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Effect of deconfinement on resonant transport in quantum wires
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The effect of deconfinement due to finite band offsets on transport through quantum wires with two con-
strictions is investigated. It is shown that the increase in resonance linewidth becomes increasingly important
as the size is reduced and ultimately places an upper limit on the efEngyperature scale for which
resonances may be observgg80163-18208)07231-2

I. INTRODUCTION increasingly relevant, the main effect being to broaden the
resonances and restrict their number. Indeed, for a suffi-
Recent technological advances have enabled semicondugiently small confining region, only a single isolated reso-
tor nanostructures to be fabricated with feature sizes down tgance level remains, with a continuum at higher energies.
tens of angstroms. Such structures include arrays of “selfThe increasing width of the resonance level is due to decon-
organized” quantum dots and quantum wires. The formefinement of the electron wave function into the classically
are grown by heteroepitaxial deposition in which the over-forbidden region beyond the potential step. However, all en-
layer material has the larger lattice parameter and form§'9i€s increase with increasing confinement and the impor-
quantum dots to relieve elastic strdif. The latter may be tant criterion is whether the lowest resonance p_e-ak can be
achieved by heteroepitaxial growth on “v’-groove surfaces,"®Solved from the next resonance peak the continuumy
produced by optical lithography and etching, for which theWhich sets the temperature scale. To _be sp(_ecmc, we shall, in
overlayer atoms diffuse preferentially towards the base ofvhat follows, mainly consider two-dimensional structures
groove producing a quantum wire with a crescent-shapeith @ conduction-band offset of 0.4 eV, which is approxi-
cross sectiofi-1° These structures have potential optoelec-Mately the maximum offset in the conduction bafutirect
tronic applications, such as light-emitting diodes, low-9ap for GaAs wires on an AlGa _As.
threshold lasers, and single-electron devices.
In this paper we cons_ider_the pallistic transport of ele_c— Il. MODEL AND METHOD
trons through quantum wires in which there are two constric-
tions defining a small region of quasiconfinement. Such a For simplicity, we restricted the model to two dimensions
system can have a rich and complex resonance struttiie.  with confinement in they direction and propagating in the
It has been investigated in detail by Nakazato and Bldikie, direction. The wire shapes under consideration are symmet-
who consider characteristic sizes down+d00 nm and as- ric around thex axis and shown in Fig. 1. The width of the
sume that the quantum wire is defined by infinitely highwire is parametrized aa(x)=a,—a; sinf2mx/a, for 0=<x
barriers. Such an assumption is reasonable provided that thea, and a(x)=a, otherwise. For comparison we choose
resonance levels considered are at sufficiently low energywo generic geometries. In Fig(d the confined region is
i.e., somewhat lower than that of the real band edge in widerenly weakly coupled to the “leads” and we thus expect
gap material of the heterojunction. For the wire geometrystrong(narrow) resonances. This structure is expected to be-
they consider, the resonances are very shap=ab. Inter-  have in a similar way to a quantum dot, which is separated
channelmode mixing of the electron waves is important for from its leads by tunnel barriers. On the other hand, for the
higher-order resonances and can give rise to unusual effecgeometry of Fig. b), the constrictions are much smaller,
such as antiresonances. At these length scales, however, ttesembling a wire with weak thickness fluctuations.
possible observation of such resonances would be restricted We model further the wire as two regions of constant
to very low temperatures, where they would be easilypotentialsV/=0 within the wire “*boundary,” and confining
swamped by defects and disorder. potential V=V,>0 outside the wire. The corresponding
The main purpose of the present work is to investigate théwo-dimensional Schidinger equation reads
resonance structure for very narrow wires for which the en-

ergy (temperaturg scale is higher and may even approach 52 [ 52 2

room temperature. Such a possibility is, of course, extremely _ (_ + _> W(x,y)+ V¥ (x,y)=EV(X,Y).
important for device applications. As the size shrinks, the 2m*\ ox?  ay?

effect of a finite barrier for an electron in the wire becomes D
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where
0.6 <

) Jos 1 TE=3 ltan(E)P )

----- D N s and t,(E) is the transition amplitude for scattering from
(c) — = E channeln to channeim.

