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Effect of deconfinement on resonant transport in quantum wires
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The effect of deconfinement due to finite band offsets on transport through quantum wires with two con-
strictions is investigated. It is shown that the increase in resonance linewidth becomes increasingly important
as the size is reduced and ultimately places an upper limit on the energy~temperature! scale for which
resonances may be observed.@S0163-1829~98!07231-2#
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I. INTRODUCTION

Recent technological advances have enabled semicon
tor nanostructures to be fabricated with feature sizes dow
tens of angstroms. Such structures include arrays of ‘‘s
organized’’ quantum dots and quantum wires. The form
are grown by heteroepitaxial deposition in which the ov
layer material has the larger lattice parameter and fo
quantum dots to relieve elastic strain.1–7 The latter may be
achieved by heteroepitaxial growth on ‘‘v’’-groove surface
produced by optical lithography and etching, for which t
overlayer atoms diffuse preferentially towards the base
groove producing a quantum wire with a crescent-sha
cross section.8–10 These structures have potential optoele
tronic applications, such as light-emitting diodes, lo
threshold lasers, and single-electron devices.

In this paper we consider the ballistic transport of ele
trons through quantum wires in which there are two const
tions defining a small region of quasiconfinement. Suc
system can have a rich and complex resonance structure11–15

It has been investigated in detail by Nakazato and Blaiki11

who consider characteristic sizes down to;100 nm and as-
sume that the quantum wire is defined by infinitely hi
barriers. Such an assumption is reasonable provided tha
resonance levels considered are at sufficiently low ene
i.e., somewhat lower than that of the real band edge in wid
gap material of the heterojunction. For the wire geome
they consider, the resonances are very sharp atT50. Inter-
channel~mode! mixing of the electron waves is important fo
higher-order resonances and can give rise to unusual ef
such as antiresonances. At these length scales, howeve
possible observation of such resonances would be restr
to very low temperatures, where they would be eas
swamped by defects and disorder.

The main purpose of the present work is to investigate
resonance structure for very narrow wires for which the
ergy ~temperature! scale is higher and may even approa
room temperature. Such a possibility is, of course, extrem
important for device applications. As the size shrinks,
effect of a finite barrier for an electron in the wire becom
PRB 580163-1829/98/58~7!/4014~5!/$15.00
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increasingly relevant, the main effect being to broaden
resonances and restrict their number. Indeed, for a s
ciently small confining region, only a single isolated res
nance level remains, with a continuum at higher energ
The increasing width of the resonance level is due to dec
finement of the electron wave function into the classica
forbidden region beyond the potential step. However, all
ergies increase with increasing confinement and the imp
tant criterion is whether the lowest resonance peak can
resolved from the next resonance peak~or the continuum!,
which sets the temperature scale. To be specific, we sha
what follows, mainly consider two-dimensional structur
with a conduction-band offset of 0.4 eV, which is approx
mately the maximum offset in the conduction band~direct
gap! for GaAs wires on an AlxGa12xAs.

II. MODEL AND METHOD

For simplicity, we restricted the model to two dimensio
with confinement in they direction and propagating in thex
direction. The wire shapes under consideration are symm
ric around thex axis and shown in Fig. 1. The width of th
wire is parametrized asa(x)5a02a1 sin22px/a2 for 0<x
<a2 and a(x)[a0 otherwise. For comparison we choos
two generic geometries. In Fig. 1~a! the confined region is
only weakly coupled to the ‘‘leads’’ and we thus expe
strong~narrow! resonances. This structure is expected to
have in a similar way to a quantum dot, which is separa
from its leads by tunnel barriers. On the other hand, for
geometry of Fig. 1~b!, the constrictions are much smalle
resembling a wire with weak thickness fluctuations.

We model further the wire as two regions of consta
potentials,V50 within the wire ‘‘‘boundary,’’ and confining
potential V5V0.0 outside the wire. The correspondin
two-dimensional Schro¨dinger equation reads

2
\2

2m*
S ]2

]x2
1

]2

]y2D C~x,y!1VC~x,y!5EC~x,y!.

~1!
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PRB 58 4015EFFECT OF DECONFINEMENT ON RESONANT . . .
Here the electron effective massm* is chosen to be that o
GaAs, equal to 0.067 times the free-electron mass andE is
electron energy relative to the conduction-band edge in
wire.

The wave function is expanded in elementary modes
channels,16

C~x,y!5(
n

Fn~x,y!cn~x!, ~2!

where the basis functionsFn(x,y) are orthogonal solutions
of one-dimensional Schro¨dinger equations in they direction
for fixed x, with eigenenergiesEn(x).

