant parameter regime.
The ?-J model can reproduce only a few lowest
branches due to the very restricted basis set. It misses,
especially for A <2, nearly degenerate partner branches
with §=1 and §=3. Still it reproduces very well the
lowest quasiparticle branch, see Figs. 2(e) and 3(e), with

TABLE II. The parameters of H,,, used in Figs. 2(c) and
3(c). [In the parentheses are presented the values obtained from
Egs. (3.2)and (3.3).]

A 2 Vi V, A to t t, 4 | 4
4 —0.15 (0.08) 1.4 (2.29) —0.2 (—0.20) 4 —0.15 0.85 (0.70) 0.2 (0.31) 2.2 0.16
2 —0.35 (—0.29) 2.0 (2.74) —0.9 (—0.65) 2 —0.35 1.0 (0.84) 0.3 (0.63) 2.5 —0.05
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the values comnsistent with Eq. (2.9), i.e., t=—0.56,
£=0.08 for A=4, and t =—0.58, {=0.14 for A=2, while
in both cases ¢’ =0.

It should be noted that second-order corrections in Eq.
(2.9) are very small. This is not so much the effect of sub-
stantial ¥V, but rather of a very small NN hopping matrix
element 7 between the spin singlet and the spin triplet
state. So we get from Table II, but also from perturba-
tion results Egs. (2.3), (2.4), and Eq. (3.2) that |7] <<|¢|
which can be attributed to quite different role of the
spin-flip hopping in 7 and ¢ processes and the destructive
interference between both types of hopping contributions
to 7. Second-order contributions should be compared to
those obtained from the reduction of the correszponding
single-band Hubbard model, where {~J>>7'/V.!L1
Our d=1 results thus seem to indicate that the two-band
Hubbard model is nearer to the ¢-J model (comparing the
single quasiparticle properties) than the single-band Hub-
bard model, which is consistent with some limiting
cases.??

IV. PLANAR SYSTEM

In a planar system corresponding to the CuO, network
the possibilities for the exact diagonalization studies are
very restricted. A corresponding Hubbard model on a
Ny=4 cell would be already on the computation lim-
it.'%1° We, however, expect that the relation between the
Hubbard model (2.1) and the hole-spin model (2.2)
remains similar as in the one-dimensional case.

In order to show this quantitatively we perform the
calculation for a single CuO, cluster with a free boundary
condition. Although this system is rather trivial and can-
not be used to determine J, still we gain some information
on the single hole states for both models.* For such a
system the hole-spin model can be written in the follow-
ing form:

HCUO4= —4Tn(s)+(4V1 + V2 )S(s)‘s
+V2(S(d)+8(px)+8(py))‘s N (4.1)

where (s,d,p,,p,) stand for symmetrized orbitals formed
out of four O p orbitals in the CuO, group. Comparing
energy levels, obtained by the exact diagonalization of the
Hubbard model for the cluster with those obtained from
Eq. (4.1), one can uniquely determine the parameters
needed for the hole-spin model, Eq. (2.2). The results are
presented in Table III. In order to construct the sym-
metrized model, Eq. (2.6),we define usual Wannier func-
tions, as determined by the free-hole hopping (7) term in
Eq. (2.2). The corresponding band energies are

TABLE III. The parameters of the hole-spin model HCuo4 as

obtained from the results of exact diagonalization of Hubbard
model for the CuQ, cluster.

A 7 v, v,
4 —0.10 1.05 —0.09
2 —0.23 1.08 —0.14

€k = —2f(cosk, +cosk, +1) , (4.2)

for the symmetric band and g;, =27 for the asymmetric

band. The wave functions w,f}"), Eq. (2.5) are given by

1 ik-(R,—R;)
wl, = N Sayke T, 4.3)
k

where R; refer to symmetrized (Cu) sites, while a;, still
depend on the index of the O atom in the cell, i.e.,

- k
a,(k)=£&(k)cos , @y (k)=E&(k)cos Ty » (4.4)
a,(k)=—a,(k), a,,(k)=a;(k), (4.5)
and
‘ —1/2
E(k)= |cos? | —= | +cos? | X

s Wannier functions defined in this way are in fact identi-
cal to those used by Zhang and Rice.!®* They are present-
ed in Fig. 4. It is seen that they are well localized, i.e.,
much stronger than in a d=1 chain, Eq. (3.1).

The transformation to a symmetrized model is now
straightforward. A general conclusion is that there is
only a weak coupling between s and a hole orbitals; e.g.,
the largest term comes from the V, term in Eq. (2.2) and
the coupling strength can be estimated to remain below
the value =0.2. Hence, these terms do not seem to be
essential and we neglect them further on. For the s orbit-
al we get by using Egs. (4.4) and (4.5)

to=F, t,=0.54V,+0.13V,, 1,=0.078V, , (4.6)
V=3.67V,+0.92V,, V'=0.078V,+0.24V, . (4.7

For our particular values obtained from the levels of the
CuO, cluster are parameters given in the Table IV, while
in the parentheses results from the d=1 fit are presented.
Although the Kondo coupling V is quite strong, it is still
essentially smaller than U,; and moreover smaller than
the free-hopping effective bandwidth W =8¢ in the cor-
responding Kondo model. The definition of the appropri-
ate bandwidth W in the general hole-spin model, Eq.
(2.6), is however more involved. Still W is expected to be
substantially smaller, i.e., W < 8t8ﬂr,

