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Spin-dependent resonances in the conduction edge of quantum wires
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The conductance through a quantum wire of cylindrical cross section and a weak bulge is determined exactly
for two electrons within the Landauer-Biker formalism. We show that this “open” quantum dot exhibits
spin-dependent resonances resulting in two anomalous structure on the rising edge to the first conductance
plateau, one near 0.25¢2/h), related to a singlet resonance, and one near @703, related to a triplet
resonance. These resonances are generic and robust, occurring for other types of quantum wires and surviving
to temperatures of a few degrees.

Recent technological advances have enabled semicondusingle electron will be bound. We may thus regard this sys-
tor quantum wires to be fabricated with effective wire widthstem as an “open” quantum dot in which the bound electron
down to a few nanometers, for example, by heteroepitaxiainhibits the transport of conduction electrons via the Cou-
growth on v-groove surfacésepitaxial growth on ridge$, lomb interaction. Near the conduction threshold, there will
cleaved edge overgrowthetched wires with gating,and be a Coulomb blockade and we show below that this also
gated two-dimensional electron g48DEG) structures:®  gives rise to a resonance, analogous to that which occurs in
More recently, there has been considerable interest in carbdhe single-electron transistbt.This is a generic effect aris-
nanotubes for which the quantum wire cross section can apng from an electron bound in some region of the wire and
proach atomic dimensions. Such structures have potential f@uch binding may arise from a number of sources, which we
optoelectronic applications, such as light-emitting diodesdo not consider explicitly. For example, in addition to a
low-threshold lasers and single-electron devices. weak thickness fluctuation, a smooth variation in confining

Many groups have now observed conductance steps in afiotential due to remote gates, contacts, and depletion regions
of these various types of quantum wire, following the pio-could contribute to electron confinement along the wire or
neering work in Refs. 5 and 6. While these experiments argated 2DEG. In this paper we consider only very weak con-
broadly consistent with a simple noninteracting pictUre, finement near the conductance threshold for which a single
there are certain anomalies, some of which are believed to @Jectron is bound.
related to electron-electron interactions and appear to be We consider a straight quantum wire with a small fluctua-
spin-dependent. In particular, a structure is seen in the risingon in thickness giving rise to a weak “bulge.” The original
edge of the conductance curve, starting at around @7t ~ motivation behind this work was to examine ballistic trans-
and merging with the first conductance plateau with increasport through wires produced in grooves, similar to the
ing energy’ This structure, already visible in the early those reported by Kaufmaet al,*? with mean thicknesses in
experiments, can survive to temperatures of a few degreeshe range 10-20 nm and small thickness fluctuations. Al-
and also persists under increasing source-drain bias, evéhough the cross section of these wires is crescent shaped,
when the conductance plateau has disappeared. Under ithis was approximated to circular for simplicity. We later
creasing in-plane magnetic field, the structure moves dowrfealized that the precise shape of the cross section is not
eventually merging with the?/h conductance plateau at fundamentally important for the existence of conductance
very high fields. Theoretical work has attempted to explairanomalies in the rising edge to the first conductance peak.
these observation in various ways, including conductanc&Ve have performed detailed calculations for wires of circular
suppression in a Luttinger liquid with repulsive interaction cross section and for planar wires and, apart from small
and disordef, local spin-polarized density-functional quantitative differences, the results are very similar. For
theory!® and spin-polarized subbantfsin some of the more  brevity we present here the results for wires of circular sym-
recent experiments, an anomaly is seen at lower energy withnetry about thez axis and with constant potentiaV(r,z)
conductance around 0.2¢2'h).*22 This can also survive to =0 within a boundaryr,(z) from the symmetry axis and
a few degrees though is less robust than the 0.7 anomaly am@nfining potentialV,>0 elsewhere. To be definite, we
is more readily suppressed by a magnetic ffeld. choose parameters appropriate to GaAs for the wire and

