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Spin-dependent resonances in the conduction edge of quantum wires
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The conductance through a quantum wire of cylindrical cross section and a weak bulge is determined exactly
for two electrons within the Landauer-Bu¨ttiker formalism. We show that this ‘‘open’’ quantum dot exhibits
spin-dependent resonances resulting in two anomalous structure on the rising edge to the first conductance
plateau, one near 0.25(2e2/h), related to a singlet resonance, and one near 0.7(2e2/h), related to a triplet
resonance. These resonances are generic and robust, occurring for other types of quantum wires and surviving
to temperatures of a few degrees.
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Recent technological advances have enabled semicon
tor quantum wires to be fabricated with effective wire widt
down to a few nanometers, for example, by heteroepita
growth on v-groove surfaces,1 epitaxial growth on ridges,2

cleaved edge overgrowth,3 etched wires with gating,4 and
gated two-dimensional electron gas~2DEG! structures.5,6

More recently, there has been considerable interest in ca
nanotubes for which the quantum wire cross section can
proach atomic dimensions. Such structures have potentia
optoelectronic applications, such as light-emitting diod
low-threshold lasers and single-electron devices.

Many groups have now observed conductance steps i
of these various types of quantum wire, following the p
neering work in Refs. 5 and 6. While these experiments
broadly consistent with a simple noninteracting pictur7

there are certain anomalies, some of which are believed t
related to electron-electron interactions and appear to
spin-dependent. In particular, a structure is seen in the ri
edge of the conductance curve, starting at around 0.7(2e2/h)
and merging with the first conductance plateau with incre
ing energy.8 This structure, already visible in the ear
experiments,5 can survive to temperatures of a few degre
and also persists under increasing source-drain bias,
when the conductance plateau has disappeared. Unde
creasing in-plane magnetic field, the structure moves do
eventually merging with thee2/h conductance plateau a
very high fields. Theoretical work has attempted to expl
these observation in various ways, including conducta
suppression in a Luttinger liquid with repulsive interacti
and disorder,9 local spin-polarized density-functiona
theory,10 and spin-polarized subbands.11 In some of the more
recent experiments, an anomaly is seen at lower energy
conductance around 0.2(2e2/h).12,2 This can also survive to
a few degrees though is less robust than the 0.7 anomaly
is more readily suppressed by a magnetic field.2

In this paper, we suggest that these anomalies are re
to weakly bound states and resonant bound states within
wire. These would arise, for example, if there is a sm
fluctuation in the thickness of the wire in some region, givi
rise to a weak bulge. If this bulge is very weak, then only
PRB 620163-1829/2000/62~19!/12985~5!/$15.00
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single electron will be bound. We may thus regard this s
tem as an ‘‘open’’ quantum dot in which the bound electr
inhibits the transport of conduction electrons via the Co
lomb interaction. Near the conduction threshold, there w
be a Coulomb blockade and we show below that this a
gives rise to a resonance, analogous to that which occur
the single-electron transistor.13 This is a generic effect aris
ing from an electron bound in some region of the wire a
such binding may arise from a number of sources, which
do not consider explicitly. For example, in addition to
weak thickness fluctuation, a smooth variation in confini
potential due to remote gates, contacts, and depletion reg
could contribute to electron confinement along the wire
gated 2DEG. In this paper we consider only very weak c
finement near the conductance threshold for which a sin
electron is bound.

We consider a straight quantum wire with a small fluctu
tion in thickness giving rise to a weak ‘‘bulge.’’ The origina
motivation behind this work was to examine ballistic tran
port through wires produced inv grooves, similar to the
those reported by Kaufmanet al.,12 with mean thicknesses in
the range 10–20 nm and small thickness fluctuations.
though the cross section of these wires is crescent sha
this was approximated to circular for simplicity. We lat
realized that the precise shape of the cross section is
fundamentally important for the existence of conductan
anomalies in the rising edge to the first conductance pe
We have performed detailed calculations for wires of circu
cross section and for planar wires and, apart from sm
quantitative differences, the results are very similar. F
brevity we present here the results for wires of circular sy
metry about thez axis and with constant potential,V(r ,z)
50 within a boundaryr 0(z) from the symmetry axis and
confining potentialV0.0 elsewhere. To be definite, w
choose parameters appropriate to GaAs for the wire
Al xGa12xAs for the barrier withx such thatV050.4 eV,
which is close to the crossover to indirect gap. Band non
rabolicity is neglected and we use the GaAs effective ma
m* 50.067m0, neglecting its variation across the bounda
The wire width is taken asr 0(z)5 1