OO ° At finite temperatures the conductance is calculated using
""" o a generalized Landauer formufa,
FIG. 1. The width of the wire is always parametrizedagx) G=G VOT(E) _df(e-ET) de ®
=ay—a, sif2mx/a,. (@) Weaker coupling:a;=0.8a, and a, °f . Jde '

=2a,. (b) Stronger couplinga; =0.4a, anda,=2a,. (c) Shape of 1 )
the “dot” fixed with a;=5 nm,a,=20 nm, and various wire thick- Wheref(e,T)=[1+exp (f/ksT)] "~ is the usual Fermi func-
nessap=6-10 nm. tion. This form is also based on the assumption that motion

within the wire is ballistic, the effect of temperature being

Here the electron effective mass* is chosen to be that of merely to change the energy distribution in the leads, thus
GaAs, equal to 0.067 times the free-electron masskrsl  allowing electrons above and below the Fermi energy to con-
electron energy relative to the conduction-band edge in thglbute to the conductance. For narrow wires, the tail of the

wire. Fermi distribution with energy>V, can be significant and
The wave function is expanded in elementary modes othe contribution of these electrons to conductance will de-
channelg? pend on the size and properties of the barrier region. If this

region is large, then electron motion will be diffusive and

may be described by an effective conductivity, proportional

‘I’(X,Y):; Dn(X,Y) Pn(X), (2) 1o 6n, the number of electrons in the Fermi tail. The conduc-

tance due to these electrons will be further inhibited by
where the basis function®,(x,y) are orthogonal solutions rough-surface scattering for mesa structures produced by

of one-dimensional Schdinger equations in thg direction  etching?® In this paper we shall only consider the conduc-
for fixed x, with eigenenergie&, (x). tance due to electrons within the wire by introducing an en-
Substituting the expansion E(R) into the Schidinger ergy cutoff ate=V,, as shown in Eq(8). Thermally acti-

equation Eq(1) leads to a set of ordinary linear differential vated electrons in the barrier region, which give rise to a

equations for the channal wave functiong,(x), series conductance, will be considered in future work.
As pointed out in Ref. 11, the Schiimger equation Eq.
d? (%) (1) and the expression for conductance, B), are invariant
d—+kﬁ(x) Pn(X) under the scaling transformation,
X,Y—AX,\Y,
dim(X)
= bym(X) ———+tanm(X) ¥m(X) |, )
2 { () — gy @m0 VN 2E -2y ©
wherek?(x)=2m*[E—E,(x)]/%? and Ton-2T.
B PD (X,Y) To solve the system of differential equations, E3), we
anm(X) == [ Pn(X.y) I dy, first fix the number of channels), and then determine the

eigenfunctions®,(x,y) with corresponding eigenenergies
ID,(X,y) E.(x) for n=N. N must, of course, _be su_fficiently large to
— 2 dy. (4)  ensure convergence. For narrow wire this poses a problem
X since channels with energy above the barrig, form a
rgyasicontinuum ,and because of interchannel cougdlafig

Bm(X) = — 2 f (%)

For the geometry considered here, there are no real bou : . .
states in thex direction; only scattering states are relevant. terms on the right-hand side of E(B)] these high-energy

Zero temperature conductance is calculated using th&12nnels can have a significant effect on the eigenstates of
Landauer formuld”-18 electrons confined to the wire. This may be understood in a

perturbation theoretic sense. An electron in sigtéx) with
G=G, T(E), (5) E,(X) <V, may make a virtual transition to a statg,(x) in

the continuum E,>V,) and such transitions become very
where Go=2€%/h and E is here the Fermi energy of the important forV,—E, small, i.e., for confined states close to
electrons in the leads. The transmission probabflii) is the top of the barrier. These excursions into the quasicon-
the sum of transmission probabilities for all channelsat  tinuum enhance deconfinement into the classically forbidden
energyE, i.e., regions. This is particularly important near narrow constric-
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tions, such as the “necks” in Fig.(4). The main effect of ]
. . . L5 4 nm (0.4 eV)

this, and the leakage of the base stalgsinto the barrier (a) ——- 5(063)

region, is to broaden resonances compared to casesWyith ——=7(1.23)

=0, considered in Ref. 11. To model the quasicontinuum we - T 102.5)

. e . _ . . 1.0 = 20 (10) .

introduce infinite barriers ay=*L/2. The basis functions I | ya

D, (x,y), x-fixed, are the simple standing waves. Some care ) 7

is needed in optimizindN andL to ensure convergence. © [ /

must be made sufficiently large to ensure that the effect of 05 // .

infinite barriers on the confined wave functions is negligible. [ J

On the other hand, cannot be made too large, otherwise the A S

number of required channels witt>V, becomes impracti- 00 L g7

cal. For the cases we considerégs20a; andN<30 were ) 3 4

sufficient to ensure convergence. The analytic expressions
for the functiongd ,(x,y) enable the coefficients,(x) and

bam(X) in Eq. (3) to be computed efficiently. The system of 12 — T T 1
differential equations Eq(3) belongs to a class of “stiff” i
equations for which direct integration is generally not stable. 1.0 i
The basic problem is exponentially increasing solutions with 08 L
imaginary wave vectors of different orders of magnitude <
leading to round-off errors and divergent results. This prob- Qo6 F
lem was solved for the present system by dividing the wire o)
along thex direction inM sections. For each section we first 04 |
determined R independent solutions using the fifth-order i
Runge-Kutta numerical method. The length of each section 02 F
was chosen to ensure stable numerics in that section, the i
limiting factor being the number of channels with imaginary 0.0 0

