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Spectral functions, Fermi surface, and pseudogap in thé-J model
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Spectral functions within the generalized model as relevant to cuprates are analyzed using the method of
equations of motion for projected fermion operators. In the evaluation of the self-energy a decoupling of spin
and single-particle fluctuations is performed. It is shown that in an undoped antiferromagnet the method
reproduces the self-consistent Born approximation. For finite doping with short-range antiferromagnetic order
the approximation evolves into a paramagnon contribution which retains a large incoherent contribution in the
hole part of the spectral function as well as the hole-pocket-like Fermi surface at low doping. On the other
hand, the contribution of longer-range spin fluctuations, with the coupling mostly determined predominantly by
J and next-neighbor hopping, is essential for the emergence of the pseudogap. The latter shows, at low
doping in the effective truncation of the large Fermi surface, a reduced electron density of states and at the
same time a quasiparticle density of states at the Fermi level.
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I. INTRODUCTION doped cupratéd longer-range hopping terms have been
invoked?1°

One of the central issues in the experimental and theoret- For larger (finite) doping, numerical approaches have
ical investigations of superconducting cuprates is the undetbbeen used extensively, employing mainly the exact-
standing of low-energy electronic excitations in thesediagonalization and quantum Monte Carlo methods for pro-
compounds. In recent years, angle-resolved photoemissiontotype models such as the Hubbard model and thenodel.
spectroscopYARPES experiments revealed quite a univer- Results confirm some gross features consistent with experi-
sal development of electron spectral properties as a functioments, in particular(a) the existence of a large FS in a
of doping. In most investigated gr,CaCy0,, s (BSCCO moderately doped AFNRefs. 11 and 9 (b) the overdamped
ARPES shows quite well-defined large Fermi surface in theharacter of a QP at intermediate dopfAge consistent with
overdoped and optimally doped sampledaiT., whereby the marginal Fermi-liquid concept;(c) pseudogap features
the low-energy behavior with increasing doping in the over-at lower doping in spectral functiolsand in the density of
doped regime qualitatively approach@ait does not in fact stategDOS) (Ref. 13; and(d) a quite visible contribution of
reach that of a normal Fermi liquid with underdamped qua- longer-range hoppintf. However, numerical studies in gen-
siparticle(QP) excitations. On the other hand, in underdopederal are not in a position to approach effectively the low-
materials the QP’s dispersing through the Fermi surf&&  energy regime, and results require a proper phenomenologi-
are resolved by ARPES in BSCCO only in parts of the largecal interpretation.

FS, in particular along the nodal (0,0)() direction? in- Analytical approximations of spectral properties in 2D
dicating that the rest of the large FS is truncatée,, either  strongly correlated systems at finite doping have proven to
fully or effectively gapped. At the same time near the @) be very delicate. For the one-band Hubbard model spectral
momentum ARPES reveals a hump-afL00 meV? which  functions have been evaluated within the random-phase
indicates the existence of a pseudogap scale, which is compproximatiof® and within the self-consistent conserving
sistent with the characteristic temperature pseudogap scaleeory!’ both restricted to moderat#/t. Strong correlations
T*>T,, which appears also as a crossover in several othare explicitly taken into account in slave boson theotfes.
quantities: the uniform susceptibility(T), resistivity p(T),  Antiferromagnetic spin fluctuations play an essential role in
specific heaC\(T), and Hall constanR,(T).* Although the  phenomenological theory of the spin-fermion motfakhere
latter anomalies in thermodynamic and transport quantitiesecently aspects of the pseudogap features in the underdoped
are also quite similafor even better confirmed and more regime have also been fourd?:

pronouncedin La,_,Sr,Cu,0O, (LSCO), spectral properties Concerning the origin of the pseudogap scale, it seems to
of the lattef are qualitatively different from those of be related to the exchangksince T*~J in low doping
BSCCO, presumably due to the crucial role of stripe strucimaterials, whereas* ~T. in optimally doped samples. Evi-
tures in LSCO in the regime of intermediate doping. dence that antiferromagnetic spin correlations are important

There appears to be quite a consensus on the spectfar the (large pseudogap also comes from the numerical
functions in an undoped two-dimensiorfaD) reference an-  studie$®>!?13 and phenomenological model studf@g!
tiferromagnetAFM), describing a single hole behaving as a Renormalization-group studies of the Hubbard médetith
QP with a strongly renormalized mass and a large incoheremhoderateU/t) also revealed the instability of a normal
component. The spectral function is well captured within theFermi liquid close to the half-filled ban@nsulatoy, and a
self-consistent Born approximativh (SCBA) for the sim-  possible truncation of the Fermi surface.
plest relevant-J model, whereby for an agreement with un-  One of present authors introduced the equations-of-
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motion (EQM) method?® for the evaluation of the spectral which is equivalent to the usual propagator within the al-
functions within thet-J model. It has been shown that EQM lowed basis states of the modgEqg. (1)]. In the EQM
for projected fermionic operators implicitly reveal an effec- method’ one uses relations for general correlation functions
tive spin-fermion coupling. It was possible to relate the over-

damped marginal-type character of a QP to the marginal dy- o((A;BY),={({A,B} ) +{{[A,H];B)),
namics of spin® and to treat the onset ofl-wave
superconductivity* Recently the EQM method has also =({AB} ) —((AI[B,H])).- 4