2 a0(11j cos2 pz/a1) for
12 985 ©2000 The American Physical Society
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uzu< 1
2 a1 and r 0(z)[ 1

2 a0 otherwise, i.e., a wire of widtha0
with a single bulge of lengtha1 and width (11j)a0, as
shown in Fig. 1~inset!.

When the wire is connected to metallic source-drain c
tacts, electrons will flow into the wire region as the Fer
energy is raised from below the conduction band edge v
gate ~not considered explicitly!. At least one electron will
then become bound in the bulge region of the wire. T
number of bound electrons depends on both the Fermi
ergy and the relative size of the bulge~i.e., parametersa1
andj). We first consider the noninteracting electron proble
for unbound~scattering! states. As shown in Refs. 14 and 1
for a two-dimensional wire, this problem may be reduced
a quasi-one-dimensional problem by expanding in transv
modes. The one-electron Schro¨dinger equation,

2
\2

2m*
¹2C~x,y,z!1VC~x,y,z!5EC~x,y,z!, ~1!

then reduces to anN-component differential equation that
solved for the scattering states. The number of channelsN,
is chosen to be sufficiently large to give convergence
depends upon the Fermi energy in the leads and the
parameterj. For largej many channels are needed since
rapid change in wire thickness gives rise to large interch
nel mixing. From the solution of the scattering problem, t
conductance is calculated from the usual Landauer-Bu¨ttiker
formula,16 G5G0 T(E), whereG052e2/h, E is the Fermi
energy andT(E) is the total transmission probability. This
shown in Fig. 1 for a wire with dot parameterj50.3. For
such a smallj the conductance is very similar to that of
perfect straight wire, as we would expect, with conducta
steps atG0, 3G0, 5G0, etc. The main difference is the ver
sharp Fano antiresonance seen in the second conduc
step, a consequence of interchannel mixing, which is was
out at finite temperature. Apart from this resonance, all ot
features, including the position of a bound state below
conduction edge, may be accurately described by neglec
coupling between channels. With such weak confinem
there is only one bound state.

FIG. 1. ConductanceG/G0 for one ~noninteracting! electron.
The energyE is measured from the bottom of the lowest transve
channel. Inset: geometry of the open quantum dot is determ
with r 0(z)5

1
2 a0(11j cos2 pz/a1).
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We now consider the interacting electron problem w
wire thickness variation in a range that ensures that only
electron occupies a bound state and that restriction t
single channel near the conduction edge is an excellent
proximation. To determine the conductance of this system
the ballistic regime we need to solve the two-electron sc
tering problem at low energy, for which one electron alwa
remains bound for ingoing and outgoing states. To do this
start with the single-channel, two-electron Schro¨dinger equa-
tion for electron motion in thez direction,

F2
\2

2m* S d2

dz1
2

1
d2

dz2
2D 1e~z1!1e~z2!Gc~z1 ,z2!

1U~z1 ,z2!c~z1 ,z2!5Ec~z1 ,z2!, ~2!

wheree(z) is the energy of the lowest transverse channe
z andU(z1 ,z2) is the effective two-electron interaction give
by integrating the full three-dimensional~3D! unscreened
Coulomb interaction over the lowest transverse mode.
though this equation is exact for the two-electron probl
within the single-channel approximation, we add a pheno
enological screening factor to the two-electron interact
term to mimic the effect of screening by other conducti
electrons not accounted for explicitly. The two
electron interaction then has the formU(z1 ,z2)5e2/
@4p««0d(z1 ,z2)#exp(2uz12z2u/r), with d(z1 ,z2)→uz12z2u
for larged. The dielectric constant is taken as«512.5, ap-
propriate for GaAs.