K.(X). In our case up to 10 such channels were taken into
account within each section, wittl <10 sections. Matching
the solutions at each boundary yields sets of linear equations FIG. 2. (8 T=0 conductivity [geometry from Fig. (a)] for

from which the transition amplitudets,(E) may be deter- Vvariousa,=4-20 nm and fixed/o=0.4 eV (or, equivalently, with
mined. fixed ap=4 nm and varioud/,=0.4—10 eV). (b) Conductivity at

T=100 K and 300 K presented with thick and thin lines, respec-
tively, for fixed Vy=0.4 eV and variougy,=4—10 nm. CirclesO

lll. RESULTS represent upper limiE=V, of calculation.

Figure Za) shows electron conductance B0 versus o ) .
energy for the dot geometry of Fig(a, i.e.,a,=0.8a, and We see that the effect of finité is to shift the position of
a,=2a, for wire widths a, from 4 nm to 20 nm and the th_e first resonance to lower energies with decreas_mg wire
barrier heightV,=0.4 eV. The open circles), in this and width. Th|s.|s_, of course, due directly to the d_econfmement
the remaining figures correspond to a Fermi eneEgyV,. effect of aﬁmte band offset. For very narrow wires the reso-
As explained in the preceding section, electrons with energ@nt 1evel is pushed towards the continuire., unbound in
greater than this are not “bound” to the wire and their con-2D) &t energyE =V,=0.4 eV and only one resonant level is
ductance will be dominated by the properties and size of th€0SSible. This is seen to be the case for wires of width 4, 5,
barrier region. For convenience of presentation and to en2Nd 7 nm. The corresponding energies from the peak to the
phasize the effects of scaled units of energy, we choosgontinuum are 83, 151, and 232 meV for these wires. For
scaled units of energyE/Eq, whereEo=#2/(2m*a2), the wider wires the energy splitting between the first two peaks

ground-state energy for an electron in a one-dimensionddUces in energy, eventually decreasing g (approxi-
well of width a, with infinitely high potential walls. For mately. Furthermore, the resonances always become broader

perfect confinement\,=), the scaling invariance, E), with.decreasing wire vv_id.th, again a consequence of the de-
atT=0 gives confinement e_ffect of finite banq offset..Thus, at zero tem-
perature, multiple resonances with the highest resolut@an
tio of resonance separation to resonance widtbcur for
wide wires, the limiting resonance width being determined
by the geometrystrength of the effective tunnel barriers into
and hence all wires of the same shape have identical conduthe confined region However, the absolute energy scale is,
tance curves fol,=.! This universal curve is approxi- of course, very small and these sharp resonances are rapidly
mately that forag=20 nm in Fig. Za) (for which the finite  broadened with temperature. This is shown in Figh)2
barrier height is irrelevantWe note that théfirst) resonance where for the same wires we plot conductancd at100 K
occurs aE~ 2.5, which may be interpreted approximately and 300 K with thick and thin lines, respectively. Open
as a resonant bound state with enegydue to confinement circles O again represent an energy cutd&=V,, above
in they direction and energy 1By, due to quasiconfinement which conduction is primarily through the barrier region.
in the x direction. The thermal broadening is accompanied by a reduction in the

G(Nag,E/Ep(Nag))=G(ag,E/Eq(ap)) (10)
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FIG. 3. T=0 conductivityfgeometry from Fig. ()] for various 12 v T r T y T T
ap=5—1000 nm and fixedvy,=0.4 eV is presented with thick - -
Iiges. Thin lines represent ?he corresponpdl‘iﬁgt 100 K result. 1.0 (b) T=100K ,-\é:;:;’:__:
Circles O represent upper limiE=V, of calculation. 08 i ! 1
peak heights, which are barely resolvable at room tempera- L\:»° 06 F 4
ture for wires withay>10 nm, though clearly resolvable and ]
optimum foray~5 nm. This is significantly better than the 4 04 -
nm width wire for which the proximity of the continuum has -

a large effect. 02 .

