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Spectral functions, Fermi surface, and pseudogap in thet-J model
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Spectral functions within the generalizedt-J model as relevant to cuprates are analyzed using the method of
equations of motion for projected fermion operators. In the evaluation of the self-energy a decoupling of spin
and single-particle fluctuations is performed. It is shown that in an undoped antiferromagnet the method
reproduces the self-consistent Born approximation. For finite doping with short-range antiferromagnetic order
the approximation evolves into a paramagnon contribution which retains a large incoherent contribution in the
hole part of the spectral function as well as the hole-pocket-like Fermi surface at low doping. On the other
hand, the contribution of longer-range spin fluctuations, with the coupling mostly determined predominantly by
J and next-neighbor hoppingt8, is essential for the emergence of the pseudogap. The latter shows, at low
doping in the effective truncation of the large Fermi surface, a reduced electron density of states and at the
same time a quasiparticle density of states at the Fermi level.

DOI: 10.1103/PhysRevB.65.174529 PACS number~s!: 71.27.1a, 72.15.2v, 71.10.Fd
re
de
se
io
r-
tio

th

er

a-
ed

rg

co
c
th

tie
re

f
uc

c

a
re
th

n-

en

e
ct-
ro-

eri-
a

s

-
w-
logi-

D
to

tral
ase
g

.
in

oped

s to

-
tant
cal

l

-of-
I. INTRODUCTION

One of the central issues in the experimental and theo
ical investigations of superconducting cuprates is the un
standing of low-energy electronic excitations in the
compounds.1 In recent years, angle-resolved photoemiss
spectroscopy~ARPES! experiments revealed quite a unive
sal development of electron spectral properties as a func
of doping. In most investigated Bi2Sr2CaCu2O21d ~BSCCO!
ARPES shows quite well-defined large Fermi surface in
overdoped and optimally doped samples atT.Tc , whereby
the low-energy behavior with increasing doping in the ov
doped regime qualitatively approaches~but does not in fact
reach! that of a normal Fermi liquid with underdamped qu
siparticle~QP! excitations. On the other hand, in underdop
materials the QP’s dispersing through the Fermi surface~FS!
are resolved by ARPES in BSCCO only in parts of the la
FS, in particular along the nodal (0,0)-(p,p) direction,2 in-
dicating that the rest of the large FS is truncated,3 i.e., either
fully or effectively gapped. At the same time near the (p,0)
momentum ARPES reveals a hump at;100 meV,2 which
indicates the existence of a pseudogap scale, which is
sistent with the characteristic temperature pseudogap s
T* .Tc , which appears also as a crossover in several o
quantities: the uniform susceptibilityx(T), resistivity r(T),
specific heatCV(T), and Hall constantRH(T).1 Although the
latter anomalies in thermodynamic and transport quanti
are also quite similar~or even better confirmed and mo
pronounced! in La22xSrxCu2O4 ~LSCO!, spectral properties
of the latter4 are qualitatively different from those o
BSCCO, presumably due to the crucial role of stripe str
tures in LSCO in the regime of intermediate doping.

There appears to be quite a consensus on the spe
functions in an undoped two-dimensional~2D! reference an-
tiferromagnet~AFM!, describing a single hole behaving as
QP with a strongly renormalized mass and a large incohe
component. The spectral function is well captured within
self-consistent Born approximation5,6 ~SCBA! for the sim-
plest relevantt-J model, whereby for an agreement with u
0163-1829/2002/65~17!/174529~12!/$20.00 65 1745
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doped cuprates7,8 longer-range hopping terms have be
invoked.9,10

For larger ~finite! doping, numerical approaches hav
been used extensively, employing mainly the exa
diagonalization and quantum Monte Carlo methods for p
totype models such as the Hubbard model and thet-J model.
Results confirm some gross features consistent with exp
ments, in particular:~a! the existence of a large FS in
moderately doped AFM~Refs. 11 and 9!; ~b! the overdamped
character of a QP at intermediate doping,12,13consistent with
the marginal Fermi-liquid concept;14 ~c! pseudogap feature
at lower doping in spectral functions15 and in the density of
states~DOS! ~Ref. 13!; and~d! a quite visible contribution of
longer-range hopping.10 However, numerical studies in gen
eral are not in a position to approach effectively the lo
energy regime, and results require a proper phenomeno
cal interpretation.

Analytical approximations of spectral properties in 2
strongly correlated systems at finite doping have proven
be very delicate. For the one-band Hubbard model spec
functions have been evaluated within the random-ph
approximation16 and within the self-consistent conservin
theory,17 both restricted to moderateU/t. Strong correlations
are explicitly taken into account in slave boson theories18

Antiferromagnetic spin fluctuations play an essential role
phenomenological theory of the spin-fermion model,19 where
recently aspects of the pseudogap features in the underd
regime have also been found.20,21

Concerning the origin of the pseudogap scale, it seem
be related to the exchangeJ since T* ;J in low doping
materials, whereasT* ;Tc in optimally doped samples. Evi
dence that antiferromagnetic spin correlations are impor
for the ~large! pseudogap also comes from the numeri
studies15,12,13 and phenomenological model studies.20,21

Renormalization-group studies of the Hubbard model22 ~with
moderateU/t) also revealed the instability of a norma
Fermi liquid close to the half-filled band~insulator!, and a
possible truncation of the Fermi surface.

One of present authors introduced the equations
©2002 The American Physical Society29-1
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motion ~EQM! method23 for the evaluation of the spectra
functions within thet-J model. It has been shown that EQM
for projected fermionic operators implicitly reveal an effe
tive spin-fermion coupling. It was possible to relate the ov
damped marginal-type character of a QP to the marginal
namics of spins23 and to treat the onset ofd-wave
superconductivity.24 Recently the EQM method has als
been applied to the Hubbard model.25 Within the t-J model
the theory has been improved26 by a more appropriate trea
ment of the self-energy by dealing separately with~a! the
strong coupling to short-range AFM spin fluctuations~para-
magnons!, and ~b! the moderate coupling to longer-rang
fluctuations of the AFM order parameter. The aim of th
paper is to present the results of the theory in more detai
particular the evolution of spectral function as a function
doping. The emphasis is on the results atT50 for ~a! the
development of the FS from a hole pocket like into a lar
one,~b! the emergence of the pseudogap in spectral funct
and related effective truncation of the FS,~c! anomalous
properties of QP at the FS, and~d! the depleted DOS and Q
DOS ~related to the specific-heat coefficient! with doping.