In this paper, we suggest that these anomalies are relatéd Ga _,As for the barrier withx such thatVy=0.4 eV,
to weakly bound states and resonant bound states within thehich is close to the crossover to indirect gap. Band nonpa-
wire. These would arise, for example, if there is a smallrabolicity is neglected and we use the GaAs effective mass,
fluctuation in the thickness of the wire in some region, givingm* =0.067m,, neglecting its variation across the boundary.
rise to a weak bulge. If this bulge is very weak, then only aThe wire width is taken asy(z) = 3aq(1+ £ cos wz/a,) for
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We now consider the interacting electron problem with
— 1, wire thickness variation in a range that ensures that only one
electron occupies a bound state and that restriction to a
single channel near the conduction edge is an excellent ap-
proximation. To determine the conductance of this system in
the ballistic regime we need to solve the two-electron scat-
tering problem at low energy, for which one electron always
remains bound for ingoing and outgoing states. To do this we
start with the single-channel, two-electron Salinger equa-
tion for electron motion in the direction,
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FIG. 1. Conductanc&/G, for one (noninteracting electron.
The energyE is measured from the bottom of the lowest transversewheree(z) is the energy of the lowest transverse channel at
channel. Inset: geometry of the open quantum dot is determined andU(z,,z,) is the effective two-electron interaction given
with ro(2) = 2ag(1+ £ cod mz/ay). by integrating the full three-dimension&BD) unscreened
Coulomb interaction over the lowest transverse mode. Al-
though this equation is exact for the two-electron problem
with a single bulge of lengtta; and width (1+£)ay, as  within the single-channel approximation, we add a phenom-
shown in Fig. 1(inse). enological screening factor to the two-electron interaction

When the wire is connected to metallic source-drain conierm to mimic the effect of screening by other conduction
tacts, electrons will flow into the wire region as the Fermielectrons not accounted for explicitly. The two-
energy is raised from below the conduction band edge via alectron interaction then has the forid(z;,z,)=e?
gate (not considered explicitly At least one electron will [4meeod(z1,2,)]exp(—|zi—2zllp), with d(z;,2,)—|z;— 2,
then become bound in the bulge region of the wire. Thefor larged. The dielectric constant is taken as-12.5, ap-
number of bound electrons depends on both the Fermi erpropriate for GaAs.
ergy and the relative size of the bulgee., parameters, We see that Eq(2) has a rather general form that can
andé¢). We first consider the noninteracting electron problemarise in a variety of different circumstances. The transverse
for unbound(scattering states. As shown in Refs. 14 and 15 one-electron energy,(z), arising from the weak bulge in the
for a two-dimensional wire, this problem may be reduced towire, is equivalent to a shallow one-electron potential energy
a quasi-one-dimensional problem by expanding in transvers@ the z direction and arises for wires of any cross section
modes. The one-electron ScHieger equation, (circular, planar, crescent-shaped, etBuch a potential also
arises in perfectly straight wires subject to smooth, weak
potential variations from remote charge distributions, image
charge in remote gates, etc. Hence, although the Hamiltonian
equation(2) was derived for a certain type of quantum wire,
it is actually applicable to a much wider class of wires and
“open dot” systems, physically different cases merely modi-
(iijing the effective one-electron energielz), the length pa-

|z|<3a, andry(z)=3a, otherwise, i.e., a wire of widta,

2

VW (x,y,2)+V¥(x,y,2)=E¥(x,y,2), (1)

*

2m
then reduces to aN-component differential equation that is
solved for the scattering states. The number of chanhgls,
is chosen to be sufficiently large to give convergence an :
. : meterd(z;,z,) and the screening lengih. The only re-

depends upon the Fermi energy in the leads and the d (21,25) g lengih y

: riction is that the deviation from a perfectly straight wire be
parametei. For large¢ many channels are needed since the, b Y g

d ch i wire thick . e 10 | interch sufficiently small, since this ensures the validity of the low-
rapid change in wiré thickness gives rise 1o 1argé Interchang i oy a g approximation and the problem becomes essen-
nel mixing. From the solution of the scattering problem, the

conductance is calculated from the usual Landauetitgu
formulal® G=G, 7(E), whereG,=2e?/h, E is the Fermi
energy and/(E) is the total transmission probability. This is
shown in Fig. 1 for a wire with dot parametér0.3. For

tially one-dimensional. There will, of course, be quantitative
differences in different situations but, provided the effective
potential has a weak minimum, then it will give rise to con-
ductance anomalies similar to those that we discuss below.
In this sense the model is generic.