Because of the invariance under scaling, E(, the [
same behavior occurs for larger wires with a smaller band 0.0 0o 4

offset, though the overall energy scale is lower. Thus Fig.
2(a) may be regarded as a plot of conductance for wires with
the samewidth (4 nm in this casebut differentband offsets, FIG. 4. (a) T=0 conductivity [geometry from Fig. (c)] for
Vy. IncreasingV, increases the confinement and has thevariousay=6—10 nm and fixedvy=0.4 eV. (b) Conductivity at
same effect as increasing the wire width with fixégland  T=100 K and the same geometry. Circlésrepresent upper limit
vice versa, apart from an overall change in endigynpera- E=V, of calculation.

_ture) §cale. Indeeq, the effects of _deconflneme_nt could bPl(c). This has the effect of producing a quasi-1D quantum
mve_stlgated _expenr_nental!y for relatively Iar_ge wires by fab'dot. There are two competing effects as the wires are made
ricating quasi-2D wires with small conduction-band OffSets.rower: the effective tunnel barriers increase and there is
The quasi-2D behavior would be achieved by ensuring higlynhanced deconfinement near the necks. It turns out that the
confinement in the third dimension. The behavior of suchincrease in effective tunnel barriers is the greater effect, re-
wires at low tempel’atures, l.e., conductance versus ener%mng in Sharper resonances as the wire thickness is re-
(gate voltaggfor various widths, would be the same as thatduced, as shown in Fig(d). This should be contrasted with
of narrow wires at higher temperatures. This assumes Vvergig. 2(a), which always gives rise to a resonance broadening
clean wires and parabolic bands. In practice, one would havehen the overall size is reduced. However, we point out that,
to take into account nonparabolicity effects for very narrowunlike the case of thick wires, this reduction in linewidth is
wires and the effects of disorder would become increasinglgignificantly less than that given by a single-channel approxi-
important for larger wires. mation. This is because there is coupling to the 2D con-
In Fig. 3 we show conductance plots at absolute zero antinuum near the neck region. This coupling depends on both
T=100 K for the more weakly confining wire of Fig(H), the rate of narrowing of the wire and its absolute width. The
for which a;=0.4a, anda,=2a,. The behavior is seen to Other main effect shown in Fig.(d is the appearance of
be qualitatively similar to the more strongly confined geom-further resonance peaks below the continuum. This reflects
etry wire, though the resonances are broader, reflecting tHg€ guasi-1D nature of the confinement region, the higher-
weaker confinement along the witemaller effective tunnel- Ying peaks corresponding to higher harmonics along the
ing barriers. However, the thermal broadening is still largely length of the effective qyantum d0t', Their separatlpn Is set
governed by the overall wire thickness. For example, if Weby the_ Iength O_f the confinement region _along the wire. Con-
compare the 5 nm wires in Fig(d and Fig. 3 aff = 100 K ductivity at finite temperaturg=1(_)0 K is plotted in Fig.
(thin lines, we see a similar relative increase in the haIf-4(b)' We see that for the wire thicknesses considered, the

width and a decrease in the peak height compared with a@_igher harmonics broaden rapidly with increasing tempera-
ture, merging into the quasi-2D continuum. However, it can

solute zero. This shows that even for small thickness quctuatg hat the | ins disti
tions, resonance peaks can persist to quite high temperaturB§ S€en that the lowest resonance remains distinct.

for narrow wires.
. . . . V. NCLUSION
Finally, we consider the effect of reducing only the thick- CONCLUSIONS
ness of a quantum wir@,, while otherwise maintaining the With realistic conduction-band offsets, the lowest reso-
same shapea;=5 nm anda,=20 nm, as shown in Fig. nance peak for ballistic transport through quantum wires of
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fluctuating thickness giving rise to a quasiquantum dotguantum dot connected to source and drain contacts “verti-
should be discernible around room temperature for the smalkally” is also expected to behave in a similar fashion, al-
est structures close to the limits of present fabrication techthough there would be quantitative differences of course. Fu-
nigues. Nevertheless, deconfinement effects due to finitmire work will consider other effects that become
band offsets are significant and ultimately the limiting factorincreasingly important for very small structures, including
for sufficiently small structures. In principle, the resonancesonparabolicity and Coulomb blockade, particularly the ef-
could be made to survive to higher temperatures if heterofect of deconfinement on the latter.

junctions could be fabricated with even larger band offsets.
The restriction to 2D in the simulations is somewhat artificial
here, although the extension to true 3D with circular cross-
section wires is feasible and calculations are in progress to We acknowledge valuable discussions with Colin Lam-
estimate the expected enhanced deconfinement effect thiaert. This work was partly funded by the EQontracts ERB
they would produce. However, the general behavior is exCIBD CT940017 and CHRX-CT93-10360ne of the au-
pected to be similar to that described in this paper. Othethors (A.R.) would like to thank DERA for the hospitality
geometries, such as might be produced from a self-organizeghich was extended to him during his several visits.
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