The paper is organized as follows: In Sec. II the EQ
method for the spectral function within thet-J model is sum-
marized. Section III is devoted to the evaluation of the se
energy within the decoupling approximation separately tre
ing the paramagnon contributionSpm and the contribution of
longitudinal spin fluctuationsS lf . In Sec. IV results of the
simplified analysis of the pseudogap features are presen
taking into account an effective renormalized band and
plicitly S lf . Section V presents results of the full se
consistent solution for spectral function as a function of d
ing.

II. EQUATIONS OF MOTION

In order to take strong correlations explicitly into accou
we study thet-J model

H52(
i , j ,s

t i j c̃ js
† c̃is1J(̂

i j &
S Si•Sj2

1

4
ninj D , ~1!

where fermionic operators are projected ones not allow
for the double occupancy of sites, i.e.,

c̃is
† 5~12ni ,2s!cis

† . ~2!

Since longer-range hopping appears to be important fo
proper description of the spectral function in cuprates, b
for the shape of the FS at optimum doping materials10 as
well as for the explanation of ARPES of undope
insulators,7,8,10 we consider, besidest i j 5t for the nearest-
neighbor hopping,t i j 5t8 for the next-nearest-neighbor hop
ping on a square lattice.

Our goal is to evaluate the electron Green’s funct
~propagator! directly for projected fermionic operators,

G~k,v!5^^c̃ks ; c̃ks
† &&v52 i E

0

`

ei (v1m)t^$c̃ks~ t !,c̃ks
† %1&dt,

~3!
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which is equivalent to the usual propagator within the
lowed basis states of the model@Eq. ~1!#. In the EQM
method27 one uses relations for general correlation functio

v^^A;B&&v5^$A,B%1&1^^@A,H#;B&&v

5^$A,B%1&2^^A;@B,H#&&v . ~4!

and applies the propagatorG(v)5^^A;A†&&v . If we define
the ~orthogonal! operatorC as

@A,H#5zA2 iC, ^$C,A†%1&50, ~5!

we can express

G~v!5G0~v!1
1

a2
G0~v!2^^C;C†&&v ,

G0~v!5
a

v2z
, a5^$A,A†%1&. ~6!

Identifying the self-energyS(v) as the irreducible part o
^^C;C†&&v we can express Eq.~6! as

G~v!5
a

v2z2S~v!
, S~v!;

1

a
^^C;C†&&v

irr . ~7!

Within the diagrammatic techniqueS(v) corresponds to the
contribution of irreducible diagrams. GenerallyS(v) can be
defined as a memory function within the Mori projectio
method.28 In most cases the successful application of
method relies on the appropriate decoupling or other
proximation of the memory functionS(v).29

Applying the formalism to the propagator@Eq. ~3!#, we
have to deal with the EQM forc̃ks

† with a nontrivial normal-
ization factor:

a5
1

N (
i

^$c̃is ,c̃is
† %1&512

ce

2
5

1

2
~11ch!. ~8!

By taking the projection in Eq.~2!, explicitly into account
the EQM follow,

@ c̃is ,H#52(
j

t i j @~12ni ,2s!c̃ js1Si
7c̃ j ,2s#

1
1

4
J (

jn.n.i
~2sSj

zc̃is12Sj
7c̃i ,2s2nj c̃is! ~9!

with s561. We express ‘‘bosonic’’ variables in terms o
spin and density operators, i.e.,ni ,2s5ni /22sSi

z . Assuming
that we are dealing with a paramagnetic metal with^Si&50
and a homogeneous electron density^ni&5ce , we obtain

2 iCks5@ c̃ks ,H#2zkc̃ks , ~10!

and
9-2
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@ c̃ks ,H#5F S 12
ce

2 D ek
02JceG c̃ks1

1

AN
(

q
mkqFsSq

zc̃k2q,s

1Sq
7c̃k2q,2s2

1

2
ñqc̃k2q,sG , ~11!

where ñi5ni2ce , mkq is the effective spin-fermion cou
pling,

mkq52Jgq1ek2q
0 ~12!

with the bare band dispersionek
0 , i.e., for model~1! on a

square lattice,

ek
0524tgk24t8gk8 , ~13!

gk5 1
2 ~coskx1cosky!, gk85coskxcosky .

Equations~4!, ~11!, and~13! also define the ‘‘renormalized’
band

zk5
1

a
^$@ c̃ks ,H#,c̃ks

† %1&5 z̄24h1tgk24h2t8gk8 ,

h j5a1
1

a
^S0•Sj&, ~14!

whereh j are determined solely by short-range spin corre
tions andz̄ is a k-independent term~still dependent on vari-
ous static correlations!. The above quantities determine th
propagator

G~k,v!5
a

v1m2zk2S~k,v!
, ~15!

and the corresponding spectral functionA(k,v)5
2(1/p)Im G(k,v), provided that we find a method to evalu
ateS(k,v).

III. SELF-ENERGY

A. Undoped antiferromagnet

It is desirable that in the case of an undoped AFM o
treatment ofS and the spectral function reproduces qu
successful SCBA equations5,6 for the Green’s function of a
hole in an AFM. Let us concentrate here on the relev
nearest-neighbor hopping, since thet8 term represents a hop
ping on the same sublattice within an ordered AFM and
therefore nearly free. For the SCBA the reference state is
Néel state withnis50,1 for i 5A,B sublattices, respectively
and the SCBA effective Hamiltonian can be written as

Hh52t(̂
i j &

~hihj
†aj1hjhi

†aj
†!1HJ , ~16!

wherehi represent holon operators andai spin-flip operators.
The corresponding holon EQM then follow from Eq.~16!:

2 i
d

dt
hi

†5@hi ,Hh#5t (
jn.n.i

hj
†~ai

†1aj !. ~17!
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It is now straightforward to establish the relation of Eq.~17!

with the EQM for c̃is by considering one Ne´el sublatticei
5A with the reference statenis51. In this case 12ni ,2s

51, and by a formal replacementc̃ js5 c̃ j ,2sSj
7 we obtain,

by considering only thet term in Eq.~9!,

i
d

dt
c̃is;2t (

j n.n.i
~Si

71Sj
7!c̃ j ,2s . ~18!