Substituting the expansion Eq.~2! into the Schro¨dinger
equation Eq.~1! leads to a set of ordinary linear differenti
equations for the channeln wave functioncn(x),

d2cn~x!

dx2
1kn

2~x!cn~x!

5(
m

Fbnm~x!
dcm~x!

dx
1anm~x!cm~x!G , ~3!

wherekn
2(x)52m* @E2En(x)#/\2 and

anm~x!52E Fn~x,y!
]2Fm~x,y!

]x2
dy,

bnm~x!522E Fn~x,y!
]Fm~x,y!

]x
dy. ~4!

For the geometry considered here, there are no real bo
states in thex direction; only scattering states are relevan

Zero temperature conductance is calculated using
Landauer formula,17,18

G5G0 T ~E!, ~5!

where G052e2/h and E is here the Fermi energy of th
electrons in the leads. The transmission probabilityT(E) is
the sum of transmission probabilities for all channels,n, at
energyE, i.e.,

FIG. 1. The width of the wire is always parametrized asa(x)
5a02a1 sin22px/a2. ~a! Weaker coupling:a150.8a0 and a2

52a0. ~b! Stronger coupling:a150.4a0 anda252a0. ~c! Shape of
the ‘‘dot’’ fixed with a155 nm,a2520 nm, and various wire thick-
nessa056210 nm.
e

r

nd

e

T ~E!5(
n
Tn~E!, ~6!

where

Tn~E!5(
m

utnm~E!u2 ~7!

and tnm(E) is the transition amplitude for scattering from
channeln to channelm.

At finite temperatures the conductance is calculated us
a generalized Landauer formula,19

G5G0E
2`

V0
T ~e!F2

] f ~e2E,T!

]e G de, ~8!

where f (e,T)5@11exp (e/kBT)#21 is the usual Fermi func-
tion. This form is also based on the assumption that mot
within the wire is ballistic, the effect of temperature bein
merely to change the energy distribution in the leads, t
allowing electrons above and below the Fermi energy to c
tribute to the conductance. For narrow wires, the tail of
Fermi distribution with energye.V0 can be significant and
the contribution of these electrons to conductance will
pend on the size and properties of the barrier region. If t
region is large, then electron motion will be diffusive an
may be described by an effective conductivity, proportion
to dn, the number of electrons in the Fermi tail. The condu
tance due to these electrons will be further inhibited
rough-surface scattering for mesa structures produced
etching.20 In this paper we shall only consider the condu
tance due to electrons within the wire by introducing an e
ergy cutoff ate5V0, as shown in Eq.~8!. Thermally acti-
vated electrons in the barrier region, which give rise to
series conductance, will be considered in future work.

As pointed out in Ref. 11, the Schro¨dinger equation Eq.
~1! and the expression for conductance, Eq.~8!, are invariant
under the scaling transformation,

x,y→lx,ly,

E,V→l22E,l22V, ~9!

T→l22T.

To solve the system of differential equations, Eq.~3!, we
first fix the number of channels,N, and then determine the
eigenfunctionsFn(x,y) with corresponding eigenenergie
En(x) for n<N. N must, of course, be sufficiently large t
ensure convergence. For narrow wire this poses a prob
since channels with energy above the barrier,V0, form a
quasicontinuum ,and because of interchannel coupling@cf.
terms on the right-hand side of Eq.~3!# these high-energy
channels can have a significant effect on the eigenstate
electrons confined to the wire. This may be understood i
perturbation theoretic sense. An electron in statecn(x) with
En(x),V0 may make a virtual transition to a statecm(x) in
the continuum (Em.V0) and such transitions become ve
important forV02En small, i.e., for confined states close
the top of the barrier. These excursions into the quasic
tinuum enhance deconfinement into the classically forbid
regions. This is particularly important near narrow constr
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tions, such as the ‘‘necks’’ in Fig. 1~a!. The main effect of
this, and the leakage of the base statescn into the barrier
region, is to broaden resonances compared to cases witV0
5`, considered in Ref. 11. To model the quasicontinuum
introduce infinite barriers aty56L/2. The basis functions
Fn(x,y), x-fixed, are the simple standing waves. Some c
is needed in optimizingN and L to ensure convergence.L
must be made sufficiently large to ensure that the effec
infinite barriers on the confined wave functions is negligib
On the other hand,L cannot be made too large, otherwise t
number of required channels withE.V0 becomes impracti-
cal. For the cases we considered,L<20a0 andN<30 were
sufficient to ensure convergence. The analytic express
for the functionsFn(x,y) enable the coefficientsanm(x) and
bnm(x) in Eq. ~3! to be computed efficiently. The system
differential equations Eq.~3! belongs to a class of ‘‘stiff’’
equations for which direct integration is generally not stab
The basic problem is exponentially increasing solutions w
imaginary wave vectors of different orders of magnitu
leading to round-off errors and divergent results. This pr
lem was solved for the present system by dividing the w
along thex direction inM sections. For each section we fir
determined 2N independent solutions using the fifth-ord
Runge-Kutta numerical method. The length of each sec
was chosen to ensure stable numerics in that section,
limiting factor being the number of channels with imagina
kn(x). In our case up to 10 such channels were taken
account within each section, withM<10 sections. Matching
the solutions at each boundary yields sets of linear equat
from which the transition amplitudestnm(E) may be deter-
mined.