been applied to the Hubbard mod2MWithin the t-J model
the theory has been improv&dby a more appropriate treat-
ment of the self-energy by dealing separately wh the
strong coupling to short-range AFM spin fluctuatidipsira- ) +
magnong, and (b) the moderate coupling to longer-range [AH]={A-iC, ({CAT},)=0, ®)
fluctuations of the AFM order parameter. The aim of this
paper is to present the results of the theory in more detall, i
particular the evolution of spectral function as a function of
doping. The emphasis is on the resultsTat0 for (a) the
development of the FS from a hole pocket like into a large
one,(b) the emergence of the pseudogap in spectral functions
and related effective truncation of the F&) anomalous
properties of QP at the FS, afd) the depleted DOS and QP Go(w)= ——,
DOS (related to the specific-heat coefficigmtith doping. o—{
The paper is organized as follows: In Sec. Il the EQM o ) )
method for the spectral function within thel model is sum- Ident|f¥|ng the self-energy (w) as the irreducible part of
marized. Section IIl is devoted to the evaluation of the self{(C;C")), we can express Ed6) as
energy within the decoupling approximation separately treat-
ing the paramagnon contributidy,, and the contribution of
longitudinal spin fluctuation&;. In Sec. IV results of the
simplified analysis of the pseudogap features are presented,
taking into account an effective renormalized band and exWithin the diagrammatic techniqu®(w) corresponds to the
plicitly 3. Section V presents results of the full self- contribution of irreducible diagrams. Generallfw) can be
consistent solution for spectral function as a function of dop-defined as a memory function within the Mori projection
ing. method?® In most cases the successful application of the
method relies on the appropriate decoupling or other ap-
Il. EQUATIONS OF MOTION proximation of the memory functioB (w).2°
Applying the formalism to the propagatEqg. (3)], we
In order to take strong correlations explicitly into accountpaye to deal with the EQM for|, with a nontrivial normal-
we study thet-J model ization factor:

and applies the propagat@®(w)=((A;A")), . If we define
the (orthogonal operatorC as

I){VE can express

1
G(w):Go(w)+gGo(w)z«C;CT»w:

a={{AAT},). (6)

1 _
G(w)= 2(w)~;<<c;cf>>'(;f. 7)

a
w—{—2(w)’

R 1 ) 1~ - .1
" %‘”CBC‘S”%(S'SJ g O a=§ 3 (s S )=1-5 =510, ®

where fermionic operators are projected ones not allowin

for the double occupancy of sites, i.e., %y taking the projection in Eq(2), explicitly into account

the EQM follow,
ch=(1-n _yck. ®)

IS

Tis Hl= = ti[(1—n; _Ci+S7C;
Since longer-range hopping appears to be important for a [Cis H] 2,: GLL=NL-9)Cis+S7C s

proper description of the spectral function in cuprates, both

for the shape of the FS at optimum doping matetfats i 195E  _n%

well as for the explanation of ARPES of undoped 4‘],-;,:& (ZSS’ZE'S 25/Ci—s7NiGis) (9
insulators)®'® we consider, besidet;=t for the nearest-

neighbor hoppingt;;=t’ for the next-nearest-neighbor hop- with s==*1. We express “bosonic” variables in terms of

ping on a square lattice. spin and density operators, i.e;,_s=n;/2—sS . Assuming
Our goal is to evaluate the electron Green's functionthat we are dealing with a paramagnetic metal Wi =0
(propagator directly for projected fermionic operators, and a homogeneous electron density) =c,, we obtain
G(k=w):<<Eks;Els>>w:_i j ei(w+ﬂ)t<{zks(t)yEls}+>dt, —iCys=[Cis,H]~ iCis> (10)
0
3) and
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[Ekan]:[(l_ %) E(k)_‘]ce

S%Ek*q,s

~ 1
Ckst — m
ks \/qu: kqg

— 1.
+ Sq Ck—q,-s~5MNqCk—q,s

- , 1

wheren,=n;—c,, my, is the effective spin-fermion cou-

pling,
Mg =274+ €_q (12

with the bare band dispersiosﬁ, i.e., for model(1) on a
square lattice,

ev=—4ty — 4"y, (13)

= 3(cosky+cosky), ;= cosk,cosk, .
Equations(4), (11), and(13) also define the “renormalized”
band

1 - _ J—
f= ([ HI Bl ) = L= Aty 4mat o,

1
nj=a+t ;<SO-SJ->, (14

where 5; are determined solely by short-range spin correla-

tions and{ is ak-independent ternstill dependent on vari-

ous static correlationsThe above quantities determine the

propagator
G(k,w)= « 15
o) ot s k) (9
and the corresponding spectral functiol\(k,w)=

—(1/m)Im G(k,w), provided that we find a method to evalu-

ateX (k,w).

lll. SELF-ENERGY

A. Undoped antiferromagnet

PHYSICAL REVIEW 85 174529

It is now straightforward to establish the relation of E4j7)
with the EQM for?:is by considering one Na sublatticei
=A with the reference state;s=1. In this case +n; _g
=1, and by a formal replacemenf;=¢; S/ we obtain,
by considering only thé term in Eq.(9),

L d N
IaCiSN_tJ‘ ;ﬂ (S| +SJ )Cj,—S'

(18

To be consistent with the SCBA here we neglectiherm in

Eq. (9) since J<t. Within the linearized magnon theory
EQM (17) and(18) are formally identical, so we can further
follow the procedure of the evaluation Bfyqy(k, ) within

the SCBA to reproduce spectral properties of an undoped
AFM. In this case we do not try to improve the SCBA, since
the latter approximation is simple and yields both qualita-
tively and quantitatively good results consistent with numeri-
cal studies and experiments. Vertex corrections are neglected
in the SCBA, but are expected to be of small relevance, due
to vanishing of the lowest order crossing diagrams, as dis-
cussed in Refs. 6. For an ordered 2D AFM where relevant
spin excitations are magnons with dispersiog, we there-
fore obtain

1
2 arm(K, @)= N % Mi,G(k—0, 0+ wg),

qu:4t(uq7k—q+vq')’k)a (19
with
_ [23+ wq - 2)—wq
wg=2Jy1- 73. (20

Since in a Nel state we havey;=0 and hence the renor-
malized band vanishes, i.€;,=0, we reproduce the usual
SCBA equations for the hole spectral function in thé

It is desirable that in the case of an undoped AFM ourmodel. The inclusion of the next-nearest-neighbor hopping

treatment ofS and the spectral function reproduces quiteis also simple within the SCBA, since within the &lestate it
successful SCBA equatioh&for the Green’s function of a does not induce a coupling to spin flips in £8) and there-
hole in an AFM. Let us concentrate here on the relevanfore enters intoG(k,») [Eqg. (15)], only via the band term
nearest-neighbor hopping, since théerm represents a hop- ¢~ {—4t’y, . It should also be noted that in contrast to the
ping on the same sublattice within an ordered AFM and isusual SCBA our procedure deals directly with the electron
therefore nearly free. For the SCBA the reference state is theropagator and not with an unphysical holon one. Moreover
Neel state withn;s=0,1 fori =A,B sublattices, respectively, it allows a straightforward generalization to the case of finite
and the SCBA effective Hamiltonian can be written as doping.