To be consistent with the SCBA here we neglect theJ term in
Eq. ~9! since J!t. Within the linearized magnon theor
EQM ~17! and~18! are formally identical, so we can furthe
follow the procedure of the evaluation ofSAFM(k,v) within
the SCBA to reproduce spectral properties of an undo
AFM. In this case we do not try to improve the SCBA, sin
the latter approximation is simple and yields both quali
tively and quantitatively good results consistent with nume
cal studies and experiments. Vertex corrections are negle
in the SCBA, but are expected to be of small relevance,
to vanishing of the lowest order crossing diagrams, as
cussed in Refs. 6. For an ordered 2D AFM where relev
spin excitations are magnons with dispersionvq , we there-
fore obtain

SAFM~k,v!5
1

N (
q

M kq
2 G~k2q,v1vq!,

M kq54t~uqgk2q1vqgk!, ~19!

with

uq5A2J1vq

2vq
, vq52sgn~gq!A2J2vq

2vq
,

vq52JA12gq
2. ~20!

Since in a Ne´el state we haveh150 and hence the renor
malized band vanishes, i.e.,zk50, we reproduce the usua
SCBA equations for the hole spectral function in thet-J
model. The inclusion of the next-nearest-neighbor hoppingt8
is also simple within the SCBA, since within the Ne´el state it
does not induce a coupling to spin flips in Eq.~9! and there-
fore enters intoG(k,v) @Eq. ~15!#, only via the band term
zk;z̄24t8gk8 . It should also be noted that in contrast to t
usual SCBA our procedure deals directly with the electr
propagator and not with an unphysical holon one. Moreo
it allows a straightforward generalization to the case of fin
doping.

B. Short-range spin fluctuations

For finite dopingch.0 we assume that spin fluctuation
remain dominant at the antiferromagnetic wave vectorQ
5(p,p) with the characteristic inverse antiferromagne
correlation lengthk51/jAFM . The latter seems to be th
case for BSCCO as well as YB2Cu3O61x , but not for LSCO
with pronounced stripe and spin-density structures w
9-3
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P. PRELOVŠEK AND A. RAMŠAK PHYSICAL REVIEW B 65 174529
qSDWÞQ. For the former case one can divide the spin flu
tuations and their coupling to fermions into two regimes w
respect toq̃5q2Q.

~a! At short distances, i.e., forq̃.k, the short-range cor
relations between the fermion and background spin are
portant. As in an ordered AFM in Eq.~18!, the fermion
couples only to short-range spin fluctuations paramagn
which are propagating like magnons and are transverse to
local antiferromagnetic short-range spin ordering. Henc
makes sense to use Eqs.~19! and~20! to represent the para
magnon contribution to the self-energy, restricting the sum
the regimeq̃.k.

~b! For q̃,k spin fluctuations are essentially not prop
gating modes but rather critically overdamped. Fluctuatio
recover full spin rotation symmetry so deviations from t
ordered AFM state are essential. A more appropriate appr
mation of S(k,v) is to take the fermion and backgroun
spin fluctuations as independent, as discussed in Sec. II

We should also take into account that the SCBA form
ism has been derived for an undoped AFM, i.e., for a h
spectral function atv,0, where only~added! holes partici-
pate. Since we are dealing withch.0, we take into accoun
the scattering of a holelike (v,0) QP by replacing the full
propagatorG in Eq. ~19! by the hole partG2:

G7~k,v!56E
7`

0 dv8A~k,v8!

v2v8
, ~21!

However it is easy to see that an analogous contribu
should arise from the electronlike QP withv.0. At the
finite doping case we therefore generalize~at T50) Eq.~19!
into the paramagnon contribution

Spm~k,v!5
1

N (
q,q̃.k

@M kq
2 G2~k2q,v1vq!

1M k1q,q
2 G1~k1q,v2vq!#, ~22!

which emerges from Eq.~18!. The consequence of Eq.~22!
is that in general ImSpm(k,v.0)Þ0 so that an electronlike
QP can also be damped due to magnon processes. Her
do not consider effects ofT.0 which could be easily incor
porated through the magnon occupation, but in most case
not have a strong influence at lowT,J.

Here we stress two features of our approximation
paramagnon contributionSpm:

~a! we are dealing with a strong coupling theory due
t.vq and a self-consistent calculation ofSpm is required;
and ~b! the resultingSpm(k,v) as well A(k,v) are at low
doping quite asymmetric with respect tov50. Here as in an
undoped AFM the hole partG2 with the weight, }(1
2ch)/2;1/2, generates a large incoherent part inA(k,v
!0). On the other hand,G1 has less weight}ch, and con-
sequently the scattering of an electron QP is in general m
less effective.
17452
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C. Coupling to longer-range spin fluctuations

Discussing the self-energy at finite doping, Eq.~22! rep-
resents only one contribution and we have to recons
EQM ~10! and ~11!. We note that atch.0 Cks contains a
remainder of a ‘‘free’’ term} c̃ks , which should be, however
neglected when evaluating the ‘‘irreducible’’ part enteringS
@Eq. ~7!#. Considering within the simplest approximatio
only the mode-coupling terms in Eq.~11!, we also neglect
the coupling to density fluctuationñq which should contrib-
ute much less toS in the absence of charge ordering
charge instabilities at low doping.

Taking into account only spin fluctuations, atch.0 we
are dealing with a paramagnet without an antiferromagn
long-range order, and besides the paramagnon excita
with q̃.k the coupling to longer-range spin fluctuation
with q̃,k also becomes crucial. The latter restore the s
rotation symmetry in a paramagnet and equation of mot
~11! naturally introduces such a spin-symmetric couplin
Assuming within a simplest approximation that the dynam
of fermions and spins is independent,

^Sq
z~ t !c̃k2q,s~ t !S2q8

z c̃k2q8,s
† &

;dqq8^Sq
z~ t !S2q

z &^c̃k2q,s~ t !c̃k2q,s
† &, ~23!

for contributions from longer-range~for convenience termed
longitudinal! fluctuations we obtain

S lf~k,v!5
r s

a (
q

m̃kq
2 E E dv1dv2

p
g~v1 ,v2!