such a smalk the conductance is very similar to that of a = ¢ we discretize Eq.(2) by the usual method of finite

perfect straight wire, as we would expect, with CondUCta”C%ifferences, then the Hamiltonian may be mapped onto an

steps alGo, 3G, 5G, etc. The main difference is the Very gyended Hubbard model with effective Hamiltonian,
sharp Fano antiresonance seen in the second conductance

step, a consequence of interchannel mixing, which is washed
out at finite temperature. Apart from this resonance, all other
features, including the position of a bound state below the
conduction edge, may be accurately described by neglecting
coupling between channels. With such weak confinement,
there is only one bound state.

_ t t
H= —tiE (Ci+1,acia+ciaci+10)+2i €iN;
g
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where ¢/ creates an electron with spin at z=z in 1—(a) ]
the lowest transverse channge|=X ,n;, with ni,,:cit,ci(,, 08 g
t=#r%/(2m*A?%), where A=z ,,—7, e=h%(Mm*A?) Q 06 C j
+€(z), and U;;=U(z;,zj). This mapping is exact in the = o4l ]
limit A—0 for which Eq.(3) becomes the real-space field- e g
theory representation of the Hamiltonian in E@). In all 02~ ]
calculations, we have chosen to be sufficiently small to 0
ensure convergence. 0.8 '_(b) ]
We now consider the interacting two-electron scattering T .
problem in which the initial “ingoing” state consists of one - 061 ]
electron bound in the quantum dot region, with enekgy B 04 7]
and the other electron far away from this bound electron but 02 : —
with kinetic energy(Fermi energyeg in the lead sufficiently ok | I
small that all possible outgoing states also have an electron H(c) r = Lo !
bound in the dot region. This is elastic scattering, satisfied 0.8~ & ]
when e+ E(<0, which is the case of interest, close to the kN .é"ic |
conduction edge. The problem considered here is analogous B 041 @P -
to treating the collision of an electron with a hydrogen atom 02 [ < 7
as, e.g., in Ref. 17. It should be noted that the existence of a - LS L]
single-electron bound state is guaranteed in one dimension, 0 0 ) 4 6
for wells in thez direction, and in this sense is a universal E (meV)
feature. With the chosen parameter range, a second electron
cannot be bound due to Coulomb repulsion. FIG. 2. (a) Zero temperature singléelastig transmission prob-