We see that Eq.~2! has a rather general form that ca
arise in a variety of different circumstances. The transve
one-electron energy,e(z), arising from the weak bulge in the
wire, is equivalent to a shallow one-electron potential ene
in the z direction and arises for wires of any cross secti
~circular, planar, crescent-shaped, etc.!. Such a potential also
arises in perfectly straight wires subject to smooth, we
potential variations from remote charge distributions, ima
charge in remote gates, etc. Hence, although the Hamilto
equation~2! was derived for a certain type of quantum wir
it is actually applicable to a much wider class of wires a
‘‘open dot’’ systems, physically different cases merely mo
fying the effective one-electron energiese(z), the length pa-
rameterd(z1 ,z2) and the screening lengthr. The only re-
striction is that the deviation from a perfectly straight wire
sufficiently small, since this ensures the validity of the lo
est channel approximation and the problem becomes es
tially one-dimensional. There will, of course, be quantitati
differences in different situations but, provided the effecti
potential has a weak minimum, then it will give rise to co
ductance anomalies similar to those that we discuss be
In this sense the model is generic.

If we discretize Eq.~2! by the usual method of finite
differences, then the Hamiltonian may be mapped onto
extended Hubbard model with effective Hamiltonian,

H52t(
is

~ci 11,s
† cis1cis

† ci 11s!1(
i

e ini

1(
i

Uii ni↑ni↓1
1

2 (
iÞ j

Ui j ninj , ~3!

e
d
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where cis
† creates an electron with spins at z5zi in

the lowest transverse channel;ni5(snis with nis5cis
† cis ,

t5\2/(2m* D2), where D5zi 112zi , e i5\2/(m* D2)
1e(zi), and Ui j 5U(zi ,zj ). This mapping is exact in the
limit D→0 for which Eq.~3! becomes the real-space fiel
theory representation of the Hamiltonian in Eq.~2!. In all
calculations, we have chosenD to be sufficiently small to
ensure convergence.

We now consider the interacting two-electron scatter
problem in which the initial ‘‘ingoing’’ state consists of on
electron bound in the quantum dot region, with energyE0,
and the other electron far away from this bound electron
with kinetic energy~Fermi energyeF in the lead! sufficiently
small that all possible outgoing states also have an elec
bound in the dot region. This is elastic scattering, satis
wheneF1E0,0, which is the case of interest, close to t
conduction edge. The problem considered here is analog
to treating the collision of an electron with a hydrogen ato
as, e.g., in Ref. 17. It should be noted that the existence
single-electron bound state is guaranteed in one dimens
for wells in thez direction, and in this sense is a univers
feature. With the chosen parameter range, a second ele
cannot be bound due to Coulomb repulsion.

We solve the two-electron problem exactly for this ca
of elastic scattering, subject to the conditions that the ex
‘‘orbital’’ wave functions must be either symmetric~singlet!
or antisymmetric~triplet!. The solutions for the transmissio
amplitudes are obtained by solving a set of linear equatio
From these solutions we compute conductance using
Landauer-Bu¨ttiker formula, generalized to incorporate th
symmetric and antisymmetric nature of the states. T
Landauer-Bu¨ttiker formula then takes the following form in
zero magnetic field,

G5G0F1

4
Ts~E!1

3

4
Tt~E!G , ~4!

where the subscriptss and t refer to singlet and triplet con
figurations, respectively. This formula is justified~and exact!
for the case of elastic scattering, which is the regime of
terest for this paper. At energies high enough that the s
tered electron could excite the bound electron in the c
tinuum, a more general treatment would be required.18

In Fig. 2 we show plots at zero temperature ofTs(E),
Tt(E), andG/G0 for a typical wire of widtha0510 nm, dot
width (11j)a0511.1 nm, dot lengtha1550 nm, and
screening lengths of 25 nm, 50 nm, and infinity. Simi
results are obtained for thicker wires, up toa0;50 nm, be-
yond which the single-channel approximation becomes
reliable as electron correlations become increasingly imp
tant. Note that for weak coupling, the energy scale is se
the position of the lowest channel,;1/a0

2, and hence the
conductance versusEa0

2 is roughly independent ofa0.
The main feature of these results is that there are re

nances in both singlet and triplet channels and these give
to structures in the rising edge to the first conductance
teau for G; 1