3
Ã~k2q,v1!x9~q,v2!

v2v12v2
,

g~v1 ,v2!5 f ~2v1!1n̄~v2!5
1

2 F tanh
bv1

2
1coth

bv2

2 G ,
~24!

wherex is the dynamical spin susceptibility:

x~q,v!52 i E
0

`

eivt^@Sq
z~ t !,S2q

z #&dt. ~25!

Such an approximation forS has been introduced within th
t-J model in Ref. 23. However, quite an analogous treatm
has been employed previously in the Hubbard model16 and
more recently within the spin-fermion model.20,21 Several
comments are in order to define quantities entering Eq.~25!:

~a! Equation of motion~11! induces an effective spin
fermion coupling, which would also emerge from a pheno
enological spin-fermion Hamiltonian with the coupling p
rametermkq @Eq. ~12!#. In order that such a Hamiltonian i
hermitian, the coupling should satisfy

m̃k,q5m̃k2q,2q , ~26!

which is in general not the case with the form Eq.~12!;
therefore we use, further on, instead the symmetrized c
pling
9-4
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m̃kq52Jgq1
1

2
~ek2q

0 1ek
0!. ~27!

Here we should point out that in contrast to previous rela
studies of phenomenological spin-fermion coupling,16,20,21

our m̃kq ~as well asmkq) is strongly dependent on bothq and
k. It is essential that in the most sensitive parts of the FS,
along the antiferromagnetic zone boundary~‘‘hot’’ spots,
wherek5uQ2ku), the coupling is in fact quite moderate an
determined solely byJ and t8.

~b! Since we are dealing with the paramagnetic state,
quantities should be spin invariant, i.e.,xab(q,v)
5dabx(q,v). Since equaiton of motion~11! is invariant un-
der spin rotations we have, besides theSz term, analogous
terms withS2 and S1. Still we expectr s51 instead ofr s
53, since predominantly the coupling to longitudinal~to lo-
cal Néel spin order! spin fluctuations is considered her
while the coupling to short-range transverse fluctuations
been already taken into account bySpm.

~c! In S lf only the part corresponding to irreducible di
grams should enter, so there are restrictions on the pr
decoupling. We will be interested mostly in the situation w
a pronounced antiferromagnetic short-range order where
gitudinal fluctuations are slow, i.e., with the characteris
frequenciesvk&2Jk!J. The regime is close to that of qua
sistaticx(q,v) where the simplest and also quite satisfacto
approximation is to insert forÃ the unrenormalizedA0, the
latter corresponding in our case to the spectral function w
out S lf but with S5Spm. Such an approximation has bee
introduced in the theory of a pseudogap in charge-dens
wave systems,30 also used in related works analyzing the ro
spin fluctuations,16,20 and recently more extensively exam
ined in Ref. 31. In the opposite case of a full self-consist
treatment withÃ5A, we would overcount the influence o
fluctuations, although the results would probably appear
so much different as shown on simpler systems.31

For x(q,v) @Eq. ~25!#, atch.0 and possiblyT.0, we do
not have a corresponding theory, so we treat it as an in
wherex(q,v) is restricted by the sum rule

1

N (
q
E

0

`

cothS bv

2 Dx9~q,v!dv5
p

4
~12ch!. ~28!

At the same time, the system is close to the antiferrom
netic instability, so we assume spin fluctuations of the ov
damped form19

x9~q,v!}
v

~ q̃21k2!~v21vk
2!

. ~29!

For convenience we choose the separable form, whic
consistent with experimental facts and theoretical argum
for q̃,k and v,vk . Nevertheless, at givenk and vk the
appearance of the pseudogap and the form of the FS is
very sensitive to the particular form ofx9(q,v) provided
that x9(q,v) is not singular as, e.g., is the case in the m
ginal Fermi-liquid scenario.14 It has been shown23 that the
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latter form is needed to obtain a generally overdamped
with a vanishing QP weight~at T50) in spectral functions a
the intermediate doping.

IV. PSEUDOGAP ANALYSIS

Full calculation of the spectral functionsA(k,v) within
the presented theory requires a self-consistent solution
S5Spm1S lf , where, besides the model parameterst, t8, J
and the dopingch , inputs arem,k,h1 ,h2 . k, h1, andh2 are
also given by short-range spin correlations dependent mo
on ch , and can be taken from various analytical32 and
numerical33,9 calculations within thet-J model. At the same
time in a selfconsistent theorym should be fixed via the DOS

N~v!5
2

N (
k

A~k,v!, ~30!

with

ch512E
2`

`

f ~v!N~v!dv. ~31!

Results of such a self-consistent calculation are presente
Sec. V.

In order to establish characteristic features of t
pseudogap and the development of the FS we first perfor
simplified analysis. We note that the effects ofSpm are three-
fold.

~a! Spm induces a large incoherent component in the sp
tral functions atv!0, in particular at low and intermediat
dopings.

~b! Spm renormalizes the effective QP band relevant to
behavior atv;0 and at the FS.

~c! Spm causes a transition of a large FS into a sm
hole-pocket-like FS atch,ch* !1,

Result~b! can serve as a starting point for the discuss
of the pseudogap and FS features at finite doping. If
define the effective band as

ek
ef5Zk

ef@zk1Spm~k,0!2m#,

Zk
ef5F12

]Spm~k,v!

]v Uv50G21

, ~32!

for the effective spectral function we obtain

Aef
0 ~k,v!5aZk

efd~v1m2ek
ef!, ~33!

which can be used to evaluateS lf . We restrict ourselves her
to the regime of intermediate~not too small! doping, where
ek

ef defines the large FS.
Let us concentrate on results forT50. The simplest situ-

ation whereS lf can be evaluated analytically is the qua
static and single-mode approximation~QSA! which is mean-
ingful if vk!t,k!1. In this case we insert into Eq.~25!