We solve the two-electron problem exactly for this caseability 7y(E) and (b) triplet Z;(E) for various screening lengths
of elastic scattering, subject to the conditions that the exacthe energyE is defined as in Fig. 1(c) Total conductanceG/Gg
“orbital” wave functions must be either symmetrisingle) = 375(E) +  Z(E). Thin dotted line represents the corresponding
or antisymmetridtriplet). The solutions for the transmission noninteracting result.
amplitudes are obtained by solving a set of linear equations.
From these solutions we compute conductance using thgon bound in the dot region and there is thus a gradual
Landauer-Bttiker formula, generalized to incorporate the increase in conductance with energy, the threshold shifting to
symmetric and antisymmetric nature of the states. Theéower energies as the screening is increased. The resonances
Landauer-Bttiker formula then takes the following form in occur because the potential “felt” by the incident electron
zero magnetic field, passes through a minimum at the center of the dot, where the
L transverse channel energy is lowest. Thus, the incident elec-
tron “sees” a double barrier, which will have some resonant
G=Go ZTS(E)+ Zz(E)}’ () energy for which there is perfect transmission. A more de-
tailed analysis has to account for spin, and this may be un-
where the subscriptsandt refer to singlet and triplet con- derstood by gradually switching on the Coulomb interaction.
figurations, respectively. This formula is justifiéahd exadt  For the present choice of parameters, and also a range of
for the case of elastic Scattering, which is the regime of in-parameter sets that Correspond to a very weak bu|ge, there
terest for this paper. At energies high enough that the scagre two bound states for one electron. With no interaction
tered electron could excite the bound electron in the conpoth electrons may thus occupy one of four stafsee
tinuum, a more general treatment would be requifed. singlets and a triplet If we now switch on a small Coulomb
In Fig. 2 we show plots at zero temperature R{E), interaction, then the lowest two-electron state will be a sin-
T,(E), andG/G for a typical wire of widthag=10 nm, dot  glet, derived from both electrons in the lowest one-electron
width (1+¢)ap=11.1 nm, dot lengtha;=50 nm, and state. We may regard one electron as occupying the lowest
screening lengths of 25 nm, 50 nm, and infinity. Similarpound-state level and the other electron of opposite spin also
results are obtained for thicker wires, upag~50 nm, be-  in this same orbital state but for energyhigher, whereJ is
yond which the single-channel approximation becomes lesghe intra-atomic Coulomb matrix element, as in the Anderson
reliable as electron correlations become increasingly imporimpurity model*® As the Coulomb interaction is increased,
tant. Note that for weak coupling, the energy scale is set by) eventually exceeds the binding energy and this higher
the position of the lowest channek 1/a3, and hence the level becomes a virtual bound state, giving rise to a reso-
conductance versta(z) is roughly independent o, nance in transmission. An estimate of the energy of the vir-
The main feature of these results is that there are resdual bound state is given by the Anderson Coulomb matrix
nances in both singlet and triplet channels and these give risdement with both electrons in the one-electron orbikg)
to structures in the rising edge to the first conductance plake., U= [dz dZ|(2)|?|¥o(2')|?U(z,2'). We have com-
teau for G~1G, (singleh and G~ 3G, (triplet). Further- puted this and get reasonable agreement with the exact re-
more, as the screening is increas@dreening length re- sult.
duced we see that these resonances shift to lower energy. We can, in addition, approximate the full scattering prob-
This behavior has the following simple interpretation. Thelem by solving the Hartree-Fock equations without iteration
incident electron “feels” the Coulomb potential of the elec- in which one of the electrons again occupigs The agree-
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temperature is increased, being still quite discernible at 10 K.
As we progress to a straighter wire in FigcBwe can re-
solve the singlet step at 1 K, but this is readily damped out as
the temperature is increased and finally for the straightest
wire in Fig. 3d), the singlet is again unresolvable but is now
engulfed by the triplet resonance, which is very close in en-
ergy.

These results are consistent with experiments on gated
quantum wires and show that only a very small deviation
from a perfectly straight wire with constant potential can
give rise to the reported steplike features ne@r
=0.7(2e?/h). Furthermore, our model is consistent with the
experimental observations that these steplike anomalies will
move towards a plateau af/h as the magnetic field is in-
creased. Further experimental observations on gated¥fires
show that as the source-drain bias is increased from zero, an
anomaly appears aB~0.25(2?/h), coexisting with the
0.7(2e%/h) anomaly. This sharpens as the bias is increased
and, in the example of Ref. 21, fdfs4~6 mV the 0.25
anomaly is very pronounced whilst the 0.7 anomaly has dis-
. appeared. This is also consistent with the above model since
0.0 2 L i iS5 under bias the triplet resonant bound state will eventually

E (meV) disappear because the confining potential in zfdérection
will only accommodate a single one-electron bound state,
giving rise to a singlet resonance only. Furthermore, this
resonance will become broader with increasing bias, result-
ing in a more pronounced step, as observed. Whilst the gross
ment is also very good and reproduces all the resonance fefeatures of many of the observed results may be interpreted
tures. When both electrons have the same spin then they terms of this simple model of spin-dependent scattering
must occupy different orbitals in the dot region when thefrom a single-bound electron, the observation of anomalies
Coulomb interaction is switched off. With small Coulomb in a wide variety of samples would mitigate against the shal-
interaction the resulting triplet is the lowest two-electron ex-low longitudinal confinement potential as always arising
cited state, and this develops into a resonant bound state witfom thickness fluctuations or depletion charge. We suggest
the full Coulomb interaction, with energy at approximately further experimental study of this effect.
E;+U;—J;, whereE; is the energy of the second one- In conclusion, we have shown that quantum wires with
electron state witlJ; and J; the respective Coulomb and weak longitudinal confinement can give rise to spin-
exchange integrals. The next excitddingley resonant dependent resonances when a single electron is bound in the
bound state is & higher in energy, which is into the first confined region, a universal effect in one-dimensional sys-
conductance plateau region where it has little effect. We segems with very weak longitudinal confinement. The positions
from Fig. 2 that the singlet resonance is somewhat sharpesf the resulting features &~ G, andG~ 3G, are a con-
than the triplet and this is simply because it is lower in en-sequence of the singlet and triplet nature of the resonances.
ergy and closer to a “real” bound state. These resonances have their origin in the repulsive Coulomb