4 G0 ~singlet! and G; 3
4 G0 ~triplet!. Further-

more, as the screening is increased~screening length re
duced! we see that these resonances shift to lower ene
This behavior has the following simple interpretation. T
incident electron ‘‘feels’’ the Coulomb potential of the ele
g

t

on
d

us

a
n,

l
ron

e
ct

s.
he

e

-
t-
-

r

ss
r-
y

o-
se
a-

y.

tron bound in the dot region and there is thus a grad
increase in conductance with energy, the threshold shiftin
lower energies as the screening is increased. The resona
occur because the potential ‘‘felt’’ by the incident electro
passes through a minimum at the center of the dot, where
transverse channel energy is lowest. Thus, the incident e
tron ‘‘sees’’ a double barrier, which will have some resona
energy for which there is perfect transmission. A more d
tailed analysis has to account for spin, and this may be
derstood by gradually switching on the Coulomb interactio
For the present choice of parameters, and also a rang
parameter sets that correspond to a very weak bulge, t
are two bound states for one electron. With no interact
both electrons may thus occupy one of four states~three
singlets and a triplet!. If we now switch on a small Coulomb
interaction, then the lowest two-electron state will be a s
glet, derived from both electrons in the lowest one-elect
state. We may regard one electron as occupying the low
bound-state level and the other electron of opposite spin
in this same orbital state but for energyU higher, whereU is
the intra-atomic Coulomb matrix element, as in the Anders
impurity model.19 As the Coulomb interaction is increase
U eventually exceeds the binding energy and this hig
level becomes a virtual bound state, giving rise to a re
nance in transmission. An estimate of the energy of the
tual bound state is given by the Anderson Coulomb ma
element with both electrons in the one-electron orbitalc0,
i.e., U5*dz dz8uc0(z)u2uc0(z8)u2U(z,z8). We have com-
puted this and get reasonable agreement with the exac
sult.

We can, in addition, approximate the full scattering pro
lem by solving the Hartree-Fock equations without iterati
in which one of the electrons again occupiesc0. The agree-

FIG. 2. ~a! Zero temperature singlet~elastic! transmission prob-
ability Ts(E) and ~b! triplet Tt(E) for various screening lengthsr.
The energyE is defined as in Fig. 1.~c! Total conductance,G/G0

5
1
4 Ts(E)1

3
4 Tt(E). Thin dotted line represents the correspondi

noninteracting result.
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ment is also very good and reproduces all the resonance
tures. When both electrons have the same spin then
must occupy different orbitals in the dot region when t
Coulomb interaction is switched off. With small Coulom
interaction the resulting triplet is the lowest two-electron e
cited state, and this develops into a resonant bound state
the full Coulomb interaction, with energy at approximate
E11U12J1, where E1 is the energy of the second on
electron state withU1 and J1 the respective Coulomb an
exchange integrals. The next excited~singlet! resonant
bound state is 2J1 higher in energy, which is into the firs
conductance plateau region where it has little effect. We
from Fig. 2 that the singlet resonance is somewhat sha
than the triplet and this is simply because it is lower in e
ergy and closer to a ‘‘real’’ bound state.

The resonances have a strong temperature depend
and, in particular, the sharper singlet resonance is m
readily eliminated at finite temperatures. This can be see
Fig. 3 where we have plotted the conductance calcula
using a generalized Landauer formula20,15at T51, 5, and 10
K for wires in which the bulge region is becoming progre
sively longer and flatter, i.e., approaching a perfectly strai
wire. In Fig. 3~a!, with the most pronounced deviation from
a straight wire, there is only one single-electron bound st
and hence only one resonant bound state, giving rise
peak in the conductance withG;0.3G0 at 1 K, developing
into a step at 5 K, and gradually disappearing forT.10 K.
This behavior is expected for hard-confined wires, such
those produced inv grooves, where smooth fluctuations
thickness of this order would be reasonable and, inde
similar behavior has been recently observed.12 In Fig. 3~b!
theT50 singlet resonance is so sharp that even at 1 K it has
already disappeared, and we see only the triplet resona
which is quite pronounced and develops into a step as

FIG. 3. ConductanceG/G0 for various shapes of the dot and fo
various temperatures, with screening lengthr550 nm.
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temperature is increased, being still quite discernible at 10
As we progress to a straighter wire in Fig. 3~c! we can re-
solve the singlet step at 1 K, but this is readily damped ou
the temperature is increased and finally for the straigh
wire in Fig. 3~d!, the singlet is again unresolvable but is no
engulfed by the triplet resonance, which is very close in
ergy.