1

p
x9~q,v!;

1

4
d~q2Q!@d~v2n!2d~v1n!#, ~34!

with n→0. We obtain
9-5
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S lf
QSA~k,v!5

r smkQ
2

4

Zk2Q
ef

v2ek2Q
ef

~35!

and

GQSA~k,v!5
aZk

ef~v2ek2Q
e f !

~v2ek2Q
ef !~v2ek

ef!2Dk
2

, ~36!

Dk
25

r s

4
Zk

efZk2Q
ef mkQ

2 .

The spectral functions show in this approximation tw
branches ofE6, separated by the gap which opens along
antiferromagnetic zone boundaryk5kAFM , where ek2Q

ef

5ek
ef . SincegkAFM

50 the relevant~pseudo!gap scale is

Dk
PG5uDkAFM

u5
Zk

ef

2
Ar su2J24t8cos2kxu. ~37!

It is instructive to realize thatDk
PG does not depend ont, but

rather on smallerJ and in particulart8. For t8,0 the gap is
largest at (p,0), consistent with experiments. Th
~pseudo!gap that appears at the Fermi energyv50 depends,
however, on properties ofekAFM

ef . We do not expect that the

gap opens along the whole AFM zone boundary, since
most casesekAFM

ef crosses zero along (p/2,p/2)-(p,0) so that

within the QSAEk
2 forms a hole-pocket-like FS. In fact, th

results of the QSA are equivalent to the system with lo
range spin-density-wave order~an AFM!, where the dou-
bling of the unit cell appears.

Within the simplified effective band approach@Eq. ~31!#,
it is not difficult to evaluate numericallyS lf also beyond the
QSA, by explicitly takingx(q,v) @Eq. ~29!#, for k.0 and
vk52Jk. Integrals in Eq.~24! can be performed mostly
analytically if we linearize the dependence ofek

ef within the
relevant intervaldk&k.

Let us, for illustration, present in this section results ch
acteristic for the development of spectral functions with
most sensitive parametersk andm, which both simulate the
variation with doping. We further fix on the model parame
J/t50.3 as relevant for cuprates. Here we taket8/t520.3,
close to values quoted for BSCCO. For simplicity we assu
first that the effective bandek

ef is just renormalizedek ~justi-
fied for an intermediate doping; see Sec. V! with fixed values
tef /t50.3, tef8 /t520.1, andZef50.4. A more realistic treat-
ment would require the variation of latter parameters w
ch , but the results remain qualitatively similar. We takek
;Ach in accord with experiments1 and numerical results on
the t-J model.33,9,32

The choice ofm is somewhat more arbitrary since, with
an effective-band approach the sum rule@Eq. ~30!#, cannot
be used as a criterion. Nevertheless it is evident thatm de-
termines the shape and volume of the FS. In the follow
examples we choosem such that at givenk the DOS at the
Fermi energy,N(0), reaches a local minimum. This mean
that effectively the states near the (p,0) are in the pseudoga
and that the truncation of the FS is most pronounced~at
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given k). Such a choice ofm in fact also yields the volume
of the FS~except at extremek!1) quite close to the one
consistent with the Luttinger theorem.34

In Fig. 1 we first present results forA(k,v50) at T50
for a broad range ofk50.01–0.6. Curves~evaluated at smal
additional smearinge50.02t) in fact display the effective FS
determined by the conditionG21(kF,0)50. At the same
time, intensitiesA(k,v50) correspond to the renormaliza
tion factor ZF . We can comment upon the development
follows. At extremely smallk50.01 we see the hole-pocke
FS which follows from the QSA in Eq.~36!. In spite of the
small k the ‘‘shadow’’ side of the hole pocket has a small
ZF . Already the smallk;0.05 destroys the shadow side
the pocket, i.e., the solutionG2150 on the latter side disap
pears since the singularity inS lf @Eq. ~35!#, is smeared out by
finite k. On the other hand, in the gap emerge QP soluti
with very weakZF!1 which reconnect the FS into a larg
one. We are dealing nevertheless with an effectively tr
cated FS with well-developed arcs. The effect of largerk is
essentially to increaseZF in the gapped region, in particula
near (p,0). Finally, for largek50.6, which corresponds to
the regime consistent with optimal doping or overdoping
cuprates,ZF is essentially only weakly decreasing towa
(p,0), and the FS is well pronounced and concave as n
rally expected fort8,0.

In order to understand the pseudogap features at low
finite k, in Figs. 2 and 3 we presentA(k,v) for k50.1. The
spectra in Fig. 3 are presented along the linesa–c in the
Brillouin zone as shown in Fig. 2. As expected from E
~36!, the pseudogap is smallest along the zone diagonal~line
a) where, moreover, the pseudogap appears atv.0, so that
it would not be seen in ARPES. Linesa and b are thus
examples of the region where arcs of the FS are well p
nounced, i.e., their QP weight is not strongly renormaliz
ZF&Zef. On the other hand, following linec the chemical
potentialv50 falls into the pseudogap. We see in Fig. 3~a!
that QP in fact crosses coherently the FS (v50) although

FIG. 1. Contour plot of spectral functionsA(k,v50) at T50
for variousk in one quarter of the Brillouin zone.
9-6
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SPECTRAL FUNCTIONS, FERMI SURFACE, AND . . . PHYSICAL REVIEW B65 174529
with very small ZF!1. It is evident from Fig. 1 thatZF
within the pseudogap remains small only fork!1 while it
increases and finally smears out the concept of
pseudogap fork*k* ;0.5.

It is quite remarkable to note that in spite ofZF!1 the QP
velocity vF is not diminished within the pseudogap. In fact
is even enhanced, as seen in Fig. 3~b!, and the QP is well
defined at the FS, while it becomes fuzzy atvÞ0 merging
with the solutionsEk

6 , respectively, away from the FS.
The presented formalism offers a possible scenario for

evolution of the FS with doping from a pocketlike surfa
into a large surface. In order to explain results in Fig.
concerning the effective truncation of the FS and the cha
ter of the QP within the pseudogap, we note that it is ess
tially enough that bothk and vk are finite to yield a well-
defined FS. Since gross features do not depend on
particular form of Eq.~29!, here we present a simplifie
analysis using

x8~Q1q̃,v!5H C@d~v2vk!2d~v1vk!#, q̃',k

0, q̃'.k,
~38!