H,= —tz (hth-Taj + hjhiTajT)+ Hj, (16 B. Short-range spin fluctuations
(i)

For finite dopingc,,>0 we assume that spin fluctuations
remain dominant at the antiferromagnetic wave vecfor
=(m,m) with the characteristic inverse antiferromagnetic
correlation lengthk=1/£5gy . The latter seems to be the
case for BSCCO as well as ¥Bu;0¢ ., but not for LSCO
with pronounced stripe and spin-density structures with

whereh; represent holon operators aadspin-flip operators.
The corresponding holon EQM then follow from E{.6):

—igh?=[hi,Hh]=t_2_ hi(al+a;). (17)
jn.n.i

dt
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dspw# Q. For the former case one can divide the spin fluc- C. Coupling to longer-range spin fluctuations
tuations and their coupling to fermions into two regimes with  piscussing the self-energy at finite doping, E22) rep-
respect tog=q— Q. resents only one contribution and we have to reconsider

(a) At short distances, i.e., fa> «, the short-range cor- EQM (10) and (11). We note that at,>0 Cys contains a
relations between the fermion and background spin are imremainder of a “free” termecc,, which should be, however,
portant. As in an ordered AFM in Eql8), the fermion neglected when evaluating the “irreducible” part enteriag
couples only to short-range spin fluctuations paramagnon$Eq. (7)]. Considering within the simplest approximation
which are propagating like magnons and are transverse to ttenly the mode-coupling terms in E¢l1), we also neglect
local antiferromagnetic short-range spin ordering. Hence ithe coupling to density fluctuatiom, which should contrib-
makes sense to use E¢9) and(20) to represent the para- yte much less t&® in the absence of charge ordering or
magnon contribution to the self-energy, restricting the sum tq:narge instabilities at low doping.
the regimeﬁ> K. Taking into account only spin fluctuations, >0 we

(b) For q< « spin fluctuations are essentially not propa-are dealing with a paramagnet without an antiferromagnetic
gating modes but rather critically overdamped. Fluctuationdong-range order, and besides the paramagnon excitation
recover full spin rotation symmetry so deviations from thewith q>« the coupling to longer-range spin fluctuations
ordered AFM state are essential. A more appropriate approXiyith q< « also becomes crucial. The latter restore the spin
mation of % (k,®) is to take the fermion and background yotation symmetry in a paramagnet and equation of motion
spin fluctuations as independent, as discussed in Sec. Il C(11) naturally introduces such a spin-symmetric coupling.

~ We should also take into account that the SCBA formal-assuming within a simplest approximation that the dynamics

spectral function ato<0, where only(added holes partici-

pate. Since we are dealing with>0, we take into account (Sz(t)"ék,q (HS ,EI_ )
the scattering of a holelikes(<0) QP by replacing the full a ’ aeans
propagatoiG in Eqg. (19) by the hole parG™: ~5qq,(sé(t)s{q)(cquys(t)clfqg, (23)
for contributions from longer-rangéor convenience termed
3 0 do'Ak,0") longitudina) fluctuations we obtain
G*(k,w):tj —_— (21
A w—w r ~ dwldwz
Siko)= 7 X mﬁqf f ——9(w1,0;)

However it is easy to see that an analogous contribution 5
should arise from the electronlike QP with>0. At the Ak—q,w1) X" (q,w5)
finite doping case we therefore generaliaeT=0) Eq.(19) X 0—w1— 0y '

into the paramagnon contribution

_ — . 1 Bwy Bw;
. g(wl,wz)—f(—w1)+n(w2)—§ tanhTJrcothT ,
Sork )= 2 [MEGT (k—g0+wg) (24
0>k
qqz wherey is the dynamical spin susceptibility:
+Mk+q,qG+(k+Qrw_wq)]: (22)
xao)=—i [ eHsO.SDHa @
which emerges from Eq18). The consequence of ER2) 0 (15 b

is that in general Ink. ,,(k, w>0)#0 so that an electronlike
QP can also be damped due to magnon processes. Here
do not consider effects af >0 which could be easily incor-

porated through the magnon occupation, but in most cases 19 e recently within the spin-fermion mod@?2! Several

nOtHrc]a?;evseStsrtorggsl ntf\ll\l/Jc()a nf((:a?atitrtla?lgf\]bur approximation forComments are in order to define quantities e”tef‘P9<E5)-'.
o ) () Equation of motion(11) induces an effective spin-
paramagnon Contr.'bUt'O.EPm' . fermion coupling, which would also emerge from a phenom-
() we are dealing with a strong coupling theory due toenological spin-fermion Hamiltonian with the coupling pa-

t>§)(qb)a?hd a sel;‘t-_co;sstint CaICUIat'I?R ﬁfpm 'S requtlrled; rameterm,q [Eq. (12)]. In order that such a Hamiltonian is
an e resulting2 pr(k, ) as well A(k, ) are at low hermitian, the coupling should satisfy

doping quite asymmetric with respectdo=0. Here as in an
undoped AFM the hole parG~ with the weight, «(1
—cn)/2~1/2, generates a large incoherent partAgk,w
<0). On the other handz* has less weightc;,, and con-  which is in general not the case with the form HG2);
sequently the scattering of an electron QP is in general muctinerefore we use, further on, instead the symmetrized cou-
less effective. pling