III. RESULTS

Figure 2~a! shows electron conductance atT50 versus
energy for the dot geometry of Fig. 1~a!, i.e., a150.8a0 and
a252a0 for wire widths a0 from 4 nm to 20 nm and the
barrier heightV050.4 eV. The open circles,s, in this and
the remaining figures correspond to a Fermi energyE5V0.
As explained in the preceding section, electrons with ene
greater than this are not ‘‘bound’’ to the wire and their co
ductance will be dominated by the properties and size of
barrier region. For convenience of presentation and to
phasize the effects of scaled units of energy, we cho
scaled units of energy,E/E0, whereE05\2/(2m* a0

2), the
ground-state energy for an electron in a one-dimensio
well of width a0 with infinitely high potential walls. For
perfect confinement (V05`), the scaling invariance, Eq.~9!,
at T50 gives

G„la0 ,E/E0~la0!…5G„a0 ,E/E0~a0!… ~10!

and hence all wires of the same shape have identical con
tance curves forV05`.11 This universal curve is approxi
mately that fora0520 nm in Fig. 2~a! ~for which the finite
barrier height is irrelevant!. We note that the~first! resonance
occurs atE;2.5E0, which may be interpreted approximate
as a resonant bound state with energyE0 due to confinemen
in the y direction and energy 1.5E0 due to quasiconfinemen
in the x direction.
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We see that the effect of finiteV0 is to shift the position of
the first resonance to lower energies with decreasing w
width. This is, of course, due directly to the deconfineme
effect of a finite band offset. For very narrow wires the res
nant level is pushed towards the continuum~i.e., unbound in
2D! at energyE5V050.4 eV and only one resonant level
possible. This is seen to be the case for wires of width 4
and 7 nm. The corresponding energies from the peak to
continuum are 83, 151, and 232 meV for these wires.
wider wires the energy splitting between the first two pea
reduces in energy, eventually decreasing likea0

22 ~approxi-
mately!. Furthermore, the resonances always become bro
with decreasing wire width, again a consequence of the
confinement effect of finite band offset. Thus, at zero te
perature, multiple resonances with the highest resolution~ra-
tio of resonance separation to resonance width! occur for
wide wires, the limiting resonance width being determin
by the geometry~strength of the effective tunnel barriers in
the confined region!. However, the absolute energy scale
of course, very small and these sharp resonances are ra
broadened with temperature. This is shown in Fig. 2~b!,
where for the same wires we plot conductance atT5100 K
and 300 K with thick and thin lines, respectively. Ope
circles s again represent an energy cutoffE5V0, above
which conduction is primarily through the barrier regio
The thermal broadening is accompanied by a reduction in

FIG. 2. ~a! T50 conductivity @geometry from Fig. 1~a!# for
variousa054220 nm and fixedV050.4 eV~or, equivalently, with
fixed a054 nm and variousV050.4210 eV!. ~b! Conductivity at
T5100 K and 300 K presented with thick and thin lines, resp
tively, for fixed V050.4 eV and variousa054210 nm. Circless
represent upper limitE5V0 of calculation.



er
d
4
s

n
ig
it

th

b
b
ts
ig
c
er
a
e
a
ow
g

an

m
t

ly
w

lf
a

tu
tu

k-

.

m
ade
e is
t the
re-
re-

h
ing
at,
is
xi-

on-
oth
he
f
cts
er-
the
set
n-

the
ra-
an

o-
of
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peak heights, which are barely resolvable at room temp
ture for wires witha0.10 nm, though clearly resolvable an
optimum fora0;5 nm. This is significantly better than the
nm width wire for which the proximity of the continuum ha
a large effect.