FIG. 2. A(k,v50) for k50.1 and lines~a!–~c! used in Fig. 3.

FIG. 3. A(k,v) for k50.1 along different directions~a!, ~b!,
and ~c! in the Brillouin zone, corresponding to Fig. 2. Spectra f
~a8! from Fig. 2 are very similar to~a!.
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where q̃' denotes the component perpendicular to the a
ferromagnetic zone boundary. Let us assume thatek

ef2m

5e;0 andek2Q
ef 2m5 ē;0. We also linearize dispersionek

ef

at the FS, and assume thatvk
efi(1,1), so that from Eq.~25! we

obtain

S~e,v!52
D2

2w
log

~w1vk1 ē2v!~vk1v!

~w1vk2 ē1v!~vk2v!
, ~39!

wherew5vk
efk and D5Dk . Let us evaluate QP propertie

on the FS assuming that it is located atē50, i.e., on the
antiferromagnetic zone boundary. From Eq.~39! we obtain
the QP weightZF

ZF

Zef
5F12

]S8

]v Uv50,ē50G21

5F11
D2

vk~vk1w!G
21

.

~40!

This clearly leads toZF!1 for vkw;2vk
efJk2!D2. This is

generally the case within the gapped part of the FS for sm
k,k* , as shown in Fig. 1. It should be also noted that t
latter condition is essentially always satisfied near (p,0)
wherevk

ef;0 and consequently alsow;0.
Let us evaluate in the same way the QP renormali

velocity v(kF) at the FS. Here we realize that thek depen-
dence ofS8 is essential. The latter is given in Eq.~40! by the
e dependence,

v~kF!

vk
ef

5S 11
]S8

]e D ZF

Zef
,

]S8

]e
uv50,ē505

D2

vk~vk1w!
, ~41!

which, in contrast toZF , leads to an enhancement ofvF . In
the casevkw!D2 we thus obtain

vF

vk
ef

;
vk

w
;

2J

vk
. ~42!

The finalv(kF) is therefore not strongly renormalized, sinc
2J and vk

ef are of similar order. Furthermore,v(kF) is en-
hanced in the parts of the FS wherevk

ef is small, in particular
near the (p,0) point. The situation is thus very different from
‘‘local’’ theories whereS(k,v);S(v) and the QP renor-
malization is governed only byZF . In our case the ‘‘nonlo-
cal’’ character ofS(k,v) is essential in order to properl
describe the QP within the pseudogap region.

Let us further discuss the behavior of the DOSN(v) @Eq.
~30!#. It is evident from Fig. 1 that the contribution toN(v
;0) will come mostly from FS arcs near the zone diagon
while the gapped regions near (p,0) will contribute less.
Results presented in Fig. 4~full lines! show the developmen
of N(v) with k, as corresponding to the FS in Fig. 1. We s
that the DOS indeed reveals a pseudogap atv,D; however,
the pseudogap is visible only fork,0.5 and deepens fork
→0.
9-7
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P. PRELOVŠEK AND A. RAMŠAK PHYSICAL REVIEW B 65 174529
The DOS is measured in cuprates via angle-integra
PES, e.g., for LSCO in Ref. 35, as well as via scann
tunneling microscopy~STM!.36 It is very possible that within
both experiments the matrix elements are essentially lea
to enhanced contribution near thex points in the Brillouin
zone. It has been proposed that for thec-axis conductivity37

the interplanar hopping should be weighted by the ma
element

w~k!5~coskx2cosky!2. ~43!

The same arguments as for thec-axis conductivity might
apply also for the STM effective DOS as well as for int
grated PES, therefore, we also present the weighted DOSNw
wherew(k) is introduced additionally into Eq.~30!. Results
also presented in Fig. 4~dashed line! show a much more
strongly pronounced pseudogap, in particular at lowk. This
is quite evident sincew(k) essentially destroys the effect o
FS arcs near (p/2,p/2), which present the main contributio
~due to small velocity in hole-pocket FS! to the usualN(v).

In Fig. 5~a! we show the averageZav along the FS, as wel
as the QP DOS, defined as

NQP5
1

2p2 R dSF

v~kF!
. ~44!

In Fig. 5~b! we present, as well as the dependence of
DOS at the FS, bothN(0) and Nw(0) as functions ofk.
Note thatNQP should be relevant for the specific heat, i.
NQP}g5CV /T at low T ~provided that we are dealing wit
a normal Fermi liquid!. It is quite important to understan
that decreasingk ~smaller doping! also means decreasin
NQP , which is also consistent with the observation of
pseudogap in the specific heat in cuprates.38 Here we note
that such a behavior is not evident when one discusses
metal-insulator transition. That is, in a Fermi liquid with
~nearly! constant Fermi surface one can drive the me
insulator transition byZav→0, and within the assumption o
a local characterS(v) this would lead tovF→0 and conse-
quently toNQP→`. Clearly, the essential difference in ou

FIG. 4. Density of statesN(v) ~full lines! and weighted DOS
Nw(v) ~dashed lines! for different k.
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case is that within the pseudogap regimeS(k,v) is nonlocal,
allowing for the simultaneous decrease ofN(0) andNQP .

Finally, let us comment on the influence of finiteT. While
T also enters within this approach via effective parameter
vk

ef and predominantlyk(T), here we consider only the direc
effect via the thermodynamic factor in Eq.~25!. It is evident
thatT.0 smears outS lf . This becomes important at smallk
in particular for QP’s in the pseudogap regime. In Fig. 6
presentA(k,v), corresponding to Fig. 3~b!, for several val-
ues of lowT. The main conclusion is that a weak~but sharp!
QP peak withZF!1 atT50 is smeared out already by ver

FIG. 5. ~a! Average QP weightZav and QP DOSNQP vs k. ~b!
DOS N(0) and weighted DOSNw(0) vs k.