Such an approximation f& has been introduced within the
3 model in Ref. 23. However, quite an analogous treatment
(51as been employed previously in the Hubbard m&dahd

Fhk,qzrnqu,—qy (26)
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~ 1, 0 latter form is needed to obtain a generally overdamped QP
Miq=2dyq+ 5 (€k—qF €0)- (27)  with a vanishing QP weightat T=0) in spectral functions at
the intermediate doping.
Here we should point out that in contrast to previous related
studies of phenomenological spin-fermion coupffg® IV. PSEUDOGAP ANALYSIS

our myq (as well asmy) is strongly dependenton bothand 1 calculation of the spectral functioms(k, o) within

K. Itis essential that in the most sensitive parts of the FS, i.yhe presented theory requires a self-consistent solution for

along the antlferromagnetl_c zone bound.e(r‘jnot spots, E=Epm+2|f, where, besides the model parametere, J

wherek_z |Q—k]), the coupling is in fact quite moderate and 5,4 the doping, , iNPUts arew, x, 71, 7,. &, 71, andz, are

determined solely by andt’. _ also given by short-range spin correlations dependent mostly
(b).S.mce we are dealing 'Wlth. the .param.agne'%c state, albn cn, and can be taken from various analyt?&ahnd

quantities  should be spin invariant, i.ex“”(q,®)  humericat®® calculations within the-J model. At the same

= Japx(Q, ). Since equaiton of motio(Ll) is invariant un-  time in a selfconsistent theogy should be fixed via the DOS
der spin rotations we have, besides @feterm, analogous

terms withS™ and S*. Still we expectr =1 instead ofrg 2
=3, since predominantly the coupling to longitudiritd lo- Mao)=g ; Ak, ), (30
cal Neel spin ordey spin fluctuations is considered here,
while the coupling to short-range transverse fluctuations hawith
been already taken into account By,.
(c) In X only the part corresponding to irreducible dia- -~ “
grams sholfuld gnter, 20 there a?e rest?ictions on the proper ch=1- J,Wf(w)N(w)dw' (31)
decoupling. We will be interested mostly in the situation with i ) ,
a pronounced antiferromagnetic short-range order where lorRResults of such a self-consistent calculation are presented in
gitudinal fluctuations are slow, i.e., with the characteristicS€C- V- ] o
frequencies», <2Jx<J. The regime is close to that of qua- In order to establish characteristic features of the

sistaticy(q, ») where the simplest and also quite satisfactoryPS€udogap and the development of the FS we first perform a

approximation is to insert foA the unrenormalized\?, the fScI)rIT(;phfled analysis. We note that the effects3gf, are three-

latter corresponding in our case to the spectral function with- (8) 3.y induces a large incoherent component in the spec-

-OUtE" but \-N'th % =2pm. Such an approxw_nanon has bee_n tral functions atw<<0, in particular at low and intermediate
introduced in the theory of a pseudogap in charge-density

wave systems’ also used in related works analyzing the role dop()liar)]gzs. renormalizes the effective QP band relevant to the
spin fluctuationg®2° and recently more extensively exam- pm

ined in Ref. 31. In the opposite case of a full seIf—consistenp(ahavIor aw~0 and at thg .FS' .
it — Id he infl ] (c) 2pm causes a transition of a large FS into a small
treatment withA=A, we would overcount the influence o hole-pocket-like FS at,<cf <1,

fluctuations, although the results would probably appear not Res
so much different as shown on simpler systéfns. of the pseudogap and FS features at finite doping. If we

For x(g,w) [Eq.(25)], atc,>0 and possiblyT >0, we do define the effective band as
not have a corresponding theory, so we treat it as an input,

ult(b) can serve as a starting point for the discussion

where x(q,w) is restricted by the sum rule Eﬁf: Zﬁf[§k+2pm(k,0)—,u],

1 % Bw iy % om(K, o) -1

- o — (11— ef _ |4 _ pmi ™

N % JO cotf( > )x (qo)do=,(1-cp). (28 Zi=|1-————|o-0| (32
At the same time, the system is close to the antiferromagfor the effective spectral function we obtain
netic instability, so we assume spin fluctuations of the over- Agf(k,w)z azﬁfa(cﬁ_“_ eﬁf)’ (33)

damped forn?
which can be used to evalualg . We restrict ourselves here
to the regime of intermediat@got too small doping, where
(29 ' defines the large FS.
Let us concentrate on results foe=0. The simplest situ-

For convenience we choose the separable form, which j&ion whereZy can be evaluated analytically is the quasi-

consistent with experimental facts and theoretical argumen1:§t"’ltIC qnd single-mode approxmatl(i@SA) W.h'Ch IS mean-
~ . ingful if w,<t,k<1. In this case we insert into ER5)
for g<« and w<w,. Nevertheless, at giver and w, the

appearance of the pseudogap and the form of the FS is not 1 1

very sensitive to the particular form of’(q,w) provided ;X"(q,w)~Zﬁ(q—Q)[&(w—v)—ﬁ(w-i— v)], (39
that " (g, ) is not singular as, e.g., is the case in the mar-

ginal Fermi-liquid scenarid? It has been showf that the  with »—0. We obtain

X"(Q,w)x ot )
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2 ef

rsMio  Z, -
2Rk 0)= =72 —ee? (35
w— k-Q

and I &‘ 1L K ]

aZ(w— et
GRSAK, w) = i o) (36)

(=€ o) (w—efh—AF

r
2_!s_efsef 2
Ak—4Z§ZE,kaQ.