Because of the invariance under scaling, Eqs.~9!, the
same behavior occurs for larger wires with a smaller ba
offset, though the overall energy scale is lower. Thus F
2~a! may be regarded as a plot of conductance for wires w
thesamewidth ~4 nm in this case! but differentband offsets,
V0. IncreasingV0 increases the confinement and has
same effect as increasing the wire width with fixedV0 and
vice versa, apart from an overall change in energy~tempera-
ture! scale. Indeed, the effects of deconfinement could
investigated experimentally for relatively large wires by fa
ricating quasi-2D wires with small conduction-band offse
The quasi-2D behavior would be achieved by ensuring h
confinement in the third dimension. The behavior of su
wires at low temperatures, i.e., conductance versus en
~gate voltage! for various widths, would be the same as th
of narrow wires at higher temperatures. This assumes v
clean wires and parabolic bands. In practice, one would h
to take into account nonparabolicity effects for very narr
wires and the effects of disorder would become increasin
important for larger wires.

In Fig. 3 we show conductance plots at absolute zero
T5100 K for the more weakly confining wire of Fig. 1~b!,
for which a150.4a0 and a252a0. The behavior is seen to
be qualitatively similar to the more strongly confined geo
etry wire, though the resonances are broader, reflecting
weaker confinement along the wire~smaller effective tunnel-
ing barriers!. However, the thermal broadening is still large
governed by the overall wire thickness. For example, if
compare the 5 nm wires in Fig. 2~b! and Fig. 3 atT5100 K
~thin lines!, we see a similar relative increase in the ha
width and a decrease in the peak height compared with
solute zero. This shows that even for small thickness fluc
tions, resonance peaks can persist to quite high tempera
for narrow wires.

Finally, we consider the effect of reducing only the thic
ness of a quantum wire,a0, while otherwise maintaining the
same shape,a155 nm anda2520 nm, as shown in Fig

FIG. 3. T50 conductivity@geometry from Fig. 1~b!# for various
a05521000 nm and fixedV050.4 eV is presented with thick
lines. Thin lines represent the correspondingT5100 K result.
Circless represent upper limitE5V0 of calculation.
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1~c!. This has the effect of producing a quasi-1D quantu
dot. There are two competing effects as the wires are m
narrower: the effective tunnel barriers increase and ther
enhanced deconfinement near the necks. It turns out tha
increase in effective tunnel barriers is the greater effect,
sulting in sharper resonances as the wire thickness is
duced, as shown in Fig. 4~a!. This should be contrasted wit
Fig. 2~a!, which always gives rise to a resonance broaden
when the overall size is reduced. However, we point out th
unlike the case of thick wires, this reduction in linewidth
significantly less than that given by a single-channel appro
mation. This is because there is coupling to the 2D c
tinuum near the neck region. This coupling depends on b
the rate of narrowing of the wire and its absolute width. T
other main effect shown in Fig. 4~a! is the appearance o
further resonance peaks below the continuum. This refle
the quasi-1D nature of the confinement region, the high
lying peaks corresponding to higher harmonics along
length of the effective quantum dot. Their separation is
by the length of the confinement region along the wire. Co
ductivity at finite temperatureT5100 K is plotted in Fig.
4~b!. We see that for the wire thicknesses considered,
higher harmonics broaden rapidly with increasing tempe
ture, merging into the quasi-2D continuum. However, it c
be seen that the lowest resonance remains distinct.

IV. CONCLUSIONS

With realistic conduction-band offsets, the lowest res
nance peak for ballistic transport through quantum wires

FIG. 4. ~a! T50 conductivity @geometry from Fig. 1~c!# for
variousa056210 nm and fixedV050.4 eV. ~b! Conductivity at
T5100 K and the same geometry. Circless represent upper limit
E5V0 of calculation.
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fluctuating thickness giving rise to a quasiquantum
should be discernible around room temperature for the sm
est structures close to the limits of present fabrication te
niques. Nevertheless, deconfinement effects due to fi
band offsets are significant and ultimately the limiting fac
for sufficiently small structures. In principle, the resonanc
could be made to survive to higher temperatures if hete
junctions could be fabricated with even larger band offse
The restriction to 2D in the simulations is somewhat artific
here, although the extension to true 3D with circular cro
section wires is feasible and calculations are in progres
estimate the expected enhanced deconfinement effect
they would produce. However, the general behavior is
pected to be similar to that described in this paper. Ot
geometries, such as might be produced from a self-organ
,
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ed

quantum dot connected to source and drain contacts ‘‘ve
cally’’ is also expected to behave in a similar fashion,
though there would be quantitative differences of course.
ture work will consider other effects that becom
increasingly important for very small structures, includin
nonparabolicity and Coulomb blockade, particularly the
fect of deconfinement on the latter.
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