These results are consistent with experiments on ga
quantum wires and show that only a very small deviat
from a perfectly straight wire with constant potential c
give rise to the reported steplike features nearG
50.7(2e2/h). Furthermore, our model is consistent with th
experimental observations that these steplike anomalies
move towards a plateau ate2/h as the magnetic field is in
creased. Further experimental observations on gated wire8,21

show that as the source-drain bias is increased from zero
anomaly appears atG;0.25(2e2/h), coexisting with the
0.7(2e2/h) anomaly. This sharpens as the bias is increa
and, in the example of Ref. 21, forVsd;6 mV the 0.25
anomaly is very pronounced whilst the 0.7 anomaly has d
appeared. This is also consistent with the above model s
under bias the triplet resonant bound state will eventua
disappear because the confining potential in thez direction
will only accommodate a single one-electron bound sta
giving rise to a singlet resonance only. Furthermore, t
resonance will become broader with increasing bias, res
ing in a more pronounced step, as observed. Whilst the g
features of many of the observed results may be interpre
in terms of this simple model of spin-dependent scatter
from a single-bound electron, the observation of anoma
in a wide variety of samples would mitigate against the sh
low longitudinal confinement potential as always arisi
from thickness fluctuations or depletion charge. We sugg
further experimental study of this effect.

In conclusion, we have shown that quantum wires w
weak longitudinal confinement can give rise to sp
dependent resonances when a single electron is bound in
confined region, a universal effect in one-dimensional s
tems with very weak longitudinal confinement. The positio
of the resulting features atG; 1

4 G0 andG; 3
4 G0 are a con-

sequence of the singlet and triplet nature of the resonan
These resonances have their origin in the repulsive Coulo
interaction between the electrons, coupled with the effec
one-electron potential well. This results in an effecti
double barrier for one electron due to the Coulomb repuls
of the other and in this sense is analogous to Coulomb blo
ade resonances in quantum dots. The behavior of the
systems is similar in the sense that at low energy, cond
tance is blocked in both cases due to Coulomb repuls
~blockade regime! and increases to a maximum at the res
nance energy. At higher energy, beyond the maximum,
current reduces in both cases but this effect is less p
nounced in the case of the wire since the effective barr
become weak at high energy and the resonance peaks
velop into shoulders as the temperature is raised. Howe
in the region of the resonances at low temperatures, the p
ics of the conductance is essentially the same in both ca
with the charge fluctuating between one and two electrons
resonance. There are also strong spin effects in both ca
though for large quantum dots the Coulomb repulsion effe
dominate and the small spin splitting between singlet a
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triplet resonances~in the case of charge fluctuations betwe
one and two electrons! may not be resolved. The competitio
between attractive one-electron interaction and Coulomb
pulsion between two electrons has also been considere
cently from a different point of view.22 This work shows that
the effective Coulomb interaction is renormalized and t
can also lead to resonant transmission of the two electro

It should be noted that the existence of a single-elect
bound state is guaranteed in one-dimensional systems
the geometry studied here. The emergence of a specific s
ture atG(E) as a consequence of the singlet and triplet
ture of the resonances and the probability ratio 1:3 for sin
and triplet scattering and as such is a universal effect.
comprehensive numerical investigation of open quant
dots using a wide range of parameters~for a circular and
s
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rectangular23 cross section of the wire! shows that singlet
resonances are always at lower energies than the triplet
accordance with the Lieb-Mattis theorem for bound state24

and in contrast to the proposed scenario of Flambaum
Kuchiev,25 where the interaction would be attractive and t
triplet would be the lowest state. Further experiments
which the widths of quantum wires and/or the confinem
potentials are engineered to control longitudinal confinem
should throw further light on the problem of spin-depende
ballistic transport.

The authors wish to acknowledge K.J. Thomas, A.
Khaetskii, C.J. Lambert, and M. Pepper for helpful com
ments. This work was supported by the European Union
the Ministry of Defense.
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