The spectral functions show in this approximation two
branches oE~, separated by the gap which opens along the
antiferromagnetic zone boundaty=Kkugy, Where eﬁf_Q

=e§f. SinceykAFM=O the relevan{pseudggap scale is

min [ max

FIG. 1. Contour plot of spectral functio?s(k,w=0) atT=0

It is instructive to realize thah}© does not depend apbut ~ for various« in one quarter of the Brillouin zone.

rather on smalled and in particulat’. Fort’ <0 the gap is

largest at {r,0), consistent with experiments. The given k). Such a choice of in fact also yields the volume
(pseudogap that appears at the Fermi enetgy 0 depends, of the FS(except at extrem&<1) quite close to the one
however, on properties cnf;FM. We do not expect that the consistent with the Luttinger theoret.

gap opens along the whole AFM zone boundary, since ir}Orln Fig. 1 we first present results féx(k,o=0) atT=0

ef ) a broad range o£=0.01-0.6. Curvegevaluated at small
most cases, ., Crosses zero along(2,m/2)-(,0) so that additional smearing=0.02) in fact display the effective FS

within the QSAE,  forms a hole-pocket-like FS. In fact, the determined by the conditio® ~(kg,0)=0. At the same
results of the QSA are equivalent to the system with long+ime, intensitiesA(k,w=0) correspond to the renormaliza-
range spin-density-wave ord¢an AFM), where the dou- tjon factor Z.. We can comment upon the development as
bling of the unit cell appears. follows. At extremely smalk=0.01 we see the hole-pocket
Within the simplified effective band approaBq. (31)],  Fs which follows from the QSA in E¢(36). In spite of the
it is not difficult to evaluate numerically y also beyond the  gmall « the “shadow” side of the hole pocket has a smaller
QSA, by explicitly takingx(q,w) [Eq. (29)], for k>0 and  7_ . Already the smalk~0.05 destroys the shadow side of
w,=2Jx. Integrals in Eq.(24) can be performed mostly the pocket, i.e., the solutiocd =0 on the latter side disap-
analytica”y if we linearize the dependence&ﬁf within the pears since the Singu'arity E‘lf [Eq (35)], is smeared out by
relevant intervalok= . finite k. On the other hand, in the gap emerge QP solutions
Let us, for illustration, present in this section results charith very weakzZz<1 which reconnect the FS into a large
acteristic for the development of SpeCtral functions with theOne_ We are dea”ng nevertheless with an eﬁective|y trun-
most sensitive parameteksand u, which both simulate the cated FS with well-developed arcs. The effect of largds
variation with doplng We further fix on the model parameteressentia”y to increaséF in the gapped region, in particu|ar
J/t=0.3 as relevant for cuprates. Here we tak@=—0.3,  near (r,0). Finally, for largex=0.6, which corresponds to
close to values quoted for BSCCO. For simplicity we assumghe regime consistent with optimal doping or overdoping in
first that the effective banef' is just renormalizeds, (justi-  cuprates,Zy is essentially only weakly decreasing toward
fied for an intermediate doping; see Seg¢with fixed values  (7,0), and the FS is well pronounced and concave as natu-
te/t=0.3, t./t=—0.1, andZ®=0.4. A more realistic treat- rally expected fott’ <0.
ment would require the variation of latter parameters with In order to understand the pseudogap features at low but
Cp, but the results remain qualitatively similar. We take finite «, in Figs. 2 and 3 we preseat(k,w) for xk=0.1. The
~ ey, in accord with experimentsand numerical results on spectra in Fig. 3 are presented along the liaeg in the
thet-J model339:32 Brillouin zone as shown in Fig. 2. As expected from Eq.
The choice ofu is somewhat more arbitrary since, within (36), the pseudogap is smallest along the zone diagdinal
an effective-band approach the sum rligg. (30)], cannot  a) where, moreover, the pseudogap appeats=a0, so that
be used as a criterion. Nevertheless it is evident thate- it would not be seen in ARPES. Lines and b are thus
termines the shape and volume of the FS. In the followingexamples of the region where arcs of the FS are well pro-
examples we choose such that at giverx the DOS at the nounced, i.e., their QP weight is not strongly renormalized:
Fermi energy,V(0), reaches a local minimum. This means Zr<Z®. On the other hand, following line the chemical
that effectively the states near the,Q) are in the pseudogap potentialw=0 falls into the pseudogap. We see in Figa)3
and that the truncation of the FS is most pronounéatd that QP in fact crosses coherently the R&=0) although

z
A=A, | =7\/r—s|2J—4t’co§kx|. (37)
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(0’7-[) (ﬂ,ﬂ-) whereq, denotes the component perpendicular to the anti-
b T ferromagnetic zone ll)undary. Let us assume ﬂféf,u
=e~0 andef — u=e€~0. We also linearize dispersia’
a at the FS, and assume thél|(1,1), so that from Eq(25) we

a obtain

C

S(ew) A2| (Wt o+ e o) o+ o) 39
— — , :__0 — ,
(€ 2w g(W+wK—e+w)(wK—w)

wherew=v‘,§fK andA=A,. Let us evaluate QP properties
on the FS assuming that it is located &t 0, i.e., on the

Kk=0.1 antiferromagnetic zone boundary. From K89 we obtain
I the QP weighZg
(0.0) (7,0) R R
FIG. 2. A(k,w=0) for k=0.1 and linega)—(c) used in Fig. 3. Zzet |7 ge [©70€0 T 1+ o (@, +W)

(40)
with very smallZg<1. It is evident from Fig. 1 tha#Zp . efr 2 A2 o
within the pseudogap remains small only fer<1 while it~ 1hiS clearly leads 1&g <1 for w w~2v, Jx"<A”. This is
increases and finally smears out the concept of th@enerally the case within the gapped part of the FS for small
pseudogap fok= «* ~0.5. k<k*, as shown in Fig. 1. It should be also noted that the
It is quite remarkable to note that in spiteZf<1 the QP latter cgfndition is essentially always satisfied near,0)
velocity v is not diminished within the pseudogap. In fact it Wherev, ~0 and consequently alse~0.