The reduction to the #-J model now follows Eq. (2.8).
The parameters as given by ¢t = —0.48, £=0.05 for A=4
and t=—0.55, {=0.08 for A=2 while t'=0. Again,
corrections to the prototype #-J model are very small. In
a planar lattice a possibility of a direct p-p hopping
should be also considered. The corresponding matrix ele-
ment has been estimated to ,, S0.5 eV.* This process
affects the NN hopping, i.e., it increases ¢, but the main
qualitative difference is in a much stronger NNN hop-
ping t'. In fact, we get Ar= —0.28z,, and
Ar'=+0.06¢,, for NNN neighbors along the diagonal,
i.e., at distance R =V'2a, (a, being the unit cell length)
while At'=—0.065z,, for the NNN hopping along the
direction with the distance R =2a,,.
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FIG. 4. The values of w;; and w/,; on the O sites represent (a) symmetric and (b) antisymmetric Wannier functions centered around

Cu site ®.

V. CONCLUSIONS

In this paper we have studied the relations between
different models, which have been introduced to describe
the electronic properties of CuO, layers in oxide SC. The
comparison is based on the calculations performed main-
ly for a single mobile quasiparticle (hole) introduced into
the reference system. In this way we have not touched
the question of the quasiparticle interactions relevant for
the SC properties. However, the underlying motivation
is that the presumable attraction is not a local hole-hole
interaction but is rather mediated through the low-energy
excitations of the reference system. Then the effective
models as described in Sec. II can be used as a good start-
ing point for the study of the hole binding® 1141618 3nd
of possible SC pairing!"!? under the condition that mod-
els adequately describe quasiparticle properties.

Our exact diagonalization results for a finite CuO,
chain show that spectral properties of a single mobile
quasiparticle in a general Hubbard model can be well
reproduced by reduced effective models, i.e., by the hole-
spin model (unsymmetrized and symmetrized) and by the
generalized ¢-J model. This remains valid even in the
mixed valence regime (with A=~1,, ),2! where the straight-
forward derivation of the hole-spin model is not possible
due to the breakdown of the perturbation expression us-
ing t,, as a small parameter.

Numerical results for a chain and for a single CuO,
cluster in a planar lattice show that parameters for a

TABLE IV. The parameters of H,, obtained from the levels
of the CuO, cluster. (In the parentheses are presented results
from the d=1 fit.)

A f t v 14
4 056 (0.73) 0.08 (0.11)  3.77 (4.95)  0.06 (0.06)
2 0.57(0.96) 0.09 (0.16) 3.83 (6.51) 0.05 (—0.06)

hole-spin model should be substantially renormalized rel-
ative to their value obtained via the perturbation analysis.
This is especially evident for the most important (sym-
metrized) Kondo coupling, which is reduced by <50%.
The hopping in the symmetrized hole-spin model is
predominantly a spin-dependent one. This is also the
reason why the simple Kondo-lattice model, assuming
only a free-hole hopping, misses some quasiparticle prop-
erties. Other terms in H,, seem to be less important. In
particular, very weak is the (V') term which has been
claimed to induce a strong FM coupling® between the Cu
spins S; around a static hole. An apparent reduction of
this term relative to the unsymmetrized model is, even in
d=1, due to the enhancement of the local Kondo cou-
pling, which agrees with the arguments by Zhang and
Rice."® Although we have shown that the prototype t-J
model can describe well the same quasiparticle proper-
ties, there are still some conceptual and possibly technical
advantages of the hole-spin models, especially in the re-
gime of not too small J. Thus one can get a qualitatively
adequate description of the lowest quasiparticle bands
(with a nontrivial q7=0 ground state) by using a simple
picture of a free-hole hopping in a Néel spin background.
Our results confirm that the #-J model represents very
well the low-energy properties of the original model. Our
focus was on the possible influence of invariants added to
the simple ¢-J model.!® We could introduce additional
terms representing perturbed (Cu) spin correlations
around the singlet. Again due to small V' <<V these
corrections appear negligible. We found as relevant only
the NNN hopping contributions, spin-dependent and
spin-independent ones. It is, however, to some extent
surprising that these contributions are even smaller as
they would arise from straightforward reduction of a
singe-band Hubbard model. This agrees with a recent
finding, that in a certain regime the model can be exactly
mapped on the #J model.?> The origin of this
phenomenon in our derivation is less clear. It can be at-
tributed to the fact that due to a particular coherence the
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local singlet has a substantially reduced NN hopping ma-
trix element into the local triplet state. The NNN hop-
ping contributions are, however, enhanced if one takes
into account also the direct p-p hopping. These terms are
weak, e.g., |t'| <0.1]|¢|, still their influence on the quasi-
particle coherent mass as well as on the hole binding can
be quite strong at smaller J, as found in a recent numeri-
cal study.?®> Whether these terms can yield an essential
difference between the quasiparticle pairing in the two-
band Hubbard model and in the single-band Hubbard
model, is not yet clear. It should be however noted that
our analysis of quasiparticle spectra is strictly unique
only within the second-order perturbation analysis in #,,,
so that the determination of higher-order terms like ¢’

and & remains less reliable.
The essential discrepancy between the original Hub-
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bard model and reduced models appears in the properties
of the reference (undoped) system. On reducing A to the
mixed valence regime Heisenberg model even qualitative-
ly fails to reproduce the excitation spectra. In view of the
experimentally determined rather small value J=0.1
eV, % our results could again be an indication that the
real system is in the charge-transfer regime A>>f,; or
that models still miss some degrees of freedom which
would lead to reduction of the exchange coupling.
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