FIG. 6. A(k,v) for k50.1 andk along the central part of the
line b in Fig. 2 for variousT: T50, T50.02t, andT50.05t. The
momentumk ranges from (p/4,3p/4)7(p/32,p/32).
9-8
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SPECTRAL FUNCTIONS, FERMI SURFACE, AND . . . PHYSICAL REVIEW B65 174529
small T.Ts;0.02 t and is not at all visible~there is no
overdamped peak! at higherT, the remainder being an inco
herent background atv;0 for T.Ts. This is important to
realize that ARPES experiments in fact do not observ
well-defined QP peak near (p,0) in the underdoped regim
at T.Tc .

V. SELF-CONSISTENT CALCULATION

The full self-consistent sets of equations forS5Spm
1S lf @Eqs. ~22! and ~24!#, and forG @Eq. ~15!#, are solved
numerically. For givenm the FS emerges as a solution det
mined by the relationzkF

1S8(kF,0)5m. We should note

that, at a givenm, the electron concentrationce as calculated
from the DOSN(v) @Eq. ~31!#, does not in general coincid
with the one evaluated from the FS volume,c̃e5VFS/V0.
Nevertheless, apart from the fact that within thet-J model
the validity of the Luttinger theorem is under question,39 in
regimes of large FS’s both quantities appear to be q
close. Within the presented theory the position of the FS
mainly determined byzk andSpm and is less sensitive toS lf .
On the other hand,S lf is crucial for the QP properties nea
the FS.

As discussed in Sec. III, in Eq.~7! we use the most ap
propriate and simplest approximation to insert the unren
malizedA0(k,v), i.e., the spectral function without a sel
consistent consideration ofS lf but with Spm fully taken into
account. Here we chooset8520.2t and againk5Ach,
while h1 and h2 are determined as a function ofch from
model calculations.33 We useN540340 points in the Bril-
louin zone and broadeninge/t50.05.

In Fig. 7 we present hole concentrationch vs m as ob-
tained fromN(v) at T50. We solve self-consistent equa
tions by iteration, whereby for 0.06,ch,0.11 we find in the
equations an instability signaled by oscillatory behavior
stead of the convergence; a unique solution cannot be
tained in the region indicated by the dashed line. Howeve
lower ~and higher! doping the solution is converged. It seem
that the region of instability coincides with the transitio
from the large to a small FS.

The shape of the FS is most clearly presented with c

FIG. 7. Hole dopingch as a function of the chemical potentia
m/t, following from the self-consistent calculation.
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tour plot of the electron momentum distribution function d
fined as

ñ~k!5a21E
2`

0

A~k,v!dv. ~45!

Results for a characteristic development of the FS withch
are shown in Fig. 8. At higher doping,ch50.26 and also
ch50.20, we obtain a common large FS topology. In t
intermediate doping regime,ch50.14, the pseudogap is pro
nounced at momenta around (p,0) and the FS shows a ten
dency to form a small FS. The gap is more pronounced
cause of longer antiferromagnetic correlation lengthj
~smallerk). At ch,ch

0;0.06 solutions are consistent with
small pocketlike FS, whereby this behavior is enhanced
t8,0, as realized in other model studies.10 On increasing
doping the FS rather abruptly changes from small to large
suggested from the results of the SCBA.40 The smallness of
ch

0 has the origin in the quite weak dispersion dominated
J andt8 at ch→0 which is overshadowed by much largerzk
at moderate doping, where the FS is large and its shap
controlled byt8/t.

In Figs. 9~a! and 9~b! we present calculatedA(k,v) along
the principal directions in the Brillouin zone, i.e
(p/2,p/2)→(0,0)→(p,0). It is evident thatSpm leads to a
strong damping of hole QP and a quite incohere
momentum-independent spectrumA(k,v) for v!2J which
qualitatively reproduces ARPES and numerical result13

Electron QP’s~at v.0) are in general very different, i.e
with much weaker damping arising only fromSpm. Note the
relatively high QP velocity in the higher doping regimech
50.26 @Fig. 9~a!#, as compared to a more narrow dispersi
on the scale 2J at low dopingch50.04@Fig. 9~b!#, where we
find a regime of small pocketlike FS’s.

In Fig. 10 we present the development of spectral fu
tions at fixedch50.2, but now varyingk as an independen

FIG. 8. Electron momentum distributionñ(k) for variousch .

Thin contour lines representñ(k) in increments of 0.05, while the

heavy line corresponds toñ(k)50.8 for ch50.26, 0.20, 0.14, and

ñ(k)50.85 forch50.04.
9-9
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P. PRELOVŠEK AND A. RAMŠAK PHYSICAL REVIEW B 65 174529
parameter. Let us concentrate on the emergence of
pseudogap near (p,0). At k50.4;Ach the pseudogap is es
sentially not yet developed. Nevertheless, the gap opens
decreasingk, in particular for ~at this doping unrealistic
value! k50.05.

VI. CONCLUSIONS

We have presented the theory of spectral functions wit
the t-J model, whereby our method is based on EQM
projected fermionic operators and on the decoupling appr
mation for the self-energy, assuming the fermions and s
fluctuations as essential coupled degrees of freedom. We
make some comments on the method.

~a! The EQM approach for spectral functions~as well as
for other dynamical quantities! seems to be promising, sinc
it can exactly treat the constraint which is essential for
physics of strongly correlated electrons.

~b! In finding the proper approximation for the self-ener
within the EQM approach it is plausible that the main ing
dient is the coupling of fermions with spin fluctuation

FIG. 9. A(k,v) along main directions in the Brillouin zone.
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where close to the antiferromagnetically ordered state b
short-range transverse and longer-range~longitudinal! spin
fluctuations are important. It is very possible, however, t
other contributions could be important, e.g., the coupling
pairing fluctuations.

~c! In an ordered AFM our method naturally reproduc
the results for the spectral function~of a hole! within the
SCBA, which is highly nontrivial, since both approaches a
quite different.

~d! The coupling to longitudinal spin fluctuations appea
to be most important for QP’s near the AFM zone bounda
and is responsible for the opening of the pseudogap. Here
coupling is only moderately strong, and can be treated in
lowest-order decoupling scheme.