is even enhanced, as seen in Figh)3and the QP is well Let us evaluate in the same way the QP renormalized
defined at the FS, while it becomes fuzzyeat 0 merging Velocity v(kg) at the FS. Here we realize that tkedepen-
with the solutionsE;” , respectively, away from the FS. dence of2’ is essential. The latter is given in E40) by the

The presented formalism offers a possible scenario for th& dependence,
evolution of the FS with doping from a pocketlike surface

into a large surface. In order to explain results in Fig. 3 v(kg) :(1+g)&
concerning the effective truncation of the FS and the charac- Uﬁf de | zet’
ter of the QP within the pseudogap, we note that it is essen-

tially enough that both¢ and w, are finite to yield a well- a3 A2

defined FS. Since gross features do not depend on the a—lw:O;:o=m,

particular form of Eq.(29), here we present a simplified € Qi D

analysis using which, in contrast t&g, leads to an enhancementwgf. In
the casew, W<A? we thus obtain

(41

_ Cléw—w,)—dw+tw,)], q <k
X’(Q+q,w)=‘ N VP @k 2 (42)
0, a,>«, 39 vEf Wy

The finalv (kg) is therefore not strongly renormalized, since
2J and vﬁf are of similar order. Furthermore,(kg) is en-

] hanced in the parts of the FS wherg is small, in particular
near the ¢r,0) point. The situation is thus very different from
“local” theories where (k,w)~2(w) and the QP renor-
malization is governed only b¥r . In our case the “nonlo-
cal” character ofX(k,w) is essential in order to properly
describe the QP within the pseudogap region.

Let us further discuss the behavior of the D®%w) [Eq.
(30)]. It is evident from Fig. 1 that the contribution 1{w
~0) will come mostly from FS arcs near the zone diagonal,
— B while the gapped regions neatr0) will contribute less.
-04 00 04 08 -08 -04 00 04 Results presented in Fig.(full lines) show the development

wft of Mw) with «, as corresponding to the FS in Fig. 1. We see

FIG. 3. A(k,w) for k=0.1 along different directionga), (b),  that the DOS indeed reveals a pseudogap<atA; however,
and (c) in the Brillouin zone, corresponding to Fig. 2. Spectra for the pseudogap is visible only far<0.5 and deepens fot
(@) from Fig. 2 are very similar tda). —0.

©

A(k,w)
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K
0.0 L L L L 1 1 06 — v 1 v v T T 1T T T T T
04 -0.2 0.0 0.2 -04 -0.2 0.0 02 04 L P
o/t o/t L (b) /////
FIG. 4. Density of stated/{w) (full lines) and weighted DOS 04 F /,// 4
N, (w) (dashed lingsfor different . a - o~ 1
= ~
The DOS is measured in cuprates via angle-integrated 02 |
PES, e.g., for LSCO in Ref. 35, as well as via scanning — N0
tunneling microscopySTM).% It is very possible that within . ~==2 NJO)
both experiments the matrix elements are essentially leading o
to enhanced contribution near thepoints in the Brillouin 0.0 0.2 0.4 0.6 0.8
zone. It has been proposed that for thaxis conductivity’ K
the interplanar hopping should be weighted by the matrix
element FIG. 5. (a) AVerage QP We|ghzav and QP DOS/\/QP VS K. (b)

DOS M) and weighted DOSV,,(0) vs .
w(k) = (cosk,— cosk,)?. 43
() =( X y) “3 case is that within the pseudogap regiBigk, ) is nonlocal,
The same arguments as for theaxis conductivity might ~allowing for the simultaneous decrease/df0) andNop .
grated PES, therefore, we also present the weighted DS T also enters within this approach via effective parameters as
1 1 f . - .
wherew(k) is introduced additionally into Eq30). Results vk and predominantly(T), here we consider only the direct
also presented in Fig. 4ashed ling show a much more effect via the thermodynamic factor in E@5). It is evident
strongly pronounced pseudogap, in particular at levirhis ~ thatT>0 smears OL,E!f- This becomes important at small
is quite evident sincev(k) essentially destroys the effect of in particular for QP’s in the pseudogap regime. In Fig. 6 we
FS arcs near#/2,m/2), which present the main contribution PresentA(k,), corresponding to Fig.(8), for several val-
as the QP DOS, defined as

T=0 7=0.02¢ T7=0.05¢

(44)

Now 1 3£dSF

:ﬁ v(Kg)

In Fig. 5b) we present, as well as the dependence of the
DOS at the FS, botb\V(0) andN,,(0) as functions ofk.
Note thatNVgp should be relevant for the specific heat, i.e.,
Ngpxy=Cy/T at low T (provided that we are dealing with
a normal Fermi liquigl It is quite important to understand
that decreasingc (smaller doping also means decreasing
Ngp, Which is also consistent with the observation of a
pseudogap in the specific heat in cuprafeslere we note
that such a behavior is not evident when one discusses the L : . . . '
metal-insulator transition. That is, in a Fermi liquid with a 04 0004 04 00 04 -04 00 04

. . W/t o/t W/t
(nearly constant Fermi surface one can drive the metal-
insulator transition by,,— 0, and within the assumption of  FIG. 6. A(k,w) for k=0.1 andk along the central part of the
a local charactek (w) this would lead tawg—0 and conse- line b in Fig. 2 for variousT: T=0, T=0.02, andT=0.0%. The
quently toNgp— . Clearly, the essential difference in our momentumk ranges from ¢/4,3m/4) ¥ (m/32,m/32).

Ak, ®)
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FIG. 7. Hole dopi function of the chemi i |

G ole dopingcy, as a function of the chemical potential .0)0.0) 0

ult, following from the self-consistent calculation.