The resonances have a strong temperature dependeriggeraction between the electrons, coupled with the effective
and, in particular, the sharper singlet resonance is morene-electron potential well. This results in an effective
readily eliminated at finite temperatures. This can be seen idouble barrier for one electron due to the Coulomb repulsion
Fig. 3 where we have plotted the conductance calculatedf the other and in this sense is analogous to Coulomb block-
using a generalized Landauer formifi@atT=1, 5, and 10 ade resonances in quantum dots. The behavior of the two
K for wires in which the bulge region is becoming progres-systems is similar in the sense that at low energy, conduc-
sively longer and flatter, i.e., approaching a perfectly straightance is blocked in both cases due to Coulomb repulsion
wire. In Fig. 3a), with the most pronounced deviation from (blockade regimeand increases to a maximum at the reso-
a straight wire, there is only one single-electron bound statenance energy. At higher energy, beyond the maximum, the
and hence only one resonant bound state, giving rise to eurrent reduces in both cases but this effect is less pro-
peak in the conductance with~0.3G, at 1 K, developing nounced in the case of the wire since the effective barriers
into a step at 5 K, and gradually disappearing Tor 10 K. become weak at high energy and the resonance peaks de-
This behavior is expected for hard-confined wires, such aselop into shoulders as the temperature is raised. However,
those produced i grooves, where smooth fluctuations in in the region of the resonances at low temperatures, the phys-
thickness of this order would be reasonable and, indeedgs of the conductance is essentially the same in both cases,
similar behavior has been recently obserteth Fig. 3b)  with the charge fluctuating between one and two electrons on
the T=0 singlet resonance is so sharp that eveh i it has  resonance. There are also strong spin effects in both cases,
already disappeared, and we see only the triplet resonancgaough for large quantum dots the Coulomb repulsion effects
which is quite pronounced and develops into a step as thdominate and the small spin splitting between singlet and

FIG. 3. Conductanc&/G, for various shapes of the dot and for
various temperatures, with screening length50 nm.
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triplet resonanceén the case of charge fluctuations betweenrectangula® cross section of the wijeshows that singlet
one and two electronsnay not be resolved. The competition resonances are always at lower energies than the triplets, in
between attractive one-electron interaction and Coulomb reaccordance with the Lieb-Mattis theorem for bound sfites
pulsion between two electrons has also been considered rgnd in contrast to the proposed scenario of Flambaum and
cently from a different point of view? This work shows that  Kuchiev25 where the interaction would be attractive and the
the effective Coulomb interaction is renormalized and thisyriplet would be the lowest state. Further experiments in
can also lead to resonant transmission of the two electronsypich the widths of quantum wires and/or the confinement

It should be noted that the existence of a Single'eleCtro_%ﬁtentials are engineered to control longitudinal confinement

bound state is guaranteed in one-dimensional systems Wil oyid throw further light on the problem of spin-dependent
the geometry studied here. The emergence of a specific strugz)jistic transport.

ture atG(E) as a consequence of the singlet and triplet na-

ture of the resonances and the probability ratio 1:3 for singlet The authors wish to acknowledge K.J. Thomas, A.V.
and triplet scattering and as such is a universal effect. OuKhaetskii, C.J. Lambert, and M. Pepper for helpful com-
comprehensive numerical investigation of open quantumnments. This work was supported by the European Union and
dots using a wide range of parametéfsr a circular and the Ministry of Defense.
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