~e! The present theory uses the spin response as an in
x9(q,v) @Eq. ~29!# corresponds in general to a Fermi liqu
or to a short-range AFM liquid. Results remain, in fac
qualitatively similar as far asx9(q,v) is nonsingular. In the
opposite case, e.g., if we would use the marginal Fermi
uid ~MFL! form as an input, the Fermi surface would still b
defined, but the QP would have a vanishing weightZ→0.23

Let us further discuss some main results of the presen
theory:

~a! The fermion-paramagnon coupling as manifested
Spm remains effective and strong even at moderate dop
The full calculation shows that the coupling leads to a la

FIG. 10. Contour plot ofA(k,v) for fixed dopingch50.2 and
variousk.
9-10
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SPECTRAL FUNCTIONS, FERMI SURFACE, AND . . . PHYSICAL REVIEW B65 174529
incoherent part in the hole part (v,0) of the spectral func-
tion, as well as to the renormalized bandek

ef .
~b! The main consequence ofS lf due to the coupling to

longer-range longitudinal spin fluctuations is the appeara
of a pseudogap atk,k* . The pseudogap opens predom
nantly along the AFM zone boundary, and its extent is qu
tatively given by Eq.~37!, dependent onJ and t8 but not
directly ont. Evidently the pseudogap has a similarity to t
d-wave-like dependence along the FS, fort8,0 being larg-
est near the (p,0) point.

~c! How strong the pseudogap effect is depends mainly
k. At smallk!k* parts of the Fermi surface near (p/2,p/2)
remain well pronounced~for t8,0) while the Fermi surface
within the pseudogap is suppressed, i.e., QP’s have a s
weight ZF!1, in particular near zone corners (p,0).

~d! The simplified analysis yields large Fermi surface,
though a truncated one, except at very smallk!k* where
S lf by itself induces a small hole-pocket-like Fermi surfac
On the other hand,Spm generates hole pockets already f
ch,ch

0;0.06. In fact, an instability of the self-consistent ca
culation indicates the emergence of a hole-pocket Fermi
face even atch&0.1. However, it is very possible that withi
the present approximation schemeSpm is overestimated a
intermediatech , an indication for it being quite a weak dis
persionek

ef .
~e! Our method is approximate in the evaluation ofS,

hence it is not surprising that the volume of the Fermi s
face does in general not coincide with the one followi
from the Luttinger theorem. In any case it is questionable
such a relation should be valid within thet-J model39 due to
the projected basis and strong correlations. Nevertheles
the regime of a large Fermi-surface the full calculation yie
the Fermi surface volume quite close to the Luttinger on

~f! For k,k* the QP within the pseudogap has a sm
weightZF!1 but not a diminishedv(kF), which is the effect
of the nonlocal character ofS(k,v). A consequence is tha
QP’s within the pseudogap contribute much less to the
DOS NQP . This can explain the reduction of the latter wi
doping and the appearance of the pseudogap in the spe
heat being essential for the understanding of the specific
in underdoped cuprates.

~g! Although most results are presented forT50, we can
discuss some effects ofT.0. The first effect is that within
the pseudogap the QP’s withZF!1 are already washed ou
~not just overdamped! for very smallT,Ts!DPG. On the
other hand, the pseudogap is mainly affected byk. So we
can argue that the pseudogap would be observable
k(ch ,T),k* ;0.5. This effectively determines th
pseudogap crossover temperatureT* (ch). From the quanti-
ev
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tative studies of thet-J model,41,32 it appears that in the
region of interestk is nearly linear in bothT andch so we
would approximately obtain

T* ;T0* ~12ch /ch* !, ~46!

whereT0* ;0.6J andch* ;0.15.
Finally we make some comments on the relevance of

results to experiments on cuprates, in particular with resp
to observed pseudogap and Fermi surface features.

~a! The ~large! pseudogap scale shows up, in ARPES
BSCCO, as a hump at;100 eV.2 Our results indicate quite
a similar pseudogap scale, e.g., in the DOS in Fig. 4 thev
,0 pseudogap;0.3 t ~note thatt;0.4 eV), sinceDPG is
determined mainly byJ andt8. The pseudogap and the hum
are also very visible in spectral functionsA(k,v) with k
;(p,0), e.g., in Fig. 6~a!. However, it should be noted tha
k50.1 in Figs. 3 and 6 is already quite small, and leads
QP peaks being too narrow relative to experiments.

~b! The truncated Fermi surface in underdoped BSC
appears as an arc~part of the large Fermi surface correspon
ing to t8,0) in the Brillouin zone,3 effectively not crossing
the antiferromagnetic zone boundary, which is also char
teristic of our results fork,k* , originating from the strong
coupling to spin fluctuations with commensurate (p,p). The
same is true of the origin of shadow features in spec
functions pronounced at intermediate doping and in parti
lar at weak doping.

~c! Our results for the depletion of the DOSN(0)
@Nw(0)# with decreasing doping are qualitatively consiste
with the integrated PES@so far known for LSCO~Ref. 35!#
and STM,36 although in this relation the importance of m
trix element corrections is not yet clarified. In relation
STM results36 we note that our DOS’s are not as symmet
aroundv50. In general, however, the DOS’s at low dopin
cannot be very symmetric since the DOS sum rule is ess
tially different for the electronv.0 part}2ch and the hole
v,0 part}12ch .

~d! We also find a decrease of the QP DOSNQP with
doping, essential in connection with the specific-he
pseudogap in underdoped cuprates.38 However, it should be
mentioned that our results for bothN(0) as well asNQP
}g indicate a weaker suppression with decreasing dop
than observed in experiments. This is due to remaining c
tribution of Fermi-surface arcs, which could be overes
mated in our approach fork!k* .

~e! Both the value and dependence of the pseudogap t
peratureT* (ch), as estimated in Eq.~46!, seem to be very
reasonable in connection with experimental evidence, aris
from various transport and magnetic properties in cuprat1
-
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40A. Ramšak, I. Sega, and P. Prelovsˇek, Phys. Rev. B61, 4389
~2000!.

41A. Sokol, R.L. Glenister, and R.R.P. Singh, Phys. Rev. Lett.72,
1549 ~1994!.
9-12