FIG. 8. Electron momentum distributiom(k) for variousc, .

small T>T5~0.02 t and is not at all visible(there is no . . ~ .
overdamped pealat higherT, the remainder being an inco- Thin co.ntour lines repreienmt(k) in increments of 0.05, while the
heavy line corresponds to(k) =0.8 for ¢,=0.26, 0.20, 0.14, and

herent background ab~0 for T>TS. This is important to
realize that ARPES experiments in fact do not observe &(k)=0.85 forc,=0.04,

well-defined QP peak nearr(0) in the underdoped regime o )
atT>T,. tour plot of the electron momentum distribution function de-

fined as
V. SELF-CONSISTENT CALCULATION

0

The full self-consistent sets of equations fir=3 n(k)=a lﬁwA(kv“’)d“’- (45
+3 [Egs. (22 and (24)], and forG [Eq. (15)], are solved
numerically. For giveru the FS emerges as a solution deter-Regyits for a characteristic development of the FS wjth
mined by the relatiory_+2'(kg,0)=u. We should note  are shown in Fig. 8. At higher doping;,=0.26 and also
that, at a giveru, the electron concentratian as calculated c¢,=0.20, we obtain a common large FS topology. In the
from the DOSNM(w) [Eq. (31)], does not in general coincide intermediate doping regime,=0.14, the pseudogap is pro-
with the one evaluated from the FS volune=Vrs/V,  hounced at momenta around,0) and the FS shows a ten-
Nevertheless, apart from the fact that within thé model ~ dency to form a small FS. The gap is more pronounced be-
the validity of the Luttinger theorem is under questioin ~ cause of longer antiferromagnetic correlation length
regimes of large FS's both quantities appear to be quitésmallerx). At c,<cf~0.06 solutions are consistent with a
close. Within the presented theory the position of the FS ismall pocketlike FS, whereby this behavior is enhanced by

mainly determined by andX ,, and is less sensitive B . t'<0, as realized in other model stud®sOn increasing
On the other handy is crucial for the QP properties near doping the FS rather abruptly changes from small to large, as
the FS. suggested from the results of the SCEAThe smallness of

As discussed in Sec. lll, in Eq7) we use the most ap- cﬂ has the origin in the quite weak dispersion dominated by

propriate and simplest approximation to insert the unrenord andt’ atc,— 0 which is overshadowed by much larggr
malized A°(k,w), i.e., the spectral function without a self- at moderate doping, where the FS is large and its shape is
consistent consideration & but with %, fully taken into  controlled byt'/t.
account. Here we choos€ =—0.2 and againx=/cy, In Figs. 9a) and 9b) we present calculatedl(k,») along
while 7, and 7, are determined as a function of from  the principal directions in the Brillouin zone, i.e.,
model calculationd® We useN=40x 40 points in the Bril-  (7/2,7/2)—(0,0)— (,0). It is evident thal ., leads to a
louin zone and broadening/t=0.05. strong damping of hole QP and a quite incoherent
In Fig. 7 we present hole concentratiop vs  as ob- momentum-independent spectrét(k, w) for o< —J which
tained fromAM{w) at T=0. We solve self-consistent equa- qualitatively reproduces ARPES and numerical resdlts.
tions by iteration, whereby for 0.86¢c,<0.11 we find in the  Electron QP’s(at w>0) are in general very different, i.e.,
equations an instability signaled by oscillatory behavior in-with much weaker damping arising only froky,,. Note the
stead of the convergence; a unique solution cannot be olselatively high QP velocity in the higher doping regimg
tained in the region indicated by the dashed line. However, at 0.26[Fig. %a)], as compared to a more narrow dispersion
lower (and highey doping the solution is converged. It seemson the scale 2 at low dopingc,= 0.04[Fig. 9b)], where we
that the region of instability coincides with the transition find a regime of small pocketlike FS’s.
from the large to a small FS. In Fig. 10 we present the development of spectral func-
The shape of the FS is most clearly presented with contions at fixedc,=0.2, but now varying« as an independent
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0.6 -

0.3
w/t 0
-0.3
-0.6

A(k,®)

(0,7) (7,0) 0,0

o/t 0

7k/=(rlr/2,n/’.’l)

. -0.3
-6 -5 4 -3 -2 -1 0 1 2
o/t -0.6
0,m) (m,0) 0,0)
(b) ¢,=0.04
0.6 -
03}
m/l 0 ! ——— ! _________
3 —03F oY
=
= —0.6 Fx=0.05
O,m) k (7,0 0,0
FIG. 10. Contour plot ofA(k,w) for fixed dopingc,=0.2 and
variousx.
k=(m/2,7/2)
6 -5 -4 3 —2 -1 0 1 2 where close to the antiferromagnetically ordered state both
wlt short-range transverse and longer-rafigagitudina) spin

fluctuations are important. It is very possible, however, that
FIG. 9. A(k,») along main directions in the Brillouin zone.  gther contributions could be important, e.g., the coupling to
pairing fluctuations.
parameter. Let us concentrate on the emergence of the (c) In an ordered AFM our method naturally reproduces
pseudogap nears(,0). At k= 0.4~ \/c;, the pseudogap is es- the results for the spectral functiqof a hole within the
sentially not yet developed. Nevertheless, the gap opens witBCBA, which is highly nontrivial, since both approaches are
decreasingk, in particular for (at this doping unrealistic quite different.
valug «=0.05. (d) The coupling to longitudinal spin fluctuations appears
to be most important for QP’s near the AFM zone boundary,
and is responsible for the opening of the pseudogap. Here the
coupling is only moderately strong, and can be treated in the
We have presented the theory of spectral functions withidowest-order decoupling scheme.
the t-J model, whereby our method is based on EQM for (e) The present theory uses the spin response as an input.
projected fermionic operators and on the decoupling approxix”(d,») [Eq. (29)] corresponds in general to a Fermi liquid
mation for the self-energy, assuming the fermions and spir to a short-range AFM liquid. Results remain, in fact,
fluctuations as essential coupled degrees of freedom. We firgualitatively similar as far ag”(qg, ) is nonsingular. In the
make some comments on the method. opposite case, e.g., if we would use the marginal Fermi lig-
(a) The EQM approach for spectral functiofes well as  uid (MFL) form as an input, the Fermi surface would still be
for other dynamical quantiti@seems to be promising, since defined, but the QP would have a vanishing weight 0.2
it can exactly treat the constraint which is essential for the Let us further discuss some main results of the presented
physics of strongly correlated electrons. theory:
(b) In finding the proper approximation for the self-energy  (a) The fermion-paramagnon coupling as manifested in
within the EQM approach it is plausible that the main ingre-2 ,,, remains effective and strong even at moderate doping.
dient is the coupling of fermions with spin fluctuations, The full calculation shows that the coupling leads to a large

VI. CONCLUSIONS
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incoherent part in the hole par0) of the spectral func-  tative studies of the-J model**3? it appears that in the

tion, as well as to the renormalized bagf. region of interest« is nearly linear in bothl andc;, so we
(b) The main consequence &f; due to the coupling to would approximately obtain

longer-range longitudinal spin fluctuations is the appearance

of a pseudogap ak<«*. The pseudogap opens predomi- T*~Tg(1—-cplep), (46)
nantly along the AFM zone boundary, and its extent is qualiwhere T4 ~0.6] andc ~0.15.
tatively given by Eq.(37), dependent o andt’ but not Finally we make some comments on the relevance of our

directly ont. Evidently the pseudogap has a similarity to theresyits to experiments on cuprates, in particular with respect
d-wave-like dependence along the FS, f6+<0 being larg-  to observed pseudogap and Fermi surface features.
est near the £,0) point. (a) The (large pseudogap scale shows up, in ARPES on
(c) How strong the pseudogap effect is depends mainly oBSCCO, as a hump at 100 eV? Our results indicate quite
«. At small k<™ parts of the Fermi surface nearf2,7/2) 3 similar pseudogap scale, e.g., in the DOS in Fig. 4dhe
remain well pronounceffor t' <0) while the Fermi surface < pseudogap-0.3 t (note thatt~0.4 eV), sinceAP® is
within the pseudogap is suppressed, i.e., QP's have a smajbtermined mainly by andt’. The pseudogap and the hump
weightZg <1, in particular near zone corners ,0). are also very visible in spectral functiods(k,») with k
(d) The simplified analysis yields large Fermi surface, aI—N(Tr,O), e.g., in Fig. 63). However, it should be noted that
though a truncated one, except at very smafx* where  ,—0 1 in Figs. 3 and 6 is already quite small, and leads to
3¢ by itself induces a small hole-pocket-like Fermi surface.Qp peaks being too narrow relative to experiments.
On the other handX ,,, generates hole pockets already for = () The truncated Fermi surface in underdoped BSCCO
ch<ch~0.06. In fact, an instability of the self-consistent cal- appears as an afpart of the large Fermi surface correspond-
culation indicates the emergence of a hole-pocket Fermi suing tot’ <0) in the Brillouin zoné® effectively not crossing
face even at,<0.1. However, it is very possible that within the antiferromagnetic zone boundary, which is also charac-
the present approximation schemg, is overestimated at teristic of our results fok< «*, originating from the strong
intermediatecy,, an indication for it being quite a weak dis- coupling to spin fluctuations with commensuraie, ). The
persioneﬁf. same is true of the origin of shadow features in spectral
(e) Our method is approximate in the evaluation®f  functions pronounced at intermediate doping and in particu-
hence it is not surprising that the volume of the Fermi surdar at weak doping.
face does in general not coincide with the one following (c) Our results for the depletion of the DOS/0)
from the Luttinger theorem. In any case it is questionable if \/,,(0)] with decreasing doping are qualitatively consistent
such a relation should be valid within the) modef® due to  with the integrated PE&so far known for LSCQORef. 35]
the projected basis and strong correlations. Nevertheless, and STM3® although in this relation the importance of ma-
the regime of a large Fermi-surface the full calculation yieldstrix element corrections is not yet clarified. In relation to
the Fermi surface volume quite close to the Luttinger one. STM result$® we note that our DOS'’s are not as symmetric
(f) For k<«* the QP within the pseudogap has a smallaroundw=0. In general, however, the DOS’s at low doping
weightZ-<1 but not a diminished (kg), which is the effect cannot be very symmetric since the DOS sum rule is essen-
of the nonlocal character df (k,w). A consequence is that tially different for the electronn>0 part«2c;, and the hole
QP’s within the pseudogap contribute much less to the Q<0 partxl—c,.
DOS Ngp. This can explain the reduction of the latter with  (d) We also find a decrease of the QP D@&p with
doping and the appearance of the pseudogap in the specifiloping, essential in connection with the specific-heat
heat being essential for the understanding of the specific hepseudogap in underdoped cupratesiowever, it should be
in underdoped cuprates. mentioned that our results for botk(0) as well asNgp
(g) Although most results are presented Tor 0, we can  « 1y indicate a weaker suppression with decreasing doping
discuss some effects d>0. The first effect is that within than observed in experiments. This is due to remaining con-
the pseudogap the QP’s wify<1 are already washed out tribution of Fermi-surface arcs, which could be overesti-
(not just overdampedfor very smallT<TS<APC. On the mated in our approach for<«*.
other hand, the pseudogap is mainly affected«bySo we (e) Both the value and dependence of the pseudogap tem-
can argue that the pseudogap would be observable fqueratureT*(cy), as estimated in Eq46), seem to be very
k(ch, T)<k*~0.5. This effectively determines the reasonable in connection with experimental evidence, arising
pseudogap crossover temperatilifgc,). From the quanti- from various transport and magnetic properties in cuprates.
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